DE3567320D1 - A method of forming a semiconductor device using a mask - Google Patents
A method of forming a semiconductor device using a maskInfo
- Publication number
- DE3567320D1 DE3567320D1 DE8585107231T DE3567320T DE3567320D1 DE 3567320 D1 DE3567320 D1 DE 3567320D1 DE 8585107231 T DE8585107231 T DE 8585107231T DE 3567320 T DE3567320 T DE 3567320T DE 3567320 D1 DE3567320 D1 DE 3567320D1
- Authority
- DE
- Germany
- Prior art keywords
- mask
- forming
- semiconductor device
- semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000004065 semiconductor Substances 0.000 title 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66568—Lateral single gate silicon transistors
- H01L29/66659—Lateral single gate silicon transistors with asymmetry in the channel direction, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/033—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
- H01L21/0334—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
- H01L21/0337—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
- H01L21/26586—Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
- H01L21/28017—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
- H01L21/28026—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
- H01L21/28123—Lithography-related aspects, e.g. sub-lithography lengths; Isolation-related aspects, e.g. to solve problems arising at the crossing with the side of the device isolation; Planarisation aspects
- H01L21/2815—Lithography-related aspects, e.g. sub-lithography lengths; Isolation-related aspects, e.g. to solve problems arising at the crossing with the side of the device isolation; Planarisation aspects part or whole of the electrode is a sidewall spacer or made by a similar technique, e.g. transformation under mask, plating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42372—Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
- H01L29/42376—Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66545—Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/082—Ion implantation FETs/COMs
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- High Energy & Nuclear Physics (AREA)
- Ceramic Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Inorganic Chemistry (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/623,810 US4532698A (en) | 1984-06-22 | 1984-06-22 | Method of making ultrashort FET using oblique angle metal deposition and ion implantation |
Publications (1)
Publication Number | Publication Date |
---|---|
DE3567320D1 true DE3567320D1 (en) | 1989-02-09 |
Family
ID=24499485
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE8585107231T Expired DE3567320D1 (en) | 1984-06-22 | 1985-06-13 | A method of forming a semiconductor device using a mask |
Country Status (4)
Country | Link |
---|---|
US (1) | US4532698A (de) |
EP (1) | EP0179196B1 (de) |
JP (1) | JPS6112077A (de) |
DE (1) | DE3567320D1 (de) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2566186B1 (fr) * | 1984-06-14 | 1986-08-29 | Thomson Csf | Procede de fabrication d'au moins un transistor a effet de champ en couche mince et transistor obtenu par ce procede |
US4649638A (en) * | 1985-04-17 | 1987-03-17 | International Business Machines Corp. | Construction of short-length electrode in semiconductor device |
US4640003A (en) * | 1985-09-30 | 1987-02-03 | The United States Of America As Represented By The Secretary Of The Navy | Method of making planar geometry Schottky diode using oblique evaporation and normal incidence proton bombardment |
US4839704A (en) * | 1987-09-16 | 1989-06-13 | National Semiconductor Corporation | Application of deep-junction non-self-aligned transistors for suppressing hot carriers |
JPH022142A (ja) * | 1988-06-13 | 1990-01-08 | Mitsubishi Electric Corp | 電界効果トランジスタ及びその製造方法 |
JPH0748503B2 (ja) * | 1988-11-29 | 1995-05-24 | 三菱電機株式会社 | 電界効果トランジスタの製造方法 |
EP0416141A1 (de) * | 1989-09-04 | 1991-03-13 | Siemens Aktiengesellschaft | Verfahren zur Herstellung eines FET mit asymmetrisch angeordnetem Gate-Bereich |
US5202272A (en) * | 1991-03-25 | 1993-04-13 | International Business Machines Corporation | Field effect transistor formed with deep-submicron gate |
US5219772A (en) * | 1991-08-15 | 1993-06-15 | At&T Bell Laboratories | Method for making field effect devices with ultra-short gates |
US5391510A (en) * | 1992-02-28 | 1995-02-21 | International Business Machines Corporation | Formation of self-aligned metal gate FETs using a benignant removable gate material during high temperature steps |
FR2694449B1 (fr) * | 1992-07-09 | 1994-10-28 | France Telecom | Composant électronique multifonctions, notamment élément à résistance dynamique négative, et procédé de fabrication correspondant. |
DE4441723A1 (de) * | 1994-11-23 | 1996-05-30 | Siemens Ag | Herstellungsverfahren für Gate-Elektroden von MOSFETs |
US5885425A (en) * | 1995-06-06 | 1999-03-23 | International Business Machines Corporation | Method for selective material deposition on one side of raised or recessed features |
KR100221627B1 (ko) * | 1996-07-29 | 1999-09-15 | 구본준 | 반도체장치 및 그의 제조방법 |
US6025208A (en) * | 1997-08-27 | 2000-02-15 | The Board Of Trustees Of The Leland Stanford Junior University | Method of making electrical elements on the sidewalls of micromechanical structures |
US20020063263A1 (en) * | 2000-11-30 | 2002-05-30 | Scott David B. | Metal oxide semiconductor transistor with self-aligned channel implant |
TWI228297B (en) * | 2003-12-12 | 2005-02-21 | Richtek Techohnology Corp | Asymmetrical cellular metal-oxide semiconductor transistor array |
EP2089898A1 (de) * | 2006-11-06 | 2009-08-19 | Nxp B.V. | Verfahren zur herstellung eines fet-gates |
CN102179691A (zh) * | 2011-05-11 | 2011-09-14 | 西安飞机工业(集团)有限责任公司 | 飞机发动机安装装置及飞机发动机安装方法 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3873371A (en) * | 1972-11-07 | 1975-03-25 | Hughes Aircraft Co | Small geometry charge coupled device and process for fabricating same |
US3846822A (en) * | 1973-10-05 | 1974-11-05 | Bell Telephone Labor Inc | Methods for making field effect transistors |
US4232439A (en) * | 1976-11-30 | 1980-11-11 | Vlsi Technology Research Association | Masking technique usable in manufacturing semiconductor devices |
US4093503A (en) * | 1977-03-07 | 1978-06-06 | International Business Machines Corporation | Method for fabricating ultra-narrow metallic lines |
US4135289A (en) * | 1977-08-23 | 1979-01-23 | Bell Telephone Laboratories, Incorporated | Method for producing a buried junction memory device |
JPS5939906B2 (ja) * | 1978-05-04 | 1984-09-27 | 超エル・エス・アイ技術研究組合 | 半導体装置の製造方法 |
DE2821975C2 (de) * | 1978-05-19 | 1983-01-27 | Siemens AG, 1000 Berlin und 8000 München | Metall-Halbleiter-Feldeffekttransistor (MESFET) und Verfahren zu dessen Herstellung |
US4313782A (en) * | 1979-11-14 | 1982-02-02 | Rca Corporation | Method of manufacturing submicron channel transistors |
US4377899A (en) * | 1979-11-19 | 1983-03-29 | Sumitomo Electric Industries, Ltd. | Method of manufacturing Schottky field-effect transistors utilizing shadow masking |
US4358340A (en) * | 1980-07-14 | 1982-11-09 | Texas Instruments Incorporated | Submicron patterning without using submicron lithographic technique |
JPS57204172A (en) * | 1981-06-08 | 1982-12-14 | Ibm | Field effect transistor |
JPS58110046A (ja) * | 1981-12-23 | 1983-06-30 | Nec Corp | 半導体装置の製造方法 |
US4430791A (en) * | 1981-12-30 | 1984-02-14 | International Business Machines Corporation | Sub-micrometer channel length field effect transistor process |
US4417385A (en) * | 1982-08-09 | 1983-11-29 | General Electric Company | Processes for manufacturing insulated-gate semiconductor devices with integral shorts |
JPS59124172A (ja) * | 1982-12-30 | 1984-07-18 | インタ−ナシヨナル ビジネス マシ−ンズ コ−ポレ−シヨン | Fet製造方法 |
-
1984
- 1984-06-22 US US06/623,810 patent/US4532698A/en not_active Expired - Lifetime
-
1985
- 1985-03-29 JP JP60064023A patent/JPS6112077A/ja active Granted
- 1985-06-13 DE DE8585107231T patent/DE3567320D1/de not_active Expired
- 1985-06-13 EP EP85107231A patent/EP0179196B1/de not_active Expired
Also Published As
Publication number | Publication date |
---|---|
EP0179196B1 (de) | 1989-01-04 |
JPH0571134B2 (de) | 1993-10-06 |
US4532698A (en) | 1985-08-06 |
EP0179196A3 (en) | 1987-07-22 |
JPS6112077A (ja) | 1986-01-20 |
EP0179196A2 (de) | 1986-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3271995D1 (en) | Method of manufacturing a semiconductor device | |
DE3161302D1 (en) | Method of producing a semiconductor device | |
GB2081159B (en) | Method of manufacturing a semiconductor device | |
DE3279012D1 (en) | A method of forming an electrode of a semiconductor device | |
ZA85974B (en) | Method of electrocoating a semiconductor device | |
DE3470253D1 (en) | Method of manufacturing a semiconductor device having small dimensions | |
GB2115607B (en) | Semiconductor device and a method of producing the same | |
EP0208494A3 (en) | Method of fabricating a semiconductor apparatus comprising two semiconductor devices | |
DE3167203D1 (en) | Method of manufacturing a semiconductor device | |
DE3263205D1 (en) | Method of making a contact hole for semiconductor devices | |
DE3567320D1 (en) | A method of forming a semiconductor device using a mask | |
GB2206448B (en) | A method of producing a semiconductor device | |
EP0214690A3 (en) | A method of manufacturing a semiconductor device | |
DE3164132D1 (en) | Method of manufacturing a semiconductor device and semiconductor device manufactured by using said method | |
DE3175085D1 (en) | Method of manufacturing a semiconductor device | |
HK40790A (en) | Semiconductor device and method of producing such a device | |
DE3373163D1 (en) | Method of producing a semiconductor device having isolation regions between elements | |
EP0164976A3 (en) | Method of producing a contact for a semiconductor device | |
EP0413491A3 (en) | Method of making a semiconductor device | |
EP0187421A3 (en) | Method of manufacturing a semiconductor device | |
DE3365143D1 (en) | Method of manufacturing a semiconductor device | |
GB2081160B (en) | Method of manufacturing a semiconductor device | |
KR900008623B1 (en) | Method of producing a semiconductor device | |
DE3565441D1 (en) | Method for manufacturing a semiconductor device | |
EP0294888A3 (en) | A method of manufacturing a semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
8364 | No opposition during term of opposition | ||
8339 | Ceased/non-payment of the annual fee |