DE3343677A1 - Reduction of the heat and pollutant emissions in diesel engines - Google Patents

Reduction of the heat and pollutant emissions in diesel engines

Info

Publication number
DE3343677A1
DE3343677A1 DE19833343677 DE3343677A DE3343677A1 DE 3343677 A1 DE3343677 A1 DE 3343677A1 DE 19833343677 DE19833343677 DE 19833343677 DE 3343677 A DE3343677 A DE 3343677A DE 3343677 A1 DE3343677 A1 DE 3343677A1
Authority
DE
Germany
Prior art keywords
reduction
heat
pollutant emissions
air
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE19833343677
Other languages
German (de)
Other versions
DE3343677C2 (en
Inventor
Ludwig Ing.(grad.) 8543 Hilpoltstein Elsbett
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE19833343677 priority Critical patent/DE3343677A1/en
Publication of DE3343677A1 publication Critical patent/DE3343677A1/en
Application granted granted Critical
Publication of DE3343677C2 publication Critical patent/DE3343677C2/de
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/30Arrangements for supply of additional air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/066Details related to the fuel injector or the fuel spray the injector being located substantially off-set from the cylinder centre axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0675Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston the combustion space being substantially spherical, hemispherical, ellipsoid or parabolic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/08Modifying distribution valve timing for charging purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • F02B43/08Plants characterised by the engines using gaseous fuel generated in the plant from solid fuel, e.g. wood
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/02Combinations of different methods of purification filtering and catalytic conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2290/00Movable parts or members in exhaust systems for other than for control purposes
    • F01N2290/02Movable parts or members in exhaust systems for other than for control purposes with continuous rotary movement
    • F01N2290/04Movable parts or members in exhaust systems for other than for control purposes with continuous rotary movement driven by exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0618Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston having in-cylinder means to influence the charge motion
    • F02B23/0621Squish flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0618Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston having in-cylinder means to influence the charge motion
    • F02B23/0624Swirl flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

It is shown that in diesel engines, reduction of the NOx emissions and reduction of the CO - , CH - and CO2 emissions is possible without power and consumption losses, if both the combustion process and the engine cooling, the exhaust turbine and the arrangement of the catalytic converter and the soot filter are designed with this objective in mind. The measures for the CO2/air balance are achieved by suitable elements for combustion of vegetable oil instead of fossil fuels.

Description

T i t e 1 : Reduzierung der Wärme- und Schadstoff-T i t e 1: Reduction of heat and pollutant

emissionen bei Dieselmotoren Die Reduzierung der NOx-Emissionen bei Dieselmotoren im Zusammenwirken mit der Reduzierung von Lärm- und Abwärmeemissionen sowie der Kohlenwasserstoffverbindungen einschließlich von CO2 bedingt, daß der bisherige Zielkonflikt, der zwischen der NO- und der CO- und CH-Reduzierung bestand, ebenso aufgelöst wird, wie der Zielkonflikt zwischen unschädlichen Abgasen und optimalen Verbrauchswerten überhaupt. emissions from diesel engines The reduction of NOx emissions at Diesel engines in combination with the reduction of noise and waste heat emissions as well as the hydrocarbon compounds including CO2 requires that the previous conflict of goals that existed between the NO and the CO and CH reduction, is also resolved, as is the conflict of objectives between harmless exhaust gases and optimal ones Consumption values at all.

Da sowohl die NO-Bindung Wärme kostet und die unverbrannten CH- und CO-Anteile Wärmeverluste bedeuten, gibt es physikalisch keinen Zielkonflikt zwischen Schadstoffbeseitigung und Optimierung des motorischen Wärmehaushaltes.Since both the NO bond costs heat and the unburned CH and CO components mean heat losses, there is no physical conflict between Removal of pollutants and optimization of the engine heat balance.

Erzeugt wird der gegensätzliche Ablauf von CH- und CO einerseits und NO andererseits dadurch, daß bei allen bisherigen Arbeitsverfahren im Motor immer die ganze Zylinderluft mit dem Kraftstoff gemischt wird. Auch bei der Vor-oder Wirbelkammer herrscht im unteren Teillastbereich ein Sauerstoffüberschuß in der Kammer, und im weiteren Ablauf wird die im Zylinder befindliche Luft sogar recht gewaltsam mit dem Brenngas aus der Kammer vermischt.The opposing processes of CH- and CO on the one hand and NO, on the other hand, because in all previous work processes in the engine always all cylinder air is mixed with the fuel. Even with the antechamber or vortex chamber there is an excess of oxygen in the chamber in the lower partial load range, and in the The air in the cylinder becomes even more violent in the further course of the process mixed with the fuel gas from the chamber.

In der deutschen Patentschrift P 2 241 355 wird zwar erkannt, daß es möglich ist, durch hohen Luftdrall die Brennzonenluft von der Überschußluft dadurch zu trennen, daß im rotierenden Massehaufen die schwerere, weil nicht brennende Luft abgetrennt und an die Brennraumwand zentrifugiert wird. Diese Überschußluft bleibt aber bei der gegebenen Brennraumform der zunehmenden Aufheizung ausgesetzt. So entstehen immer noch mehr NO-Bindungen, als von der künftigen Abgasgesetzgebung akzeptiert werden.In the German patent P 2 241 355 it is recognized that it is possible to remove the excess air from the combustion zone air by means of a high air swirl to separate that in the rotating heap of mass the heavier, because not burning, air is separated and centrifuged on the combustion chamber wall. This excess air remains but exposed to increasing heating in the given shape of the combustion chamber. So arise still more NO bonds than will be accepted by future emissions legislation will.

Auch die CO- und CH-Werte sind bei diesen Verfahren für künftige Forderungen noch zu hoch, weil bei der gezeigten Brennraumform die in der zentralen Brennzone befindlichen unverbrannten CO- und CH-Reste zuerst aus dem Brennraum austreten und im Laufe des Expansionshubes nicht mehr mit der zu spät aus dem Brennraum kommenden Überschuß luft gemischt werden.With these procedures, the CO and CH values are also used for future requirements still too high, because with the shape of the combustion chamber shown, the one in the central combustion zone any unburned CO and CH residues first emerge from the combustion chamber and in the course of the expansion stroke no longer with the one coming out of the combustion chamber too late Excess air to be mixed.

Um die künftigen Emissionsforderungen zu erfüllen, müssen die mitt2 241 355 gegebenen Möglichkeiten dahingehend erweitert werden, daß die zwischen Brennzone und Brennraumwand rotierende Überschußluft noch vor der stöchiometrisch verbrannten Brennzonenluft aus dem Brennraum ausfließt, sich auch im Zylinderraum an die Zylinderwand anlegt und damit verhindert, daß im heißen Brennraum unnötig NO-Gase entstehen und an der kalten Zylinderwand unnötig CO- oder CH-Gase bestehen bleiben. Wo also nach der bisher gegebenen Lehre scharfe Kanten als Brennraumabschluß nötig waren, wurde für die neue Funktion eine Ausströmform vorgesehen, die die Überschußluft nicht mehr zuletzt, sondern zuerst ausströmen läßt.In order to meet the future emission requirements, the mitt2 241 355 given possibilities can be extended to the effect that the between the burning zone and combustion chamber wall rotating excess air before the stoichiometrically burned Combustion zone air flows out of the combustion chamber, also in the Cylinder space rests against the cylinder wall and thus prevents unnecessary work in the hot combustion chamber NO gases arise and there are unnecessary CO or CH gases on the cold cylinder wall stay. So where, according to the teaching given so far, there are sharp edges to close off the combustion chamber were necessary, an outlet was provided for the new function, which the excess air no longer lets flow out last, but first.

Besonders wenn es darum geht, anstelle von fossilen Brennstoffen pflanzliche Öle zu verwenden, um auch den CO2 -Anstieg in der freien Atmosphäre zu reduzieren, ist es wichtig, sauerstoffreiche Luft an der Zylinderwand anzulagern, um die Gleitbahn vor den Verbrennungsrückständen des Pflanzenöls zu schützen. Pflanzenöl hat gegen Erdöl den Vorteil, daß es erst wachsen muß, bevor es im Motor verbrannt werden kann. Um wachsen zu können, muß die Pflanze mindestens einen so großen Anteil CO2 aus der Luft entnehmen, wie bei der Verbrennung des Pflanzenöls an die Luft abgegeben wird. Bevor aber 100 % Pflanzenöl anstelle von Erdöl im Motor störungsfrei gefahren werden kann, muß das Brennverfahren so geändert werden, daß der Kraftstoff sich nicht an Düse, Brennraumwände oder Kolbendichtmantel und Zylinderlaufbahn anlagert. Pflanzenöl muß ausreichend vorgewärmt und bis zur völligen Verbrennung in der heißen Brennzone gehalten werden. Um dies zu erreichen, müssen eine Reihe Maßnahmen, die über P 2 241 355 hinausgehen, getroffen werden. Es dürfen keinerlei die Rotation der Luftmasse störenden Kanten, wie Ventiltaschen oder die in P 2 241 355 gezeigten scharfen Einströmungskanten an der Brennraumöffnung oder der für den Kraftstoffstrahl vorgesehene Einschnitt (Düsenschnaupe), vorhanden sein. Die Ausströmung aus dem Brennraum wird durch eine angedrehte Schräge mit großem Radius so erleichtert, daß allein die größere kinetische Energie, die aus der Rotation des Frischluftanteils resultiert, genügt, um diesen I,'ift:ant ii zuerst aus dem flrennrain' fließen zu lassen, sobald der Kolben seine Abwärtsbewegung beginnt. Fällt der Brennbeginn und die Kolbenumkehrbewegung zusammen, entzieht sich also die Überschußluft rasch der Aufheizung, so daß die NO-Entstehung unterbunden wird. Die Abflußrichtung der Überschußluft wird durch die neue Schräge so gesteuert, daß auch Muldenrand und Kolbenboden weniger aufgeheizt werden. Dies wiederum erlaubt den gezeigten statisch hoch belastbarenFerrumkolbenmit einer schon oberhalb der Kolbenringe angeordneten eng eingepaßten Lauffläche, die keine Verbrennungsrückstände an die im Kolbendichtmantel untergebrachten Kolbenringe kommen läßt.Especially when it comes to plant-based instead of fossil fuels Use oils to also reduce the increase in CO2 in the free atmosphere, it is important to store oxygen-rich air on the cylinder wall in order to prevent the slideway to protect from the combustion residues of the vegetable oil. Vegetable oil has against Petroleum has the advantage that it must first grow before it can be burned in the engine. In order to be able to grow, the plant must emit at least as large a proportion of CO2 from the air, as released into the air when the vegetable oil is burned will. But before 100% vegetable oil instead of crude oil in the engine ran without problems can be, the combustion process must be changed so that the fuel does not accumulate on the nozzle, combustion chamber walls or piston sealing jacket and cylinder liner. Vegetable oil must be sufficiently preheated and until it is completely burned in the hot Burning zone are kept. In order to achieve this, a number of measures must be taken go beyond P 2 241 355. No rotation is allowed the air mass disturbing edges, such as valve pockets or those shown in P 2 241 355 sharp inflow edges at the combustion chamber opening or for the fuel jet provided incision (nozzle nozzle). The outflow from the The combustion chamber is so facilitated by a turned bevel with a large radius that only the greater kinetic energy that comes from the rotation of the fresh air results, is enough to get this I, 'ift: ant ii first from the flrennrain' flow as soon as the piston begins its downward movement. The start of burning falls and the piston reversal movement together, so the excess air is quickly withdrawn the heating, so that the formation of NO is prevented. The direction of flow of the Excess air is controlled by the new slope so that the edge of the bowl and The piston crown is less heated. This in turn allows the shown static heavy-duty ferrum pistons with one already arranged above the piston rings tightly fitted running surface that does not adhere to combustion residues in the piston sealing jacket housed piston rings can come.

Ferner kann die bisherige Wasserkühlung durch eine Ölkühlung ersetzt werden, und anstelle von 5 Zylindern sind nunmehr nur 3 Zylinder für die gleiche Leistung erforderlich.Furthermore, the previous water cooling can be replaced by an oil cooling and instead of 5 cylinders there are now only 3 cylinders for the same Performance required.

Durch alle diese Folgeergebnisse aus der geringeren Aufheizung des Materials und den geringeren Wärmeverlusten des Arbeitsgases verkürzen sich auch die Verdampfungs- und Brennzeiten des Kraftstoffes, so daß der bisher für die Einstrahlverbrennung erforderliche Brennbeginn vor OT wesentlich abs gekürzt werden kann. D. h., der Überschußluft-Anteil kann also rechtzeitig entweichen, bevor aus ihm Sauerstoff für die NO-Bindung entnommen wird. Es steht auch rechtzeitig ein Sauerstoffüberschuß im Zylinder zur Verfügung, um CO und CH nachzubrennen.All of these follow-up results from the lower heating of the Material and the lower heat losses of the working gas are also shortened the evaporation and burning times of the fuel, so that previously for single-jet combustion required start of burning before TDC can be shortened considerably. That is, the Excess air can therefore escape in good time before oxygen is released from it for NO binding is taken. There is also an excess of oxygen in good time available in the cylinder to post-burn CO and CH.

Für hochdrehende kleinere Dieselmotoren mit diesem als Duotherm bezeichneten Brennverfahren wird während des Auslaßhubes das Einlaßventil kurzzeitig geöffnet, so daß zusätzlich Frischluft in das Abgas geblasen wird, wozu die Reduzierung auf 3 Zylinder in einer Gruppe besonders wichtig ist, weil bei Viertaktmotoren und 3 Zylindern die Zündfolge und die Ventilöffnungszeiten etwa gleiche Kurbelwinkel haben.For high-revving smaller diesel engines with this called Duotherm Combustion process, the intake valve is opened briefly during the exhaust stroke, so that additional fresh air is blown into the exhaust gas, including the reduction to 3 cylinders in a group is particularly important because with four-stroke engines and 3 Cylinders, the firing order and valve opening times have approximately the same crank angle.

Die Dreiergruppe ergibt auch den größten Aufladeeffekt, so daß die bisherigen Leistungsnachteile für Dieselmotoren entfallen und Emissionsvorschriften nicht durch Leistungseinbußen gehemmt sind.The group of three also gives the greatest charging effect, so the Previous performance disadvantages for diesel engines are eliminated and emission regulations are not hampered by performance degradation.

Die Lärmemissionen des Dieselmotors werden bereits durch die geringe Drucksteigerungsgeschwindigkeit bei der Einstrahlverbrennung gemindert. Durch die exaktere Mischung und dadurch schnellere und spätere Verbrennung werden sie weiter reduziert, ebenso durch die engeren Laufspiele des Eisenkolbens zum bisherigen Aluminiumkolben.The noise emissions of the diesel engine are already reduced by the low rate of pressure increase reduced in the case of single-jet combustion. Due to the more precise mixing and thus faster and later combustion, they are further reduced, as well as by the narrower running clearances of the iron piston to the previous aluminum piston.

Die Anordnung eines zusätzlichen CO-CH-Katalysators am Turbineneingang und eines Ruß- und Partikel filters am Turbinenausgang bringt bei den erhöhten Abgastemperaturen des im Verhältnis 5 zu 3 reduzierten Zylindervolumens, das durch die geringere Materialaufheizung möglich wurde, gute Wirkungsgrade für die Schadstoff- und Lärmbekämpfung.The arrangement of an additional CO-CH catalyst at the turbine inlet and a soot and particle filter at the turbine outlet brings with the increased exhaust gas temperatures the cylinder volume reduced by a ratio of 5 to 3, due to the lower material heating became possible, good efficiencies for pollution and noise abatement.

Die Reduzierung der Wärmeemission, also des Kraftstoffverbrauchs, liegt bei 3 zu 2 vom bisher üblichen Kammerdiesel zum neuen Duotherm-Motor. Die bisherige Kühlerfront für die Wasserkühlung entfällt, der verbleibende ölkühler ist auf die Erfordernisse für die Kabinenheizung abgestimmt. Bei bestimmten Pflanzenölen kann der Kreislauf für die Kühlung, Schmierung und den Brennstoff zusammengeschaltet werden. Bei Mineralölschmierung ist nur das Schmier- und Kühlmittel gleich.The reduction of heat emissions, i.e. fuel consumption, is 3 to 2 from the previously common chamber diesel to the new Duotherm engine. the The previous radiator front for water cooling is no longer required, the remaining oil radiator is tailored to the requirements for cabin heating. With certain vegetable oils the circuit for cooling, lubrication and fuel can be interconnected will. With mineral oil lubrication, only the lubricant and coolant are the same.

Das gegenläufige Rad der Ölpumpe trägt bei 3 Zylindern die beiden Gegengewichte für den Massenmomentenausgleich. Für die Kühlluft des ölkühlers genügen auch bei LKW-DieselndieserArt Elektrolüfter.The opposite wheel of the oil pump carries the two with 3 cylinders Counterweights for balancing mass moments. Sufficient for the cooling air of the oil cooler also with truck diesels of this type electric fan.

Durch den Einbau der gesamten Einspritztechnik in den Zylinderkopf wird auch die Zylinderkopfwärme mit zur Vorheizung des Kraftstoffes herangezogen.By installing the entire injection technology in the cylinder head the cylinder head heat is also used to preheat the fuel.

Das gesetzte Ziel, mit Hilfe eines verbesserten dieselmotorischen Brennverfahrens die Leistungsnachteile gegen den Ottomotor, der bezüglich Schadstoff- und Wärmeemissionen dem Dieselmotor weit unterlegen ist, zu beseitigen, ist auf dem vorgeschlagenen Weg erreichbar.The set goal with the help of an improved diesel engine Combustion process, the performance disadvantages compared to the gasoline engine, which in terms of pollutant and heat emissions is far inferior to the diesel engine, to eliminate is on can be reached along the suggested route.

Bildbeschreibung Fig. I Der Kolben (1) mit seinem Brennraum (2) hat an seiner Öffnung (3) eine Schräge (4), die mit dem Radius (5) in den Brennraum (2) übergeht. In der Brennraummitte (6) rotiert die heiße Brennzone (7), um die herum die Überschußluft (8) rotiert, die eine höhere Geschwindigkeit, niedrigere Temperatur und damit größere Massenenergie als die Gase der Brennzone (7) besitzt.Description of the picture Fig. I The piston (1) with its combustion chamber (2) has at its opening (3) a bevel (4) with a radius (5) into the combustion chamber (2) passes. In the middle of the combustion chamber (6), the hot combustion zone (7) rotates around the the excess air (8) rotates around, the higher the speed, the lower the lower Temperature and thus greater mass energy than the gases in the combustion zone (7).

Sobald der Kolben (1) nach seinem Umkehrpunkt den Zylinderraum (9) im Zylinder (10) vergrößert, fließt zuerst die Überschußluft (8) über den Radius (5) und die Schräge (4) in den Zylinderraum (9) ein und lagert sich am Zylinder (10) an. Beim weiteren Abwärtsgang des Kolbens (1) wird die Brennzonenluft (7) von der ausfließenden Überschußluft (8) nachgezogen. So entsteht im Zylinderraum (9) die gleiche Anordnung, wie sie vorher im Brennraum (2) war. As soon as the piston (1) has passed the cylinder chamber (9) after its reversal point enlarged in the cylinder (10), the excess air (8) flows over the radius first (5) and the incline (4) in the cylinder space (9) and is stored on the cylinder (10) on. As the piston (1) descends further, the combustion zone air (7) is released from the outflowing excess air (8) drawn. This creates in the cylinder space (9) the same arrangement as it was before in the combustion chamber (2).

Als Material für den Kolben (1) ist eine Eisenlegierung vorgesehen, die sich bei der geringen Aufheizung nur etwa im Maße des Zylinders (10) ausdehnt. So kann die Gleitbahn (11) am Dichtmantel (12) oberhalb des ersten Kolbenringes (13) angeordnet werden, wo sie eine wirksame Vorabdichtung durch ihr enges Laufspiel ergibt. An iron alloy is provided as the material for the piston (1), which only expands to the extent of the cylinder (10) when the heating is low. So the slide (11) on the sealing jacket (12) above the first piston ring (13) can be arranged where they provide an effective preliminary seal due to their tight running clearance results.

Die Einspritzdüse (14) ist über der Schräge (4) angeordnet, wodurch ein Ausschnitt (Schnaupe) in der Brennraumöffnung (3) vermieden wird. Der Kraftstoffstrahl (15) ist durch den Brennraumrand an seiner Ausdehnung in Richtung Brennraumwand gehindert und tangiert die rotierende Luft bei etwa 60 % des größten Brennraumdurchmessers. The injection nozzle (14) is arranged above the slope (4), whereby a cutout (snout) in the combustion chamber opening (3) is avoided. The fuel jet (15) extends through the edge of the combustion chamber in the direction of the combustion chamber wall hindered and affected the rotating air at around 60% of the largest combustion chamber diameter.

Der theoretische Auftreffpunkt (16) liegt im unteren Viertel des Brennraumes (2). Durch den Luftdrall wird der Strahl (15) aber vorher in die Kreisbahn abgelenkt. The theoretical point of impact (16) is in the lower quarter of the Combustion chamber (2). Due to the air swirl, the jet (15) is first in the circular path diverted.

Fig. II zeigt einen Querschnitt des Motorgehäuses (17).Fig. II shows a cross section of the motor housing (17).

Auf dem Gehäuse (17) sitzt der Zylinderkopf (18), in dem der Einlaßdrallkanal (19) und der Auslaßkanal (20) eingegossen ist. Im unteren Teil wird der Zylinder (10) nur von den inneren Ölspritzern (21) und (22) gekühlt. Im oberen Teil,der vom Dichtmantel(12)abgedeckt wird, ist eine Außenkühlung (23) vorgesehen, wofür ebenfalls Öl als Kühlmittel vorgesehen werden kann. On the housing (17) sits the cylinder head (18), in which the inlet swirl channel (19) and the outlet channel (20) is cast. In the lower part is the cylinder (10) only cooled by the inner oil splashes (21) and (22). In the upper part, from the Sealing jacket (12) is covered, an external cooling (23) is provided, for which also Oil can be provided as a coolant.

Das Kühlmittel Öl wird von der ölpumpe (24) in den ölkühler (25) und von dort in den ölsumpf (26) gefördert. Zur Kühlluftförderung wird ein Elektrolüfter (27) benutzt. Auf dem zur Kurbelwelle gegenläufigen Rad (28) der ölpumpe (24) sitzen die Ausgleichsgewichte (29) für die bei 3-Zylinder-Motoren ausgelösten Massenmomente der Zylinder 1 und 3. The oil coolant is fed into the oil cooler (25) by the oil pump (24) and promoted from there into the oil sump (26). An electric fan is used to convey the cooling air (27) used. Sit on the wheel (28) of the oil pump (24) rotating in the opposite direction to the crankshaft the balance weights (29) for the moments of inertia released in 3-cylinder engines cylinders 1 and 3.

Die Nockenwelle (30) besitzt für das Einlaßventil (31) einen Vornocken, der das Einlaßventil (31) schon im Auslaßtakt kurzzeitig öffnet, um Frischluft für die CO- und CH-Reduzierung in den Zylinder(10) zu blasen. Zusätzlich kann CO und CH aber auch dadurch reduziert werden, daß bei der durch das geschilderte Arbeitsverfahren stark erhöhten Abgastemperatur ein Katalysator (32) zwischen Motor und Abgasturbo (33) angeordnet wird. Die unvermeidlichen Rauchstöße des aufgeladenen Dieselmotors werden vom Rußfilter (34) abgefangen, in dn die Abgase radial einströmen und axial in die Abgasleitung (35) weitergeleitet werden. The camshaft (30) has a pre-cam for the inlet valve (31), which opens the inlet valve (31) briefly in the exhaust stroke to provide fresh air for the CO and CH reduction in the cylinder (10) to blow. Additionally but CO and CH can also be reduced by the fact that in the case of the Working method greatly increased exhaust gas temperature a catalytic converter (32) between the engine and exhaust gas turbo (33) is arranged. The inevitable bursts of smoke of the charged Diesel engines are intercepted by the soot filter (34), into which the exhaust gases flow radially and passed axially into the exhaust line (35).

Claims (14)

Patentansprüche Die Reduzierung der Wärme- und Schadstoffemissionen bei Dieselmotoren durch die Trennung der Verbrennungsluft von der tfbersc.hußluft über das mit Kammer- und kammerlosen Dieselmotoren erreichte bisherige Ergebnis hinaus, dadurch gekennzeichnet, daß die Trennung der Arbeitsluft in stöchiometrisch gemischte Brennzonenluft (7) und Überschußluft (8) auch außerhalb der Brennkammer im Zylinderraum (9) erhalten bleibt, und dies durch eine Brennraumformgebung(4) und (5) erreicht wird, die bewirkt, daß die zuerst austretende Überschußluft (8) die Brennzonenluft (7) nachzieht und das Brennraummaterial vor Aufheizung und die Arbeitsluft vor Abkühlung schützt, und somit ohne thermodynamische Verluste auch nachwachsende Brennstoffe zwecks Ausgleich des CO2-Lufthaushalts verwendet werden können.Claims The reduction of heat and pollutant emissions in diesel engines by separating the combustion air from the tfbersc.hußluft about the previous result achieved with chamber and chamberless diesel engines addition, characterized in that the separation of the working air in stoichiometric mixed combustion zone air (7) and excess air (8) also outside the combustion chamber is retained in the cylinder chamber (9), and this is achieved by shaping the combustion chamber (4) and (5) is achieved, which has the effect that the excess air exiting first (8) the combustion zone air (7) draws in and the combustion chamber material before heating and the Working air protects against cooling, and thus without thermodynamic losses Renewable fuels are used to compensate for the CO2 air balance can. 2. Die Reduzierung der Wärme- und Schadstoffemissionen nach Anspruch 1, dadurch gekennzeichnet, daß der Kraftstoffstrahl durch den Brennraumrand an seiner Ausdehnung in Richtung Brennraumwand gehindert wird, die rotierende Luftmasse bei etwa 60 % des größten Brennraumdurchmessers tangiert und der theoretische Auftreffpunkt im unteren Viertel des Brennraums liegt.2. The reduction of heat and pollutant emissions according to claim 1, characterized in that the fuel jet through the edge of the combustion chamber at its Expansion in the direction of the combustion chamber wall is prevented, the rotating air mass at about 60% of the largest combustion chamber diameter and the theoretical point of impact lies in the lower quarter of the combustion chamber. 3. Die Reduzierung der Wärme- und Schadstoffemissionen nach Anspruch 1, dadurch gekennzeichnet, daß das Verhältnis der Fläche von Brennraumöffnung zum Brennraumdurchmesser dem Verhältnis der Brennzonenluft zur gesamten Arbeitsluft bei Vollast entspricht.3. The reduction of heat and pollutant emissions according to claim 1, characterized in that the ratio of the area of the combustion chamber opening to The combustion chamber diameter is the ratio of the combustion zone air to the total working air at full load. 4. Die Reduzierung der Wärme- und Schadstoffemissionen nach Anspruch 1, dadurch gekennzeichnet, daß der Schrägungswinkel (4) so festgelegt wird, daß sich die austretende Überschußluft nicht vom Kolbenboden ablöst und für etwa gleichbleibende Strömungsgeschwindigkeit bemessen ist.4. The reduction of heat and pollutant emissions according to claim 1, characterized in that the helix angle (4) is determined so that the exiting excess air does not detach itself from the piston crown and for about the same Flow rate is measured. 5. Die Reduzierung der Wärme- und Schadstoffemissionen nach Anspruch 1 und folgende, dadurch gekennzeichnet, daß der Verbrennungszeitpunkt und die mit der Einspritzmenge gesteuerte Verbrennungsrate auf die nach Anspruch 1 geforderte Reihenfolge des Gasaustrittes aus dem Brennraum abgestimmt sind.5. The reduction of heat and pollutant emissions according to claim 1 and following, characterized in that the combustion time and the with the combustion rate controlled by the injection quantity to that required according to claim 1 Sequence of gas exit from the combustion chamber are coordinated. 6. Die Reduzierung der Wärme- und Schadstoffemissionen nach Anspruch 1, dadurch gekennzeichnet, daß im Auslaßhub durch ein kurzzeitiges Voröffnen des Einlaßventils Frischluft dem ausströmenden Abgas zugemischt wird, um die CO-und CH-Brennstoffreste zu verbrennen.6. The reduction of heat and pollutant emissions according to claim 1, characterized in that in the exhaust stroke by a brief pre-opening of the Inlet valve fresh air is mixed with the exhaust gas flowing out to reduce the CO and Burn remains of CH fuel. 7 Die Reduzierung der Wärme- und Schadstoffemissionen nach Anspruch 1, dadurch gekennzeichnet, daß die Reduzierung der CO- und CH-Brennstoffreste in einem Katalysator erfolgt, der zwischen Motor und Abgasturbine angeordnet ist. 7 The reduction of heat and pollutant emissions according to claim 1, characterized in that the reduction in CO and CH fuel residues in takes place a catalytic converter, which is arranged between the engine and the exhaust gas turbine. 8. Die Reduzierung der Wärme- und Schadstoffemissionen nach Anspruch 1, dadurch gekennzeichnet, daß die Abgase am Ausgang der Turbine radial in einen Ruß- und Partikelfilter geleitet werden und erst im oder nach dem Filter in die axiale Strömung zum Auslaßrohr hin umgelenkt werden. 8. The reduction of heat and pollutant emissions according to claim 1, characterized in that the exhaust gases at the exit of the turbine radially into a Soot and particle filters are passed and only in or after the filter into the axial flow are deflected towards the outlet pipe. 9. Die Reduzierung der Wärme- und Schadstoffemissionen nach Anspruch 1, dadurch gekennzeichnet, daß die Verdampfungsgeschwindigkeit von pflanzlichen Brennstoffen dadurch gesteigert wird, daß sie in den heißesten Teil der Brennzone eingespritzt werden. 9. The reduction of heat and pollutant emissions according to claim 1, characterized in that the rate of evaporation of vegetable Fuels is boosted by placing them in the hottest part of the combustion zone be injected. 10. Die Reduzierung der Wärme- und Schadstoffemissionen nach Anspruch 1, dadurch gekennzeichnet, daß der pflanzliche Brennstoff in einer in den Zylinderkopf integrierten Einspritzpumpe und in einer Zapfendüse vorgeheizt wird.10. The reduction of heat and pollutant emissions according to claim 1, characterized in that the vegetable fuel in one in the cylinder head integrated injection pump and preheated in a nozzle. 11. Die Reduzierung der Wärme- und Schadstoffemissionen nach Anspruch 1 und folgende, dadurch gekennzeichnet, daß dem Dichtmantel des Kolbens durch die konstruktive Bemessung des Kolbenbodens so wenig Wärme zugeleitet wird, daß er schon oberhalb des ersten Ringes so gasdicht ausgeführt werden kann, daß die Ringe durch Pflanzenölrückstände nicht verkleben können und große Gasdichtheit für den Motorstart mit Pflanzenöl gegeben ist.11. The reduction of heat and pollutant emissions according to claim 1 and following, characterized in that the sealing jacket of the piston by the constructive dimensioning of the piston crown so little heat is supplied that it already can be made gas-tight above the first ring that the rings through Vegetable oil residues cannot stick together and great gas tightness for starting the engine with vegetable oil is given. 12. Die Reduzierung der Wärme- und Schadstoffemissionen nach Anspruch 1 und folgende, dadurch gekennzeichnet, daß die erforderlichen Wirtemperaturen im Katalysator dadurch hergestellt werden, daß nur 3 Zylinder anstelle von 4 oder 5 Zylindern verwendet werden, die zu einer Abgasgruppe zusammengefaßt sind, und so die Wirksamkeit des CO-CH-Katalysators, der Abgasturbine und des Abgasfilters sowie der Luftdrall im Zylinder steigt.12. The reduction of heat and pollutant emissions according to claim 1 and following, characterized in that the required we temperatures in Catalytic converters can be made by having only 3 cylinders instead of 4 or 5 Cylinders are used, which are combined into an exhaust group, and so on the effectiveness of the CO-CH catalytic converter, the exhaust gas turbine and the exhaust gas filter as well as the air swirl in the cylinder increases. 13. Die Reduzierung der Wärme- und Schadstoffemissionen nach Anspruch 1, dadurch gekennzeichnet, daß in der weiteren Reduzierung von NO in der Brennzone (7) zusätzlich ein Katalysator vorgesehen ist.13. The reduction of heat and pollutant emissions according to claim 1, characterized in that in the further reduction of NO in the combustion zone (7) a catalytic converter is also provided. 14. Die Reduzierung der Wärme- und Schadstoffemissionen nach Anspruch 1 und folgende, dadurch gekennzeichnet, daß die im Sinne eines möglichst späten Brennvorganges erforderliche schnellere Verdampfung des Kraftstoffes dadurch erzielt wird, daß der Brennstoff als Schmier-und Kühlmittel dient und dadurch immer auf gleichbleibend so hoher Temperatur gehalten wird, wie es bei Pflanzenöl erforderlich ist.14. The reduction of heat and pollutant emissions according to claim 1 and following, characterized in that the as late as possible Burning process required faster evaporation of the fuel achieved is that the fuel serves as a lubricant and coolant and thus always on constant temperature is kept as high as required for vegetable oil is.
DE19833343677 1983-12-02 1983-12-02 Reduction of the heat and pollutant emissions in diesel engines Granted DE3343677A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19833343677 DE3343677A1 (en) 1983-12-02 1983-12-02 Reduction of the heat and pollutant emissions in diesel engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19833343677 DE3343677A1 (en) 1983-12-02 1983-12-02 Reduction of the heat and pollutant emissions in diesel engines

Publications (2)

Publication Number Publication Date
DE3343677A1 true DE3343677A1 (en) 1985-06-13
DE3343677C2 DE3343677C2 (en) 1990-02-08

Family

ID=6215912

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19833343677 Granted DE3343677A1 (en) 1983-12-02 1983-12-02 Reduction of the heat and pollutant emissions in diesel engines

Country Status (1)

Country Link
DE (1) DE3343677A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988001683A1 (en) * 1986-08-29 1988-03-10 Elsbett L Fuel injection for direct-injection diesel engine
DE4325194A1 (en) * 1993-07-27 1995-02-02 Hoecker Hans Peter Dipl Ing Diesel internal combustion engine
EP0764771A2 (en) * 1995-09-20 1997-03-26 Toyota Jidosha Kabushiki Kaisha Compression ignition type engine
WO2013040719A1 (en) 2011-09-20 2013-03-28 Karya ATMI Foundation Self-igniting internal combustion engines for operating with deposit-forming crude plant oils with high viscosity, said crude plant oils consisting of variable mixtures of saturated and unsaturated fatty acids and being permeated with impurities due to the pressing process
DE102015223351A1 (en) * 2015-11-25 2017-06-01 Mtu Friedrichshafen Gmbh Method for operating an internal combustion engine and internal combustion engine

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE470845C (en) * 1924-07-04 1929-02-04 Acro A G Self-igniting oil engine with a cavity in the piston
DE481868C (en) * 1929-08-31 Ceskomoravska Kolben Akt Ges Two-part piston with combustion chamber for internal combustion engines
DE865683C (en) * 1951-12-18 1953-02-05 Hans Krug Injection process for a high-speed diesel engine with a combustion chamber of rotation in the piston
DE1802483A1 (en) * 1968-10-11 1970-05-14 Augsburg Nuernberg Ag Zweignie Light metal pistons for internal combustion engines
DE2349928A1 (en) * 1973-07-06 1975-01-30 Peugeot COMBUSTION ENGINE WITH STRATIFIED CHARGE
DE2038048C3 (en) * 1970-07-31 1975-06-19 Maschinenfabrik Augsburg-Nuernberg Ag, 8500 Nuernberg Air-compressing, direct-injection internal combustion engine
DE2728068A1 (en) * 1977-06-22 1979-01-11 Lothar Lischka Model aircraft with remote control - has fuselage with three connected sections carrying remote control elements in pipe shaped centre section
DE2928441A1 (en) * 1979-07-13 1981-01-29 Elsbett L METHOD AND DESIGN OF A PISTON INTERNAL COMBUSTION ENGINE FOR REDUCED HEATING VALUE NEEDS
WO1984004264A1 (en) * 1983-04-26 1984-11-08 Gkn Technology Ltd Method of squeeze forming metal articles

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE481868C (en) * 1929-08-31 Ceskomoravska Kolben Akt Ges Two-part piston with combustion chamber for internal combustion engines
DE470845C (en) * 1924-07-04 1929-02-04 Acro A G Self-igniting oil engine with a cavity in the piston
DE865683C (en) * 1951-12-18 1953-02-05 Hans Krug Injection process for a high-speed diesel engine with a combustion chamber of rotation in the piston
DE1802483A1 (en) * 1968-10-11 1970-05-14 Augsburg Nuernberg Ag Zweignie Light metal pistons for internal combustion engines
DE2038048C3 (en) * 1970-07-31 1975-06-19 Maschinenfabrik Augsburg-Nuernberg Ag, 8500 Nuernberg Air-compressing, direct-injection internal combustion engine
DE2349928A1 (en) * 1973-07-06 1975-01-30 Peugeot COMBUSTION ENGINE WITH STRATIFIED CHARGE
DE2728068A1 (en) * 1977-06-22 1979-01-11 Lothar Lischka Model aircraft with remote control - has fuselage with three connected sections carrying remote control elements in pipe shaped centre section
DE2928441A1 (en) * 1979-07-13 1981-01-29 Elsbett L METHOD AND DESIGN OF A PISTON INTERNAL COMBUSTION ENGINE FOR REDUCED HEATING VALUE NEEDS
WO1984004264A1 (en) * 1983-04-26 1984-11-08 Gkn Technology Ltd Method of squeeze forming metal articles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DE-Zeitschr.: "Automobil Revue Nr. 40 vom 29. Sept. 1983, S. 49 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988001683A1 (en) * 1986-08-29 1988-03-10 Elsbett L Fuel injection for direct-injection diesel engine
US4858579A (en) * 1986-08-29 1989-08-22 Elsbett L Fuel-injection for direct-injection diesel engine
DE4325194A1 (en) * 1993-07-27 1995-02-02 Hoecker Hans Peter Dipl Ing Diesel internal combustion engine
EP0764771A2 (en) * 1995-09-20 1997-03-26 Toyota Jidosha Kabushiki Kaisha Compression ignition type engine
WO2013040719A1 (en) 2011-09-20 2013-03-28 Karya ATMI Foundation Self-igniting internal combustion engines for operating with deposit-forming crude plant oils with high viscosity, said crude plant oils consisting of variable mixtures of saturated and unsaturated fatty acids and being permeated with impurities due to the pressing process
DE102015223351A1 (en) * 2015-11-25 2017-06-01 Mtu Friedrichshafen Gmbh Method for operating an internal combustion engine and internal combustion engine
DE102015223351B4 (en) * 2015-11-25 2020-09-10 Mtu Friedrichshafen Gmbh Method for operating an internal combustion engine and internal combustion engine

Also Published As

Publication number Publication date
DE3343677C2 (en) 1990-02-08

Similar Documents

Publication Publication Date Title
DE2011560A1 (en) Piston engine with combustion at constant pressure
DE3343677A1 (en) Reduction of the heat and pollutant emissions in diesel engines
EP1061265B1 (en) Turbocharger for a slow speed diesel engine
DE3826600C2 (en) Exhaust gas turbocharger with exhaust gas cleaning device
DE19902052A1 (en) Internal combustion engine with compressor to produce compressed air, with oxidation catalytic converter in flow path between compressor and compressed air store
DE19753407C2 (en) Process and apparatus for converting heat into work
DE1476361C3 (en) Four-stroke reciprocating internal combustion engine, in particular diesel internal combustion engine with exhaust gas turbocharger
DE102004034719B4 (en) High performance single- and two-stroke axial piston Otto diesel and hybrid engine system
DE2348866A1 (en) METHOD FOR PURIFYING THE EXHAUST GAS FROM LIQUID FUEL ENGINES AND EQUIPMENT FOR CARRYING OUT THE PROCEDURE
EP0028287A1 (en) Reciprocating piston type air compressing combustion engine
US4791896A (en) Water cooled scavenged crankcase type Otto internal combustion engine
DE4303692A1 (en) Free piston exergy internal combustion engine with reduced fuel demand
DE605412C (en) Cooling device for two- or four-stroke internal combustion engines, mainly of vehicles
DE3047138C2 (en) Free piston internal combustion engine
DE102015116063A1 (en) Internal combustion engine
DE540910C (en) Internal combustion engine with closed crankcase and air inlet on the housing
DE4414132A1 (en) Turbocharger with increased air flow into in engine
US4779576A (en) Water cooled scavenged crankcase type otto internal combustion engine
DE3702193A1 (en) ARRANGEMENT AND DESIGN OF EXHAUST CHANNELS FOR TWO-STROKE COMBUSTION ENGINES
DE2523698A1 (en) Exhaust gas handling system for IC engines - has ceramic type catalyst filling and isolating body housing
DE3715750A1 (en) Internal-Combustion Engine
DE2229582A1 (en) COMBUSTION TURBINE
AT150190B (en) Internal combustion turbine.
DE4314646A1 (en) Pistonless internal combustion engine functioning on the injection or diesel principle
DE3530472A1 (en) Liquid circuit of an internal combustion engine

Legal Events

Date Code Title Description
OR8 Request for search as to paragraph 43 lit. 1 sentence 1 patent law
8105 Search report available
8110 Request for examination paragraph 44
D2 Grant after examination
8363 Opposition against the patent
8331 Complete revocation