DE3826600C2 - Exhaust gas turbocharger with exhaust gas cleaning device - Google Patents

Exhaust gas turbocharger with exhaust gas cleaning device

Info

Publication number
DE3826600C2
DE3826600C2 DE3826600A DE3826600A DE3826600C2 DE 3826600 C2 DE3826600 C2 DE 3826600C2 DE 3826600 A DE3826600 A DE 3826600A DE 3826600 A DE3826600 A DE 3826600A DE 3826600 C2 DE3826600 C2 DE 3826600C2
Authority
DE
Germany
Prior art keywords
exhaust gas
sensor
combustion chamber
engine
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE3826600A
Other languages
German (de)
Other versions
DE3826600A1 (en
Inventor
Joern Martens
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE3826600A priority Critical patent/DE3826600C2/en
Publication of DE3826600A1 publication Critical patent/DE3826600A1/en
Application granted granted Critical
Publication of DE3826600C2 publication Critical patent/DE3826600C2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/02Gas passages between engine outlet and pump drive, e.g. reservoirs
    • F02B37/025Multiple scrolls or multiple gas passages guiding the gas to the pump drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • F02B37/164Control of the pumps by bypassing charging air the bypassed air being used in an auxiliary apparatus, e.g. in an air turbine
    • F02B37/166Control of the pumps by bypassing charging air the bypassed air being used in an auxiliary apparatus, e.g. in an air turbine the auxiliary apparatus being a combustion chamber, e.g. upstream of turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/04Combinations of different methods of purification afterburning and catalytic conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/027Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle four
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Supercharger (AREA)

Description

Abgasturbolader sind seit langer Zeit bekannt und, speziell bei 4-Takt-Dieselmotoren, oft zur Anwendung gekommen. So z. B. ist aus der Anmeldung DE 31 20 739 ein Abgasturbolader 10 mit Abgasreinigungsvorrichtung 8 für Verbrennungskraftmaschinen bekannt, mit einer Abgas­ turbine 11, einem Verdichter 12, und einer Welle, als starre mechanische Verbindung zwischen Abgasturbine 11 und Verdichter 12 und einer katalytischen Abgasreinigungsanlage 8. Von diesem Stand der Technik unterscheidet sich der Gegenstand des vorliegenden Anspruches 1 und der anderen Ansprüche durch seine verbleibenden kennzeichnenden Merkmale, denen wegen ihrer erfinderischen Höhe somit patentbegründende Bedeutung zukommt. Exhaust gas turbochargers have been known for a long time and are often used, especially in 4-stroke diesel engines. So z. B. is known from the application DE 31 20 739 an exhaust gas turbocharger 10 with exhaust gas cleaning device 8 for internal combustion engines, with an exhaust gas turbine 11 , a compressor 12 , and a shaft, as a rigid mechanical connection between the exhaust gas turbine 11 and compressor 12 and a catalytic exhaust gas cleaning system 8 . The subject matter of the present claim 1 and the other claims differs from this state of the art by its remaining characteristic features, which because of their inventive level are therefore of patent-fundamental importance.

Die Abgase eines Motors (M) treiben auch hierbei eine Abgas-Turbine (A) an, die über eine Welle (W) einen Verdichter (V) antreibt, der die Ladungsdichte des Motors (M) und damit dessen maximale Leistung vergrößert. Anlagen für die katalytische Reinigung von Abgasen aus Verbrennungskraftmaschinen (Motoren), -Katalysator- (K) genannt, werden auch schon seit geraumer Zeit zur Reduzierung bzw. Oxidation schädlicher Anteile der Verbrennungsgase (NO₂, CO, CmHn) in weniger schädliche Verbindungen (CO₂, H₂O, N₂) genutzt. Die Verwendung von Katalysatoren stieß, speziell beim 4-Takt-Dieselmotor, aber immer noch auf Probleme: Der relativ hohe Rußanteil der Verbrennungsgase führte zum regelrechten Verstopfen des Katalysators und, aus dem gleichen Grund, zum Ausfall des Sensors (11) für die Abgaszusammensetzung und zur Behinderung des Abgas­ stromes. Zudem liegen die Abgastemperaturen der Diesel­ motoren weitaus niedriger, als die vergleichbarer Motoren, die mit dem "Otto-Treibstoff" Benzin betrieben werden, und deren Abgase relativ problemlos bis zu 90% mittels Katalysator zu entgiften sind. Das in einen Katalysator (K) einströmende Abgas erreicht also beim Dieselmotor in vielen Betriebszuständen (z. B. im Leer­ lauf) nicht einmal die notwendige Reaktionstemperatur. Die Leistungserhöhung eines 4-Takt-Dieselmotors durch die Erhöhung der Ladungsdichte des Motors mittels Abgasturbolader brachte zudem, wegen der, bei notwendig werdender, plötzlicher Drehzahlerhöhung des Motors, verzögert einsetzenden Abgasturbinen-Drehzahlerhöhung eine Verzögerung der Aufladung durch den Verdichter und damit eine verzögerte Erhöhung der Ladungsdichte und der Leistung des Motors mit sich. Konnte durch eine geschickte Anpassung der Brennstoff-Einspritzanlage des betreffenden Motors eine übermäßig hohe Brennstoff-Ein­ spritzmenge in den Brennraum und damit ein extremer Schadstoff-Ausstoß (Ruß) noch vermieden werden, so kam es bei einer notwendigen, plötzlichen Drehzahlerhöhung jedoch immer noch zu einer verzögert einsetzenden Erhöhung der Ladungsdichte und damit der potentiellen Leistung des betreffenden Motors. Kleinere, und damit "schneller ansprechende" Abgasturbolader brachten nur wenig Besserung. Der relativ starke Rußausstoß des Motors mit Abgasturbolader machte nicht nur den Einsatz eines Katalysators herkömmlicher, bewährter Bauart unmöglich (s. o. ), sondern stellte schon, für sich betrachtet, eine Belastung für die Umwelt dar. Rußfilter, die den Ruß sammeln und so von Katalysator und Umwelt fernhalten, und die in bestimmten Zeitabständen zur Erhaltung ihrer Reinigungswirkung immer wieder, z. B. durch Abbrennen, von der Rußschicht gereinigt werden müssen, zeigten sich bisher als relativ kompliziert, teuer und störungsanfällig. Zudem wurde der mechanische Wirkungsgrad nicht unerheblich verschlechtert. Die erfindungsgemäße Konstruktion bietet dagegen eine Abgasreinigungsvorrichtung und einen hervorragenden, "schnell ansprechenden" Abgasturbolader in einem Bauteil. Die Verbrennungsgase (Abgas) aus dem Motor (M) werden während des "Auspuff-Taktes" jeweils in die Abgasleitung (1) ausgestoßen und von dieser in die Brennkammer (2) geleitet, die integriertes Bestandteil des Gehäuses (3) des Abgasturboladers ist. Die Abgase vermischen sich mit der, durch den Frischluft-Einlaß (16) über den Frischluft-Kanal (17) aus der Frischluft-Lei­ tung (15) nachströmenden Frischluft, wodurch, u. a., der Rußanteil der Verbrennungsgase verbrannt wird. Durch die Einspritz-Düse (6) in das Flammrohr (4) eingespritzter Brennstoff wird mit Frischluft von der herkömmlichen elektrischen Zündvorrichtung (18) gezündet. Der, aus dem Flammrohr (4) austretende, heiße Abgasstrahl beschleu­ nigt die Verbrennung des Rußes, erhöht die Temperatur der in den Katalysator (K) einströmenden Abgase und erhöht zudem die Drehzahl der herkömmlichen Abgastur­ bine (A), die Drehzahl des Verdichters (V), und damit die Ladungsdichte, ohne, daß die Abgasturbine (A) von den Verbrennungsgasen des Motors (M) angetrieben werden müßte. Die Regelelektronik (8) ist so geschaltet und mit der Einspritzpumpe (7), den Sensoren (10, 9, 11, 12, 13, 14) für die Abgaszusammensetzung Abgastemperatur, Kurbelwinkel (α), dem Druck im Ansaugtrakt und für die Gashebelstellung so verbunden, daß im Falle einer notwendigen, plötzlichen Drehzahlerhöhung des Motors (M), gesteuert durch den Gashebel, die Brennstoffeinspritzung von der Einspritzpumpe (7) über die Einspritz-Düse (6) in das Flammrohr (4) und die Zündung so vorgenommen wird, daß hieraus eine praktisch sofortige Drehzahlerhöhung der Abgasturbine (A), des Verdichters (V), und damit eine Erhöhung der Ladungsdichte des Motors (M) resultiert, die zu einer fast sofortigen Steigerung der mechanischen Leistung des Motors (M),bei jeweils entsprechend über die herkömmliche Einspritzanlage des Motors (M) erhöhter Brennstoff-Einspritzmenge in die Brennräume des Motors (M) führt. Diese Drehzahländerung wird durch die Än­ derung der Stellung des Gashebels, die über den Sensor (14) erfaßt wird, gesteuert. Die Leistung/Drehzahl des Motors (M) wird somit praktisch gleichzeitig mit der von Bedienungspersonal herbeigeführten Änderung der Gashebelstellung ohne die, sonst für Abgasturbolader typische Verzögerung erhöht. Ein Teil der vom Verdich­ ter komprimierten Frischluft wird in die Frischluft-Lei­ tung (15) abgezweigt, von wo sie über den Frischluft-Kanal (17) und den Frischluft-Einlaß (16) in die Brenn­ kammer (2) geleitet wird. Zudem wird bei der erfindungsgemäßen Konstruktion durch die Regelelektronik (8) die Einspritzpumpe (7) zur Einspritzung und die Zünd­ vorrichtung (18) betätigt, sollte die Abgastemperatur, die über den Sensor (10) gemessen wird, unter den kriti­ schen, d. h., den für eine katalytische Abgasreinigung notwendigen Minimalwert sinken. Dies kann in bestimmten Betriebsphasen des Motors (M) (Leerlauf, Warmlaufphase, usw.) der Fall sein. Die erfindungsgemäße Konstruktion ist zudem, aufgrund ihrer relativ einfachen Gestaltung, auch für die Nachrüstung von herkömmlichen Dieselmotoren und Motoren nach meinen Anmeldungen DE 37 15 750 und DE 38 02 836, zusammen mit dem herkömmlichen Katalysator (K) für die restliche Entgiftung der Verbrennungsgase bis unter, auch die strengsten gesetzlichen Vorschriften erfüllende Grenzwerte, geeignet. Die mögliche, sofortige Erhöhung der Ladungsdichte macht auch den Einsatz bei Motoren, bei denen es auf eine sehr schnelle Drehzahl-Er­ höhung bei einer Änderung der Gashebelstellung ankommt, d. h., wo ein "sehr gutes Ansprechverhalten" erwünscht ist, wie, z. B., bei Wettbewerbsfahrzeugen, interessant. So ist auch durchaus der Einsatz der erfindungsgemäßen Konstruktion bei 4-Takt-Otto und Zweitakt-Motoren also, und nicht zuletzt, bei Motoren, die als 4-Takt-Motoren mit nicht selbstzündenden Brennstoffen entsprechend meinen Anmeldungen DE 37 15 750 bzw. DE 38 02 836 konzipiert sind, interessant.The exhaust gases from an engine (M) also drive an exhaust gas turbine (A), which drives a compressor (V) via a shaft (W), which increases the charge density of the engine (M) and thus its maximum output. Plants for the catalytic purification of exhaust gases from internal combustion engines (engines), catalyst (K), have also been used for some time to reduce or oxidize harmful portions of the combustion gases (NO₂, CO, C m H n ) in less harmful compounds (CO₂, H₂O, N₂) used. The use of catalytic converters, especially with the 4-stroke diesel engine, still encountered problems: the relatively high soot content of the combustion gases led to the clogging of the catalytic converter and, for the same reason, to failure of the sensor ( 11 ) for the exhaust gas composition and to obstruct the exhaust gas flow. In addition, the exhaust gas temperatures of diesel engines are much lower than comparable engines that run on "petrol" gasoline and whose exhaust gases can be detoxified up to 90% relatively easily using a catalytic converter. The exhaust gas flowing into a catalytic converter (K) does not even reach the required reaction temperature in many operating conditions (e.g. idling) in the diesel engine. The increase in performance of a 4-stroke diesel engine by increasing the charge density of the engine by means of an exhaust gas turbocharger also caused a delay in charging by the compressor and thus a delayed increase in the exhaust gas turbine speed increase, which occurs with a sudden increase in engine speed when necessary Charge density and engine performance. Could a clever adjustment of the fuel injection system of the engine in question an excessive amount of fuel injected into the combustion chamber and thus an extreme emission of pollutants (soot) still be avoided, but there was still a sudden, sudden increase in speed delayed increase in charge density and thus the potential performance of the engine in question. Smaller, and thus "faster responding" turbochargers brought little improvement. The relatively high soot emissions of the engine with exhaust gas turbocharger not only made it impossible to use a conventional, tried and tested design (see above), but in itself was a burden on the environment. Soot filters that collect the soot and thus from the catalyst and Keep the environment away, and keep the cleaning effect at certain intervals, e.g. B. by burning, must be cleaned from the soot layer, have so far been found to be relatively complicated, expensive and prone to failure. In addition, the mechanical efficiency has deteriorated not inconsiderably. The construction according to the invention, on the other hand, offers an exhaust gas purification device and an excellent, "quickly responding" exhaust gas turbocharger in one component. The combustion gases (exhaust gas) from the engine (M) are expelled into the exhaust pipe ( 1 ) during the "exhaust cycle" and from there into the combustion chamber ( 2 ), which is an integral part of the housing ( 3 ) of the exhaust gas turbocharger. The exhaust gases mix with the fresh air flowing in through the fresh air inlet ( 16 ) via the fresh air channel ( 17 ) from the fresh air line ( 15 ), whereby, among other things, the soot portion of the combustion gases is burned. Fuel injected into the flame tube ( 4 ) through the injection nozzle ( 6 ) is ignited with fresh air by the conventional electrical ignition device ( 18 ). The hot exhaust gas jet emerging from the flame tube ( 4 ) accelerates the combustion of the soot, increases the temperature of the exhaust gases flowing into the catalyst (K) and also increases the speed of the conventional exhaust gas turbine (A), the speed of the compressor (V ), and thus the charge density, without the exhaust gas turbine (A) having to be driven by the combustion gases of the engine (M). The control electronics ( 8 ) are switched in this way and with the injection pump ( 7 ), the sensors ( 10 , 9 , 11 , 12 , 13 , 14 ) for the exhaust gas composition, exhaust gas temperature, crank angle (α), the pressure in the intake tract and for the throttle position connected that in the event of a sudden, sudden increase in engine speed (M), controlled by the throttle control, the fuel injection from the injection pump ( 7 ) via the injection nozzle ( 6 ) into the flame tube ( 4 ) and the ignition is carried out in this way, that this results in a practically immediate increase in the speed of the exhaust gas turbine (A), the compressor (V), and thus an increase in the charge density of the engine (M), which leads to an almost immediate increase in the mechanical output of the engine (M), each correspondingly above the conventional injection system of the engine (M) leads increased fuel injection quantity into the combustion chambers of the engine (M). This speed change is controlled by the change in the position of the throttle lever, which is detected by the sensor ( 14 ). The power / speed of the engine (M) is thus increased practically simultaneously with the change in the throttle lever position brought about by operating personnel without the deceleration which is otherwise typical for exhaust gas turbochargers. A portion of the compressed air compressed by the compressor is branched into the fresh air line ( 15 ), from where it is passed through the fresh air channel ( 17 ) and the fresh air inlet ( 16 ) into the combustion chamber ( 2 ). In addition, in the construction according to the invention by the control electronics ( 8 ), the injection pump ( 7 ) for injection and the ignition device ( 18 ) is actuated, the exhaust gas temperature, which is measured by the sensor ( 10 ), should be below the criteria, ie, the minimum value required for catalytic exhaust gas purification decrease. This can be the case in certain operating phases of the engine (M) (idling, warm-up phase, etc.). The construction according to the invention is also, due to its relatively simple design, also for retrofitting conventional diesel engines and engines according to my applications DE 37 15 750 and DE 38 02 836, together with the conventional catalyst (K) for the remaining detoxification of the combustion gases up to below , also meet the most stringent legal requirements. The possible, immediate increase in the charge density also makes use in engines in which it is a matter of a very rapid increase in speed when changing the throttle lever position, ie where a "very good response" is desired, such as, for. B., in competition vehicles, interesting. So is the use of the construction according to the invention in 4-stroke gasoline and two-stroke engines, and not least, in engines that are 4-stroke engines with non-self-igniting fuels according to my applications DE 37 15 750 and DE 38 02 836 are interesting.

BezugszeichenlisteReference list

1 Abgasleitung (Fig. 1, 2, 3,)
2 Brennkammer (Fig. 2)
3 Gehäuse (Fig. 2)
4 Flammrohr (Fig. 2)
5 Ansaugtrakt des Motors (Fig. 1)
6 Einspritz-Düse (Fig. 1, 2)
7 Einspritzpumpe (Fig. 1)
8 Regelelektronik (Fig. 1)
9 Sensor (Abgasdruck) (Fig. 1)
10 Sensor (Abgastemperatur) (Fig. 1)
11 Sensor (Abgaszusammensetzung) (Fig. 1)
12 Sensor (Position der Kurbelwelle) (Fig. 1)
13 Sensor (Druck im Ansaugtrakt) (Fig. 1)
14 Sensor (Gashebelposition) (Fig. 1)
15 Frischluft-Leitung (Fig. 2)
16 Frischluft-Einlaß (Fig. 2)
17 Frischluft-Kanal (Fig. 2)
18 Zündvorrichtung (Fig. 1, 2)
19 Brennstofftank (Fig. 1)
M Motor (Verbrennungskraftmaschine 4-Takt-Diesel (Fig. 1, 3)
A Abgasturbine (Fig. 1, 2, 3)
K Katalysator (Fig. 1)
W Welle (Fig. 1, 3)
KW Kurbelwelle (Fig. 1)
m Imaginäre Längsachse der Ansaugleitung (Fig. 2)
C Kurve durch die Querschnittsmittelpunkte (Q) (Fig. 2)
Q Querschnittsmittelpunkte der Brennkammer (Fig. 2)
α Kurbelwinkel
h Drehfrequenz
PA Druck im Ansaugtrakt (5)
1 exhaust pipe ( Fig. 1, 2, 3,)
2 combustion chamber ( Fig. 2)
3 housing ( Fig. 2)
4 flame tube ( Fig. 2)
5 intake tract of the engine ( Fig. 1)
6 injection nozzle ( Fig. 1, 2)
7 injection pump ( Fig. 1)
8 control electronics ( Fig. 1)
9 sensor (exhaust gas pressure) ( Fig. 1)
10 sensor (exhaust gas temperature) ( Fig. 1)
11 sensor (exhaust gas composition) ( FIG. 1)
12 sensor (position of the crankshaft) ( Fig. 1)
13 sensor (pressure in the intake tract) ( Fig. 1)
14 sensor (throttle position) ( Fig. 1)
15 fresh air line ( FIG. 2)
16 fresh air inlet ( FIG. 2)
17 fresh air duct ( FIG. 2)
18 ignition device ( FIGS. 1, 2)
19 fuel tank ( Fig. 1)
M engine (internal combustion engine 4-stroke diesel ( Fig. 1, 3)
A exhaust gas turbine ( Fig. 1, 2, 3)
K catalyst ( Fig. 1)
W wave ( Fig. 1, 3)
KW crankshaft ( Fig. 1)
m Imaginary longitudinal axis of the suction line ( Fig. 2)
C curve through the cross-sectional center points (Q) ( FIG. 2)
Q cross-sectional center points of the combustion chamber ( FIG. 2)
α crank angle
h rotational frequency
PA pressure in the intake tract ( 5 )

Claims (2)

1. Abgasturbolader mit Abgasreinigungsvorrichtung für Verbrennungskraftmaschinen mit einer Abgas-Turbine (A), einem Verdichter (V), einer Welle (W) als starre mecha­ nische Verbindung zwischen Abgas-Turbine (A) und Ver­ dichter (V) und einer katalytischen Abgasreinigungs­ anlage, dadurch gekennzeichnet, daß in die Abgasleitung (1) eine Brennkammer (2) zwischen dem Auslaß des Motors (M) und der Abgas-Turbine (A) eingesetzt ist und die Brennkammer (2) und die Abgas-Tur­ bine (A) integrierte, also einbezogene Bestandteile des Gehäuses (3) sind, und das Gehäuse (3) so gestaltet ist, daß die imaginäre, also die gedachte Mittelachse (m) der Abgasleitung (1) etwa tangential zur imaginären Kurve (C) durch die Quer­ schnittsmittelpunkte (Q) der Brennkammer (2) verläuft, und ein, einseitig geschlossenes Flammrohr (4) so in das Gehäuse (3) eingesetzt und damit verbunden ist, daß seine Längsachse tangential zur imaginären, also zu der gedachten Kurve (C) verläuft, und es zur Brennkammer (2) geöffnet ist, und im Flammrohr (4) eine Einspritz-Düse (6) so an­ geordnet ist, daß die Brennstoffeinspritzung dadurch im Mittel auch etwa tangential zur Kurve (C) erfolgt und, im Zentrum der etwa ringförmigen Brennkammer (4), die Abgas-Turbine (A) so angeordnet und so gestaltet ist, daß die Verbrennungsgase aus der Brennkammer (2) tangential einströmen und axial ausströmen können. 1. Exhaust gas turbocharger with exhaust gas cleaning device for internal combustion engines with an exhaust gas turbine (A), a compressor (V), a shaft (W) as a rigid mechanical connection between exhaust gas turbine (A) and compressor (V) and a catalytic exhaust gas cleaning system , characterized in that a combustion chamber ( 2 ) between the outlet of the engine (M) and the exhaust gas turbine (A) is inserted in the exhaust pipe ( 1 ) and the combustion chamber ( 2 ) and the exhaust gas turbine (A) integrated , So are included components of the housing ( 3 ), and the housing ( 3 ) is designed so that the imaginary, i.e. the imaginary central axis (m) of the exhaust pipe ( 1 ) is approximately tangential to the imaginary curve (C) through the cross-sectional centers ( Q) of the combustion chamber ( 2 ), and a flame tube ( 4 ) which is closed on one side is inserted into the housing ( 3 ) and connected to it in such a way that its longitudinal axis is tangent to the imaginary curve (C) and it to the combustion chamber ( 2 ) is open, and in the flame tube ( 4 ) an injection nozzle ( 6 ) is arranged in such a way that the fuel injection takes place on average also approximately tangentially to the curve (C) and, in the center of the approximately annular combustion chamber ( 4 ), the exhaust gas turbine (A) is arranged and designed such that the combustion gases flow in tangentially from the combustion chamber ( 2 ) and can flow out axially. 2. Abgasturbolader mit Abgasreinigungsvorrichtung gemäß dem Hauptanspruch, dadurch gekenn­ zeichnet, daß die Regelelektronik (8), eine Brennstoffeinspritzpumpe (7), ein Sensor, Fühler (10) für die Abgastemperatur, ein Sensor (9) für den Abgas- Druck, ein Sensor (11) für die Abgaszusammensetzung, ein Sensor (12) für den Kurbelwinkel (α) und die Dreh­ frequenz (h) der Kurbelwelle (KW) des Motors (M), ein Sensor (14) für die Gashebelposition und ein Sensor (13) für den Druck (PA) im Ansaugtrakt (5) so geschaltet und miteinander verbunden sind, daß die Brennstoff­ einspritzung über die Einspritz-Düse (6) in die Brennkammer (2), bezüglich ihrer Menge und der Zeit, in Abhängigkeit von einer minimal einzuhaltenden Abgastemperatur und dem, bezüglich der Gashebel­ stellung und Drehfrequenz (h) des Motors (M) optimalen, zu erreichenden Druck im Ansaugtrakt (5) erfolgt.2. Exhaust gas turbocharger with exhaust gas purification device according to the main claim, characterized in that the control electronics ( 8 ), a fuel injection pump ( 7 ), a sensor, sensor ( 10 ) for the exhaust gas temperature, a sensor ( 9 ) for the exhaust gas pressure, a sensor ( 11 ) for the exhaust gas composition, a sensor ( 12 ) for the crank angle (α) and the rotational frequency (h) of the crankshaft (KW) of the engine (M), a sensor ( 14 ) for the throttle position and a sensor ( 13 ) for the pressure (PA) in the intake tract ( 5 ) are connected and connected to one another in such a way that the fuel injection via the injection nozzle ( 6 ) into the combustion chamber ( 2 ), in terms of its quantity and time, as a function of a minimum Exhaust gas temperature and, in relation to the throttle lever position and rotational frequency (h) of the engine (M), the optimum pressure to be achieved in the intake tract ( 5 ).
DE3826600A 1988-08-05 1988-08-05 Exhaust gas turbocharger with exhaust gas cleaning device Expired - Fee Related DE3826600C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE3826600A DE3826600C2 (en) 1988-08-05 1988-08-05 Exhaust gas turbocharger with exhaust gas cleaning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE3826600A DE3826600C2 (en) 1988-08-05 1988-08-05 Exhaust gas turbocharger with exhaust gas cleaning device

Publications (2)

Publication Number Publication Date
DE3826600A1 DE3826600A1 (en) 1990-02-08
DE3826600C2 true DE3826600C2 (en) 1998-03-19

Family

ID=6360281

Family Applications (1)

Application Number Title Priority Date Filing Date
DE3826600A Expired - Fee Related DE3826600C2 (en) 1988-08-05 1988-08-05 Exhaust gas turbocharger with exhaust gas cleaning device

Country Status (1)

Country Link
DE (1) DE3826600C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10221014A1 (en) * 2002-05-11 2003-11-27 Daimler Chrysler Ag Variable exhaust gas turbocharger of an internal combustion engine

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4120196A1 (en) * 1991-06-19 1992-12-24 Audi Ag Exhaust recirculation ratiometer esp. for vehicular combustion engine - opens pneumatic recirculation valve under electronic control, responsive to intake temps., engine speed and load
DE19503748A1 (en) * 1995-02-04 1996-06-20 Daimler Benz Ag IC engine with turbocharger in exhaust pipe
FR2797306B1 (en) * 1999-08-06 2001-09-28 Renault IMPROVED TURBOCHARGER
SE516624C2 (en) * 2000-06-14 2002-02-05 Volvo Lastvagnar Ab Apparatus for injecting urea into a turbine housing in an exhaust system
DE10061796A1 (en) * 2000-12-12 2002-07-04 Man Nutzfahrzeuge Ag Process for improving the response of turbochargers
US6957535B2 (en) 2002-05-11 2005-10-25 Daimlerchrysler Ag Variable exhaust-gas turbocharger with an auxiliary drive for an internal combustion engine
US7040094B2 (en) * 2002-09-20 2006-05-09 The Regents Of The University Of California Staged combustion with piston engine and turbine engine supercharger
US6895745B2 (en) * 2003-04-04 2005-05-24 Borgwarner Inc. Secondary combustion for regeneration of catalyst and incineration of deposits in particle trap of vehicle exhaust
JP4433861B2 (en) * 2004-04-05 2010-03-17 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
DE102014003390B4 (en) 2014-03-07 2023-05-11 Audi Ag drive device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3120739A1 (en) * 1980-05-28 1982-03-18 Nissan Motor Co., Ltd., Yokohama, Kanagawa "TURBOCHARGER FOR INTERNAL COMBUSTION ENGINES"
DE3715750A1 (en) * 1987-05-12 1988-11-24 Joern Martens Internal-Combustion Engine
DE3802836A1 (en) * 1988-02-01 1989-08-03 Joern Martens Internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3120739A1 (en) * 1980-05-28 1982-03-18 Nissan Motor Co., Ltd., Yokohama, Kanagawa "TURBOCHARGER FOR INTERNAL COMBUSTION ENGINES"
DE3715750A1 (en) * 1987-05-12 1988-11-24 Joern Martens Internal-Combustion Engine
DE3802836A1 (en) * 1988-02-01 1989-08-03 Joern Martens Internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10221014A1 (en) * 2002-05-11 2003-11-27 Daimler Chrysler Ag Variable exhaust gas turbocharger of an internal combustion engine

Also Published As

Publication number Publication date
DE3826600A1 (en) 1990-02-08

Similar Documents

Publication Publication Date Title
DE4139291B4 (en) Device for operating an internal combustion engine with turbocharging
AT400473B (en) INTERNAL COMBUSTION ENGINE WITH EXHAUST TURBOCHARGER
EP1066454B1 (en) Secondary treatment device for the exhaust gases of an internal combustion engine
DE102008040312B4 (en) System for controlling condensation in the intake tract of an internal combustion engine
DE102018107743A1 (en) Warm-up process for exhaust treatment systems
EP0885352B1 (en) Spark ignition engine with pressure-wave supercharger
DE3826600C2 (en) Exhaust gas turbocharger with exhaust gas cleaning device
DE2216059A1 (en) System for regulating the air supply in internal combustion engines
DE4007516A1 (en) Reduction of exhaust pollution of diesel engine - by fitting particle filter and oxidising catalyser
EP0072059A1 (en) Supercharged internal-combustion engine with a filter for exhaust gas particles
DE102017126787A1 (en) Compact exhaust after-treatment system with NOx sensor
DE60108995T2 (en) Device for cleaning the exhaust gas of an internal combustion engine
DE102014222725A1 (en) Exhaust manifold comprising an EGR passage and a coolant passage
DE2348866A1 (en) METHOD FOR PURIFYING THE EXHAUST GAS FROM LIQUID FUEL ENGINES AND EQUIPMENT FOR CARRYING OUT THE PROCEDURE
DE4402137A1 (en) Fan generating fresh air used in exhaust of IC engine
EP1882831A1 (en) Exhaust unit of a diesel engine
DE102016120846B4 (en) Method for heating up an exhaust gas aftertreatment element and motor vehicle with such an exhaust gas aftertreatment element
DE19756060C1 (en) Turbo-charged internal combustion engine
DE2445266A1 (en) METHOD AND EQUIPMENT FOR OPERATING FOUR-STROKE PISTON ENGINEERING MACHINES
DE102021205170A1 (en) Internal combustion engine with a secondary air line branching off downstream of a fresh gas compressor
DE19963681B4 (en) Device for treating the exhaust gas of an internal combustion engine
DE102019213283A1 (en) Internal combustion engine with oxygen generator and injection of oxygen-rich gas
DE2232593A1 (en) EXHAUST DRIVEN LOADER FOR COMBUSTION MACHINERY
DE102017217001A1 (en) Exhaust system for an internal combustion engine
DE904009C (en) Device for increasing the performance of engine units

Legal Events

Date Code Title Description
8141 Disposal/no request for examination
8110 Request for examination paragraph 44
8170 Reinstatement of the former position
8139 Disposal/non-payment of the annual fee
8170 Reinstatement of the former position
D2 Grant after examination
8339 Ceased/non-payment of the annual fee
8364 No opposition during term of opposition
8370 Indication of lapse of patent is to be deleted
8339 Ceased/non-payment of the annual fee