DK142803B - Blood oxygenation systems. - Google Patents
Blood oxygenation systems. Download PDFInfo
- Publication number
- DK142803B DK142803B DK500073AA DK500073A DK142803B DK 142803 B DK142803 B DK 142803B DK 500073A A DK500073A A DK 500073AA DK 500073 A DK500073 A DK 500073A DK 142803 B DK142803 B DK 142803B
- Authority
- DK
- Denmark
- Prior art keywords
- pump
- oxygenator
- pressure
- blood
- pumps
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/36—Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
- A61M1/3621—Extra-corporeal blood circuits
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/14—Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
- A61M1/16—Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
- A61M1/1698—Blood oxygenators with or without heat-exchangers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/36—Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
- A61M1/3621—Extra-corporeal blood circuits
- A61M1/3623—Means for actively controlling temperature of blood
Landscapes
- Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Cardiology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- External Artificial Organs (AREA)
- Vehicle Body Suspensions (AREA)
- Reciprocating Pumps (AREA)
Description
(¾ \*α/ (11) FREMLÆGGELSESSKRIFT 1^2803 DANMARK ,5”|η,·αί A ®i 1,1/03 «(21) Ansøgning nr. 5000/73 (22) Indleveret den 11. sep. 1973 (24) Løbedag 11. βθρ. 1973 (44) Ansøgningen fremlagt og fremlaggelsesskriftet offentliggjort den 2. f eb. 1 9δΐ(¾ \ * α / (11) PUBLICATION REPORT 1 ^ 2803 DENMARK, 5 ”| η, · αί A ®i 1.1 / 03” (21) Application No 5000/73 (22) Filed on 11 Sep 1973 (24) Running Day 11. βθρ. 1973 (44) The application submitted and the petition published on 2 February 1 9δΐ
DIREKTORATET FOR JDIRECTORATE OF J
PATENT-OG VAREMÆRKEVÆSENET (30> Prioritet begæret fra denPATENT AND TRADEMARKET (30> Priority requested from it
12. sep. 1972, 7232286, FRSep 12 1972, 7232286, FR
<71) SOGIETE DES INDUSTRIES PLASTIQUES - SODIP, 7 Avenue Lionel Terr ay, 69330 Meyzieu, FR.<71) SOGIETE DES INDUSTRIES PLASTIQUES - SODIP, 7 Avenue Lionel Terr ay, 69330 Meyzieu, FR.
(72) Opfinder: Andre Sausse, 12 Avenue Franklin Roosevelt, Sceaux, Hauts-de-Seine, FR.(72) Inventor: Andre Sausse, 12 Avenue Franklin Roosevelt, Sceaux, Hauts-de-Seine, FR.
(74) Fuldmægtig under sagens behandling:(74) Plenipotentiary in the proceedings:
Ingeniørfirmaet Budde, Schou & Co._ __ (54) Anlæg til oxygenering af blod.The engineering company Budde, Schou & Co._ __ (54) Blood oxygenation plant.
Den foreliggende opfindelse angår et anlæg til oxygenering af blod, hvilket anlæg er indrettet til at anbringes uden for en patients legeme og i det mindste omfatter en oxygenator og to pumper, hvor hver pumpe enten er peristaltisk eller med rørformet membran og ventiler, og hvor pumperne er serieforbundet på hver sin side af oxygenatoren, idet anlægget er indrettet til at kunne forbindes med patientens karsystem, således at oxygenatoren og pumperne er i strømningsmæssig forbindelse med dette. Et sådant kredsløb tjener til at lette eller erstatte lungefunktionen, hjertefunktionen eller hjerte-lungefunktionen.The present invention relates to a blood oxygenation system adapted to be placed outside a patient's body and at least comprising an oxygenator and two pumps, each pump being either peristaltic or tubular diaphragm and valves, and the pumps is connected in series on each side of the oxygenator, the system being arranged to be connected to the patient's vascular system so that the oxygenator and pumps are in flow-related connection therewith. Such a circuit serves to facilitate or replace pulmonary function, cardiac function or cardiovascular function.
Man kender sådanne blodkredsløb med to cirkulationspumper, som er serieforbundet på hver sin side af et med membran forsonet apparat til oxygenering af blod.Such blood circuits are known with two circulation pumps, which are connected in series on either side of a membrane oxygenated apparatus.
2 U28032 U2803
Opretholdelsen af et bestemt tryk i oxygenatoren, hvad der er nødvendigt for at holde blodet i form af tynde hinder eller film med konstant tykkelse, kræver imidlertid enten en ledning til delvis recirkulation af arterieblod i oxygenatoren eller komplicerede re-guler ings systerner.However, maintaining a certain pressure in the oxygenator, necessary to hold the blood in the form of thin barriers or films of constant thickness, requires either a conduit for partial recirculation of arterial blood in the oxygenator or complicated control systems.
Det er opfindelsens formål at tilvejebringe et anlæg af den omhandlede art, som ved hjælp af to pumper forbinder en oxygenator med en patients karsystem, hvor anlægget fungerer både enkelt og sikkert og frem for alt ikke kræver by-pass til afbalancering af blodstrømningerne.It is an object of the invention to provide a facility of the kind in question which, by means of two pumps, connects an oxygenator to a patient's vascular system, where the system operates both simply and safely and, above all, does not require a bypass to balance blood flow.
Dette formål er ifølge opfindelsen opnået ved, at hver pumpes pumpekammer har et mellem to grænseværdier liggende effektivt indre volumen, som i det væsentlige er proportionalt med blodtrykket ved pumpens indløb, hvorhos dette effektive indre volumen har sin største værdi for den ved oxygenatorens indløb anbragte pumpe og sin mindste værdi for den ved oxygenatorens udløb anbragte pumpe ved et blodtryk ved den respektive pumpes indløb i intervallet ^20 mm Hg i forhold til det atmosfæriske tryk.This object is achieved according to the invention in that the pump chamber of each pump has an effective internal volume between two limits which is substantially proportional to the blood pressure at the pump inlet, this effective internal volume having its greatest value for the pump located at the inlet of the oxygenator. and its minimum value for the pump placed at the outlet of the oxygenator at a blood pressure at the inlet of the respective pump in the range ^ 20 mm Hg relative to atmospheric pressure.
Ved en udførelsesform kan anlægget ifølge opfindelsen være ejendommeligt ved, at de to pumper er forsynet med drivorganer for samtidig drift. Herved opnås en simplificering af styringen, fordi den gennemsnitlige blodmængde for de to pumper er den samme, samtidig med, at driften bliver særlig økonomisk.In one embodiment, the system according to the invention may be characterized in that the two pumps are provided with drive means for simultaneous operation. This simplifies the control because the average blood flow for the two pumps is the same, while the operation is particularly economical.
Ifølge opfindelsen kan det effektive, indre volumen i den ved oxygenatorens indløb anbragte pumpe have sin største værdi ved et ved pumpens indløb herskende blodtryk, som er lavere end det atmosfæriske tryk. Herved kan et for stort tryk i patientens blodårer undgås.According to the invention, the effective internal volume of the pump placed at the inlet of the oxygenator may have its greatest value at a blood pressure prevailing at the inlet of the pump which is lower than the atmospheric pressure. In this way, excessive pressure in the patient's blood vessels can be avoided.
Ifølge opfindelsen kan det effektive indre volumen i den ved oxygenatorens udløb anbragte pumpe være mindst ved et ved pumpens indløb herskende blodtryk, som er højere end det atmosfæriske tryk. Herved kan der i oxygenatoren opretholdes et altid nøjagtigt styret blodtryk.According to the invention, the effective internal volume of the pump placed at the outlet of the oxygenator may be at least at a blood pressure prevailing at the pump inlet which is higher than the atmospheric pressure. In this way, the oxygenator can always maintain an accurate blood pressure.
Ifølge opfindelsen kan den største effektive udstrømningskapacitet for den ved oxygenatorens udløb anbragte pumpe være større end den største effektive udstrømingskapacitet for den ved oxygenatorens indløb anbragte pumpe. Dette betyder, at den ved udløbet anbragte pumpe uden risiko kan arbejde med fuld kapacitet.According to the invention, the greatest effective outflow capacity of the pump located at the oxygenator outlet can be greater than the greatest effective outflow capacity of the pump located at the inlet of the oxygenator. This means that the pump placed at the outlet can operate at full capacity without risk.
Ifølge opfindelsen kan den mindste effektive udstrømningskapacitet for den ved oxygenatorens udløb anbragte pumpe være mind- 3 142803 re end den mindste effektive udstrømningskapacitet for den ved oxy-genatorens indløb anbragte pumpe. Herved opnås, især i kombination med den netop nævnte udførelsesform for opfindelsen, at man med sikkerhed kan opretholde det mindste blodtryk i oxygenatoren i det ønskede tidsrum.According to the invention, the minimum effective outflow capacity of the pump located at the oxygenator outlet may be less than the least effective outflow capacity of the pump located at the inlet of the oxygenator. Hereby, especially in combination with the just mentioned embodiment of the invention, it is achieved that one can safely maintain the minimum blood pressure in the oxygenator for the desired period of time.
Ifølge opfindelsen kan i det mindste den ene af de to pumper, som er serieforbundet på hver sin side af oxygenatoren, være en peristaltisk pumpe, hvis udstrømning påvirkes af den indsugede væskes tryk. Herved kan man undgå dels lungeødemer, dels årekollaps .According to the invention, at least one of the two pumps connected in series on either side of the oxygenator may be a peristaltic pump whose outflow is affected by the pressure of the suction fluid. This can avoid both pulmonary edema and vascular collapse.
Ifølge opfindelsen kan i det mindste den ved blodoxygena-torens udløb anbragte pumpe være en pumpe med rørformet membran og ventiler. Herved kan man særlig godt støtte hjertefunktionen.According to the invention, at least the pump located at the outlet of the blood oxygenator may be a pump with tubular diaphragm and valves. In this way one can particularly support the heart function.
Ifølge opfindelsen kan de to serieforbundne pumper være af peristaltisk type og være forsynet med ens rotorer, som er monteret på samme aksel, der af en enkelt motor drives med indstillelig hastighed. Også herved kan hjertefunktionen støttes, og konstruktionen er enkel.According to the invention, the two series-connected pumps may be of peristaltic type and be provided with similar rotors mounted on the same shaft driven by a single motor at an adjustable speed. Here, too, cardiac function can be supported and construction is simple.
Ifølge opfindelsen kan den første, ved oxygenatorens indløb anbragt pumpes rør i hvilestilling have cirkulært tværsnit, og røret for denanden, ved oxygenatorens udløb anbragt pum pes vedkommende kan have et i det væsentlige elliptisk tværsnit, hvorhos den indvendige omkreds af den sidstnævnte p urap es rør kan være større end den indvendige omkreds af den førstnævnte pumpes rør. Denne konstruktion er særlig enkel og arbejder særlig effektiv og økonomisk.According to the invention, the first pipe, which is arranged at the inlet of the oxygenator, may have a circular cross-section, and the pipe for the other pumped at the outlet of the oxygenator may have a substantially elliptical cross-section, the inner circumference of the latter pipe being may be larger than the inner circumference of the pipe of the former pump. This construction is particularly simple and works particularly efficiently and economically.
Opfindelsen vil i det følgende blive nærmere forklaret under henvisning til tegningen, idet fig. 1 skematisk viser en udførelsesform for anlægget ifølge opfindelsen, fig. 2 en karakteristisk kurve over strømningen som funktion af trykket i en peristaltisk pumpe, som kan anvendes i anlægget ifølge opfindelsen, og fig. 3 karakteristiske kurver over strømningen som funktion af trykket i to pumper anbragt på hver sin side af oxygenatoren.The invention will be explained in more detail below with reference to the drawing, in which 1 schematically shows an embodiment of the system according to the invention; FIG. 2 shows a characteristic curve of the flow as a function of the pressure in a peristaltic pump which can be used in the system according to the invention; and FIG. 3 characteristic curves of the flow as a function of the pressure in two pumps placed on each side of the oxygenator.
Med blodoxygenator menes i nærværende beskrivelse et apparat til udveksling af åndingsgasser, dvs. oxygen, kuldioxid, vanddamp og nitrogen, og eventuelt gasser eller dampe med medicinske og/eller anæstetiske virkninger. Apparatet kan også være en varmeveksler.By blood oxygenator is meant in this specification an apparatus for exchanging breath gases, i.e. oxygen, carbon dioxide, water vapor and nitrogen, and optionally gases or vapors with medical and / or anesthetic effects. The apparatus may also be a heat exchanger.
4 1428034 142803
Af fig. 1 fremgår, at det uden for legemet beliggende blodkredsløb forbinder et apparat 1 af i sig selv kendt art til oxygene-ring af blod, hvilket apparat indeholder i det mindste én membran 2, med et vene-arteriesystem hos en patient.In FIG. 1, it appears that the bloodstream located outside the body connects an apparatus 1 of a kind known per se to oxygenation of blood, which apparatus contains at least one membrane 2, with a vein artery system in a patient.
En kanyle 3 indføres f.eks. i den nedre hulvene. Man anvender fortrinsvis en kanyle, som ved sin ende har en ikke lukkende udvidelse. Denne udvidelse kan bestå af tre elastiske, radiale forgreninger 5, som trykker mod venevæggene og holder disse lokalt adskilt, så at kanylens åbning frilægges. En sådan kanyle forhindrer afspærring af venen og forhindrer begrænsning af udstrømningen fra venen. Forgreningerne kan med fordel være sammentrykke-lige, så at man kan indføre kanylen gennem en sidevene 4 med mindre diameter, f.eks. lårvenen, som er overskåret med dette for øje.A cannula 3 is introduced e.g. in the lower caverns. Preferably, a cannula is used which has a non-closing extension at its end. This extension may consist of three elastic, radial branches 5 which press against the vein walls and keep them locally apart so that the opening of the cannula is exposed. Such a cannula prevents occlusion of the vein and prevents restriction of the outflow from the vein. The branches may advantageously be compressible so that the cannula can be inserted through a smaller diameter side vein 4, e.g. the femoral vein, which is cut for this purpose.
Kanylen 3 er tilsluttet oxygenatoren l's indløb gennem en bøjelig ledning 7, eksempelvis af silicone-elastomer, på hvilken en første pumpe 6 af peristaltisk type eller med rørformet membran og klapper, også kaldet ventrikulærpumpe, er anbragt.The cannula 3 is connected to the inlet of the oxygenator 1 through a flexible conduit 7, for example of silicone elastomer, to which a first pump 6 of peristaltic type or with tubular membrane and flaps, also called ventricular pump, is arranged.
En bøjelig ledning 11, ligeledes af silicone-elastomer, forbinder oxygenatoren l's udløb med en i en arterie 9 indført kanyle eller fortrinsvis med en tragtformet protese 8, som er fast-syet til arterien, fortrinsvis en lårarterie. På ledningen 11 er anbragt. en anden pumpe 10, ligeledes af peristaltisk type eller med rørformet membran og klapper.A flexible conduit 11, also made of silicone elastomer, connects the outlet of the oxygenator 1 to a cannula inserted in an artery 9 or preferably to a funnel-shaped prosthesis 8 attached to the artery, preferably a femoral artery. Located on line 11. another pump 10, also of peristaltic type or with tubular diaphragm and flaps.
Arterien er på hensigtsmæssig måde åbnet i længderetningen, og protesen 8 er fastsyet i skrå stilling i hullets kanter, hvorved hældningen er lagt i den foretrukne strømningsretning. Protesens to sider skilles fra hinanden under påvirkning af arterietrykket. Efter at protesen er fjernet, lukkes hullet i arterien på sædvanlig måde.The artery is suitably opened longitudinally and the prosthesis 8 is sewn in an oblique position at the edges of the hole, whereby the inclination is laid in the preferred flow direction. The two sides of the prosthesis are separated under the influence of arterial pressure. After the prosthesis is removed, the hole in the artery is closed in the usual way.
En peristaltisk hjælpepumpe 13, som er tilsluttet pumpen 6's sugeledning 7, gør det muligt at dræne den resterende del af venen 4, at indføre yderligere blod i det uden for legemet beliggende kredsløb fra en blodkilde såsom en flaske 16 til kompensation af eventuelle blodtab, og eventuelt at indføre lægemidler i flydende form, f.eks. heparin.A peristaltic auxiliary pump 13, which is connected to the suction line 7 of the pump 6, allows the remaining part of the vein 4 to drain additional blood into the extracorporeal circulation from a blood source such as a bottle 16 to compensate for any blood loss, and optionally introducing drugs in liquid form, e.g. heparin.
Da det som eksempel viste blodkredsløb uden for legemet er af vene-arterietype, er det nødvendigt at regulere tre forskellige tryk, nemlig blodtrykket ved indløbet til pumpen 6, trykket i oxygenatoren og patientens arterietryk for at holde disse tryk på ønskede værdier.As, for example, the extracorporeal blood circulation shown is, it is necessary to regulate three different pressures, namely the blood pressure at the inlet to the pump 6, the pressure in the oxygenator and the patient's arterial pressure to maintain these pressures at desired values.
5 1428035 142803
Et manometer 17 er anbragt på ledningen 7 i umiddelbar nærhed af pumpen 6's indløb. Dette manometer måler på hensigtsmæssig måde blodtrykket gennem den bøjelige ledning 7's vægge, hvad der mindsker risikoen for, at blodet koagulerer. Som manometer kan man anvende det i fransk patentskrift nr. 2.163.936 beskrevne manometer. På grundlag af oplysning om blodtrykket ved passagen ind i pumpen 6 er det muligt at beregne blodstrømningen, som det vil fremgå af det følgende.A pressure gauge 17 is placed on line 7 in the immediate vicinity of the pump 6 inlet. This pressure gauge appropriately measures the blood pressure through the walls of the flexible conduit 7, reducing the risk of blood clotting. As a pressure gauge, the pressure gauge described in French Patent No. 2,163,936 can be used. On the basis of information on the blood pressure at the passage into the pump 6, it is possible to calculate the blood flow, as will be seen below.
Et manometer 14 gør det muligt at kontrollere blodtrykket i oxygenatoren. Et manometer 21, som måler patientens arterietryk, gør det desuden muligt at holde dette på ønsket niveau ved efter behov enten at påvirke blodets volumen ved hjælp af flasken 16 og pumpen 13 eller at påvirke patientens karmodstand.A pressure gauge 14 allows the blood pressure in the oxygenator to be checked. In addition, a pressure gauge 21, which measures the patient's arterial pressure, allows it to be maintained at the desired level by either influencing the blood volume by means of the bottle 16 and pump 13 or influencing the patient's vascular resistance.
Blodet bør indføres i patienten ved en temperatur, som ligger nær 37°C. Med dette for øje anbringer man, f.eks. på ledningen 11, organer til genopvarmning af blodet og regulering af dets temperatur. Genopvarmningsorganerne kan hensigtsmæssigt bestå af et varmeelement med en elektrisk modstand 18, som omgiver ledningen 11 eller fortrinsvis er indsat i dennes væg. Dette varmelegeme er eksempelvis af den i fransk patentskrift nr. 2.165.269 beskrevne art.The blood should be introduced into the patient at a temperature close to 37 ° C. With this in mind one places, e.g. on line 11, means for reheating the blood and regulating its temperature. Conveniently, the reheating means may consist of a heating element having an electrical resistance 18 surrounding the conduit 11 or preferably inserted into its wall. This heater is, for example, of the kind described in French Patent Specification No. 2,165,269.
Man benytter gerne to temperaturfølere 19 og 20 af kendt type og anbragt i strømningsretningen henholdsvis efter og i niveau med varmelegemet 18. Føleren 19 gør det muligt at kontrollere og eventuelt at regulere blodets genopvarmning. Føleren 20 gør det muligt at undgå lokale overhedninger af blodet, som ville kunne indtræffe ved en formindskelse af blodstrømningen eller et midlertidigt stop.It is preferable to use two temperature sensors 19 and 20 of known type and located in the flow direction respectively after and at the level of the heater 18. The sensor 19 makes it possible to control and possibly control the re-heating of the blood. The sensor 20 allows to avoid local superheats of the blood which could occur by a decrease in blood flow or a temporary stop.
De indervægge i blodkredsens forskellige organer, navnlig pumpekammer, kanyler og forbindelsesledninger, som er i berøring med blodet, har fortrinsvis en glat, organisk siliciumforbindelse anbragt som overtræk ved hjælp af den i tysk offentliggørelses-skrift nr. 2206608 beskrevne fremgangsmåde.Preferably, the inner walls of the various organs of the bloodstream, in particular pump chambers, cannulas, and connectors which are in contact with the blood, are coated with a smooth organic silicon compound by coating method described in German Publication No. 2206608.
Blodkredsløbets virkemåde er i skematisk fremstilling følgende: Venøst blod strømmer fra den nedre hulvene, hvor det har et tryk, som ligger nær det atmosfæriske tryk, gennem kanylen 3 og ledningen 7 frem til den første peristaltiske pumpe 6. Denne pumpe 6 pumper blodet ind i oxygenatoren 1 med et tryk, som er tilstrækkeligt til at overvinde trykfaldet i apparatet. Oxygena-torens blodkamre holdes fyldt, og blodfilmenes tykkelse holdes i hovedsagen konstant, hvorved blodtrykket holdes inden for et forudbestemt, på manometeret 14 angivet interval. Det oxygenerede blod fjer- 6 142803 nes fra oxygenatoren ved hjælp af den anden peristaltiske pumpe 10, som forøger blodtrykket til en værdi, der muliggør indføring af blodet i patientens arteriesystem gennem protesen 8 efter passende genopvarmning i ledningen 11.The mode of operation of the blood circulation is schematically represented as follows: Venous blood flows from the lower cavities, where it has a pressure close to the atmospheric pressure, through the cannula 3 and the conduit 7 up to the first peristaltic pump 6. This pump 6 pumps the blood into the the oxygenator 1 at a pressure sufficient to overcome the pressure drop in the apparatus. The blood chambers of the oxygenator are kept full, and the thickness of the blood film is kept substantially constant, thereby keeping the blood pressure within a predetermined interval on the pressure gauge 14. The oxygenated blood is removed from the oxygenator by the second peristaltic pump 10, which increases blood pressure to a value that allows the blood to enter the patient's arterial system through the prosthesis 8 after appropriate reheating in line 11.
Den gennemsnitlige blodstrømning, som er fælles for de to pumper, leveres af patientens vener. Denne strømning bør kunne variere på en sådan måde, at enhver øgning af venetrykket forhindres, idet dette ville kunne forårsage problemer for patienten, især akut lungeødem. Por at undgå dette er det formålstjenligt at forøge strømningen gennem pumperne 6 og 10. Derimod formindsker man pumpestrømningen, hvis venetrykket bliver for lavt, hvad der kunne bevirke kollaps af venerne eller af venøse hulrum.The average blood flow common to the two pumps is provided by the patient's veins. This flow should be able to vary in such a way as to prevent any increase in venous pressure, as this could cause problems for the patient, especially acute pulmonary edema. To avoid this, it is expedient to increase the flow through the pumps 6 and 10. On the other hand, the pump flow is reduced if the venous pressure becomes too low, which could cause collapse of the veins or of venous cavities.
Til dette formål benytter man pumper, hvis pumpekammer har et indvendigt volumen, som varierer med blodets tryk ved indløbet, hvilket sædvanligvis ikke er tilfældet for pumper af peristaltisk type eller pumper roed rørformet membran og klapper. Ifølge opfindelsen benytter man pumper, som inden for det anvendte interval for blodtrykket ved pumpeindløbet har et effektivt indre volumen, som i hovedsagen er proportionalt med blodtrykket ved pumpeindløbet.For this purpose, pumps are used whose pump chamber has an internal volume which varies with the blood pressure at the inlet, which is usually not the case for peristaltic type pumps or pumps of tubular membrane and flaps. According to the invention, pumps are used which, within the range of blood pressure used at the pump inlet, have an effective internal volume which is generally proportional to the blood pressure at the pump inlet.
Som peristaltiske pumper anvender man fortrinsvis sådanne pumper, som beskrives i fransk patentskrift nr. 2.063.677.As peristaltic pumps, such pumps as described in French Patent No. 2,063,677 are preferably used.
De to serieforbundne peristaltiske pumper drives sædvanligvis synkront, med samme hastighed eller med forskellige hastigheder, for at give samme gennemsnitlige strømning. Fortrinsvis roterer de altid med samme indbyrdes hastighed, og de er derfor hensigtsmæssigt monteret på samme drivaksel. Hastigheden kan være indstillelig, men det er ofte af interesse at holde en konstant hastighed.The two series connected peristaltic pumps are usually operated synchronously, at the same speed or at different speeds, to provide the same average flow. Preferably, they always rotate at the same mutual speed and are therefore conveniently mounted on the same drive shaft. The speed may be adjustable, but it is often of interest to maintain a constant speed.
De peristaltiske pumper kan også drives med indbyrdes ens hastighed ved hjælp af hver sin motor, hvorved begge motorer har . samme hastigheds/spændings-karakteristika, og idet begge motorer forsynes fra en fælles spændingskilde, som kan være fast eller regulerbar.The peristaltic pumps can also be operated at mutually equal speed by means of their own motor, whereby both motors have. the same speed / voltage characteristics, and both motors are supplied from a common voltage source which can be fixed or adjustable.
Man kan desuden anvende pumper med rørformet membran og ventiler, derunder en indløbsventil, hvis funktion kan være automatisk, dvs. fremkaldt af fluidets passage til pumpens indre, eller fortrinsvis vilkårligt styret, f.eks. ved en pneumatisk indvirkning, som opnås ved hjælp af en pulsgenerator. Den styrede udløbsventil kan være af samme type som indløbsventilen. Disse pumper kan være forbundet enten med forskellige pulsgeneratorer, som er synkroniseret på samme frekvens, eller fortrinsvis med en fælles pulsgenerator.Pumps with tubular diaphragm and valves can also be used, including an inlet valve, the function of which can be automatic, ie. caused by the passage of the fluid to the interior of the pump, or preferably arbitrarily controlled, e.g. by a pneumatic action obtained by means of a pulse generator. The controlled outlet valve may be of the same type as the inlet valve. These pumps may be connected either to different pulse generators synchronized at the same frequency, or preferably to a common pulse generator.
7 1428037 142803
De i fig. 1 viste peristaltiske pumper består hensigtsmæssigt af et bøjeligt peristaltisk rør af en silicone-elastomer, hvilket rør er udspændt mellem to faste punkter, og roterende ruller. Det peristaltiske rør har sædvanligvis mellem rullerne et eliptisk tværsnit, som er mere eller mindre affladet afhængigt af trykket ved pumpeindløbet. Ved konstant hastighed er strømningen en funktion af trykket ved pumpeindløbet, hvilket tydeligt fremgår af den i fig. 2 viste karakteristiske kurve over strømningen som funktion af sugetrykket i en sådan pumpe.The 1, the peristaltic pumps shown suitably consist of a flexible peristaltic tube of a silicone elastomer, which tube is spaced between two fixed points and rotating rollers. The peristaltic tube usually has an elliptical cross section between the rollers which is more or less flattened depending on the pressure at the pump inlet. At constant velocity, the flow is a function of the pressure at the pump inlet, which is clearly shown in the FIG. 2 shows the flow curve as a function of the suction pressure in such a pump.
Det vil ses, at pumpen ved et driftstryk pA ved pumpeindløbet, som ligger mellem to grænseværdier p^ og p^, giver en strømning Qa mellem to grænseværdier og (^. Strømningen er i dette interval i det væsentlige proportional med indløbstrykket pA· I den følgende del af beskrivelsen betegner pffl og p^ det mindste effektive tryk henholdsvis det største effektive tryk, ved pumpeindløbet. På samme måde betegner og QM tilsvarende mindste, henholdsvis største, effektive strømning.It will be seen that the pump at an operating pressure pA at the pump inlet, which lies between two limit values p ^ and p ^, gives a flow Qa between two limit values and (^. The flow in this range is substantially proportional to the inlet pressure pA · In the the following part of the description denotes pffl and p ^ denote the least effective pressure and the greatest effective pressure, respectively, at the pump inlet, and in the same way and QM denote the least, respectively, largest, effective flow.
Den mindste effektive strømning opnås, når indløbstrykket er tilstrækkelig lavt til, at røret trykkes sammen, hvorved dets modstående vægge presses mod hinanden, så at rørets tværsnit får form som en håndvægt, hvorved der opnås forøget modstand mod yderligere deformation. Går man derudover, afflades røret yderligere, men under indvirkning af meget lavere sugetryk ved pumpeindløbet, hvad der svarer til en brat ændring af kurvens hældning, idet det er nødvendigt at formindske trykke i rørets indre mere og mere for at opnå en mindre lysning og dermed en mindre gennemstrømning Q.The least effective flow is obtained when the inlet pressure is sufficiently low for the pipe to be compressed, thereby pushing its opposite walls against each other so that the cross section of the pipe takes the form of a dumbbell, thereby providing increased resistance to further deformation. If you go further, the tube is flattened further, but under the influence of much lower suction pressure at the pump inlet, which corresponds to a sudden change in the slope of the curve, since it is necessary to reduce pressure in the interior of the tube more and more to achieve a smaller illumination and thus a smaller throughput Q.
Rørets diameter forudsættes fra begyndelsen at være elliptisk. Ved regelmæssigt tiltagende tryk vil rørets tværsnit antage en mere og mere cirkulær form, og derefter forblive cirkulært. Dette betyder, at den største effektive strømning QM opnås, når indløbstrykket er tilstrækkelig højt til, at rørets tværsnit bliver cirkulært. Overskrides denne grænse, så kan rørets tværsnitsareal kun øges ved, at røret udvides, hvad der kræver betydeligt højere tryk og ligeledes svarer til en brat ændring af kurvens hældning.From the beginning, the diameter of the pipe is assumed to be elliptical. At regular increasing pressure, the cross-section of the pipe will assume a more and more circular shape, and then remain circular. This means that the greatest effective flow QM is obtained when the inlet pressure is sufficiently high for the cross-section of the pipe to become circular. If this limit is exceeded, the cross-sectional area of the pipe can only be increased by expanding the pipe, which requires considerably higher pressure and also corresponds to a sudden change in the slope of the curve.
I det i fig. 1 viste blodkredsløb varierer pumpen 6's strømning for et givet niveau i afhængighed af venetrykket. Da venetrykket i niveau med kanylen 3 ligger nær det atmosfæriske tryk, og da blodtrykket ved indløbet i pumpen 6 adskiller sig fra venetrykket med værdierne af tryktabene i den mellemliggende ledning 7, delvis kompenseret med niveauforskellen mellem kanylen 3 og pumpen 6, er blod- 8 142803 trykket ved pumpeindløbet sædvanligvis lavere end atmosfærens tryk. Man vælger følgelig en pumpe 6, hvis karakteristiske strømnings-tryk-kurve strækker sig i en zone, som fortrinsvis går fra tryk under atmosfæretrykket op til dette tryk. I fig. 3 vises den karakteristiske kurve for pumpen 6. Den effektive zone af kurven ligger mellem Bm og llv‘orved grænse trykkene pfflg og p^g i det viste tilfælde begge er lavere end atmosfæretrykket, som ligger på værdien 0 på abscissen eller i punktet 0. Trykket pMg er ligesom den største strømning proportionalt med pumpen 6's rotationshastighed.In the embodiment of FIG. 1, the flow of the pump 6 varies for a given level depending on the venous pressure. Since the venous pressure at the level of the cannula 3 is close to the atmospheric pressure, and as the blood pressure at the inlet of the pump 6 differs from the venous pressure with the values of the pressure losses in the intermediate conduit 7, partially offset by the level difference between the cannula 3 and the pump 6, the blood 8 The pressure at the pump inlet is usually lower than the pressure of the atmosphere. Accordingly, one chooses a pump 6 whose characteristic flow pressure curve extends in a zone which preferably extends from pressure below atmospheric pressure up to this pressure. In FIG. 3 shows the characteristic curve of the pump 6. The effective zone of the curve lies between Bm and llv'by the boundary pressures pfflg and p ^ in the case shown are both lower than the atmospheric pressure, which is at the value 0 on the abscissa or at point 0. pMg, like the largest flow, is proportional to the rotational speed of pump 6.
Det er formålstjenligt, at det største effektive tryk p^g er noget lavere end atmosfæretrykkei^ almindeligvis mindre end 20 mm Hg og fortrinsvis mindre end 10 mm Hg under det atmosfæriske tryk. Man tilvejebringer denne tilstand med en pumpe, hvis tyndvæggede peristaltiske rør i hvile har cirkulært tværsnit (mellem rullerne,, hvis det drejer sig om en roterende pumpe med ruller som den i fig. 1 viste). Dette tværsnit er det størst mulige og muliggør en største effektiv strømning Ved et blodtryk p^ ved indløbet i pumpen 6, som ligger mellem grænseværdierne pfflg og Pjyjg og under atmosfæretrykket, har det peristaltiske rør et elliptisk tværsnit med mindre areal end arealet af det cirkulære tværsnit med samme omkreds, og den tilsvarende strømning er Qg.It is desirable that the greatest effective pressure pg be somewhat lower than atmospheric pressure, generally less than 20 mm Hg and preferably less than 10 mm Hg below atmospheric pressure. This condition is provided by a pump whose thin-walled peristaltic tubes at rest have a circular cross-section (between the rollers, in the case of a rotary pump with rollers such as that shown in Fig. 1). This cross-section is the largest possible and allows for the greatest effective flow At a pressure of p with the same circumference and the corresponding flow is Qg.
Når trykket Pg bliver lig med det mindste effektive tryk p^g, afflades det peristaltiske rør yderligere, og dets tværsnitsareal nærmer sig 0, hvorved strømningen reduceres til den mindste effektive strømning Q^g.When the pressure Pg becomes equal to the least effective pressure p ^ g, the peristaltic tube is further flattened and its cross-sectional area approaches 0, reducing the flow to the least effective flow Q ^ g.
Pumpen 10, som er serieforbundet med pumpen 6, leverer nøjagtigt samme gennemsnitlige strømning. Pumpen 10's strømning bestemmes altså af pumpen 6, som atter er afhængig af venetrykket. Pumperne 6 og 10 er i reglen anbragt på omtrentligt samme niveau som oxygeneratoren. Det af pumperne 6 og 10 og oxygena-toren bestående aggregat er sædvanligvis anbragt højdeindstilleligt under patienten, så at man delvis kan kompensere tryktabene i strømningsretningen foran pumpen og således indstille blodstrømningen på ønsket middelværdi.The pump 10, which is connected in series with the pump 6, delivers exactly the same average flow. The flow of the pump 10 is thus determined by the pump 6, which again depends on the venous pressure. The pumps 6 and 10 are generally arranged at approximately the same level as the oxygen generator. The assembly of the pumps 6 and 10 and the oxygenator is usually positioned vertically below the patient so that the pressure losses in the flow direction in front of the pump can be partially compensated and thus adjust the blood flow to the desired mean.
Det er nødvendigt at holde blodtrykket i oxygenatoren inden for et forudbestemt trykinterval, for at blodfilmen skal kunne have i hovedsagen konstant tykkelse under sin berøring med membranen og for at muliggøre en kontrolleret trykgradient gennem membrantykke Isen.It is necessary to keep the blood pressure in the oxygenator within a predetermined pressure range in order for the blood film to be substantially constant in thickness during its contact with the membrane and to allow a controlled pressure gradient through the membrane thickness.
9 142803 I en af en stabel membraner afvekslende roed mellemlægsplader bestående oxygenator kan man således vilkårligt opretholde det relative blodtryk, som måles ved hjælp af manometeret 14, inden for et forudbestemt interval, f.eks. mellem 0 og 200 mm Hg.Thus, in one of a stack of membranes alternating red intermediate plates comprising oxygenator, the relative blood pressure measured by the manometer 14 can be maintained within a predetermined range, e.g. between 0 and 200 mm Hg.
Dersom man i denne oxygenator holder oxygentrykket under det atmosfæriske tryk, er trykdifferensen mellem blodet og oxygentrykket altid positiv, hvad der muliggør brug af mikroporøse membraner med høj gaspermeabilitet, hvilke membraner desuden muliggør en god afgasning af blodet, endog i tilfælde af skumdannelse eller dersom der forekommer små bobler. Apparatet tjener herved som sikkerhedsafgasningsorgan. De i fransk patentskrift nr. 15681^0 beskrevne membraner er særlig velegnede til dette formål. Opretholdelsen af denne positive trykdifferens gør det desuden muligt at undgå, at membranerne ved et uheld klæber fast til hinanden i en sammenklæbning, som vanskeligt kan ophæves.If in this oxygenator the oxygen pressure is kept below atmospheric pressure, the pressure difference between the blood and the oxygen pressure is always positive, which allows the use of microporous membranes with high gas permeability, which membranes also allow a good degassing of the blood, even in the case of foaming or if small bubbles appear. The apparatus thus serves as a safety degassing device. The membranes described in French Patent No. 1568120 are particularly suitable for this purpose. Furthermore, the maintenance of this positive pressure difference makes it possible to prevent the membranes from accidentally adhering to each other in an adhesive which can be difficult to lift.
Hvis blodtrykket i alt for høj grad oversteg oxygentrykket, ville blodet kunne gennembryde membranen eller overvinde de mikroporøse membraners væsketæthed og trænge gennem membranerne, f.eks. ved et tryk på 800 mm Hg.If the blood pressure exceeds the oxygen pressure too much, the blood could break through the membrane or overcome the liquid density of the microporous membranes and penetrate the membranes, e.g. at a pressure of 800 mm Hg.
Blodtrykket i oxygenatoren kan holdes inden for et valgt interval ved hjælp af pumpen 10, hvis karakteristiske strøm-nings-trykkurve strækker sig i en trykzone, som hovedsageligt ligger over atmosfæretrykket. I fig. 3 vises den karakteristiske kurve for pumpen 10. Kurvens effektive zone ligger mellem punkterne Cm og CM, og de tilsvarende grænsetryk Pm^Q og Pj^q er i dette tilfælde begge højere end atmosfæretrykket.The blood pressure in the oxygenator can be maintained within a selected range by the pump 10, whose characteristic flow pressure curve extends in a pressure zone substantially above atmospheric pressure. In FIG. 3 shows the characteristic curve of the pump 10. The effective zone of the curve lies between the points Cm and CM, and the corresponding boundary pressures Pm ^ Q and Pj ^ q are in both cases higher than the atmospheric pressure.
Det er formålstjenligt, at det mindste effektive tryk pml0 er lig med eller noget højere end atmosfæretrykket, i reglen mindre end 20 mm Hg og fortrinsvis mindre end 10 mm Hg over atmosfæretrykket. Man tilvejebringer denne tilstand med en pumpe, hvis peristal-tiske rør i hvile har et affladet tværsnit. Dette tværsnit er så godt som minimalt og tillader en mindste effektiv strømning Pumpen 10 har et peristaltisk rør med ganske tynde vægge, for at den største effektive strømning skal kunne opnås ved et største effektivt tryk PM1Q, som sædvanligvis er mindre end 200 mm Hg og fortrinsvis ca. 50 mm Hg over atmosfæretrykket. Por hver strømning, som påtvinges af pumpen 6, får pumpen 10's peristaltiske rør således et mere eller mindre affladet tværsnit svarende til tryk ved oxygenatorens udløb mellem 0 og f.eks. 50 nun Hg over atmosfæretrykket. Det største tryk ved oxygenatorens indløb afhænger ίο 142803 af tryktabene i apparatet, i reglen under 100 mm Hg for blodstrømninger af størrelsesordenen 600 ml/min i en oxygenator med overfladen 0,5 m2.It is desirable that the least effective pressure pm10 be equal to or slightly higher than atmospheric pressure, generally less than 20 mm Hg and preferably less than 10 mm Hg above atmospheric pressure. This condition is provided with a pump whose peristaltic tubes at rest have a flattened cross section. This cross-section is virtually minimal and allows for a minimum effective flow The pump 10 has a peristaltic tube with quite thin walls so that the greatest effective flow can be achieved at a maximum effective pressure PM1Q, which is usually less than 200 mm Hg and preferably ca. 50 mm Hg above atmospheric pressure. Thus, for each flow forced by the pump 6, the peristaltic tubes of the pump 10 get a more or less flattened cross section corresponding to pressure at the outlet of the oxygenator between 0 and e.g. 50 nun Hg above atmospheric pressure. The greatest pressure at the inlet of the oxygenator depends on the pressure losses in the apparatus, usually less than 100 mm Hg for blood flows of the order of 600 ml / min in an oxygenator with a surface of 0.5 m2.
For at man kan være sikker på, at det gennemsnitlige blodtryk i oxygenatoren i ethvert øjeblik forbliver inden for det ønskede interval må to betingelser opfyldes samtidigt.To be sure that the average blood pressure in the oxygenator at any moment remains within the desired range, two conditions must be met simultaneously.
Den første betingelse er, at den største effektive strømning for pumpen 10, som i strømningsretningen findes bag oxygenatoren, er større end den tilsvarende strømning for pumpen 6 foran oxygenatoren .The first condition is that the largest effective flow for the pump 10, which is in the flow direction behind the oxygenator, is greater than the corresponding flow for the pump 6 in front of the oxygenator.
Da pumperne 6 og 10 ifølge opfindelsen sædvanligvis drives således, at de arbejder samtidigt, og står stille samtidigt, kan dette vilkår opfyldes på enhver af følgende måder:Since the pumps 6 and 10 of the invention are usually operated so that they operate simultaneously and stand still simultaneously, this condition can be fulfilled in any of the following ways:
Man kan drive pumpen 10 med en højere hastighed end pumpen 6, hvorved forholdet mellem hastighederne er fast. Man kan, hvor det gælder en peristaltisk pumpe med rotor, forsyne pumpen 10 med en rotor, som har større diameter end pumpen 6's rotor. Fortrinsvis forsynes begge pumper med identiske rotorer, som roterer med identisk hastighed på grund af, at de har fælles aksel, og disse rotorer påvirker forskellige rør, hvorved den indvendige omkreds af tværsnittet i pumpen 10's rør er større end den indvendige omkreds af tværsnittet i pumpen 6's rør. Naturligvis kan man kombinere disse forskellige måder med hinanden.The pump 10 can be operated at a higher speed than the pump 6, whereby the ratio of the speeds is fixed. In the case of a rotor peristaltic pump, the pump 10 can be provided with a rotor having a larger diameter than the rotor of the pump 6. Preferably, both pumps are provided with identical rotors which rotate at identical speed because they have a common shaft, and these rotors affect different pipes, whereby the internal circumference of the cross section of the pump 10 is greater than the internal circumference of the cross section of the pump. 6's tube. Of course, these different ways can be combined with one another.
Den anden betingelse er, at den mindste effektive strømning for pumpen 10 i strømningsretningen efter iltningsapparatet er mindre end den mindste effektive strømning for pumpen 6 før oxygenatoren.The second condition is that the least effective flow of the pump 10 in the flow direction after the oxygenation apparatus is less than the least effective flow of the pump 6 before the oxygenator.
For at opfylde denne betingelse kan man til pumpen 10 vælge et rør med vægge, som er mere bøjelige end væggene i pumpen 6's rør. Tværsnittet af pumpen 10's rør, som er affladet ved et tryk nær atmosfæretrykket, har således form som en håndvægt med mindre overflade end tværsnittet af pumpen 6rs rør ved det mindste effektive tryk oven for denne pumpe. Til pumpen 10 vælger man et rør, som i hvile i hovedsagen er fladt, og som for i fornødent fald at kunne antage håndvægtform er mere elastisk end pumpen 6's rør, som i hvile har cirkulær form. Man kan til pumpen 10 benytte et rør med tyndere vægge end til pumpen 6 og kombinere tynde vægge og flad form.To fulfill this condition, a pipe with walls which is more flexible than the walls of the pipe of the pump 6 can be selected for pump 10. Thus, the cross-section of the pump 10 tube, which is discharged at a pressure close to the atmospheric pressure, has the shape of a dumbbell with a smaller surface than the cross-section of the pump 6's pipe at the least effective pressure above this pump. For the pump 10 one chooses a tube which is generally flat and which, if necessary, can assume dumbbell shape is more elastic than the tube 6 of the pump 6 which has a circular shape at rest. One can use a tube with thinner walls than for pump 6 and combine thin walls and flat shape.
Man kan således konstatere, at man ifølge opfindelsen på én gang kan opfylde begge de ovenfor angivne krav.Thus, it can be observed that according to the invention, both of the above-mentioned requirements can be fulfilled at one time.
Når man i praksis opnår en stabil tilstand, og strømningen i det uden for legemet beliggende kredsløb er tilfredsstillende, er det n 142803 for at mindske forstyrrelser i blodets tilstand hensigtsmæssigt at reducere hastigheden af pumpen 6, så at dens virkelige strømning bliver ca. 4/5 af den største strømning. Man udnytter til dette formål manometeret 17's udslag, som gør det muligt at beregne den virkelige strømning.In practice, when a steady state is achieved and the flow in the out-of-body circuit is satisfactory, it is appropriate to reduce the disturbances in the state of the blood to reduce the velocity of the pump 6 so that its true flow becomes approx. 4/5 of the largest flow. For this purpose, the pressure gauge 17 is used, which allows the actual flow to be calculated.
Man benytter fortrinsvis peristaltiske pumper til at støtte hjerte- eller hjerte-lungefunktionen. Når det gælder lettelse af hjerte-lungefunktionen, kan man imidlertid befrygte en konkurrence mellem den mere eller mindre pulserende strømning fra sådanne pumper og den strømning, der skyldes patientens hjerteslag.Preferably, peristaltic pumps are used to support cardiac or cardiac lung function. In the case of relief of cardiac lung function, however, a competition between the more or less pulsating flow from such pumps and the flow due to the patient's heartbeat can be feared.
Ønsker man at drage fordel af den diastoliske fase ved at injicere blodet fra det uden for legemet beliggende kredsløb og undgå konkurrence mellem dette og hjertet, foretrækker man derfor at anvende pumper, hvis strømning kan synkroniseres med hjertets cyklus. Sådanne pumper vælges sædvanligvis blandt til blodcirkulation egnede membranpumper. Disse pumper er kendt under betegnelsen ventrikulær-pumper eller pumper med rørformet membran og ventiler. Man kan passende anvende pumper som de i fransk patentskrift nr. 2.175.274 beskrevne.If one wishes to take advantage of the diastolic phase by injecting the blood from the extracorporeal circulation and avoiding competition between this and the heart, it is therefore preferable to use pumps whose flow can be synchronized with the heart's cycle. Such pumps are usually selected from diaphragm pumps suitable for blood circulation. These pumps are known as ventricular or tubular diaphragm pumps and valves. Suitable pumps such as those described in French Patent Specification No. 2,175,274 can be used.
Disse pumper er forsynet med på egnet måde styrede ventiler anbragt henholdsvis i strømningsretningen før og efter. Det største volumen af det arterielle hulrum, som danner pumpen 10, er højst 50% og fortrinsvis højst 20% større end det største volumen af det venøse hulrum, som danner pumpen 6. Disse pumpers pumpekamre, som sædvanligvis er stive, er på hensigtsmæssig måde i modsatte faser forbundet med én og samme pulsgenerator.These pumps are provided with appropriately controlled valves arranged respectively in the flow direction before and after. The largest volume of the arterial cavity forming the pump 10 is at most 50% and preferably at most 20% larger than the largest volume of the venous cavity forming the pump 6. The pump chambers of these pumps, which are usually rigid, are suitably in opposite phases connected to one and the same pulse generator.
Systolens begyndelse kan indledes enten ved et elektrokardiograf isk signal eller fortrinsvis ved, at patientens arterietryk falder under en bestemt tærskelværdi. Reguleringen af den ene eller den anden pumpes sugetryk og pumpetryk kan ske ved regulering af det gasformige drivfluidums tryk. Man genfinder en arbejdsmåde, som kan sammenlignes med de peristaltiske pumpers, hvis strømning er en funktion af det i strømningsretningen overfor liggende tryk.The onset of the chair can be initiated either by an electrocardiographic signal or preferably by the patient's arterial pressure falling below a certain threshold. The suction pressure of one or the other pump and the pump pressure can be controlled by regulating the pressure of the gaseous propellant fluid. A mode of operation comparable to the peristaltic pumps is found, whose flow is a function of the pressure in the direction of flow.
Det er endog muligt lige som ved disse sidste at gardere sig mod indsprøjtning af luft ved at anbringe pumperne lodret, hvorved blodet gennemstrømmer pumperne oppefra nedefter, og luften således befinder sig indespærret i niveau med indløbsklappen, som kan være ikke strengt tætsluttende.It is even possible, as in the latter, to guard against injection of air by placing the pumps vertically, whereby the blood flows through the pumps from below, and the air thus is confined at the level of the inlet flap which cannot be strictly sealed.
Anvendelsen af to pumper med rørformet membran og klapper og en fluidumpulsgenerator, som denne er beskrevet i fransk patent- 12 142803 skrift 2.174.342, er særlig fordelagtig ved genoplivning i ambulance eller helikopter, idet dette apparatur ikke kræver elektrisk energi, men kan fungere ved ekspansion af det oxygen, som benyttes til oxy- 3 genatoren. Med en oxygenflaske på 0,5 cm er selvstyringen tilfredsstillende samtidig med, at vægten og pladsbehovet er minimale.The use of two pumps with tubular diaphragm and flaps and a fluid pulse generator as described in French Patent 2,144,342 is particularly advantageous in resuscitation in an ambulance or helicopter, as this apparatus does not require electrical energy but can operate at expansion of the oxygen used for the oxygenator. With an oxygen bottle of 0.5 cm, self-control is satisfactory while keeping the weight and space requirements minimal.
I det foregående er et med en patients vene-arteriesystem forbundet aggregat beskrevet, men samme aggregat er også anvendeligt til vene-vene-cirkulation eller arterie-vene-cirkulation uden for legemet.In the foregoing, a device associated with a patient's vein artery system has been described, but the same aggregate is also applicable to venous-vein circulation or out-of-body artery-vein circulation.
Det uden for legemet beliggende kredsløb kan omfatte flere parallelkoblede hjælpeaggregater, hvert bestående af et blodiltningsapparat med en pumpe 6 på den ene og en pumpe 10 på den anden side. Sådanne hjælpeaggregater tilsluttes hovedkredsløbet gennem ventiler 22 og 23 se fig. 1. De kan indkobles eller kortsluttes for hurtigt at tilfredsstille forskellige behov hos patienten.The out-of-body circuit may comprise several parallel coupled auxiliaries, each consisting of a blood filtration apparatus with a pump 6 on one side and a pump 10 on the other side. Such auxiliary units are connected to the main circuit through valves 22 and 23 see fig. 1. They can be connected or short-circuited to quickly satisfy different needs of the patient.
Eftersom man i det uden for legemet beliggende kredsløb ifølge opfindelsen benytter pumper, som giver en meget ubetydelig hæmolysegrad, og da man undgår enhver direkte recirkulering af blod, kan apparatet meget vel benyttes i lang tid. Som følge af, at pumperne er selvregulerende, besidder kredsløbet egenskaberne enkelhed, pålidelighed og sikkerhed i betydelig grad, især sikkerhed imod indsprøjtning af luft. Pumperne virker som gasfælder.Since in the external body according to the invention, pumps are used which give a very insignificant degree of hemolysis, and since any direct blood circulation is avoided, the apparatus can very well be used for a long time. Because the pumps are self-regulating, the circuit has the properties of simplicity, reliability and safety to a considerable extent, especially safety against the injection of air. The pumps act as gas traps.
Når blodoxygenatoren er udrustet med mikroporøse membraner og gennemstrømmes af en gasstrøm med et tryk, som er lavere end atmosfæretrykket> kan det fjerne gasbobler, som eventuelt indføres i blodet, før dette strømmer ind i oxygenatoren, og dette desto bedre, jo finere boblerne er. Når oxygenatoren fungerer på denne måde, opfører det sig bedre end de sædvanligvis anvendte gasfælder, som virker ved tyngdekraft eller opdrift, idet disse arbejder bedre, jo større boblerne er. Under disse særlig gunstige betingelser kan man derfor afstå fra at anvende en sådan gasfælde i kredsløbet.When the blood oxygenator is equipped with microporous membranes and is flowed by a gas stream at a pressure lower than atmospheric pressure, it can remove any gas bubbles that may be introduced into the blood before it enters the oxygenator, and the better the finer the bubbles. When the oxygenator operates in this way, it behaves better than the commonly used gas traps, which act by gravity or buoyancy, as these work better the larger the bubbles. Therefore, under these particularly favorable conditions, such a gas trap can be used in the circuit.
Egenskaberne hos kredsløbet ifølge opfindelsen og de dermed forbundne fordele fremgår endnu tydeligere af følgende udførelseseksempler: 13 142803The characteristics of the circuit according to the invention and the associated advantages will become even more apparent from the following embodiments: 13 142803
Eksempel 1.Example 1.
Det benyttede kredsløb svarer til det i fig. 1 viste med undtagelse af drivorganerne for pumperne 6 og 10. De hastigheder, hvormed pumperne drives, kan reguleres mellem 0 og 40 o/min ved hjælp af jævnstrømsmotorer, som forsynes fra en fælles spændingskilde. Pumperne 6 og 10 er af den i fransk patentskrift nr. 2.063.677 beskrevne art. De peristaltiske rør består af silicone-elastomer. Pumpen 6's rør har en indvendig diameter på 10 mm og en udvendig diameter på 12,6 mm. Periferien af rotoren, som har tre ruller, beskriver en cirkel med diameteren 140 mm. Pumpen 10’s rør har en indvendig diameter på 11,25 mm og en yderdiameter på 14,1 mm, mens rotorens periferi beskriver en cirkel med diameteren 140 mm. Pumpen 10 er anbragt 50 cm oven over oxygenatoren. Denne sidste består af to indentiske aggregater, hvert indeholdende 16 mikroporøse membraner og syv mellemplader stablet og fastspændt mellem to endeplader. Apparatet er af den i fransk patentskrift nr. 1597874 be- 2 skrevne art. Udvekslingsarealet er 1 m . Under permanent drift er blodets trykfald i apparatet 50 mm Hg.The circuit used is similar to that of FIG. 1 with the exception of the drive means for the pumps 6 and 10. The speeds at which the pumps are operated can be controlled between 0 and 40 rpm by means of direct current motors supplied from a common voltage source. The pumps 6 and 10 are of the type described in French Patent Specification No. 2,063,677. The peristaltic tubes consist of silicone elastomers. The pipe of pump 6 has an inside diameter of 10 mm and an outside diameter of 12.6 mm. The periphery of the rotor, which has three rollers, describes a circle with a diameter of 140 mm. The pump 10's pipe has an inner diameter of 11.25 mm and an outer diameter of 14.1 mm, while the periphery of the rotor describes a circle with a diameter of 140 mm. The pump 10 is located 50 cm above the oxygenator. The latter consists of two indigenous aggregates, each containing 16 microporous membranes and seven intermediate plates stacked and clamped between two end plates. The apparatus is of the type described in French Patent No. 1597874. The exchange area is 1 m. During permanent operation, the blood pressure drop in the device is 50 mm Hg.
Dette kredsløb benyttedes til understøtning af en patients hjerte-lungefunktion over en periode på 12 timer. Ved behandlingens afslutning konstaterede man^ at blodets hæmolysegrad var mindre end 0,5$. Blodtrykket ioxygenatorens indre blev holdt indenfor intervallet 50-150 mm Hg. Ved en gennemsnitlig blodstrømning på 800 ml/min var overføringen af ilt 40 ml/min og af kuldioxid 60 ml/min.This circuit was used to support a patient's heart-lung function over a 12-hour period. At the end of treatment, the hemolysis rate of the blood was found to be less than $ 0.5. The blood pressure ioxygenator interior was kept within the range 50-150 mm Hg. At an average blood flow of 800 ml / min, the transfer of oxygen was 40 ml / min and of carbon dioxide 60 ml / min.
Eksempel 2.Example 2.
Kredsløbet og pumperne 6 og 10 er de samme som i eksempel 1 og svarer til fig. 1. Pumperne 6 og 10's rotorer er monteret på en fælles aksel, som drives af en eneste motor 12 med en hastighed, som kan reguleres mellem 0 og 40 o/min. Hver rotor har tre ruller, som er anbragt med en vinkelforskydning på 120°, og de to rotorer er vinkelforskudt 60° i forhold til hinanden.The circuit and pumps 6 and 10 are the same as in Example 1 and correspond to FIG. 1. The rotors of pumps 6 and 10 are mounted on a common shaft driven by a single motor 12 at a speed which can be controlled between 0 and 40 rpm. Each rotor has three rollers arranged at an angular displacement of 120 °, and the two rotors are angularly displaced 60 ° to each other.
Pumpen 6's rør har i hviletilstand cirkulært tværsnit.The pipe 6 of the pump 6 has a circular cross-section in the idle state.
Røret har en indvendig diameter på 15,8 mm og en udvendig diameter på 20 mm. Pumpen 10's rør har i hviletilstand elliptisk tværsnit. Ellipsens indvendige storakse og lilleakse er 24 resp. 4 mm. Ved deformering under tryk får dette rør et cirkulært tværsnit med en 14 142803 indvendig diameter på l6,8 mm og en udvendig diameter på 20v.mm.The tube has an inside diameter of 15.8 mm and an outside diameter of 20 mm. The pipe 10 of the pump 10 has an elliptical cross-section in its resting state. The inner large and small axis of the ellipse are 24 and 4 mm, respectively. When deformed under pressure, this tube has a circular cross-section with an internal diameter of 16.8 mm and an outside diameter of 20v.mm.
Den effektive diameter af pumperne 6 og 10's rotorer er 190 mm. oxygenatoren har et membranareal på 3 m .The effective diameter of the pumps 6 and 10 is 190 mm. the oxygenator has a membrane area of 3 m.
Med dette apparatur erstatter man partielt en voksen patients hjerte-lunge-virksomhed i 52 timer. Man regulerer blodstrømningen til en middelværdi af 2 l/min og konstaterer, at den gennemsnitlige overføring af ilt er 130 rol/min og af kuldioxid 150 ml/min. Trykbetingelserne og hæmolysebetingelserne er de samme som i eksempel 1. Et andet apparatur er brugsklart for det tilfælde, at overføringsværdierne skulle vise sig momentant utilstrækkelige.This device partially replaces an adult patient's heart-lung operation for 52 hours. Blood flow is regulated to a mean value of 2 l / min and the average transfer of oxygen is 130 rol / min and of carbon dioxide 150 ml / min. The pressure conditions and hemolysis conditions are the same as in Example 1. Another apparatus is ready for use in the event that the transfer values should prove momentarily insufficient.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DK17375A DK17375A (en) | 1972-09-12 | 1975-01-21 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR7232286 | 1972-09-12 | ||
FR7232286A FR2198759B1 (en) | 1972-09-12 | 1972-09-12 |
Publications (2)
Publication Number | Publication Date |
---|---|
DK142803B true DK142803B (en) | 1981-02-02 |
DK142803C DK142803C (en) | 1981-09-21 |
Family
ID=9104158
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DK500073AA DK142803B (en) | 1972-09-12 | 1973-09-11 | Blood oxygenation systems. |
Country Status (20)
Country | Link |
---|---|
US (1) | US3881483A (en) |
JP (2) | JPS5330277B2 (en) |
BE (1) | BE804735A (en) |
BR (1) | BR7307021D0 (en) |
CA (1) | CA1028913A (en) |
CH (2) | CH575764A5 (en) |
DD (1) | DD107210A5 (en) |
DE (2) | DE2345994C3 (en) |
DK (1) | DK142803B (en) |
ES (1) | ES418707A1 (en) |
FR (1) | FR2198759B1 (en) |
GB (2) | GB1437494A (en) |
IE (1) | IE40136B1 (en) |
IL (1) | IL43202A (en) |
IT (2) | IT1001541B (en) |
LU (1) | LU68403A1 (en) |
NL (1) | NL157805B (en) |
NO (1) | NO133574C (en) |
SE (2) | SE401091B (en) |
ZA (1) | ZA737272B (en) |
Families Citing this family (67)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5242000B2 (en) * | 1973-10-01 | 1977-10-21 | ||
FR2287241A2 (en) * | 1974-10-09 | 1976-05-07 | Rhone Poulenc Ind | Haemodialysis blood circuit - has pipes, pump and accessories forming variable volume blood chamber |
FR2364662B2 (en) * | 1976-09-17 | 1979-07-27 | Inst Nat Sante Rech Med | REINSTILLATION DEVICE FOR GENERAL AND DIGESTIVE RESUSCITATION |
US4083777A (en) * | 1976-09-07 | 1978-04-11 | Union Carbide Corporation | Portable hemodialysis system |
DE2754894C2 (en) * | 1977-12-09 | 1983-10-13 | Fresenius AG, 6380 Bad Homburg | Device for balancing a fluid withdrawn from a patient with a replacement fluid |
DE2754810C3 (en) * | 1977-12-09 | 1980-12-11 | Dr. Eduard Fresenius Chemisch-Pharmazeutische Industrie Kg Apparatebau Kg, 6380 Bad Homburg | Hemofiltration device |
US4192302A (en) * | 1978-09-12 | 1980-03-11 | Boddie Arthur W | Hepatic isolation and perfusion circuit assembly |
JPS565698A (en) * | 1979-06-27 | 1981-01-21 | Hitachi Ltd | Hydroextracting tank in synthetic resin |
JPS568098A (en) * | 1979-07-02 | 1981-01-27 | Hitachi Ltd | Hydroextracting tank in synthetic resin |
DE3276390D1 (en) * | 1981-09-10 | 1987-06-25 | Intermedicat Gmbh | Method for the selective extracorporeal precipitation of low-density lipoproteins from serum or plasma |
FR2519555A1 (en) * | 1982-01-11 | 1983-07-18 | Rhone Poulenc Sa | APPARATUS AND METHOD FOR ALTERNATIVE PLASMAPHERESE WITH MEMBRANE APPARATUS |
DE3204317C1 (en) * | 1982-02-09 | 1983-06-09 | Sartorius GmbH, 3400 Göttingen | Cardioplegic control and regulating device |
US4469659B1 (en) * | 1982-04-26 | 1997-07-29 | Cobe Lab | Sampling device for blood oxygenator |
JPS58190447A (en) * | 1982-04-30 | 1983-11-07 | 株式会社クラレ | Pulse generating apparatus |
US4490135A (en) * | 1982-09-24 | 1984-12-25 | Extracorporeal Medical Specialties, Inc. | Single needle alternating blood flow system |
US4540399A (en) * | 1983-02-01 | 1985-09-10 | Ken Litzie | Emergency bypass system |
US4776837A (en) * | 1983-06-21 | 1988-10-11 | Kopp Klaus F | Single lumen catheter fluid treatment |
FR2548907B1 (en) * | 1983-07-13 | 1985-11-08 | Rhone Poulenc Sa | PLASMAPHERESE PROCESS AND APPARATUS FOR USE IN PARTICULAR FOR THIS PROCESS |
US4778445A (en) * | 1984-07-09 | 1988-10-18 | Minnesota Mining And Manufacturing Company | Centrifugal blood pump with backflow detection |
IT8453709V0 (en) * | 1984-08-07 | 1984-08-07 | Hospal Dasco Spa | PERFECTED TYPE EQUIPMENT FOR THE CIRCULATION OF A LIQUID ALONG A TUBULAR LINE |
US4787883A (en) * | 1986-03-10 | 1988-11-29 | Kroyer K K K | Extracorporal thermo-therapy device and method for curing diseases |
US4908014A (en) * | 1986-03-10 | 1990-03-13 | Kroyer K K K | Extracorporal thermo-therapy device and method for curing diseases |
US4828543A (en) * | 1986-04-03 | 1989-05-09 | Weiss Paul I | Extracorporeal circulation apparatus |
US5254094A (en) * | 1989-07-17 | 1993-10-19 | Starkey David L | Physiological fluid warmer |
US5270004A (en) * | 1989-10-01 | 1993-12-14 | Minntech Corporation | Cylindrical blood heater/oxygenator |
US5578267A (en) * | 1992-05-11 | 1996-11-26 | Minntech Corporation | Cylindrical blood heater/oxygenator |
US5827222A (en) * | 1990-10-10 | 1998-10-27 | Life Resuscitation Technologies, Inc. | Method of treating at least one of brain and associated nervous tissue injury |
USRE37379E1 (en) | 1991-02-14 | 2001-09-18 | Wayne State University | High pressure gas exchanger |
US5391142A (en) * | 1992-07-29 | 1995-02-21 | Organetics, Ltd. | Apparatus and method for the extracorporeal treatment of the blood of a patient having a medical condition |
US5540653A (en) * | 1992-10-23 | 1996-07-30 | Datascope Investment Corp. | Preassembled bypass circuit |
US6312647B1 (en) | 1994-12-09 | 2001-11-06 | Wayne State University | Method for enriching a fluid with oxygen |
US5957879A (en) * | 1997-01-24 | 1999-09-28 | Heartport, Inc. | Methods and devices for maintaining cardiopulmonary bypass and arresting a patient's heart |
US6723284B1 (en) | 1997-04-11 | 2004-04-20 | University Of Pittsburgh | Membrane apparatus with enhanced mass transfer, heat transfer and pumping capabilities via active mixing |
US6106776A (en) * | 1997-04-11 | 2000-08-22 | University Of Pittsburgh | Membrane apparatus with enhanced mass transfer via active mixing |
DE19723671C2 (en) * | 1997-06-05 | 2001-07-19 | Stoeckert Instr Gmbh | Heart-lung machine with more than two blood pumps |
US6736790B2 (en) * | 1998-02-25 | 2004-05-18 | Denise R. Barbut | Method and system for selective or isolated integrate cerebral perfusion and cooling |
US6485450B1 (en) | 1998-03-16 | 2002-11-26 | Life Science Holdings, Inc. | Brain resuscitation apparatus and method |
EP1027097A4 (en) | 1998-08-12 | 2000-11-15 | Coaxia Inc | Intravascular methods and apparatus for isolation and selective cooling of the cerebral vasculature during surgical procedures |
US6454999B1 (en) | 1998-12-30 | 2002-09-24 | Cardiovention, Inc. | Integrated blood pump and oxygenator system having extended blood flow path |
US6428747B1 (en) | 1998-12-30 | 2002-08-06 | Cardiovention, Inc. | Integrated extracorporeal blood oxygenator, pump and heat exchanger system |
US6224829B1 (en) | 1998-12-30 | 2001-05-01 | Cadiovention, Inc. | Integrated blood oxygenator and pump system having means for reducing fiber breakage |
US6379618B1 (en) * | 1998-12-30 | 2002-04-30 | Cardiovention, Inc. | Integrated blood oxygenator and pump system having means for reducing microbubble generation |
US6759008B1 (en) | 1999-09-30 | 2004-07-06 | Therox, Inc. | Apparatus and method for blood oxygenation |
DE10017847C1 (en) * | 2000-04-11 | 2002-04-25 | Stoeckert Instr Gmbh | Heart-lung machine with pressure-operated control elements |
DE20011060U1 (en) | 2000-06-23 | 2000-09-28 | JOSTRA AG, 72145 Hirrlingen | Device for supporting a patient's lung function |
US7008535B1 (en) | 2000-08-04 | 2006-03-07 | Wayne State University | Apparatus for oxygenating wastewater |
US6582387B2 (en) | 2001-03-20 | 2003-06-24 | Therox, Inc. | System for enriching a bodily fluid with a gas |
AT412060B (en) * | 2001-07-06 | 2004-09-27 | Schaupp Lukas Dipl Ing Dr Tech | METHOD FOR MEASURING CONCENTRATIONS IN LIVING ORGANISMS BY MEANS OF MICRODIALYSIS AND AND DEVICE FOR IMPLEMENTING THIS METHOD |
US20030204172A1 (en) * | 2002-04-25 | 2003-10-30 | Steppe Dennis L. | Aspiration system |
US6887220B2 (en) * | 2002-09-12 | 2005-05-03 | Gore Enterprise Holdings, Inc. | Catheter having a compliant member configured to regulate aspiration rates |
US8465467B2 (en) * | 2006-09-14 | 2013-06-18 | Novartis Ag | Method of controlling an irrigation/aspiration system |
US20090259089A1 (en) * | 2008-04-10 | 2009-10-15 | Daniel Gelbart | Expandable catheter for delivery of fluids |
JP5097657B2 (en) * | 2008-09-17 | 2012-12-12 | アークレイ株式会社 | Analysis method |
JP5117963B2 (en) * | 2008-09-17 | 2013-01-16 | アークレイ株式会社 | Analysis equipment |
EP2349389B1 (en) * | 2008-10-14 | 2013-07-03 | Gambro Lundia AB | Blood treatment apparatus and method |
WO2013119482A1 (en) * | 2012-02-06 | 2013-08-15 | Michael Friedman | Apparatus and methods for controlled delivery of heated fluids to a subject |
ITBO20120197A1 (en) * | 2012-04-12 | 2013-10-13 | Medical Service S R L | EQUIPMENT USED IN MECHANICAL OR ASSISTED VENTILATION PROCEDURES |
US9561315B1 (en) * | 2013-02-19 | 2017-02-07 | Jay Vincelli | Miniaturized cardiopulmonary bypass circuit for a mouse model |
US9624920B2 (en) * | 2013-10-14 | 2017-04-18 | Elwha Llc | Peristaltic pump systems and methods |
US9541081B2 (en) * | 2013-10-14 | 2017-01-10 | Elwha Llc | Peristaltic pump systems and methods |
JP6656268B2 (en) | 2015-06-01 | 2020-03-04 | アジア パシフィック メディカル テクノロジー ディベロップメント カンパニー,リミテッド | Systems and methods for extracorporeal support |
US9814824B2 (en) | 2015-06-01 | 2017-11-14 | Asia Pacific Medical Technology Development Company, Ltd | Systems and methods for extracorporeal support |
US10213542B2 (en) | 2015-11-04 | 2019-02-26 | Asia Pacific Medical Technology Development Company, Ltd | Systems and methods for flow stagnation control |
US10265460B2 (en) | 2015-11-04 | 2019-04-23 | Asia Pacific Medical Technology Development Company, Ltd. | Systems and methods for providing zones of selective thermal therapy |
CN105536086A (en) * | 2016-02-23 | 2016-05-04 | 南京医科大学第一附属医院 | Multifunctional ECMO circulating pipeline and method for performing extracorporeal membrane oxygenation by utilizing multifunctional ECMO circulating pipeline |
DE102019131369A1 (en) * | 2019-11-20 | 2021-05-20 | Rheinisch-Westfälische Technische Hochschule (Rwth) Aachen | Oxygenator device |
DE102021129141A1 (en) * | 2021-11-09 | 2023-05-11 | Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Körperschaft des öffentlichen Rechts | Enrichment of fluids under pressure with enrichment gas |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL81254C (en) * | 1952-01-03 | |||
US2927582A (en) * | 1956-03-19 | 1960-03-08 | Research Corp | Pump-oxygenator |
US3017885A (en) * | 1959-03-30 | 1962-01-23 | Robicsek Francis | Blood flow meter |
US3359910A (en) * | 1965-06-10 | 1967-12-26 | Little Inc A | Apparatus for programming fluid flow |
-
1972
- 1972-09-12 FR FR7232286A patent/FR2198759B1/fr not_active Expired
-
1973
- 1973-09-04 NL NL7312213.A patent/NL157805B/en not_active IP Right Cessation
- 1973-09-10 DD DD173384A patent/DD107210A5/xx unknown
- 1973-09-11 LU LU68403A patent/LU68403A1/xx unknown
- 1973-09-11 CH CH1297073A patent/CH575764A5/xx not_active IP Right Cessation
- 1973-09-11 NO NO3550/73A patent/NO133574C/no unknown
- 1973-09-11 CA CA180,739A patent/CA1028913A/en not_active Expired
- 1973-09-11 DK DK500073AA patent/DK142803B/en unknown
- 1973-09-11 BE BE135558A patent/BE804735A/en not_active IP Right Cessation
- 1973-09-11 GB GB493375A patent/GB1437494A/en not_active Expired
- 1973-09-11 IL IL43202A patent/IL43202A/en unknown
- 1973-09-11 CH CH23675A patent/CH573051A5/xx not_active IP Right Cessation
- 1973-09-11 GB GB4273273A patent/GB1437493A/en not_active Expired
- 1973-09-11 BR BR7021/73A patent/BR7307021D0/en unknown
- 1973-09-11 SE SE7312376A patent/SE401091B/en unknown
- 1973-09-12 DE DE2345994A patent/DE2345994C3/en not_active Expired
- 1973-09-12 IE IE1622/73A patent/IE40136B1/en unknown
- 1973-09-12 ZA ZA737272*A patent/ZA737272B/en unknown
- 1973-09-12 ES ES418707A patent/ES418707A1/en not_active Expired
- 1973-09-12 IT IT28852/73A patent/IT1001541B/en active
- 1973-09-12 US US396603A patent/US3881483A/en not_active Expired - Lifetime
- 1973-09-12 DE DE19737333119U patent/DE7333119U/en not_active Expired
- 1973-09-12 JP JP10228273A patent/JPS5330277B2/ja not_active Expired
-
1975
- 1975-01-09 SE SE7500214A patent/SE414705B/en unknown
- 1975-12-01 IT IT29870/75A patent/IT1059535B/en active
-
1977
- 1977-02-25 JP JP52019419A patent/JPS6042724B2/en not_active Expired
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DK142803B (en) | Blood oxygenation systems. | |
US6537495B1 (en) | Vacuum-assisted venous drainage system with rigid housing and flexible reservoir | |
US6406267B1 (en) | Extracorporeal circulation pump | |
EP0472480B1 (en) | A single-needle circuit for circulating blood outside the body in blood treatment apparatus | |
ES2711410T3 (en) | Afterload device for a heart that beats during its examination | |
US20180080843A1 (en) | Medical liquid-pressure-detecting device | |
JP6538621B2 (en) | System for filling and venting devices for extracorporeal blood treatment with gradual flooding of filters | |
US11052179B2 (en) | Chamber for artificial circulatory assistance and membrane | |
US20060030809A1 (en) | Apparatus and method for multiple organ assist | |
US20240285930A1 (en) | Fluid circulation chamber membrane, a chamber and pump for artificial circulatory assistance and a pumping system | |
JP2007075541A (en) | Extracorporeal circulation assisting device | |
WO2019142925A1 (en) | Pressure detector adjusting device | |
Galletti | Cardiopulmonary bypass: a historical perspective | |
Münster et al. | Vacuum assisted venous drainage (VAVD) | |
JP7545621B2 (en) | Combined blood pump and oxygenator system and related methods | |
Orime et al. | Experiences of postcardiotomy assist: Pneumatic ventricular assist device or venoarterial bypass with percutaneous cardiopulmonary support | |
Whitbread et al. | Cardiopulmonary bypass equipment | |
Urbanek et al. | Percutaneous cardiopulmonary support (PCPS) | |
US11944734B2 (en) | Blood purification apparatus | |
catheter Arterial et al. | Two types are in widespread use: roller pumps and centrifugal pumps. Roller pumps have been used since the early days of CPB and remain the most commonly used device. They typically consist of a rotating head with two rollers that compress the | |
AU4255100A (en) | Extracorporeal circulation pump | |
Hiroura et al. | Clinical experience of a vacuum-assisted nonroller extra-corporeal circulation system | |
JP2023141985A (en) | blood purification device | |
WEISS et al. | Extracorporeal circulation in cardiac surgery | |
De Vivie et al. | Transient mechanical support of the failing heart |