DK147247B - MERCURY OIL LAMP FOR CONTINUOUS OPERATION - Google Patents

MERCURY OIL LAMP FOR CONTINUOUS OPERATION Download PDF

Info

Publication number
DK147247B
DK147247B DK380175AA DK380175A DK147247B DK 147247 B DK147247 B DK 147247B DK 380175A A DK380175A A DK 380175AA DK 380175 A DK380175 A DK 380175A DK 147247 B DK147247 B DK 147247B
Authority
DK
Denmark
Prior art keywords
lamp
sealed
lamps
heat
mercury vapor
Prior art date
Application number
DK380175AA
Other languages
Danish (da)
Other versions
DK380175A (en
DK147247C (en
Inventor
Harden Henry Troue
Original Assignee
Union Carbide Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Union Carbide Corp filed Critical Union Carbide Corp
Publication of DK380175A publication Critical patent/DK380175A/en
Publication of DK147247B publication Critical patent/DK147247B/en
Application granted granted Critical
Publication of DK147247C publication Critical patent/DK147247C/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/56Cooling arrangements using liquid coolants
    • F21V29/58Cooling arrangements using liquid coolants characterised by the coolants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/85Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems characterised by the material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/85Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems characterised by the material
    • F21V29/89Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/52Cooling arrangements; Heating arrangements; Means for circulating gas or vapour within the discharge space
    • H01J61/523Heating or cooling particular parts of the lamp
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/04Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases
    • B05D3/0466Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases the gas being a non-reacting gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/065After-treatment
    • B05D3/067Curing or cross-linking the coating

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)

Description

1 1472471 147247

Den foreliggende opfindelse angår en kviksølvdamplampe til kontinuerlig drift i en afgrænset omslutning med en kvartskappe, der er forseglet ved hver ende, og en strøraleder, der rager ud fra hver ende, samt kølelegemer placeret ved hver ende.The present invention relates to a continuous operation mercury vapor lamp in a defined enclosure with a quartz cap sealed at each end and a radiant conductor projecting from each end as well as heat sinks located at each end.

En betydelig forbedring ved fotopolymerisationsbearbejdning tilvejebringes, når den kemiske belægning, der skal hærdes, er dækket af en inaktiv atmosfære, medens den er udsat for ultraviolet stråling. Den vigtigste kilde for ultraviolet energi er en sædvanlig kviksølvdamplampe. Kviksølvdamplamper er relativt billige og relativt effektive som frembringere af elektromagnetisk stråling i det ultraviolet-te bølgelængdeområde.A significant improvement in photopolymerization processing is provided when the chemical coating to be cured is covered by an inert atmosphere while subjected to ultraviolet radiation. The main source of ultraviolet energy is a conventional mercury vapor lamp. Mercury vapor lamps are relatively inexpensive and relatively effective as generators of electromagnetic radiation in the ultraviolet wavelength range.

For samtidigt at tilvejebringe en beskyttende atmosfære ved overfladen af belægningen, medens overfladen underkastes bestråling, er det nødvendigt at anbringe kviksølvlamperne i en afgrænset omslutning sammen med enheden, som tilvejebringer den inaktive atmosfære.In order to simultaneously provide a protective atmosphere at the surface of the coating while subjecting the surface to irradiation, it is necessary to place the mercury lamps in a confined enclosure with the unit providing the inactive atmosphere.

Når en eller flere kviksølvdamplamper, navnlig lamper med høj effekt, er anbragt i den afgrænsede omslutning for enheden til tilvejebringelse af den inaktive atmosfære, udstråles der imidlertid tilstrækkelig varme til at bevirke, at den omgivende temperatur i omslutningen stiger betydeligt. Den forhøjede temperatur af omgivelserne vil igen fremskynde svigten af lamperne. En sådan svigten er blevet tilskrevet forringelse af de ledende elementer i lamperne og specielt oxidering af molybdænstrimlerne, som er indsmeltet i kvartskappen ved de modstående ender af lampen og strækker sig indad i lampen til wolframelektroderne. Da enheden til tilvejebringelse af den inaktive atmosfære er udformet og indrettet til at føre inaktiv gas ind i den afgrænsede omslutning, ville det kun være naturligt at antage, at udformningen kan ændres således, at den inaktive gas tilvejebringer den yderligere funktion at afkøle enderne af kviksølvdamplamperne.However, when one or more mercury vapor lamps, particularly high-power lamps, are placed in the confined enclosure of the unit to provide the inactive atmosphere, sufficient heat is radiated to cause the ambient temperature of the enclosure to rise significantly. The elevated temperature of the surroundings will in turn accelerate the failure of the lamps. Such failure has been attributed to deterioration of the conductive elements of the lamps, and especially oxidation of the molybdenum strips, which are fused in the quartz sheath at the opposite ends of the lamp and extend inward into the lamp to the tungsten electrodes. Since the device for providing the inactive atmosphere is designed and arranged to feed inactive gas into the bounded enclosure, it would only be natural to assume that the design can be changed so that the inactive gas provides the additional function of cooling the ends of the mercury vapor lamps. .

Dette ville så være analogt med andre kendte kviksølvlampesystemer, ved hvilke luft føres over og omkring enderne af kviksølvlamperne for at opnå afkøling. Ikke desto mindre kræver dette at tilvejebringe tilstrækkelig køling på denne måde ikke kun en relativt stor gasstrøm, men en ubestemt strøm, som vil variere med antallet af anvendte lamper og deres effekt og vil ikke nødvendigvis tilvejebringe ensartet afkøling. Selv om det er muligt, er det følgelig ikke foreneligt med effektiv udformning af enheden til tilvejebringelse af inaktiv atmosfære. Endvidere er kravet om en kraftig gasstrøm en alvorlig økonomisk ulempe, som kan vise sig ødelæggende for den kommercielle levedygtighed af et fotohærdningsanlæg, der afhænger af en sådan strømning. Rent faktisk er der blevet udøvet betydelige forskningsanstren 2 147247 gelser på at udforme et anlæg til dækning med inaktiv gas som angivet i USA patentskrift nr. 3.807.052, hvor den krævede inaktive atmosfære opnås ved anvendelse af en meget lav strømning af inaktiv gas og er en af hovedårsagerne til, at fotopolymerisation i en inaktiv atmosfære er blevet kommercielt akceptabel. Det ovennævnte patentskrift viser en enhed til tilvejebringelse af en inaktiv atmosfære indeholdende en omslutning med et behandlingskammer, som optager strålingskilden, såsom et antal kviksølvdamplamper, og en indgangs- og udgangstunnel, der udgår fra behandlingskammeret. Patentskriftet angiver vigtigheden af den geometriske udformning og placeringen af injektoren for inaktiv gas og dens orientering i enheden for at opnå dynamisk tilvejebringelse af den inaktive atmosfære ved lave gasstrømme og understreger betydningen af en ikke-turbulent strøm af inaktiv gas gennem hele omslutningen.This would then be analogous to other known mercury lamp systems in which air is passed over and around the ends of the mercury lamps to allow cooling. Nevertheless, this requires providing sufficient cooling in this way not only a relatively large gas flow but an indefinite flow which will vary with the number of lamps used and their effect and will not necessarily provide uniform cooling. Accordingly, although possible, it is incompatible with efficient design of the device to provide inert atmosphere. Furthermore, the requirement of a high gas flow is a serious economic disadvantage which can prove detrimental to the commercial viability of a photo curing plant which depends on such flow. In fact, considerable research efforts have been made to design an inert gas coverage plant as disclosed in United States Patent No. 3,807,052, where the required inert atmosphere is obtained using a very low flow of inert gas and is one of the main reasons why photopolymerization in an inert atmosphere has become commercially acceptable. The above-mentioned patent specification discloses a device for providing an inactive atmosphere containing an enclosure with a treatment chamber which receives the radiation source, such as a number of mercury vapor lamps, and an entrance and exit tunnel exiting the treatment chamber. The patent states the importance of the geometric design and placement of the inert gas injector and its orientation in the device to achieve dynamic provision of the inert atmosphere at low gas flows and emphasizes the importance of a non-turbulent flow of inert gas throughout the enclosure.

Man fandt teoretisk ud af, at problemet med overopvarmning ved de forseglede ender af lampen kunne forhindres inde i lampen ved at koble de elektrisk ledende elementer ved de modstående ender af lampen til et varmeudvekslende medium udenfor lampen. Selv om denne kobling kan udføres på en række måder, er den mest foretrukne ved en direkte varmeledende kobling. Denne metode muliggør den direkte varme-overførsel fra molybdænelementerne, som er mest udsatte for nedbrydning ved oxidering, når lampen drives under forhøjede temperaturforhold, uden at påvirke lampens driftsegenskaber. Det er blevet påvist, at ved varmeledende kobling på en forudbestemt måde bliver ikke kun forseglingssvigt forhindret, men lampen gøres i det væsentlige uafhængig af de ydre temperaturforhold.Theoretically, it was found that the problem of overheating at the sealed ends of the lamp could be prevented inside the lamp by coupling the electrically conductive elements at the opposite ends of the lamp to a heat exchange medium outside the lamp. Although this coupling can be performed in a number of ways, it is most preferred by a direct heat-conducting coupling. This method enables the direct heat transfer from the molybdenum elements which are most susceptible to degradation by oxidation when the lamp is operated under elevated temperature conditions without affecting the operating characteristics of the lamp. It has been shown that by heat conducting coupling in a predetermined manner, not only sealing failure is prevented, but the lamp is made essentially independent of the external temperature conditions.

Det for kviksølvdamplampen ifølge opfindelsen ejendommelige er, (a) at hver leder er forbundet med kølelegemet for at tilvejebringe en vej for varmeledningen fra den forseglede ende, (b) at kølelegemet holdes ved en temperatur under loo°C ved hjælp af en kølevæske, som føres derigennem, og (c) at kølelegemerne er anbragt i en sådan tæt nærhed af, men fri af de forseglede ender, at de forseglede ender holdes på en temperatur under 4oo°C.The characteristic of the mercury vapor lamp according to the invention is (a) that each conductor is connected to the heat sink to provide a path for the heat conduit from the sealed end, (b) that the heat sink is maintained at a temperature below 10 ° C by a coolant which and (c) that the heat sinks are disposed in such close proximity to, but free from, the sealed ends that the sealed ends are kept at a temperature below 40 ° C.

Ved et sådant arrangement til køling af kviksølvdamplampen er der kun én forbindelse mellem det forseglede rør og hvert varmelegeme, nemlig de udragende ledere, og kølelegemerne er anbragt i umiddelbar nærhed af enderne af det forseglede rør, således at der efterlades et mellemrum, hvorved varme ikke vil overføres ved varme-ledning andre steder end ved de udragende ledere. Spalten er imidlertid tilstrækkeligt lille til at beskytte forseglingen mod oxidation.In such an arrangement for cooling the mercury vapor lamp, there is only one connection between the sealed tube and each heater, namely the protruding conductors, and the heat sinks are disposed in close proximity to the ends of the sealed tube, leaving no space thereby will be transmitted by heat conduction elsewhere than by the protruding conductors. However, the gap is small enough to protect the seal from oxidation.

3 1472473 147247

Hvis varmelegemet som anført har en ‘temperatur under loo°C, og spalten er lille nok til at holde forseglingstemperaturen under 4oo°C, opnås det ønskede resultat.If, as stated, the heater has a temperature below 10 ° C and the gap is small enough to keep the sealing temperature below 40 ° C, the desired result is obtained.

I sammenligning med kendte konstruktioner opnås ved hjælp af opfindelsen, at fejl ved kvarts-metalforseglingen forhindres, at lampen gøres i det væsentlige uafhængig af de omgivende termiske forhold, at man undgår anvendelse af en kølegas, som ville være påkrævet i store mængder, og som ikke tilvejebringer en ensartet temperatur, og at kvarts-metalforseglingen beskyttes mod virkningen af stråling, hvorved kravene til kølingen nedsættes.Compared to known designs, the invention provides that quartz-metal seal failures prevent the lamp from being made substantially independent of the ambient thermal conditions, avoiding the use of a cooling gas which would be required in large quantities, and which does not provide a uniform temperature, and that the quartz-metal seal is protected from the effect of radiation, thereby reducing the requirements for cooling.

Opfindelsen skal herefter forklares nærmere under henvisning til tegningen, hvor fig. 1 viser et langsgående snit i en udførelsesform for en kombination af en kviksølvdamplampe og terminalenhed ifølge opfindelsen, fig. 2 et tilsvarende billede som det i fig. 1 viste, men med apparatet drejet 9o° omkring en vandret akse i forhold til stillingen vist i fig. 1, fig. 3 et betydeligt forstørret billede af den ene af de forseglede ender af lampen vist i fig. 1 og 2 og fig. 4 en skematisk afbildning af det foretrukne apparat til tilvejebringelse af inaktiv atmosfære og indeholdende kviksølvdamplampen og terminalenheden vist i fig. 1 og 2.The invention will now be explained in more detail with reference to the drawing, in which fig. 1 shows a longitudinal section in one embodiment of a combination of a mercury vapor lamp and terminal unit according to the invention; 2 is a view similar to that of FIG. 1, but with the apparatus rotated 90 ° about a horizontal axis relative to the position shown in FIG. 1, FIG. 3 is a greatly enlarged view of one of the sealed ends of the lamp shown in FIG. 1 and 2 and FIG. 4 is a schematic representation of the preferred apparatus for providing inactive atmosphere and containing the mercury vapor lamp and terminal unit shown in FIG. 1 and 2.

Apparatet ifølge den foreliggende opfindelse er vist i fig.The apparatus of the present invention is shown in FIG.

1 og 2 og omfatter en sædvanlig kviksølvdamplampe lo og et par terminalenheder 12 og 14, som er beliggende i nærheden af hver sin ende af lampen lo.1 and 2, and comprises a conventional mercury vapor lamp 1o and a pair of terminal units 12 and 14 located near each end of the lamp 1o.

Kviksølvdamplampen lo er en typisk i handlen tilgængelig 2,2 kW lampe fremstillet af Sylvania Electric Products Inc. og betegnet nr. H2200T4/24Q. Selv om der her er vist en lampe med middeltryk, er den foreliggende opfindelse ikke begrænset til denne lampe. I virkeligheden kan en hvilken som helst sædvanlig kviksølvdamplampe af en hvilken som helst udformning og specifikation anvendes.The mercury vapor lamp lo is a commercially available 2.2 kW lamp manufactured by Sylvania Electric Products Inc. and designated No. H2200T4 / 24Q. Although a medium pressure lamp is shown here, the present invention is not limited to this lamp. In fact, any conventional mercury vapor lamp of any design and specification can be used.

Den viste kviksølvdamplampe lo er forseglet ved hver ende 3o og 32 for derimellem at danne en lysbuekappe 16 af kvarts, som omgiver et par wolframelektroder 18 og 2o, der er anbragt ved de modstående ender af lampen lo. Elektroden 18 er ved den forseglede ende 3o forbundet med en strømleder 22 over en mellemliggende materialestrimmel 24. Den forseglede forbindelse mellem de ledende elementer 4 147247 bestående af wolframelektroden 18, den mellemliggende strimmel 24 og strømlederen 22 er vist tydeligere i fig. 3. Ligeledes er elektroden 2o ved den forseglede ende 32 af lampen lo forbundet med en strømleder 26 over en mellemliggende materialestrimmel 28. Hver materialestrimmel 24 og 28 består af et sejt materiale, som er elektrisk ledende og har et højt smeltepunkt,såsom molybdæn. De forseglede ender 3o og 32 er dannet, efter at lampen er fyldt med argongas og en lille mængde kviksølv ved anvendelse af sædvanlige metoder, som f.eks. ved mekanisk sammenpresning af hver ende af lampen lo ind i intim berøring omkring de ledende strimler henholdsvis 24 og 28. Ved sammentrykning af enderne til dannelse af en forsegling bliver den geometriske form af enden i det væsentlige rektangulær. Alternativt kan enderne af lampen lo være vakuumtrukket til dannelse af en langstrakt hals, som intimt omslutter molybdænstrimlerne. Det er også almindeligt at indkapsle de forseglede ender 3o og 32 i keramisk materiale 35. Endvidere kan en ledende metalkappe anbringes over de forseglede ender 3o og 32 af lampen og anvendes som erstatning for de ydre strømledninger henholdsvis 22 og 26.The shown mercury vapor lamp Io is sealed at each end 3o and 32 to form therebetween an arc quartz 16 of quartz which surrounds a pair of tungsten electrodes 18 and 2o located at the opposite ends of the lamp Io. The electrode 18 is connected at the sealed end 30 to a current conductor 22 over an intermediate strip 24. The sealed connection between the conductive elements 4 147247 consisting of the tungsten electrode 18, the intermediate strip 24 and the current conductor 22 is more clearly shown in FIG. 3. Likewise, the electrode 20 at the sealed end 32 of the lamp 1o is connected to a conductor 26 over an intermediate material strip 28. Each material strip 24 and 28 consists of a tough material which is electrically conductive and has a high melting point, such as molybdenum. The sealed ends 30 and 32 are formed after the lamp is filled with argon gas and a small amount of mercury using conventional methods such as e.g. by mechanically compressing each end of the lamp 1, into intimate contact around the conductive strips 24 and 28, respectively. By compressing the ends to form a seal, the geometric shape of the end becomes substantially rectangular. Alternatively, the ends of the lamp 1o may be vacuum-drawn to form an elongated neck which intimately encloses the molybdenum strips. It is also common to encapsulate the sealed ends 3o and 32 in ceramic material 35. In addition, a conductive metal sheath can be placed over the sealed ends 3o and 32 of the lamp and be used as a replacement for the external power lines 22 and 26, respectively.

Terminalenhederne 12 og 14 vist i fig. 1 og 2 er fortrinsvis ens opbygget og består i det væsentlige af et emne vist i form af en blok, som er termisk og fortrinsvis også elektrisk sammenkoblet med molybdænstrimlerne 24 og 28 i lampen lo. Selv om terminalenhederne 12 og 14 primært er bestemt til at virke som kølelegemer, tjener de også til at afskærme de forseglede ender 3o og 32 mod stråling, som forklaret mere detaljeret nedenfor, samt til at overføre vekselstrømmen til wolframelektroderne 18 og 2o.The terminal units 12 and 14 shown in FIG. 1 and 2 are preferably similar in structure and consist essentially of a blank shown in the form of a block which is thermally and preferably also electrically coupled to the molybdenum strips 24 and 28 of the lamp 1o. Although the terminal units 12 and 14 are primarily intended to act as heat sinks, they also serve to shield the sealed ends 30 and 32 from radiation, as explained in more detail below, and to transmit the alternating current to the tungsten electrodes 18 and 20.

Den fysiske udformning af og materialerne i hver terminalenhed 12 og 14 er ikke kritisk for opfindelsen, forudsat at de i tilstrækkeligt omfang virker som kølelegemer til at fjerne tilstrækkelig varme fra de indre ledende elementer i lampen lo og navnlig fra molyb-dænstrimleme 24 og 28 for at forhindre svigten af lampen. For at opfylde dette krav skal hver terminalenhed være udført af et rimeligt godt termisk ledende materiale og have en sådan udformning, at den muliggør effektiv varmeoverførsel. Det foretrækkes navnlig at anvende strømlederne 22 og 26 som det mellemliggende varmeoverføringsmiddel fra molybdænstrimlerne 24 og 28 til terminalenhederne henholdsvis 12 og. 14. Den fysiske placering af hver terminalenhed 12 og 14 ved hver forseglet ende henholdsvis 3o og 32 af lampen lo er kritisk, idet hvis der er en for lang afstand mellem dem, vil den nødvendige afkøling til undgåelse af oxidering ved de forseglede ender ikke opnås.The physical design and materials of each terminal unit 12 and 14 are not critical to the invention, provided that they act sufficiently as heat sinks to remove sufficient heat from the inner conductive elements of the lamp 1o and in particular from the molybdenum strips 24 and 28 for to prevent the failure of the lamp. To meet this requirement, each terminal unit must be made of reasonably good thermally conductive material and be of such design as to enable efficient heat transfer. In particular, it is preferred to use current conductors 22 and 26 as the intermediate heat transfer agent from molybdenum strips 24 and 28 to terminal units 12 and 12, respectively. 14. The physical location of each terminal unit 12 and 14 at each sealed end 3o and 32 of lamp 1o, respectively, is critical, since if there is too long a distance between them, the necessary cooling to avoid oxidation at the sealed ends will not be achieved. .

Det har vist sig, at anbringelsen af terminalenhederne 12 og 14 skal 5 147247 ligge så nær de forseglede ender 3o og 32, at indsmeltningstemperaturen holdes under 4oo°C og fortrinsvis ikke over 35o°C. For at holde indsmeltningstemperaturen ved dette niveau har det også vist sig nødvendigt at sikre, at temperaturen af terminalenhedeme 12 og 14 holdes på en temperatur, som er betydeligt lavere end 35o°C og fortrinsvis ikke over ca. loo°C. For at opfylde dette sidstnævnte krav skal terminalenhederne 12 og 14 afkøles med en kølevæske, såsom vand. Graden af denne afkøling vil bestemme varmedrivkraften.It has been found that the arrangement of the terminal units 12 and 14 must be so close to the sealed ends 30 and 32 that the melting temperature is kept below 40 ° C and preferably not above 35 ° C. In order to keep the melting temperature at this level, it has also been found necessary to ensure that the temperature of the terminal units 12 and 14 is kept at a temperature which is considerably lower than 35 ° C and preferably not more than approx. loo ° C. To meet this latter requirement, the terminal units 12 and 14 must be cooled with a coolant such as water. The degree of this cooling will determine the heat propulsion.

Det foretrukne konstruktionsmæssige arrangement for hver terminalenhed 12 og 14, vist i fig. 1 og 2, omfatter en todelt konstruktion, hvor hver sektion henholdsvis 5o og 52 består af et materiale, som er termisk og fortrinsvis også elektrisk ledende, såsom kobber eller aluminium. De to sektioner 5o og 52 er bestemt til at sammenkobles ved hjælp af bolte 54 for således at passe omkring den ene ende af lampen lo. Hver sektion 5o og 52 har boringer til, når de to sektioner er forbundet, at danne to koncentrisk udsparede dele 56 og 58, hvori den keramiske kappe 35 ved hver forseglet ende 3o og 32 af lampen lo anbringes, før sammenspænding af sektionerne, og en boring, hvorigennem strømlederen ved hver ende indføres. Det er også ønskeligt at holde en temmelig snæver tolerance for at opnå god overfladekontakt mellem de forseglede ender 3o og 32 ved deres endeflader med strømlederne henholdsvis 22 og 26 og sektionerne 5o og 52 af hver terminalenhed 12 og 14. En passage 6o er anbragt i den øverste sektion af hver enhed for at lede kølevand fra en ikke vist kilde gennem hver terminalenhed. Passagen 6o skal være anbragt tilstrækkelig nær ved de ledende strømledere 22 og 26 for at opretholde en effektiv varmeoverføringsgradient mellem de ledende strimler 24 og 28 og terminalenhederne.The preferred structural arrangement for each terminal unit 12 and 14 shown in FIG. 1 and 2, comprises a two-part structure, each section 5o and 52 respectively consisting of a material which is thermally and preferably also electrically conductive, such as copper or aluminum. The two sections 5o and 52 are intended to be coupled by means of bolts 54 so as to fit around one end of the lamp 1o. Each section 5o and 52 has bores when the two sections are connected to form two concentrically recessed portions 56 and 58, wherein the ceramic sheath 35 at each sealed end 3o and 32 of the lamp lo is placed before clamping the sections, and a bore through which the conductor is inserted at each end. It is also desirable to maintain a fairly narrow tolerance to achieve good surface contact between the sealed ends 3o and 32 at their end faces with the current conductors 22 and 26 and sections 5o and 52 of each terminal unit 12 and 14. A passage 6o is disposed in the upper section of each unit to pass cooling water from a source not shown through each terminal unit. The passageway 6o must be located sufficiently close to the conductive current conductors 22 and 26 to maintain an effective heat transfer gradient between the conductive strips 24 and 28 and the terminal units.

Vekselstrøm tilføres lampen lo fra en strømkilde 62, der er forbundet over terminalenhederne 12 og 14. Alternativt kan vekselstrøm tilføres direkte over strømlederne 22 og 26, i hvilket tilfælde terminalenhederne ikke behøver at være elektrisk ledende.Alternating current is supplied to lamp Io from a power source 62 connected across terminal units 12 and 14. Alternatively, alternating current may be supplied directly over current conductors 22 and 26, in which case the terminal units need not be electrically conductive.

De udsparede dele 56 og 58, hvori de forseglede ender af lampen er anbragt, har fortrinsvis en tilstrækkelig længde til at danne en strålingsskærm omkring molybdænstrimlerne henholdsvis 24 og 28. Afskærmning af molybdænstrimlerne mod refleksionsstråling begrænser størrelsen af indre afkøling af lampen lo, som ellers ville være nødvendig for at opretholde indsmeltningstemperaturen under 4oo°C.The recessed portions 56 and 58, in which the sealed ends of the lamp are disposed, preferably have a sufficient length to form a radiation shield around the molybdenum strips 24 and 28, respectively. be necessary to maintain the melting temperature below 40 ° C.

Det foretrukne anlæg, hvori der anvendes et antal lamper lo som en ultraviolet strålingskilde i en inaktiv omslutning, er vist 6 147247 skematisk i fig. 4. Et produkt P er bestemt til at passere gennem den inaktive omslutning 7o ved en forudbestemt hastighed. Omslutningen lo indeholder et strålingskammer 72, som optager et antal lamper lo, hvoraf kun en er vist, og en indgangs- og udgangstunnel henholdsvis 74 og 76. Hver lampe lo er som vist i fig. 1 anbragt i en terminalenhed henholdsvis 12 og 14, der igen er fastgjort til kammeret 72.The preferred plant utilizing a plurality of lamps lO as an ultraviolet radiation source in an inactive enclosure is shown schematically in FIG. 4. A product P is intended to pass through the inactive enclosure 7o at a predetermined speed. The enclosure 1e contains a radiation chamber 72 which accommodates a plurality of lamps 1e, of which only one is shown, and an input and output tunnel 74 and 76, respectively. Each lamp 1e is as shown in FIG. 1 located in a terminal unit 12 and 14, respectively, which are again attached to the chamber 72.

En reflektor 78 dækker delvis lampen lo for at rette udsendt lys imod det passerende produkt P. Kølevandet, som passerer gennem terminal-enhederne 12 og 14, kan også anvendes til at afkøle reflektoren 78. Atmosfæren i omslutningen lo styres udelukkende ved passagen af inaktiv gas, som tilføres fra et overtrykskammer 8o gennem en injektor 82 for inaktiv gas ind i omslutningen lo. Fremgangsmåden, ved hvilken den inaktive gas kan tilføres ved en forudbestemt lav strømningshastighed for at opretholde en inaktiv atmosfære over det vandrende produkt, er omtalt i beskrivelsen til USA patentansøgning nr. 461.378 af 16. april 1974 med benævnelsen fremgangsmåde til frembringelse af en inaktiv atmosfære over et vandrende produkt. En ikke-turbulent strøm af inaktiv gas opretholdes i hele omslutningen.A reflector 78 partially covers the lamp lO to direct transmitted light towards the passing product P. The cooling water passing through the terminal units 12 and 14 can also be used to cool the reflector 78. The atmosphere of the enclosure lO is controlled solely by the passage of inert gas. which is supplied from a pressure chamber 8o through an inert gas injector 82 into the envelope 1o. The process by which the inert gas can be supplied at a predetermined low flow rate to maintain an inert atmosphere over the migratory product is disclosed in U.S. Patent Application No. 461,378 of April 16, 1974, entitled Process for Generating an Inactive Atmosphere over a wandering product. A non-turbulent flow of inert gas is maintained throughout the enclosure.

Ved at følge den foreliggende opfindelses lære for således ved ledning at overføre varme ud fra de elektrisk ledende elementer i hver af lamperne lo opnås en betydelig gråd af termisk uafhængighed mellem hver af lamperne lo og den omgivende temperatur i det optisk indesluttede strålingskammer 72.Following the teachings of the present invention so that by conducting heat from the electrically conductive elements of each of the lamps 1o, a significant degree of thermal independence is obtained between each of the lamps 1o and the ambient temperature of the optically enclosed radiation chamber 72.

DK380175A 1974-08-23 1975-08-22 Mercury oil vapor lamp for continuous operation DK147247C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US49993274A 1974-08-23 1974-08-23
US49993274 1974-08-23

Publications (3)

Publication Number Publication Date
DK380175A DK380175A (en) 1976-02-24
DK147247B true DK147247B (en) 1984-05-21
DK147247C DK147247C (en) 1984-11-26

Family

ID=23987347

Family Applications (1)

Application Number Title Priority Date Filing Date
DK380175A DK147247C (en) 1974-08-23 1975-08-22 Mercury oil vapor lamp for continuous operation

Country Status (13)

Country Link
JP (1) JPS5146783A (en)
BE (1) BE832691A (en)
CA (1) CA1047096A (en)
DE (1) DE2536450C2 (en)
DK (1) DK147247C (en)
ES (1) ES440389A1 (en)
FR (1) FR2282718A1 (en)
GB (1) GB1525403A (en)
IT (1) IT1041506B (en)
NL (1) NL7509967A (en)
NO (1) NO150220C (en)
SE (1) SE427318B (en)
ZA (1) ZA754883B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10063376A1 (en) * 2000-12-19 2002-06-20 Philips Corp Intellectual Pty High pressure discharge lamp used as a light source in digital projection systems comprises a longitudinally extended bulb having two throat regions and a vacuum-tight discharge chamber
DE102016102187B3 (en) * 2016-02-09 2017-08-10 Heraeus Noblelight Gmbh Device for the treatment of a substrate with UV radiation and use of the device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE740922C (en) * 1939-03-21 1943-10-30 Patra Patent Treuhand Arrangement for operating a water-cooled high-pressure mercury discharge lamp
US2295046A (en) * 1940-08-03 1942-09-08 Gen Electric Cooling apparatus for electric lamps
CH238591A (en) * 1942-08-06 1945-07-31 Ag Licht Gas discharge lamp.
JPS455270Y1 (en) * 1966-06-07 1970-03-12
GB1181240A (en) * 1966-09-23 1970-02-11 Berkey Technical U K Ltd Improvements in or relating to the Cooling of High Power Strip Bulbs
JPS441823Y1 (en) * 1966-10-11 1969-01-23
DE7111720U (en) * 1971-03-27 1973-06-14 Ceag Dominit Ag LAMP FOR EXPLOSION HAZARD AREAS
US3807052A (en) * 1972-06-26 1974-04-30 Union Carbide Corp Apparatus for irradiation of a moving product in an inert atmosphere

Also Published As

Publication number Publication date
FR2282718A1 (en) 1976-03-19
JPS565016B2 (en) 1981-02-03
DK380175A (en) 1976-02-24
NO150220B (en) 1984-05-28
NO150220C (en) 1984-09-12
ES440389A1 (en) 1977-06-01
CA1047096A (en) 1979-01-23
DK147247C (en) 1984-11-26
NL7509967A (en) 1976-02-25
SE7509386L (en) 1976-02-24
NO752913L (en) 1976-02-24
GB1525403A (en) 1978-09-20
JPS5146783A (en) 1976-04-21
IT1041506B (en) 1980-01-10
AU8421875A (en) 1977-02-24
ZA754883B (en) 1976-06-30
FR2282718B1 (en) 1980-09-05
SE427318B (en) 1983-03-21
DE2536450C2 (en) 1986-07-10
DE2536450A1 (en) 1976-03-11
BE832691A (en) 1976-02-23

Similar Documents

Publication Publication Date Title
US3983385A (en) Method and apparatus for operating a mercury vapor lamp
KR940009329B1 (en) Heat removing means to remove heat from electric discharge lamp
US20060267495A1 (en) Germicidal low pressure mercury vapor discharge lamp with amalgam location and temperature control permitting high output
US4820906A (en) Long arc lamp for semiconductor heating
WO2006040872A1 (en) Energy conversion apparatus
TW200912998A (en) Ultraviolet ray light source apparatus
US4506369A (en) High power cesium lamp system for laser pumping
JP2001332507A (en) Substrate processing device, method of heating substrate, and method of manufacturing semiconductor device
NL192768C (en) Radiant heater.
DK147247B (en) MERCURY OIL LAMP FOR CONTINUOUS OPERATION
US3412286A (en) Refractory-oxide incandescent lamp with preheater
US6747419B2 (en) Method and apparatus for heat pipe cooling of an excimer lamp
KR100269419B1 (en) Electrodeless discharge lamp and the manufacturing method
US1924368A (en) Vacuum tube
US4271363A (en) Apparatus and method for selectively generating infrared radiation
US3346751A (en) Clamped seal for high pressure gas discharge lamp
EP1966813B1 (en) Method for manufacturing a double tube discharge lamp
GB1592508A (en) Method for manufacturing a luminous tube for discharge lamp
US3792373A (en) Metallic vapor laser assembly
US20030095796A1 (en) Apparatus for the uniform heating of substrates or of surfaces, and the use thereof
US1630056A (en) Water-cooled lamp
EP0510157A1 (en) Laser apparatus
US3355613A (en) High energy tubular incandescent lamp having heat dissipative sleeves
JP3119918B2 (en) Arc tube and method of manufacturing the same
CN105789002B (en) X-ray tube

Legal Events

Date Code Title Description
PBP Patent lapsed