DK144898B - IONOPTICAL APPARATUS FOR THE EXAMINATION OF A SAMPLE SURFACE ION PROTECTION AND ANALYSIS OF THE EMISSIONS OF THE PROTECTED SURFACE AREAS - Google Patents

IONOPTICAL APPARATUS FOR THE EXAMINATION OF A SAMPLE SURFACE ION PROTECTION AND ANALYSIS OF THE EMISSIONS OF THE PROTECTED SURFACE AREAS Download PDF

Info

Publication number
DK144898B
DK144898B DK122675A DK122675A DK144898B DK 144898 B DK144898 B DK 144898B DK 122675 A DK122675 A DK 122675A DK 122675 A DK122675 A DK 122675A DK 144898 B DK144898 B DK 144898B
Authority
DK
Denmark
Prior art keywords
ions
examination
ionoptical
emissions
analysis
Prior art date
Application number
DK122675A
Other languages
Danish (da)
Other versions
DK122675A (en
DK144898C (en
Inventor
W Heiland
E Taglauer
M Grundner
Original Assignee
Max Planck Gesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Max Planck Gesellschaft filed Critical Max Planck Gesellschaft
Publication of DK122675A publication Critical patent/DK122675A/da
Publication of DK144898B publication Critical patent/DK144898B/en
Application granted granted Critical
Publication of DK144898C publication Critical patent/DK144898C/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/14Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers
    • H01J49/142Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers using a solid target which is not previously vapourised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/004Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/44Energy spectrometers, e.g. alpha-, beta-spectrometers
    • H01J49/46Static spectrometers
    • H01J49/48Static spectrometers using electrostatic analysers, e.g. cylindrical sector, Wien filter

Description

1 1448981 144898

Den foreliggende opfindelse angår et ionoptisk apparat af den i krav l’s indledning angivne art.The present invention relates to an ionoptic apparatus of the kind set forth in claim 1.

Fra USA patentskrift nr. 3.480.774 kendes en fremgangsmåde til analyse af overflader i vakuum, ved hvilken overfladen beskydes med inertgasioner, eksempelvis argonioner, og energien af de fra overfladen tilbagestrålede inertgasioner analyseres. Denne fremgangsmåde benævnes ionspredning s spektrome tri, ISS.United States Patent No. 3,480,774 discloses a method for analyzing surfaces in vacuum, wherein the surface is shielded by inert gases, for example argon ions, and the energy of the inert gases radiated from the surface is analyzed. This method is called ion scattering spectrum spectrum, ISS.

Fra et arbejde af A. Benninghoven, Z. Phys.220, 159 (1969) kendes endvidere en fremgangsmåde til analyse af overflader i vakuum, ved hvilken overfladen beskydes med en ionstråle, og de herved fra overfladen frigivne sekundærioner analyseres ved massespektrometri. Denne fremgangsmåde benævnes sekundærionmassespektrometri, SIMS. Ved denne sidstnævnte fremgangsmåde er det også kendt at tilbageholde forstyrrende, forstøvede neutralpartikler, sekundærioner med høj energi og tilbagestrålede primærioner fra massespektro-meterets indgang ved hjælp af et elektrisk afbøjningsfelt. Afbøjningsfeltet frembringes ved hjælp af en pladekondensator med parallelle elektroder og begrænses af hulblænder, jævnfør international Journal of Mass Spectrometry and Ion Physics, 11 (1973) 23-25.Furthermore, from a work by A. Benninghoven, Z. Phys.220, 159 (1969), a method for analyzing surfaces in vacuum is known, in which the surface is shielded with an ion beam and the secondary ions released from the surface are analyzed by mass spectrometry. This method is called secondary ion mass spectrometry, SIMS. In this latter method, it is also known to withstand interfering, atomized neutral particles, high-energy secondary ions and backscattered primary ions from the input of the mass spectrometer by means of an electric deflection field. The deflection field is produced by means of a plate capacitor with parallel electrodes and constrained by hollow apertures, cf. International Journal of Mass Spectrometry and Ion Physics, 11 (1973) 23-25.

Det er ikke hensigten - og i øvrigt heller ikke muligt -med det kendte udstyr at måle energifordelingen af de fra overfladen udgående ioner, fordi det anvendte elektriske afbøjningsfelt har en kompliceret form og en altfor ringe energiopløsningsevne .It is not intended - and moreover not possible - to measure with the known equipment the energy distribution of the ions emitted from the surface, because the electric deflection field used has a complicated shape and too low energy dissolving ability.

Da resultaterne, der opnås ved de to nævnte fremgangsmåder, ikke er identiske, men supplerer hinanden, er det ofte ønskeligt at undersøge en overflade ved brug af begge fremgangsmåder og under sammenlignelige betingelser. Noget sådant er ikke muligt med det kendte apparatur, og de i to forskellige apparater opnåede undersøgelsesresultater er ikke sammenlignelige, fordi prøveemnet efter den første undersøgelse skal udtages af vakuet, og fordi det er meget vanskeligt ved den følgende undersøgelse at analysere nøjagtigt samme del af overfladen.Since the results obtained by the two methods mentioned are not identical but complementary, it is often desirable to examine a surface using both methods and under comparable conditions. This is not possible with the known apparatus, and the results obtained in two different apparatus are not comparable because after the first examination the sample has to be taken out of the vacuum and because it is very difficult in the following study to analyze the exact same part of the surface .

2 1448982 144898

Formålet med opfindelsen er at anvise et ionoptisk apparat, der valgfrit kan benyttes til ionspredningsspektro-metrisk og sekundærionmassespektrometrisk ' undersøgelse af et prøveemne.The object of the invention is to provide an ion-optic apparatus which may be optionally used for ion scattering spectrometric and secondary ion mass spectrometric examination of a sample.

Dette opnås ifølge opfindelsen ved den i krav 1 anviste udformning af apparatet.This is achieved according to the invention by the design of the apparatus as claimed in claim 1.

Den anviste konstruktion muliggør ikke blot, at samme prøveemne kan undersøges ved begge de nævnte fremgangsmåder. Opfindelsen medfører også den væsentlige fordel, at begge undersøgelser kan gennemføres med større nøjagtighed og mere støjfrit, end det er muligt i de kendte for kun én af de nævnte fremgangsmåder anvendelige apparater.The design shown does not merely allow the same specimen to be examined by both of the above mentioned methods. The invention also provides the substantial advantage that both studies can be conducted with greater accuracy and more noise-free than is possible in the known apparatus applicable to only one of the aforementioned methods.

Opfindelsen skal i det-følgende forklares nærmere i forbindelse med tegningen, hvor fig. 1 viser et apparat ifølge opfindelsen skematisk, og fig. 2 i større målestoksforhold en del af det i fig. 1 viste apparat.BRIEF DESCRIPTION OF THE DRAWINGS The invention will now be explained in more detail in connection with the drawing, in which fig. 1 is a schematic view of an apparatus according to the invention; and FIG. 2, in larger scale, part of the embodiment of FIG. 1.

Ved den på tegningen viste udførelsesform omfatter apparatet en ionkilde 10, der kan afgive et ionstrålebundt, fortrinsvis bestående af inertgasioner. Disse ioner udtræder gennem en jordforbundet udgangselektrode 10a og forløber, som antydet meden stiplét streg 12a,langs primærstråléaksen.In the embodiment shown in the drawing, the apparatus comprises an ion source 10 capable of emitting an ion beam bundle, preferably consisting of inert gases. These ions exit through a grounded output electrode 10a and extend, as indicated by dashed line 12a, along the primary beam axis.

I strålebanen 12a er anbragt en elektrostatisk linse 14, der fokuserer primærionerne på overfladen af et prøveemne 16.In the radiation path 12a is arranged an electrostatic lens 14 which focuses the primary ions on the surface of a specimen 16.

Mellem linsen 14 og emnet 16 er anbragt to jordforbundne blænder 18 og 20, der tjener til begrænsning af ionstrålebundtets åbningsvinkel.Between the lens 14 and the workpiece 16 are placed two grounded apertures 18 and 20 which serve to limit the opening angle of the ion beam.

Den overflade på prøveemnet 16, der skal undersøges, danner, som vist på tegningen, en vinkel på omkring 45° med primærstråleaksen, således at de fra emnet tilbagestrålede primærioner og de af primærionerne fra prøveemnet frigivne sekundærioner fortrinsvis emitteres under en vinkel på 90° med primærstråleaksen, dvs. nedad på tegningen.The surface of the specimen 16 to be examined, as shown in the drawing, forms an angle of about 45 ° with the primary beam axis, so that the primary ions radiated from the blank and the secondary ions released from the specimen are preferably emitted at an angle of 90 °. the primary beam axis, i.e. down on the drawing.

Den med stiplet streg viste sekundærstråle 12b forløber gennem et system 22 af rotationssymmetriske, ringformede accelerationselektroder, en energianalysator 24, en ringcirkulær blænde 26 til begrænsning af energiområdet for de af analysatoren udtrædende sekundærioner, en kort cylinderelek-trode 28, en jordforbundet skærmblænde 30, et massespektro-meter 32 og et ionpåvisningsaggregat 36 med en indgangsblænde 34.The dotted secondary beam 12b extends through a system 22 of rotationally symmetrical annular acceleration electrodes, an energy analyzer 24, an annular circular aperture 26 for limiting the energy range of the secondary ion exiting the analyzer, a short cylinder electrode 28, an earthed screen aperture 30 mass spectrometer 32 and an ion detection assembly 36 with an input aperture 34.

3 1448983 144898

Elektroderne er, medmindre de er jordforbundne, forbundet til sædvanlige spændingskilder, der af hensyn til overskueligheden ikke er vist på tegningen.The electrodes, unless grounded, are connected to conventional voltage sources which, for reasons of clarity, are not shown in the drawing.

Ved undersøgelse af prøveemnet 16 ved sekundærionmas-sespektroskopi bliver de fra emnets overflade udgående ioner suget gennem accelerationselektroderne 22 og fokuseret til et accelereret sekundærionbundt. Dette indtræder i energianalysatoren .» 24, der ved den viste udførelsesform består af en kuglekondensator med en afbøjningsvinkel på 90°. Sekundær! onbundtet s energiområde begrænsesJ af den rirxgcirkulære blænde 26, og ionhastigheden nedsættes i den korte cylindriske elektrode 28. Gennem den jordforbundne blænde 30 træder ionerne herefter ind i massespektrometeret 32. Ioner med den udvalgte masse træder endelig gennem indgangsblænden 34 ind i påvisningsåggregatet 36. Dette aggregat kan eksempelvis være en simpel kollektor eller en sekundærionmultiplika-tor.Upon examination of specimen 16 by secondary ion mass spectroscopy, the ions emanating from the surface of the blank are sucked through the acceleration electrodes 22 and focused into an accelerated secondary ion bundle. This enters the energy analyzer. " 24, which in the illustrated embodiment consists of a ball capacitor with a deflection angle of 90 °. Secondary! the energy range of the unbound is limited by the circular aperture 26 and the ionic velocity is reduced in the short cylindrical electrode 28. Through the grounded aperture 30, the ions then enter the mass spectrometer 32. Ions of the selected mass finally enter through the aperture assembly 36 into the detection assembly 36. can be, for example, a simple collector or a secondary ion multiplier.

I den mere detaljerede fig. 2 er angivet typiske elektrode spændinger.In the more detailed FIG. 2 are typical electrode voltages indicated.

Ved den viste foretrukne udførelsesform er massespektrometeret et sædvanligt kvadropolmassefilter (jævnfør eksempelvis Blanth"Dynamische Massenspektrometer", Verlag Friedrich Vieweg & Sohn, Braunschweig, 1965. side 123 - 130 ). Også andre massespektrometre kan imidlertid anvendes. Fortrinsvis benyttes dynamiske massespektrometre og især sådanne, hvor de udvalgte ioner mellem ind- og udgangsspalten gennemløber en i første tilnærmelse retlinet bane.In the preferred embodiment shown, the mass spectrometer is a conventional quadropole mass filter (cf., for example, Blanth "Dynamische Massenspektrometer", Verlag Friedrich Vieweg & Sohn, Braunschweig, 1965. pages 123 - 130). However, other mass spectrometers can also be used. Preferably, dynamic mass spectrometers are used, and especially those where the selected ions between the input and output slots pass through a rectilinear path in the first approximation.

Ved sekundærionmassespektrometri indstilles energianalysatoren 24 til den hyppigst forekommende energiværdi for de fra prøveemnet forstøvede ioner, således at massespektrometeret 32 kan tilføres energimæssig homogen ionstråle.In secondary ion mass spectrometry, the energy analyzer 24 is set to the most frequently occurring energy value for the ions atomized from the sample so that the mass spectrometer 32 can be supplied with energy homogeneous ion beam.

Ved ionspredningsspektrometri analyseres energien af de fra prøveemnets 16 overfladeudgående primærioner ved hjælp af energianalysatoren 24, der altså skal have den herfor nødvendige selektivitet, følsomhed og opløsningsevne. Prøveemnet 16 beskydes med eksempelvis argonioner, og massespektrometeret 32 kan i dette tilfælde frakobles, dvs. de fire stavformede elektroder i massefilteret jordforbindes. Også elektroderne i systemet 22 jordforbindes. Apparatet arbejder herved som U4898 4 et sædvanligt ISS-apparat, hvor energifordelingen af de fra emnet udgående ioner måles i analysatoren 24. Fortrinsvæs benyttes massespektrometeret 32 dog også ved ionspredningsspektrografien og er derved indstillet til primærionernes masse. Herved kan nemlig det støjsignal, der skyldes fremmedioner, og som ved kendte ISS-apparater giver et ringe signal/støjforhold, i det væsentlige undertrykkes.In ion scattering spectrometry, the energy of the primary ions emanating from sample surface 16 is analyzed by means of the energy analyzer 24, which must therefore have the required selectivity, sensitivity and solubility. The specimen 16 is fired with, for example, argon ions, and in this case the mass spectrometer 32 can be disconnected, ie. the four rod-shaped electrodes in the mass filter are grounded. Also, the electrodes in the system 22 are grounded. The apparatus hereby operates, as U4898 4, a conventional ISS apparatus, where the energy distribution of the ions emitted from the blank is measured in the analyzer 24. However, the mass spectrometer 32 is also used in the ion scattering spectrography and is thus set to the mass of the primary ions. In this way, the noise signal caused by foreign ions, which, with known ISS apparatus, gives a low signal-to-noise ratio, can be substantially suppressed.

I stedet for den viste 90° kuglekondensator,-dér-udgør energianalysatoren 24, og kvadropol-massefilteret, der tjener som massespektrometer 32, kan andre lignende komponenter benyttes. Som energianalysator kan eksempelvis benyttes andre energiselektive, elektriske afbøjningsfelter, såsom cylinderkondensatorer. Som massespektrometer egner sig, som allerede nævnt, især dynamiske massespektrometre, hvori ionerne selekteres på deres fortrinsvis tilnærmet retlinede vej mellem indgangs-og udgangsblænde ved hjælp af en eller flere tidsafhængige systemparametre, især ved elektriske felter. Dynamiske masse-spektrometre benævnes af denne grund også ofte som højfrekvens-massespektrometre.Instead of the 90 ° sphere capacitor shown, there is the energy analyzer 24, and the quadropole mass filter serving as mass spectrometer 32, other similar components can be used. As an energy analyzer, for example, other energy selective electric deflection fields such as cylinder capacitors may be used. As already mentioned, mass spectrometers are particularly suitable for dynamic mass spectrometers in which the ions are selected in their preferably approximately rectilinear path between input and output apertures by one or more time-dependent system parameters, especially by electric fields. For this reason, dynamic mass spectrometers are also often referred to as high frequency mass spectrometers.

Et dynamisk massespektrometer har den yderligere fordel, at der ikke er behov for pladsrøvende og tunge magnetfeltfremkaldende aggregater.A dynamic mass spectrometer has the added advantage that no space-consuming and heavy magnetic field inducing aggregates are needed.

DK122675A 1974-03-25 1975-03-24 IONOPTICAL APPARATUS FOR THE EXAMINATION OF A SAMPLE SURFACE ION PROTECTION AND ANALYSIS OF THE EMISSIONS OF THE PROTECTED SURFACE AREAS DK144898C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19742414221 DE2414221C3 (en) 1974-03-25 1974-03-25 Ion-optical device for examining the surface of a sample by ion bombardment and analyzing the ions emanating from the bombarded surface area
DE2414221 1974-03-25

Publications (3)

Publication Number Publication Date
DK122675A DK122675A (en) 1975-09-26
DK144898B true DK144898B (en) 1982-06-28
DK144898C DK144898C (en) 1982-11-22

Family

ID=5911045

Family Applications (1)

Application Number Title Priority Date Filing Date
DK122675A DK144898C (en) 1974-03-25 1975-03-24 IONOPTICAL APPARATUS FOR THE EXAMINATION OF A SAMPLE SURFACE ION PROTECTION AND ANALYSIS OF THE EMISSIONS OF THE PROTECTED SURFACE AREAS

Country Status (8)

Country Link
JP (1) JPS5199094A (en)
BE (1) BE826966A (en)
DE (1) DE2414221C3 (en)
DK (1) DK144898C (en)
FR (1) FR2266166B3 (en)
GB (1) GB1445963A (en)
IT (1) IT1034386B (en)
NL (1) NL7503567A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4058724A (en) * 1975-06-27 1977-11-15 Minnesota Mining And Manufacturing Company Ion Scattering spectrometer with two analyzers preferably in tandem
DE2556291C3 (en) * 1975-12-13 1980-11-27 Gesellschaft Fuer Strahlen- Und Umweltforschung Mbh, 8000 Muenchen Scanning ion microscope
GB2098797B (en) * 1980-05-12 1985-01-16 Univ Trobe Angular resolved spectrometer
JPH083988B2 (en) * 1986-10-08 1996-01-17 株式会社日立製作所 Secondary ion mass spectrometry
JPH0589817A (en) * 1991-03-16 1993-04-09 Eiko Eng:Kk Complex analysis device

Also Published As

Publication number Publication date
GB1445963A (en) 1976-08-11
DE2414221A1 (en) 1975-10-09
NL7503567A (en) 1975-09-29
FR2266166B3 (en) 1977-12-02
DK122675A (en) 1975-09-26
JPS5199094A (en) 1976-09-01
IT1034386B (en) 1979-09-10
DK144898C (en) 1982-11-22
FR2266166A1 (en) 1975-10-24
DE2414221B2 (en) 1978-04-20
BE826966A (en) 1975-07-16
DE2414221C3 (en) 1979-01-18

Similar Documents

Publication Publication Date Title
US7649170B2 (en) Dual-polarity mass spectrometer
US3859226A (en) Secondary ion mass spectroscopy
US20210104391A1 (en) Inorganic mass spectrometer
US8796620B2 (en) Mass spectrometry for gas analysis with a one-stage charged particle deflector lens between a charged particle source and a charged particle analyzer both offset from a central axis of the deflector lens
JP4606270B2 (en) Time-of-flight measurement device for sample ions, time-of-flight mass spectrometer, time-of-flight mass spectrometry method
DK144898B (en) IONOPTICAL APPARATUS FOR THE EXAMINATION OF A SAMPLE SURFACE ION PROTECTION AND ANALYSIS OF THE EMISSIONS OF THE PROTECTED SURFACE AREAS
US7030375B1 (en) Time of flight electron detector
US8450681B2 (en) Mass spectrometry for gas analysis in which both a charged particle source and a charged particle analyzer are offset from an axis of a deflector lens, resulting in reduced baseline signal offsets
RU2294579C1 (en) Analyzer of energies of charged particles
Schechter et al. Quantitative laser mass analysis by time resolution of the ion-induced voltage in multiphoton ionization processes
US11133166B2 (en) Momentum-resolving photoelectron spectrometer and method for momentum-resolved photoelectron spectroscopy
US20240118212A1 (en) System for analyzing a sample
RU2459310C2 (en) Method of analysing charged particles based on energy mass and apparatus for realising said method
Hori et al. Electron energy spectrometer of retarding field type
KR100485389B1 (en) Secondary ion mass spectroscopy and method of measuring secondary ion yield using the same
RU2490749C1 (en) Iso-trajectory mass spectrometer
Pérez-Arantegui et al. Particle-induced X-ray emission: thick-target analysis of inorganic materials in the determination of light elements
KR20160056363A (en) Apparatus and Method for Evaluation Platform of Charged Particle Beam System
JP3140557B2 (en) Laser ionization neutral particle mass spectrometer and analysis method using the same
KR101887169B1 (en) Mass spectrometry for a gas analysis with a two-stage charged particle deflector lens between a charged particle source and a charged particle analyzer both offset from a central axis of the deflector lens
CN116053111A (en) Mass spectrum detection device and method based on ECR ion source
RU2490750C1 (en) Electrostatic charged particle energy analyser
Wolf et al. Analysis of the local field effects on voltage measurements with an'in-lens spectrometer'
CN114813800A (en) Mass spectrometer
Larsen Ion Transport in a Commercial ICP-MS