DE20010770U1 - Highly insulating reinforcement cage with heat-insulating reinforcement elements - Google Patents
Highly insulating reinforcement cage with heat-insulating reinforcement elementsInfo
- Publication number
- DE20010770U1 DE20010770U1 DE20010770U DE20010770U DE20010770U1 DE 20010770 U1 DE20010770 U1 DE 20010770U1 DE 20010770 U DE20010770 U DE 20010770U DE 20010770 U DE20010770 U DE 20010770U DE 20010770 U1 DE20010770 U1 DE 20010770U1
- Authority
- DE
- Germany
- Prior art keywords
- insulating
- reinforcement cage
- highly heat
- cage according
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000002787 reinforcement Effects 0.000 title claims description 32
- 239000011521 glass Substances 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 7
- 239000004567 concrete Substances 0.000 claims description 6
- 230000006835 compression Effects 0.000 claims description 5
- 238000007906 compression Methods 0.000 claims description 5
- 238000009413 insulation Methods 0.000 claims description 5
- 239000000835 fiber Substances 0.000 claims 3
- 229920000914 Metallic fiber Polymers 0.000 claims 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims 1
- 229920002430 Fibre-reinforced plastic Polymers 0.000 claims 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims 1
- 239000003513 alkali Substances 0.000 claims 1
- 229910052799 carbon Inorganic materials 0.000 claims 1
- 239000011151 fibre-reinforced plastic Substances 0.000 claims 1
- 229910052500 inorganic mineral Inorganic materials 0.000 claims 1
- 239000011810 insulating material Substances 0.000 claims 1
- 239000011159 matrix material Substances 0.000 claims 1
- 239000007769 metal material Substances 0.000 claims 1
- 239000011707 mineral Substances 0.000 claims 1
- 239000007787 solid Substances 0.000 claims 1
- 239000010935 stainless steel Substances 0.000 description 7
- 229910001220 stainless steel Inorganic materials 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 4
- 229910000746 Structural steel Inorganic materials 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 239000011150 reinforced concrete Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910001294 Reinforcing steel Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 206010040560 shock Diseases 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C5/00—Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
- E04C5/07—Reinforcing elements of material other than metal, e.g. of glass, of plastics, or not exclusively made of metal
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/003—Balconies; Decks
- E04B1/0038—Anchoring devices specially adapted therefor with means for preventing cold bridging
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/76—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
- E04B2001/7679—Means preventing cold bridging at the junction of an exterior wall with an interior wall or a floor
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Laminated Bodies (AREA)
- Thermal Insulation (AREA)
Description
Ingenieurbüro Wärmeschutz Dipl.-Ing. (FH) Jörg DießlerEngineering office thermal insulation Dipl.-Ing. (FH) Jörg Dießler
BeschreibungDescription
Anwendungsgebiete der ErfindungAreas of application of the invention
Die Erfindung betriflt einen hochwärmegedämmten Bewehrungskorb, welcher zum einen eine thermische Trennung zwischen zwei Betonbauteilen und zum anderen eine statisch wirksame Verbindung zwischen diesen realisieren kann. Anwendung findet dieser Bewehrungskorb beim Anschluss von auskragenden Balkonplatten, Konsolen, Wandscheiben oder Loggiawänden aus Stahlbeton. Weiterhin können mit dem hochwärmegedämmten Bewehrungskorb biegesteife und thermisch getrennte Anschlüsse wie: Stahlbetonwände an Bodenplatten und Attikas aus Stahlbeton an Deckenplatten realisiert werden.The invention relates to a highly thermally insulated reinforcement cage, which can create a thermal separation between two concrete components and a statically effective connection between them. This reinforcement cage is used to connect cantilevered balcony slabs, consoles, wall panels or loggia walls made of reinforced concrete. Furthermore, the highly thermally insulated reinforcement cage can be used to create rigid and thermally separated connections such as reinforced concrete walls to floor slabs and reinforced concrete parapets to ceiling slabs.
Stand der TechnikState of the art
Die in DE 3739967 und in EP 0332954 Al beschriebenen biegesteifen, wärmegedämmten Betonanschlüsse lösen das Problem der Korrossionsgefahr, ausgelöst durch Kondenswasser an der Bewehrung. In beiden Patentschriften ist charakteristisch, dass die Verbindung zwischen den Betonteilen aus normalen Baustahl (BSt 500) realisiert wird. Bei den benannten Anschlüssen reichen die Bewehrungseisen sowohl in den beheizten Deckenbereich als auch in dem der Außenluft ausgesetzten auskragenden Plattenbereich hinein. So fließt bei entsprechenden Temperaturunterschieden ein ständiger Wärmestrom über die Bewehrungseisen ab. Mit 60 W/m K besitzt Baustahl eine vergleichsweise hohe Wärmeleitfähigkeit. Um diese Wärmeverluste durch den Bewehrungsstahl etwas zu reduzieren, sind von der Firma Schock Bauteile GmbH Bewehrungskörbe auf dem Markt, welche im Bereich der Hartschaumdämmung Bewehrungselememte aus Edelstahl einsetzt. Der Edelstahl hat je nach Legierungsgrad eine Wärmeleitfähigkeit von 15-45 W/m K. Durch den Einsatz von Edelstahl und durch einen erhöhten technischen Aufwand (Schweißverbindungen) weisen derartige Bewehrungskörbe einen vergleichsweise hohen Preis auf.The rigid, thermally insulated concrete connections described in DE 3739967 and EP 0332954 Al solve the problem of the risk of corrosion caused by condensation on the reinforcement. In both patents, it is characteristic that the connection between the concrete parts is made of normal structural steel (BSt 500). In the connections mentioned, the reinforcing iron extends into both the heated ceiling area and the cantilevered slab area exposed to the outside air. In this way, a constant flow of heat flows through the reinforcing iron when there are corresponding temperature differences. At 60 W/m K, structural steel has a comparatively high thermal conductivity. In order to reduce these heat losses through the reinforcing steel somewhat, reinforcement cages are on the market from Schock Bauteile GmbH, which uses stainless steel reinforcement elements in the area of rigid foam insulation. Depending on the alloy grade, stainless steel has a thermal conductivity of 15-45 W/m K. Due to the use of stainless steel and increased technical effort (welded joints), such reinforcement cages are comparatively expensive.
ProblemstellungProblem
Aufgrund der hohen Wärmeleitfähigkeit des Baustahls (60 W/m K) bzw. Edelstahls (15-45 W/m &khgr; K) erfolgt keine ausreichende thermische Trennung zwischen Innen- und Außenbauteilen. Die Folge sind erhöhte Energieverluste welche zum einen erhöhte Heizkosten und zum anderen einen erhöhten klimaschädigenden COx - Ausstoß zur Folge haben. Weiterhin sind die gut wärmeleitenden Bewehrungselemente aus Stahl die Ursache für ein Abkühlen der angeschlossenen Innen-Deckenflächen im Winter, welche unter ungünstigen Umständen zur Tauwasser- und damit zur Schimmelbildung neigen können. Mit Einführung der Energieeinsparverordnung 2000 in Deutschland gewinnen die sogenannten Wärmebrücken noch mehr an Bedeutung, da sie in der Energiebilanz mit erfasst und durch Mehrdämmung anderer Bauwerkteile konpensiert werden müssen.Due to the high thermal conductivity of structural steel (60 W/m K) or stainless steel (15-45 W/m &khgr; K), there is insufficient thermal separation between interior and exterior components. The result is increased energy losses, which on the one hand lead to higher heating costs and on the other hand to increased COx emissions, which are harmful to the climate. Furthermore, the steel reinforcement elements, which conduct heat well, are the cause of the connected interior ceiling surfaces cooling down in winter, which under unfavourable conditions can be prone to condensation and thus the formation of mould. With the introduction of the Energy Saving Ordinance 2000 in Germany, so-called thermal bridges are becoming even more important, as they must be included in the energy balance and compensated for by additional insulation of other parts of the building.
Das 2. Problem von wärmegedämmten Bewehrungskörben sind die relativ hohen Anschaffungskosten, welche sich insgesamt negativ auf die gesamten Baukosten niederschlagen.The second problem with thermally insulated reinforcement cages is the relatively high acquisition costs, which have a negative impact on the total construction costs.
Ingenieurbüro Wärmeschutz Dipl.-Ing.(FH) Jörg DießlerEngineering office thermal insulation Dipl.-Ing.(FH) Jörg Dießler
Lösung und VorteileSolution and benefits
Die oben beschriebenen Probleme werden durch den im Schutzanspruch 1 aufgeführten hochwärmedämmenden Bewehrungskorb gelöst. Die heute üblichen Bewehrungselemente aus Stahl bzw. Edelstahl werden durch wärmedämmende Zugglieder (1) bzw. durch wärmedämmende Druckglieder (2) ersetzt. Als Lösung wurden konsequent die hierfür vorteilhaften Eigenschaften von Glas umgesetzt. So beträgt die Wärmeleitfähigkeit des Zuggliedes (1) beim Einsatz von Glasfasern nur 0,5-0,6 W/m K. Die Wärmeleitfähigkeit des Druckgliedes (2) aus Glas beträgt nur 0,70 -0,80 W/m K. Vergleichbare Bewehrungselemente aus Edelstahl weisen durchschnittlich eine 46-fache (durchschnittlich 28 W/m K) und Bewehrungselemente aus Baustahl (BSt500: 60 W/m K) sogar eine 100- fache Wärmeleitfähigkeit auf. Beim Zugglied (1) kann die im Vergleich zum Stahl dreifach höhere Zugfestigkeit von z.B Glasfasern und beim Druckglied kann die hohe Druckfestigkeit des Glases optimal ausgenutzt werden. Die höhere Spannungsauslastung der wärmedämmenden Bewehrungselemente (1,2) ermöglicht eine Reduzierung der statisch wirksamen Materialquerschnittsflächen. Beim Zugglied (1) kann die Querschnittsfläche im Vergleich zum Stahl um 40-50 % reduziert werden und beim Druckglied (2) jeweils um 30-40 %. Durch diese reduzierten Materialquerschnitte können noch· einmal die Energieverluste, welche die Wärmeleitung verursacht, vermindert werden.The problems described above are solved by the highly heat-insulating reinforcement cage listed in claim 1. The reinforcement elements made of steel or stainless steel that are commonly used today are replaced by heat-insulating tension members (1) or heat-insulating compression members (2). The solution was to consistently use the advantageous properties of glass. When using glass fibers, the thermal conductivity of the tension member (1) is only 0.5-0.6 W/m K. The thermal conductivity of the compression member (2) made of glass is only 0.70-0.80 W/m K. Comparable reinforcement elements made of stainless steel have an average thermal conductivity of 46 times (average 28 W/m K) and reinforcement elements made of structural steel (BSt500: 60 W/m K) even 100 times . The tension member (1) can make optimal use of the tensile strength of glass fibers, for example, which is three times higher than that of steel, and the compression member can make optimal use of the high compressive strength of glass. The higher stress utilization of the heat-insulating reinforcement elements (1,2) enables a reduction in the statically effective material cross-sectional areas. In the tension member (1), the cross-sectional area can be reduced by 40-50% compared to steel, and in the compression member (2) by 30-40%. These reduced material cross-sections can further reduce the energy losses caused by heat conduction.
Ein zweiter Vorteil der Erfindung liegt in den entscheident niedrigeren Herstellungskosten des hochwärmedämmenden Bewehrungskorbes. Ich rechne mit einer Verringerung der Herstellungskosten von etwa 30-40 %, verglichen mit einem Bewehrungskorb mit Edelstahlbewehrung. Gründe sind die wesentlich niedrigeren Materialkosten von Glas und Glasfaser, sowie die vereinfachte Bauweise des Bewehrungskorbes selbst.A second advantage of the invention is the significantly lower manufacturing costs of the highly heat-insulating reinforcement cage. I expect a reduction in manufacturing costs of around 30-40 % compared to a reinforcement cage with stainless steel reinforcement. The reasons for this are the significantly lower material costs of glass and fiberglass, as well as the simplified construction of the reinforcement cage itself.
DE 2Ü(ra 77&Oacgr;EN 2Ü(ra 77&Oacgr;
Claims (11)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE20010770U DE20010770U1 (en) | 2000-06-13 | 2000-06-13 | Highly insulating reinforcement cage with heat-insulating reinforcement elements |
DE20011960U DE20011960U1 (en) | 2000-06-13 | 2000-07-04 | Insulating reinforcement element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE20010770U DE20010770U1 (en) | 2000-06-13 | 2000-06-13 | Highly insulating reinforcement cage with heat-insulating reinforcement elements |
Publications (1)
Publication Number | Publication Date |
---|---|
DE20010770U1 true DE20010770U1 (en) | 2000-09-21 |
Family
ID=7942959
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE20010770U Expired - Lifetime DE20010770U1 (en) | 2000-06-13 | 2000-06-13 | Highly insulating reinforcement cage with heat-insulating reinforcement elements |
DE20011960U Expired - Lifetime DE20011960U1 (en) | 2000-06-13 | 2000-07-04 | Insulating reinforcement element |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE20011960U Expired - Lifetime DE20011960U1 (en) | 2000-06-13 | 2000-07-04 | Insulating reinforcement element |
Country Status (1)
Country | Link |
---|---|
DE (2) | DE20010770U1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1225283B1 (en) * | 2001-01-23 | 2008-02-20 | Schöck Bauteile GmbH | Heat-insulating building element |
DE102007050059A1 (en) * | 2007-10-19 | 2009-04-30 | Kahmer, Herbert, Dr. | Prefabricated element for projecting balcony slab, has mounting part formed as hollow body, and including retaining space and thrust bearing provided in lower region of space, and retainer provided in mounting part |
US8092113B2 (en) | 2004-04-28 | 2012-01-10 | Max Frank Gmbh & Co. Kg | Cantilever plate connection arrangement |
DE102012103776A1 (en) * | 2012-04-27 | 2013-10-31 | Rainer Eger | Thrust bearing, component and method of manufacturing the device |
CN108691366A (en) * | 2017-04-05 | 2018-10-23 | 哈尔芬有限公司 | Act the structural detail being thermally isolated |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1463862B1 (en) * | 2001-12-20 | 2010-03-03 | SFS Locher AG | Cantilever-slab connecting element and a cantilever-slab connecting assembly comprising a number of cantilever-slab connecting elements of this type |
DE102007014922A1 (en) * | 2007-03-22 | 2008-09-25 | Bert Kolpatzik | Pressure element of a component for thermal insulation |
DE102008029701A1 (en) * | 2008-06-24 | 2009-12-31 | Schöck Bauteile GmbH | Component for thermal insulation and insulation material for construction applications |
-
2000
- 2000-06-13 DE DE20010770U patent/DE20010770U1/en not_active Expired - Lifetime
- 2000-07-04 DE DE20011960U patent/DE20011960U1/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1225283B1 (en) * | 2001-01-23 | 2008-02-20 | Schöck Bauteile GmbH | Heat-insulating building element |
US8092113B2 (en) | 2004-04-28 | 2012-01-10 | Max Frank Gmbh & Co. Kg | Cantilever plate connection arrangement |
DE102007050059A1 (en) * | 2007-10-19 | 2009-04-30 | Kahmer, Herbert, Dr. | Prefabricated element for projecting balcony slab, has mounting part formed as hollow body, and including retaining space and thrust bearing provided in lower region of space, and retainer provided in mounting part |
DE102012103776A1 (en) * | 2012-04-27 | 2013-10-31 | Rainer Eger | Thrust bearing, component and method of manufacturing the device |
CN108691366A (en) * | 2017-04-05 | 2018-10-23 | 哈尔芬有限公司 | Act the structural detail being thermally isolated |
Also Published As
Publication number | Publication date |
---|---|
DE20011960U1 (en) | 2000-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0338972B1 (en) | Connecting element for cantilever panel | |
EP1612339B1 (en) | Heat insulating building element | |
EP2138641A2 (en) | Construction element for heat insulation and insulating material for construction purposes | |
DE60127504T2 (en) | BASIC ELEMENT FOR THE ESTABLISHMENT OF A THERMAL INTERRUPTER BETWEEN A WALL AND A CONCRETE PLATE AND BUILDING STRUCTURE WITH APPROPRIATE APPLICATION | |
DE3116381C2 (en) | Pressure element in a heat-insulating prefabricated component for projecting parts of the building | |
DE20010770U1 (en) | Highly insulating reinforcement cage with heat-insulating reinforcement elements | |
EP0822299A1 (en) | Connecting element | |
EP2610410A2 (en) | Construction element for heat insulation | |
EP0150664A1 (en) | Cantilever plate connecting element | |
DE4102332C2 (en) | Balcony connection | |
DE3309254C2 (en) | ||
DE202013006229U1 (en) | Thermally insulating component | |
DE29721204U1 (en) | Heat-insulating component for section steel | |
CH666505A5 (en) | Expansion component bridging reinforced-concrete seam - comprises second oblong member fixed at ends to first and third ones | |
DE102011051510A1 (en) | Spacer for insulated support structures | |
DE10102930A1 (en) | Component for thermal insulation | |
DE9318354U1 (en) | Balcony connection | |
DE10161481A1 (en) | Heat and sound-insulating component for accommodation of tractive forces involves cable penetrating insulation material body and which has an average heat conductivity of less than 16.0 W/mK | |
EP3144448A1 (en) | Mounting plate for attaching an element to a wall | |
DE9410288U1 (en) | Balcony connection | |
DE102007014922A1 (en) | Pressure element of a component for thermal insulation | |
EP1229176A2 (en) | Cantilever plate element | |
DE10310896A1 (en) | Reinforcement element for concrete construction | |
EP3444409B1 (en) | Structural element for heat insulation | |
EP1754840B1 (en) | Building element for heat insulation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R086 | Non-binding declaration of licensing interest | ||
R207 | Utility model specification |
Effective date: 20001026 |
|
R156 | Lapse of ip right after 3 years |
Effective date: 20031231 |