DE1964647B2 - Verfahren zur Regenerierung eines bei einer Kohlenwasserstoffumwandlung verbrauchten Molekularsieb-Katalysators - Google Patents
Verfahren zur Regenerierung eines bei einer Kohlenwasserstoffumwandlung verbrauchten Molekularsieb-KatalysatorsInfo
- Publication number
- DE1964647B2 DE1964647B2 DE1964647A DE1964647A DE1964647B2 DE 1964647 B2 DE1964647 B2 DE 1964647B2 DE 1964647 A DE1964647 A DE 1964647A DE 1964647 A DE1964647 A DE 1964647A DE 1964647 B2 DE1964647 B2 DE 1964647B2
- Authority
- DE
- Germany
- Prior art keywords
- catalyst
- bed
- regeneration
- gas
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
- B01J8/24—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
- B01J8/26—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with two or more fluidised beds, e.g. reactor and regeneration installations
- B01J8/28—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with two or more fluidised beds, e.g. reactor and regeneration installations the one above the other
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Catalysts (AREA)
Description
Die Erfindung betrifft ein Verfahren zur Regenerierung eines bei einer Kohlenwasserstoffumwandlung,
insbesondere dem Cracken verhältnismäßig hochsiedender Kohlenwasserstoffe verbrauchten Molekularsieb-Katalysators,
auf dem kohliges Material abgelagert ist, durch Abbrennen dieses kohligen Materials mit
einem sauerstoffhaitigen Gas bei erhöhter Temperatur in einer Verbrennungszone, in der der Katalysator in
einem Wirbelbett mit einer dichten Phase, die von einer verdünnten Phase überlagert ist, gehalten wird.
Bei einem solchen Verfahren müssen die kohligen Ablagerungen möglichst vollständig von dem Katalysaitor
abgebrannt werden, da der Grad der Umwandlung der Kohlenwasserstoffe und die Zusammensetzung des μ
Produktgemisches wesentlich von dem Kohlenstoffgehalt des Katalysators abhängen. Da aber die Geschwindigkeit
des Abbrennens um so geringer wird, je geringer der Kohlenstoffgehalt des Katalysators ist, erfolgt das
Abbrennen derzeit gewöhnlich nur bis zu einem Kohlenstoffgehalt von etwa 0,2 Gew.-%, üblicherweise
sogar nur bis zu 0,3 bis 0,4 Gew.-%.
Außerdem geht ein Teil des Katalysators dadurch verloren, daß er von den aus den Wirbelbetten
austretenden Gasen mitgerissen wird und nicht vollständig durch Zyklone oder dergleichen wieder
davon abgetrennt werden kann. Sowohl der Aktivitätsverlust des Katalysators als auch der hauptsächlich in
der Regenerationszone erfolgende Verlust von Katalysator werden dadurch kompensiert, daß man frischen
Katalysator in einer Menge von täglich 0,5 bis 2,0%, im
Mittel etwa 1% des gesamten Katalysators in den Kreislauf einführt
Es ist schon bekannt, die Regenerierung des Katalysators dadurch zu verbessern, daß man sie in zwei
oder mehr Stufen durchführt
So beschreibt die US-PS 23 98 739 eine zweistufige Katalysatorregenerierung, bei der beide Stufen in
getrennten Behältern durchgeführt werden, und die US-PS 24 19 245 eine Kaskadenregenerierung, bei der
Katalysator in einem gegen die Horizontale schräg gelagerten Regenerator abwechselnd über Prallwände
und unter Prallwänden hindurch vom oberen Einlaßende zum unteren Auslaßende strömt und zwischen je
zwei Prailwände oxydierendes Gas eingeleitet wird. Gemäß der US-PS 24 49 692 wird verbrauchter
Katalysator mit der Gesamtmenge an sauerstoffhaltigem
Gas, die für die Regeneration erforderlich ist nacheinander durch zwei oder mehr voneinander
getrennte Regenerationszonen geführt Die US-PS 26 98 281 beschreibt eine zweistufige Katalysatorregenerierung,
bei der die erste Stufe in einer aufwärts strömenden dispersen Phase in indirektem Wärmeaustausch
mit dem dichten Katalysatorbett in der Kohlenwasserstoffumwandlungszone und bei einer
Temperatur, die etwa gleich oder mäßig höher ist als diejenige in der Kohlenwasserstoffumwandlungszone,
also nur etwa 4800C beträgt, und Gas mit niedrigerem Sauerstoffgehalt als Luft und die zweite Stufe bei
höherer Temperatur in indirektem Wärmeaustausch mit der ersten Regenerierungszone und im Gegenstrotn mit
einem zweiten Regenerierungsg?.s, das Luft mit einem
Sauerstoffgehalt von 20% sein kam,, durchgeführt wird.
Wegen des geringen Sauerstoffgehaltes des ersten Regenerierungsgases und der veihältnismäßig niedrigen
Temperatur in der ersten Regenerierungszone kann in dieser ersten Zone nur ein verhältnismäßig geringer
Teil des kohligen Materials von dem Katalysator abgebrannt werden. Die US-PS 32 36 607 beschreibt ein
Verfahren und eine Vorrichtung, die sich unter anderem für die Regenerierung von Katalysatoren eignen sollen.
Es sind zwei getrennte dichte Wirbelbetten an jeder Seite einer Trennwand vorgesehen; verbrauchter
Katalysator wird nacheinander durch diese Regenerierungszonen geführt und darin mit parallel zuströmendpm
Gas in Kontakt gebracht, wobei in beiden Zonen ein bestimmter Pegel der Wirbelbetten eingehalten
wird. Der verbrauchte Katalysator wird in den oberen Teil des ersten Bettes eingeführt, teilweise regenerierter
Katalysator wird von dem ersten Bett abgezogen, indem man ihn über die Trennwand strömen läßt; und
regenerierter Katalysator wird abgezogen, indem man ihn vom zweiten Bett in ein Standrohr überströmen läßt.
Bei einer solchen Anordnung ist es unvermeidbar, daß ein beträchtlicher Teil des teilweise regenerierten
Katalysators direkt über die Oberfläche des zweiten Bettes in das Standrohr strömt. Auch die Einführung
von verbrauchtem Katalysator in den oberen Teil des ersten Bettes und das Abziehen von teilweise regeneriertem
Katalysator vom oberen Ende dieses Bettes muß dazu führen, daß ein Teil des verbrauchten
Katalysators mit verhältnismäßig hohem Kohlenstoffgehalt direkt in das zweite Bett gelangt Die US-PS
33 51 348 beschreibt ein mehrstufiges Regenerierungsverfahnn
zur Senkung des Kohlenstoffgehaltes eines verbrauchten Katalysators auf etwa 0,1 bis 0,5%, bei
dem alle Stufen in getrennten Behältern in verdünnter Phase durchgeführt werden und der verbrauchte
Katalysator mit heißem, vollständig regeneriertem Katalysator vermischt wird, bevor er in den Regenerator
eintritt Die US-PS 32 76 858 schließlich beschreibt ein mehrstufiges Verfahren, das sich unter anderem für
die Regenerierung eines Crackkatalysators eignen soll und bei dem die einzelnen Stufen in voneinander
getrennten Wirbelbetten durchgeführt werden. Die Feststoffteilchen werden nacheinander durch die
dichten Wirbelbetten, die in ein und demselben Reaktor gehalten werden und durch eine Wand voneinander
getrennt sind, geführt, und in jedes dichte Wirbelbett wird ein Gas bestimmter Zusammensetzung eingeführt
Einzelheiten der Katalysatorregenerierung, wie Zusammensetzung und Temperatur der Regenerierungsgase
und der Restkohlenstoffgehalt des regenerierten Katalysators werden nicht angegeben.
Aufgabe der Erfindung ist ein mehrstufiges Verfahren zur Regenerierung von Kohlenwasserstoffumwandlungskatalysatoren,
bei dem der Restkohlenstoffgehalt des regenerierten Katalysators und die Menge an durch
Mitnahme durch die aus dem Katalysatorbett austretenden Gase verlorengehendem Katalysator so gering ist
daß die Menge an frischem Katalysator, die in den Kreislauf eingeführt werden muß, beträchtlich gesenkt
werden kann, und bzw. oder bei dem die Regenerierung in so kurzer Zeit erfolgt, daß die Regenerierungszone
verhältnismäßig klein gehalten werden kann.
Diese Aufgabe wird durch das in den Patentansprüchen gekennzeichnete Verfahren gelöst
Bei Anwendung des Verfahrens gemäß der Erfindung kann in nur einem verhältnismäßig kleinen, in zwei oder
mehr Zonen unterteilten Regenerator der Kohlenstoffgehalt des verbrauchten Katalysators bei verhältnismäßig
geringe; Verweilzeit auf unter 0,25 Gew.-%, insbesondere unter 0,1 Gew.-%, beispielsweise auf
zwischen etwa 0,05 und etwa 0,10 Gew.-% gesenkt werden. Dadurch wird die Menge an frisciicm
Katalysator, die in den Kreislauf eingeführt werden muß, um die katalytische Aktivität nicht absinken zu
lassen,beträchtlich gesenkt.
Die angewandten Temperaturen sind vorzugsweise so hoch wie möglich, ohne daß der Katalysator
entaktiviert wird oder Regenerator und Zubehör, wie Zyklone, merklich geschädigt werden. Die abschließende
Regenerationsstufe wird vorzugsweise bei einer Temperatur von 621 bis 718° C und die erste Stufe
vorzugsweise bei einer Temperatur von 593 bis 6900C durchgeführt.
Die sauerstoffhaltigen Gase können Luft Sauerstoff oder mit Sauerstoff angereicherte Luft sein. Im
allgemeinen ist es zweckmäßig, so zu arbeiten, daß die Differenz der Temperaturen des Abgases und des
letzten Bettes bis zu etwa 700C beträgt. Dadurch, daß die Sauerstoffkonzentration des aus dem Bett austretenden
Gases im Falle eines gesteuerten Nachbrennens größer ist, wird die Kohlenstoffabbrenngeschwindigkeit
in dem Bett erhöht. Das exotherme Nachbrennen hat auch die Wirkung, daß den dichten Betten durch die
Rückführung von in den Zyklonen abgetrennten mitgerissenem Katalysator in die Betten weitere
Wärme an die Betten ge1 efert wird, da der mitgerissene
Katalysator in der verdünnten Phase über den Betten eine höhere Temperatur angenommen hat
Die sauerstoffhaltigen Gase werden den verschiedenen Regenerationsstufen in solchen Mengen zugeführt,
daß dem gewünschten Abbrenngrad darin entsprochen wird, und werden gewöhnlich auf zwischen etwa 93 und
etwa 2600C vorgewärmt beispielsweise indem man sie zuvor komprimiert Es ist nicht notwendig, daß die Gase
auf die gleiche Temperatur vorgewärmt werden oder
ίο daß sie gleiche Zusammensetzung haben. Beispielsweise
kann einer Stufe Luft zugeführt werden, während für eine andere mit Sauerstoff angereicherte Luft oder
sogar Sauerstoff verwendet wird. Je nach Lage der Regenerationszone relativ zu den anderen Kesseln der
Anlage kann es notwendig sein, den Katalysator von unten nach oben in die erste Regenerationszone zu
führen. Zweckmäßig wird dann wenigstens ein Teil des diesem ersten Bett zugeführten Gases als Transportmedium
verwendet und dem ersten Bett wird, gewöhnlich in seinem unteren Teil, eine Suspension des Katalysators
in dem Gas zugeführt Grundsrlzlich kann der Katalysator aber auch aus einer Suspension über dem
Bett in das Bett eingebracht werden.
Die Durchführung des Verfahrens der Erfindung erfolgt vorzugsweise in einem zylindrischen Behälter,
der in seinem unteren Teil mit einem oder mehreren nach oben verlaufenden vertikalen Zwischenwänden
von ausreichender Höhe, um die erforderlichen Katalysatormengen des betreffenden Bettes zu halten,
ausgestattet ist Diese Wände können irgendeine geeignete Form haben. Beispielsweise können es
Platten sein, die den Behälter in einzelne Abteilungen mit Querschnitten von der Form von Sektoren oder
Segmenten unterteilen. Vorzugsweise sind derartige Platten bogenförmig. Es können aber auch eine oder
mehrere Zylinderwände in dem Regenerator angeordnet sein, und die vertikalen Achsen dieser Zylinder
müssen nicht notwendig miteinander oder mit derjenigen des Regenerators selbst zusammenfallen. Die
Verbindung zwischen den durch die erwähnten Wände getrennten Betten erfolgt entweder durch Überfließen
übe· die oberen Enden der Zwischenwände oder, vorzugsweise, durch Durchtrittsöffnungen in den
Wänden oder durch eine Kombination davon. Feststoffeinlaß und -auslaß eines Bettes liegen zweckmäßig weit
genug auseinander, daß ein gründliches Vermischen der Feststoffe gewährleistet ist. Zu diesem Zweck kann der
obere Teil der Zwischenwand mit einem Wehr oder mehreren Wehren, über die die Feststoffe strömen,
versehen sein. Im oberen Teil des Regenerators befindet sich eine allen dichten Katalysatorbetten gemeinsame
verdünnte Phase, und in diesem Teil des Regenerators sind auch Vorrichtungen, wie Zyklone, zur Rückgewinnung
von Feststoffteilchen, die von den aus den Betten austretenden Verbrennungsgasen mitgerissen sind,
angeordnet. Damit bei verhältnismäßig hoher Strömungsgeschwindigkeit des Gases im unteren Teil des
Regenerators nicht zu viele Katalysatorteilchen mitgerissen werden, kann der Regenerator so ausgebildet
werden, daß er in .,einem oberen Teil einen größeren Durchmesser als in seinem unteren hat. Im allgemeinen
werden die Oberflächengeschwindigkeiten im unteren Teil des Regenerators bei über etwa 03 m/s,
vorzugsweise zwischen 0,38 und 1,8 m/s und insbesondere in dem Bereich von 0,6 bis 136 m/s, gehalten. In
diesem am meisten „'Evor/ugten Bereich können sehr
hohe Abbrenngeschwindigkeiten bei verhältnismäßig geringen Betthöhen erzielt werden.
In den Zeichnungen zeigt
F i g. I einen Längsschnitt durch eine Vorrichtung, die sich für die Durchführung des Verfahrens der Erfindung
eignet und wenigstens zwei dichte Wirbelbetten aufzunehmen vermag,
F i g. 2 einen Schnitt durch diese Vorrichtung längs der Linie2-2 von Fig. I,
Fig. 3 einen Längsschnitt durch eine Wirbelbett-Crack-Anlage
mit einem unter dem Reaktor angeordneten Regenerator, der zwei getrennte dichte Wirbelbetten
zur Durchführung einer zweistufigen Katalysatorregcncricrting
gemäß der Erfindung aufzunehmen vermag,
F i g. 4 einen Schnitt durch diese Vorrichtung längs
eier Linie 4-4 von F i g. J.
F i g. 5 einen Längsschnitt durch einen Regenerator g:leich dem der F i g. 3 und 4. der jedoch drei getrennte
dichte Katalysatorwirbclbetten enthält, und
F i g. 6 einen Schnitt durch diesen längs der Linie h-6
νοπ ρ i η 5
Gemäß den F i g. t und 2 befindet sich die Verbrennungszone in einem zylindrischen geschlossenen
Behälter I mit einer feuerfesten Auskleidung 2. Der unlere Teil des Behälters weist eine gebogene
Zwischenwand 3, die diesen unteren Teil in die beiden Abschnitte 4 und 6 teilt, auf. Die Zwischenwand weist in
hinreichender Entfernung von den Fcststofflcitungen 18 und 23 Wehre 8 auf. In der Zwischenwand sind in
Abständen voneinander öffnungen 7 vorgesehen, über die der größere Abschnitt 4 mit dem kleineren 6 in
Verbindung steht. Der obere Teil des Behälters 1 ist mit Zyklonen ausgestattet, von denen zwei zusammengehörige
in F i g. I gezeigt sind. Der erste dieser Zyklone 9. mit dem Einlaß 11 und dem Tauchrohr 12 zur
Rückführung von Feststoffteilchen in den Abschnitt 4 steht über Leitung 15 mit dem zweiten Zyklon 20 mit der
Abgasauslaßleitung 13 und dem Tauchrohr 14 zur Rückführung von weiteren abgetrennten Feststoffteilchen
in den Abschnitt 4 in Verbindung. Die Abgasauslaßleitung 13 führt in die Sammelkammer 16. und von
dieser werden die Abgase durch Leitung 17 in den nicht gezeig'en Kamin abgeleitet. Die mit der Kappe 19
abgedeckte und mit Austrittsschlitzen 21 versehene Feststoffeinlaßlehung 18 tritt durch den Boden des
Behälters 1 unter dem Gitter 22 in den Abschnitt 4 ein. Der von dem Gitter 22 überdeckte Raum ist nach unten
durch einen kegelstumpfförmigen Boden 25 abgeschlossen. Im Bodenteil des Abschnittes 6 des Behälters 1
befindet sich die Feststoffauslaßleitung 23 mit einem erweiterten oberen Teil 24. Über Zuführungsleitungen
29 und 31 und Verteiler 26, 27 und 28 wird Luft in den Regenerator eingeleitet.
Beim Betrieb dieses Regenerators treten Feststoffteilchen mit darauf abgelagertem Material unter dem
Gitter 22 in den Regenerator und durch dieses Gitter in ein erstes Wirbelbett im Abschnitt 4 ein und werden
dort mit Luft, die durch den Verteiler 26 eintritt in
Kontakt gebracht. Die Luft dient sowohl als Aufwirbelungsmedium
als auch als Verbrennungsmedium und wird in einer Menge zugeführt, die zumindest
ausreichend ist, um die kohligen Ablagerungen in dem gewünschten Ausmaß von den Feststoffteilchen zu
entfernen. Das in dieser Weise behandelte Material wird dann durch Löcher 7 und, wenn das Niveau des Bettes
im Abschnitt 4 hoch genug ist, auch über die Wehre 8 einem zweiten Wirbelbett im Abschnitt 6 zugeführt und
dort mit Luft in solcher Menge, daß der Aufwirbeiungsgrad
erhalten bleibt und restliche Ablagerungen auf den
Feststoffteilchen bis zu dem gewünschten Grac abgebrannt werden, in Kontakt gebracht. Die Feststoff
teilchen treten durch Leitung 23 aus der Verbrennungs zone aus. Die aus den Wirbelbetten in den Abschnitten
und 6 austretenden Verbrennungsgase reißen Feststoff teilchen mit sich, und diese mitgerissenen Feststoffteil
chen werden in Zyklonen im oberen Teil de Verbrennungszone von dem Gas getrennt und übe
Tauchrohre Hund 12 in die Betten zurückgeführt.
Die in den Fig.3 und 4 gezeigte Anlage weist einet
Reaktor 51 Ober einem Regenerator 64 auf. De Reaktor 51 ist durch eine vertikale Wnnd 52 in ein«
Crackzonc 53 und eine Abstreifzone 54 geteilt. Beidi
Teile stehen durch Öffnungen 56 in offener Verbindung miteinander. Im unteren Teil der Zone 53 ist ein Gitte
57 und im unteren Teil der Zone 54 sind Mittel zun Einführen von Abslreifdampf 58 vorgesehen. Im oberer
Teil des Reaktors befindet sich wenigstens ein Zyklon 5' mit Einlaßmitteln 61, einem Dampf.uislaß 62 und einen
. Irvffor. Γ».
Reaktor 51 steht mit dem darunter angeordneter Regenerator 64, der eine nicht gezeigte feuerfesU
Auskleidung aufweist, über den Lift 67. der den unterer Teil des Regenerators 64 mit dem unteren Teil de
>ί Crackzone 53 verbindet, sowie durch das Standrohr 68
durch das Feststoffteilchen von der Abstreifzone 54 zun unteren Teil des Reaktors 64 geführt werden, ii
Verbindung. Am unteren Ende des Liftes befindet siel
ein hoK?s Stöpselvcntil 69 und am unteren Ende de
jn Standrohres ein festes Stöpsclventil 71. Der Regenera
tor 64 weist in seinem Inneren einen zylindrischer Schacht 72 auf, durrh den er in eiren äußeren Abschnit
73 und einen inneren Abschnitt 74 unterteilt wird. Beidi Teile stehen durch Löcher 76 sowie Wehre 9<
ii miteinander in Verbindung. Im unteren Teil de
Abschnittes 73 ist ein Gitter 77 über den Lufteinlaßmit teln 78 angeordnet. Dem Abschnitt 74 wird Luft durcl
die Leitung 79 und den Verteilerring 81 zugeführt Durch die Leitung 82 wird Kohlenwasserstoffbeschik
jn kting eingeleitet und strömt durch das hohle Stöpselven
til 69 und den Lift 67 in die Crackzone. Der obere Tei des Regenerators weist einige Sätze von Zyklonen auf
von denen einer in F i g. 3 gezeigt ist. Der erste dieser Zyklone 83 weist einen Einlaß 84 und ein Tauchrohr 8(
Ji zur Rückführung von Feststoffen auf und steht über
Leitung 87 mit dem zweiten dieser Zyklone 88 ir Verbindung. Über Leitung 89 tritt Gas aus derr
Regenerator aus. während Feststoffe durch da Tauchrohr 91 zurückgeführt werden. Beim Betriet
so dieser Crackanlage wird heißer regenerierter Katalysa
tor, der von einem Bett in dem Abschnitt 74 de; Regenerators 64 abgezogen ist, im Lift 6Γ mi
Kohlenwasserstoffbeschickung aus Leitung 82 in Kon takt gebracht und die so gebildete Suspension vor
Katalysator und Kohlenwasserstoff strömt aufwärts it den Reaktor 53 in das darin befindliche Katalysatorwir
belbett worin die Kohlenwasserstoffe bis zu den gewünschten Ausmaß gecrackt werden. Die gecrackter
Kohlenwasserstoffdämpfe werden durch Leitung 61
einem Gewinnungssystem zugeführt, und der mitgeris
sene Katalysator wird, wie erwähnt, in dem Zyklon 59 abgetrennt und durch das Tauchrohr 63 in den Reaktor
zurückgeführt Von der Reaktionszone gelangt de: Katalysator in die Abstreifzone 54, in der abstreifbares
Kohlenstoff enthaltendes Material mittels Damp abgestreift wird. Der so behandelte Katalysator mit den
noch darauf befindlichen kohiigen Ablagerungen wire dann durch das Standrohr 68 einem im Abschnitt 73 des
Regenerators 64 befindlichen Wirbelbett zugeführt. In
diesem Bett wird ein Teil des noch auf dem Katalysator befindlichen kohligen Materials mit Luft, die durch
Leitung 78 und Verteilungsgitter 77 eintritt, abgebrannt. Die zugeführte Menge an Luft ist ausreichend, um den ϊ
Katalysator aufzuwirbeln und die gewünschte Menge an Kohlenstoff von ihm abzubrennen. Der teilweise
regenerierte Katalysator gelangt durch das Loch 76 in ein κ·.,eites Wirbelbett im Abschnitt 74 und wird dort
weiter unter Verbrennungsbedingungen mit Luft in Kontakt gebracht. Diese Luft tritt durch die Leitung 79
und den Verteilcrring 81 in solcher Menge, daß der Aufwirbclungsgrad erhalten bleibt und die Menge an
kohligem Material auf dem Katalysator bis auf den gewünschten Endwert gesenkt wird, in dieses Bett ein. π
Das aus diesem Bett austretende Gas wird durch den Auslaß 89 von dem /weilen Zyklon abgezogen, und in
den Zyklonen 8 3 und 88 ahr^trennte Feststoffe werden
über die Tauchrohre 86 und 91 zurückgeführt.
Die in den Γ ι g. 5 und 6 veranschaulichte Regenerationszone
ist der in den I- i g. 3 und 4 veranschaulichten ahnlich, weist aber eine mittlere Regenerationsstufe auf.
Sie eignet sich insbesondere bei Anwendung hoher Oberflächengeschwindigkeiten. Der mit feuerfestem
Material ausgekleidete zylindrische Behälter 101 hat in j>
seinem oberen, der Katalysatorabtrennung dienenden Teil 103 einen größeren Querschnitt als im unteren. Der
untere Teil weist eine zylindrische Innenwand 104. die den Lift 106 umgibt, und eine zweite solche Wand 107
von größerem Durchmesser, die konzentrisch zu der κι
ersten angeordnet ist. auf. Durch diese Wände ist der unter t Teil des Behälters 101 in drei Abschnitte
unterteilt: einen ersten 108. einen mittleren 109 und einen zweiten 111. die durch Löcher 112 in der Wand
107 und 113 in der Wand 104 miteinander in Verbindung j
> stehen. Über ein Standrohr 114 zur Abführung von verbrauchtem Katalysator mit einem festen Stöpselventil
116 steht der Behälter mit einer nicht gezeigten Abstreifzone in Verbindung. Der mit einem hohlen
Stöpselventil 118 ausgestattete Katalysatorlift 106 4<i
erstreckt sich nach oben durch den ganzen Regenerator. Luft wird durch parallele Leitungen 119, 122 und 124 in
diese drei Abschnitte eingeleitet, wobei die Leitung 119
in den Raum 108 unter dem Gitter 121, die Leitung 122 in den Verteilerring 123 und die Leitung 124 in den Ring j--,
126 führt. Im oberen Teil 103 des Behälters sind Zyklone
angeordnet, von denen in Fig. 5 zwei einander zugeordnete gezeigt sind. Der erste dieser beiden
Zyklone. 127. mit dem Einlaß 128 und dem Tauchrohr i29 für die Rückführung von Feststoffteilchen ist mit so
dem zweiten. 131, durch Leitung 132 verbunden. Der zweite Zyklon weist eine Gasauslaßleitung 133 und ein
Tauchrohr 134 auf.
Der Betrieb des Regenerators von F i g. 5 gleicht demjenigen des in F i g. 3 gezeigten insofern, als
verbrauchter Katalysator, der durch das Standrohr 114
eingeführt wird, in einem ersten Wirbelbett in dem Abschnitt 108 durch Abbrennen mit Luft, die durch
Leitung 119 zugeführt und durch das Gitter 121 verteilt
wird, teilweise regeneriert wird. In einem mittleren Wirbelbett in dem Abschnitt 109 wird der Katalysator
dann mit Luft, die durch die Leitung 122 und den Verteilerring 123 zugeführt wird, weiter regeneriert. Die
abschließende Regenerierung bis zu dem gewünschten Kohlenstoffgehalt erfolgt in einem dritten Wirbelbett
im Abschnitt 111 mit Luft, die durch die Leitung 124 und
den Ring 126 zugeführt wird. Der aus dem Abschnitt 111
abgezogene regenerierte Katalysator wird im Lift 106 mit der durch Leitung 120 und das hohle Stöpselventil
118 eintretenden Kohlenwasserstoffbeschickung in Kontakt gebracht. Das Cracken kann vollständig oder
zum Teil in dem Lift und seiner Verlängerung erfolgen. Da der Abtrennraum 103 einen größeren Durchmesser
als der untere Teil des Regenerators hat, wird verhältnismäßig wenig Katalysator von den Gasen
mitgerissen. Das ist von besonderer Bedeutung, wenn das Gas mit verhältnismäßig hoher Oberflächengeschwindigkeit
durch die Wirbelbetten in der Regenerationszone strömt. Mitgerissener Katalysator wird in den
Zyklonen 127 und 131 abgetrennt und mittels der Tauchrohre 129 und 134 zurückgeführt, während das
Gas durch Leitung 133 aus dem Regenerator austritt.
Die folgenden Beispiele veranschaulichen die Erfindung,
indem sie die stufenweise Regenerierung eines Crack-Katalysators in den in den Zeichnungen dargestellten
Regeneratoren mit einer herkömmlichen Regenerierung vergleichen. In jedem Fall wurde ein
handelsüblicher fvioiekuiarsieb-Kataiysator mit Luft
regeneriert. Der Katalysator war zuvor zur Crackling eines schweren Gasöls in einem Reaktor verwendet und
anschließend in einer Abstreifzone von abstrcifbarem kohlenstoffhaltigem Material befreit worden. Das
danach noch auf dem Katalysator anwesende kohlige Material enthält etwa 7 Gew.-% Wasserstoff.
Beispiele IA und IB
Der verbrauchte Katalysator wird mit einer Geschwindigkeit von 453,6 kg/s in eine Regenerationszone
mit zwei getrennten Wirbelbetten eingeführt. Die Fintrittstemperanir des Katalysators beträgt etwa
510C. und er enthält 0.85 Gew.-% Kohlenstoff. Er wird
bis zu einem Kohlenstoffgehalt von 0.05 Gew.-% regeneriert, und seine Austrittstemperatur wird auf
676"C eingestellt. Die Gasoberflächengeschwindigkeit
beträgt in Beispiel IA 0.76 m/s und in Beispiel IB 1.36
m/s. Die Sauerstoffkonzentration in den aus den Betten austretenden Gasen wird bei 0.3 Mol-% gehalten. Im
ersten Bett werden 0 bis 100% des insgesamt in der Regenerationszone abgetrennten Kohlenstoffs abgetrennt.
In den Tabellen IA und IB sind die wichtigsten
Daten dieser Vergleichsbeispiele zusammengestellt
Ein Vergleich der Ergebnisse der stufenweisen Regenerierung mit der herkömmlichen einstufigen
Regenerierung, deren Ergebnisse in der letzten Spalte vor Tabelle IA zusammengestellt sind, zeigt, daß die
Trennwand zweckmäßig so angeordnet wird, daß wenigstens etwa 30 Gew.-°/o der Gesamtmenge an
Katalysator in dem ersten Bett gehalten werden, wenn die Oberfiächengeschwindigkeit 0,7b m/s beträgt, und
daß bei Zunahme dieses Anteils die erforderliche Gesamtmenge sinkt und bei etwa 76,5% einen
Mindestwert erreicht. Die entsprechende erforderliche Gesamtmenge an Katalysator beträgt dann nur 71%
der für eine herkömmliche einstufige Regenerierung erforderlichen. Die in den jeweils ersten Spalten
angegebenen Werte zeigen, daß die mehrstufige Regenerierung sich unter Umständen aber auch
nachteilig auf die erforderliche Gesamtmenge an Katalysator auswirken kann.
Ein Vergleich der in Tabelle IA zusammengestellten Werte mit denen der Tabelle IB zeigt, daß bei der
höheren Gasoberflächengeschwindigkeit von 136 m/s entsprechende Ergebnisse erzielt werden, daß aber bei
diesen höheren Gasgeschwindigkeiten die mehrstufige
I | 9 | 19 64 647 | Katalysators | )ei der | einzelnen | 10 | Kohlenstoffentfernung, | Stufe | 2. | 1. | 2. | 1. | % an | kohligen | Stufe | 2. | 1. | 2. | 1. | 2 | 0,76 | Ablagerungen | 1. | 1. | bei einer Gasober- [ | 1. 2. | !. 2. | ■ |
I | zwischen den | bezogen auf Gesamtmenge | 1. | 83.3 | 33,3 | 66,7 | 50,0 | 1. | 83.3 | 33.3 | 66.7 | 50.0 | 50.0 | 83,3 | 83.3 | 100.0 - | 100.0 - | |||||||||||
H Durchführung noch größere Vorteile mit sich bringt. Bei | II Zweistufige Regenerierung eines | an abgebr. Kohlenstoff, % | 16.7 | 16.7 | ||||||||||||||||||||||||
H dieser höheren Gasgeschwindigkeit beträgt 1 | Kat.-Durchsatzgeschwin | 2. | 1. | 2. | 2. | |||||||||||||||||||||||
H optimalen Aufteilung des | digkeit ausschl. Ablage | 453,5 | 453,5 | 453.5 | 453.5 | 50,0 | 66,7 | 453,5 | 453,5 | 453,5 | 453,5 | 453,5 | kohligen | 33,3 | 453,5 | 453,5 | 16,7 | 453,5 - | 453,5 - | |||||||||
H Tabelle 1 A | Stufen die erforderliche Gesamtmenge an | rungen, kg/s | 453.5 | 453,5 | ||||||||||||||||||||||||
Katalysator nur 62% derjenigen, die bei der herkömmli | ν .i„i,„..„, Um!,n.,m.,.,. | |||||||||||||||||||||||||||
chen einstufigen i. egenenerung erforderlich ist. | ratur, C | SlS | sin | SAS | sin | 453,5 | 453,5 | 538 | 510 | 565 | 510 | 593 | 1. | 453,5 | sin | 510 | 453.5 | sin | 510 | |||||||||
Katalysator-AuslaUtempe- | s in | 510 | 66.7 | |||||||||||||||||||||||||
Crack-Katalysators mit 0,85 | ratur. C | 676 | 565 | 676 | 593 | 676 | 565 | 676 | 593 | 676 | 648 | 648 | 676 | 676 | ||||||||||||||
|| flächengeschwindigkeit von 0,76 m/s | Druck über dem Bett, bai | 538 | SQI | sin | 538 | ΛΛ8 | ||||||||||||||||||||||
S | (J)-Konzentralion in dem | 2.08 | 2,08 | 2.08 | 2,08 | 2,08 | 2,08 | 2,08 | 2,08 | 2,08 | 453,5 | 2,08 | 2,08 | 2.08 | 2,08 | |||||||||||||
i | aus dem Bett austretenden | 2.08 | 0.3 | 0,3 | 0.3 | 0.3 | 676 | 621 | 2,08 | 0,3 | 0,3 | 0,3 | 0,3 | 0,3 | 676 | 0.3 | 0,3 | 676 | 0.3 | 0,3 0,3 | ||||||||
Gas. Mol-% | 0.3 | 0,3 | ||||||||||||||||||||||||||
Kohlenstoff auf dem ein | 2.08 | 2.08 | 5.0 | 2,08 | 2.08 | |||||||||||||||||||||||
tretenden Katalysator. | 0,72 | 0,85 | 0.58 | 0.85 | 0.3 | 0.3 | 0.72 | 0,85 | 0.58 | 0.85 | 0,45 | 0.3 | 0.85 | 0,85 | 0.3 | 0.85 | 0,85 | |||||||||||
Ge\v.-% | 0,85 | 0.85 | 621 | |||||||||||||||||||||||||
Kohlenstoff auf dem aus | ||||||||||||||||||||||||||||
tretenden Katalysator. | 0.05 | 0.58 | 0.05 | 0.45 | 0.45 | 0.85 | 2,08 | 0.32 | 0.18 | 0.18 | 0.05 | |||||||||||||||||
Gew.-% | 0.72 | 0,3 | ||||||||||||||||||||||||||
Katalysatormenge, bezogen | ||||||||||||||||||||||||||||
auf Gesamteinsatz, Gew.-% | 79.4 | 31.2 | 68.8 | 41.9 | 0.05 | 0.32 | 0,05 | 76.5 | 0.05 | 100.0 - | ||||||||||||||||||
Gesamtkatalysatoreinsatz, / | 20,6 | 0,85 | ||||||||||||||||||||||||||
Verhältnis des Gesamt | 259.43 | 239,62 | 239,62 | 212.96 | 175.44 | 247.26 247.26 | ||||||||||||||||||||||
katalysatoreinsatzes | 259.43 | 1,05 | 0.97 | 0,97 | 0.86 | 58.1 | 56.3 | 43,7 | 0.71 | 23,5 | 1.00 1.00 | |||||||||||||||||
(zweistufig/einstufig) | 1.05 | |||||||||||||||||||||||||||
Tabelle IB | 212.96 188.53 | 188.53 | 175.44 | |||||||||||||||||||||||||
0,86 | 0,76 | 0.71 | ||||||||||||||||||||||||||
Ablagerungen | bei einer Gasober- | |||||||||||||||||||||||||||
L Zweistufige Regeneriemng eines | ||||||||||||||||||||||||||||
Crack-Katalysators mit 0.85% an | 2. | 2. | ||||||||||||||||||||||||||
: flächengeschwindigkeit von 1.36 m/s | 33.3 | 16.7 | ||||||||||||||||||||||||||
; Kohlenstoffentfernung. | 453,5 | 453,5 | ||||||||||||||||||||||||||
ά bezogen auf Gesamtmenge | ||||||||||||||||||||||||||||
"i an abgebr. Kohlenstoff. % | ||||||||||||||||||||||||||||
1 Kat.-Durchsaizgeschwin- | 593 | 648 | ||||||||||||||||||||||||||
j digkeit ausschl. Ablage- | ||||||||||||||||||||||||||||
B rangen, kg/s | 676 | 676 | ||||||||||||||||||||||||||
ss. Katalysator-Einlaßtempe- | ||||||||||||||||||||||||||||
§ ratur, C | 2.08 | 2,08 | ||||||||||||||||||||||||||
^ Katalysator-Auslaßtempe- | 0,3 | 0,3 | ||||||||||||||||||||||||||
I ratur, C | ||||||||||||||||||||||||||||
I Druck über dem Bett, bar | ||||||||||||||||||||||||||||
§ Oj-Konzentration in dem | 0.32 | 0,18 | ||||||||||||||||||||||||||
I aus dem Bett austretenden | ||||||||||||||||||||||||||||
I Gas, Mol-% | ||||||||||||||||||||||||||||
Ϊ Kohlenstoff auf dem ein- | ||||||||||||||||||||||||||||
u tretenden Katalysator, |
l'oriscvunu
Stufe
I. 2. 1. 2. 1. 2. 1. 2. 1. 2. 1. 2.
Kohlenstoff auf dem aus- 0,72 0,05 0,58 0,05 0,45 0,C5 0,32 0,05 0,18 0,05 0,05
tretenden Katalysator,
Gew.-%
Katalysatormenge, bezogen 23,0 77,0 32,3 67,7 40,6 59,4 52,7 47,3 73,3 26,7 100,0 auf
Gesamteinsatz, Gew.-%
Gesamtkatalysatoreinsatz, / 197,35 197,35 179,38 179,38 153,40 153,40 128,43 128,43 113,62 113,62 182,25 «82,25
Verhältnis des Gesamt- 1.08 1,08 0.98 0,98 0,84 0.84 0,71 0.71 0.62 0,62 1,00 1,00
katalysatoreinsat7.es
(zweistufig/einstufig)
Beispiele 2A und 2B
In diesen Verglcichsbeispielen sind die Regeneric- Kin Vergleich der Werie dieser Verglcichsbeispiele
rungsbedingungcn. die Anzahl Stufen und die insgesamt ergibt vergleichbare Vorteile für das Verfahren gemäß
von dem Katalysator abgetrennte Kohlenstoffmenge >ii der Erfindung gegenüber der herkömmlichen Regene-
gleich denen de." Beispiele IA und IB. jedoch ist die rierung. )edoch ist dieser Vorteil wegen des höheren
Menge an Kohlenstoff auf dem in den Regenerator Kohlenstoffgehaltes des von der zweiten Regcnerie-
eintretenden Katalysator höher, d. h. sie beträgt 0,90 rungsstufe abgezogenen Katalysators weniger ausge-
Ge\v.-%, und die auf dem austretenden Katalysator prägt: Bei einer Gasgeschwindigkeit von 0,76 m/s
beträgt 0,10 Gew.-%. Die entsprechenden Werte sind in y, beträgt die erforderliche Menge an Katalysator etwa
den Tabellen 2Λ und 2B zusammengestellt. 88% und bei 1.36 m/s etwa 84%.
Zweistufige Regenerierung eines Crack-Katalysators mit 0,9% an kohligen Ablagerungen bei einer Gasoberflächengeschwindigkeit
von 0,76 m/s
Stufe
1. 2. 1. 2. 1. 2. 1. 2.
KohlenstofTentfernung, bezogen auf 50,0 50,0 66,7 33,3 83.3 16,7 100,0
Gesamtmenge an abgebr. Kohlenstoff, %
Kat.-Durchsatzgeschwindigkeit ausseht. 453,5 453,5 453,5 453,5 453,5 453,5 453,5
Ablagerungen, kg/s
Katalysator-Einlaßtemperatur, C 510 593 510 621 510 648 510
Katalysator-Auslaßtemperatur, C 593 676 621 676 648 676 676
Druck über dem Bett, bar 2,08 2.08 2.08 2,08 2,08 2.08 2,08
OrKonzentration in dem aus dem Bett 0,3 0,3 0,3 0,3 0,3 0,3 0,3
austretenden Gas, Mol-%
Kohlenstoff auf dem eintretenden 0,90 0.50 0.90 0.37 0.90 0,23 0,90
Katalysator, Gew.-%
Kohlenstoff auf dem austretenden 0,50 0,10 0,37 0,10 0,23 0,10 0,10
Katalysator. Gew.-%
Katalysatormenge, bezogen auf Gesamt- 49,7 50,3 63.6 36,4 81,0 19,0 100,0
einsatz. Ge\v.-%
Gesamtkatalysatoreinsatz, ι 169,28 169,28 155,81 155.81 149,64 149,64 170,23 170,23
Verhältnis des Gesamtkatalysatoreinsatzes 0,99 0,99 0.92 0,92 0.88 0.88 1,00 1,00
(zweistufig/einstufig)
Zweistufige Regenerierung eines Crack-Katalysators mit 0,9% an kohligen Ablagerungen bei einer Gasoberflächengeschwindigkeit
von 1,36 m/s
Stufe | 2. | 1. | 2. | 1. | 2. |
1. | 50,0 | 66,7 | 33,3 | 33,3 | 16,7 |
50,0 | 453,5 | 453,5 | 453,5 | 453,5 | |
453,5 | |||||
Kohlenstoffentfernung, bezogen auf 50,0 50,0 66,7 33,3 33,3 16,7 100,0
Gesamtmenge an abgebr. Kohlenstoff, %
Ablagerungen, kg/s
13 14
Fortsetzung
Stufe | 2. | 1. | 2. | 1. | 2. | 1. | 2. | |
1. | 593 | 510 | 621 | 510 | *48 | 510 | _ | |
Katalysator-Einlaßtemperatur, ' C | 510 | 676 | 621 | 676 | 648 | 1)76 | 676 | - |
Katalysator-Auslaßtemperatur, C | 593 | 2,08 | 2,08 | 2,08 | 2,08 | 2,08 | 2,08 | - |
Druck über dem Bett, bar | 2,08 | 0,3 | 0,3 | 0,3 | O^ | 0,3 | 0,3 | - |
(^-Konzentration in dem aus dem Bett
austretenden Gas, MoI-% |
0,3 | 0,50 | 0,90 | 0,37 | 0,90 | 0.23 | 0,90 | — |
Kohlenstoff auf dem eintretenden
Katalysator, Gew.-0/· |
0,90 | 0,10 | 0,37 | 0,10 | 0,23 | 0,10 | 0,10 | — |
Kohlenstoff auf dem austretenden
Katalysator, Gew.-% |
0,50 | 48,1 | 63,4 | 36,6 | 80,0 | 20,0 | 100,0 | — |
Katalysatonnenge, bezogen auf Gesamt
einsatz, Gew.-% |
51,9 | 109,86 | 96,07 | 96,07 | 88,13 | 88,13 | 105,55 | 105,55 |
Gesamtkatalysatoreinsatz, t | 109,86 | 1,04 | 0,91 | 0,91 | 0,84 | 0,84 | 1,00 | 1,00 |
Verhältnis des Gesamtkatalysatoreinsatzes
f zweistufig/einstufig) |
1,04 | |||||||
Beispiele 3A und 3B
Die Bedingungen, die Anzahl von Stufen und die in 25 Gesamtmenge an einzusetzendem Katalysator in diesen
den einzelnen Stufen von dem Katalysator abgetrennte Beispielen bei einer Gasoberflächengeschwindigkeit
prozentuale Menge an insgesamt abgetrenntem Koh- von 0,76 m/s bei Abtrennung von 83,3% des insgesamt
lenstoff sind wiederum gleich denen der vorhergehen- abgetrennten Kohlenstoffs in der ersten Stufe die
d:n Beispiele. Jedoch ist die Gesamtkohlenstoffmenge Gesamtmenge an einzusetzendem Katalysator nur um
wiederum größer, d. h. sie beträgt 1.0 Gew.-% auf dem jn ein geringes weniger als bei der einstufigen Regenerie-
eintretenden verbrauchten Katalysator und 0,25 rung. Bei einer anderen Anordnung der Trennwand ist
Gew.-% auf dem regenerierten Katalysator. Die die einstufige Regenerierung vorteilhafter als die
entsprechenden Werte sind in den Tabellen 3A und 3B mehrstufige,
zusammengestellt. Bei einer Gasoberflächengeschwindigkeit von 1.36
Den Werten dieser Tabellen kann entnommen 35 m/s wird durch die stufenweise Regenerierung gemäß
werden, daß es eine obere Grenze für die Kohlenstoff- der Erfindung kein Vorteil gegenüber der einstufigen
menge, bis zu der der Katalysator mit Vorteil nach dem hinsichtlich der einzusetzenden Gesamtmenge an
mehrstufigen Verfahren gemäß der Erfindung regene- Katalysator erzielt,
riert werden kann. gibt. Beispielsweise beträgt die
riert werden kann. gibt. Beispielsweise beträgt die
Zweistufige Regenerierung eines Crack-Katalysators mit 1,05% an kohligen Ablagerungen bei einer Gasoberflächengeschwindigkeit von 0,76 m/s
Stufe
KohlenstofTentfernung, bezogen auf
Gesamtmenge an abgebr. Kohlenstoff, %
Kat.-Durchsatzgeschwindigkeit ausseht.
Ablagerungen, kg/s
Katalysator-Einlaßtemperatur, C
Katalysator-Auslaßtemperatur. C
Druck über dem Bett, bar
(^-Konzentration in dem aus dem Bett
austretenden Gas, Mol-%
Kohlenstoff auf dem eintretenden
Katalysator, Gew.-%
Kohlenstoff auf dem austretenden
Katalysator, Gew.-V.
Katalysatonnenge, bezogen auf Gesamteinsatz, Gew.-%
Gesamtkatalysatoreinsatz, /
Verhältnis des Gesamtkatalysatoreinsatzes
(zweistufig/einstufig)
50.0 | 50,0 | 66,7 | 33,3 | 83,3 | 16,7 | 100,0 | - |
453,5 | 453,5 | 453,5 | 453,5 | 453,5 | 453,5 | 453.5 | _ |
510 | 593 | 510 | 621 | 510 | 648 | 510 | - |
593 | 676 | 621 | 676 | 648 | 676 | 676 | - |
2,08 | 2,08 | 2,08 | 2,08 | 2,08 | 2,08 | 2,08 | - |
0,3 | 0.03 | 0,3 | 0,3 | 0,3 | 0.3 | 0.3 | - |
1,05 | 0,65 | 1,05 | 0,52 | 1,05 | 0,38 | 1,05 | - |
0,62 | 0,25 | 0,52 | 0,25 | 0,38 | 0.25 | 0,25 | - |
54,1 | 45,9 | 67,6 | 32,4 | 83,2' | 16,8 | 100,0 | 124,69 |
135,80 | 135,80 | 128,09 | 128,09 | 123,65 | 123,65 | 124,69 | 1,00 |
1,09 | 1,09 | 1,03 | 1,03 | 0,99 | 0,99 | 1,00 | |
15 16
TabeIe3B
Stute | 2. | 1. | 2. | 1. | 2. | 1. |
1. | 50,0 | 66,7 | 33,3 | 83,3 | 16,7 | IDO1O |
50,0 | 453,5 | 453,5 | 453,5 | 453,5 | 453,5 | 453,5 |
453,5 | 593 | 510 | 621 | 510 | 648 | 510 |
510 | 676 | 621 | 676 | 648 | 676 | 676 |
593 | 2,08 | 2,08 | 2,08 | 2,08 | 2,08 | 2,08 |
2,08 | 0,3 | 0,3 | 0,3 | 0,3 | 0,3 | 0,3 |
0,3 | ||||||
76,66 | 68,04 | 68,04 | 61,78 | 61,78 | 59,65 | 59,65 |
1.29 | 1,14 | 1,14 | 1,04 | 1,04 | 1,00 | 1,00 |
Zweistufige Regenerierung eines Crack-Katalysators mit 1,05% an kohligen Ablagerungen bei einer Gasoberflächengeschwindigkeit
von 1,36 m/s
2.
Kohlenstoffentfernung, bezogen auf
Gesamtmenge an abgebr. Kohlenstoff, %
Druck über dem Bett, bar ^,ub 2,ua j,ub ^,ua ^,ua ^,ua ζ,υβ —
|
austretenden Gas, Mol-%
einsatz, Gew.-%
Gesamtkatalysatoreinsatz, ι
76,66
Verhältnis des Gesamtkatalysatoreinsatzes 1,29
(zweistufig/einstufig)
Beispiele 4Aund4B
Diese Beispiele veranschaulichen den Vorteil der mehr als zwei Stufen bei der Regenerierung noch
stufenweisen Regenerierung gemäß der Erfindung. weitere Vorteile erzielt werden können. Um den
wenn verbrauchter Katalysator mit 1.01 Gcw.-% an Ji Vergleich sinnvoll zu machen, wird jede slufenweise
kohligem Material bei Einsatz von 544.3 kg/s in ein. Regenerierung bei etwa optimalen Bedingungen durch-
zwei. drei und vier Stufen bis zu einem Endkohlenstoff- geführt. Auch hier sind die Vorteile der Erfindung bei
gehalt von 0.05 Gew.-% regeneriert wird. Die den höheren Gasgeschwindigkeiten ausgeprägter. Die
Temperatur des eintretenden Katalysators bcirägi Weric der Tabellen zeigen, daß durch die Anwendung
5100C und die des austretenden Katalysators 676"C. Die -to von mehr als zwei Regeneralionsstufen hinsichtlich der
Sauerstoffkonzentration des austretenden Gases be- erforderlichen Gesamtmenge an Katalysator nur eine
trägt 0.3 Mol-%. und die Gasobcrflächengeschwindig- geringfügige weitere Verbesserung erzielt wird; jedoch
keilen betragen wiederum 0.76 bzw. 1.36 m/s. Die wird die Zeit, für die der Katalysator bei den höheren
entsprechenden Werte sind in den Tabellen 4A und 4B Temperaturen gehalten werden muß. gesenkt, so daß
zusammengestellt. 4Ί die Gesamtbedingungen des Verfahrens weniger
Diese Beispiele zeigen, daß durch die Anwendung von energisch sein müssen.
Mehrstufige Regenerierung eines Crack-Katalysators mit 1,01% an kohligen Ablagerungen bei einer Gasoberflächengeschwindigkeit
von 0,76 m/s
izahl Stufen
1. 2. 3. 4.
ausschl. Ablagerungen, kg/s
KillalysBlnr-HinlaB. temperatur,
<
Kalalysalor-Auslaßlemperalur. ('
Druck über dem Hell, bar
Oj-Konrcnlralion in dem aus dem
Hell austretenden (ins. Mol-%
Kohlenstoff au! dem cinlr. Kai.. 1.01 1.(M 0.21 1.01 0.29 n.13 1.01 0.29 0.21 0.13
Anzahl | Stufen | 2. | 3 |
I | 2 | ||
Slufe | 1. | ||
I. | 1. | ||
510 | 510 | 04 8 | 510 | 635 | OW | 510 | 635 | 648 | 663 |
676 | 648 | 676 | 635 | 663 | 670 | 635 | 648 | 663 | 676 |
2.08 | 2.08 | 2.08 | 2,08 | 2.08 | 2.08 | 2.08 | 2,08 | 2.08 | 2,08 |
0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 |
Fortsetzung
17
18
Anzahl Stufen
1 2
1. 1. 2.
1.
2.
3.
I.
2.
3.
Kohlenstoß" auf dem austr. KaL, 0,05 0,21 0,05 0,29 0,13 0,05 0,29 0,21 0,13 ^,05
Gew.-%
Kat-Menge, bezogen auf Gesamt- 100 75 25 69 18 13 70 8 9 13
einsatz, Gew.-%
Ges.-KaL-Einsatz, / 356,07 241,94 241,94 227,93 227,93 227,93 226,02 226,02 226,02 226,02
Verhältnis des GesamtkaL-Einsatzes 1,00 0,68 0,68 0,64 0,64 0,64 0,63 0,63 0,63 226,02
(mehrstufig/einstufig)
Mehrstufige Regenerierung eines Crack-Katalysators mit 1,01% an kohligen Ablagerungen bei einer Gasoberflächengeschwiodigkeit
von 1,36 m/s
Anzahl | Stufen | 2. | 3 | 2. | 3. | 4 | 2. | S. 4. |
1 | 2 | |||||||
Stufe | 1. | 1. | ||||||
* | 1. | |||||||
Kat.-Durchsatzgeschwindigkeit ausseht. Ablagerungen, kg/s
Katalysalor-Einlaßter< oeratur, C
Katalysator-Auslaßtemperatur, C Druck über dem Bett, bar Oj-Konzenlration in dem aus dem
Bett austretenden Gas, Mol-%
Kohlenstoff ?uf dem eintr. Kat.,
Gew.-%
Kohlenstoff auf dem austr. Kat., Gew.-%
Kat.-Menge, bezogen auf Gesamteinsatz, Gew.-%
(mehrstufig/einstufig)
544,31 544,31 54-4,31 544,31 544,31 544,31 544,3! 544,31 544,31 544,31
510 | 510 | 643 | 510 | 635 | 663 | 510 | 635 | 648 | 663 |
«76 | 648 | 67iS | 635 | 663 | 676 | 635 | 648 | 663 | 676 |
2,08 | 2,08 | 2,0-8 | 2,08 | 2,08 | 2,08 | 2,08 | 2,08 | 2,08 | 2,08 |
o,: | 0,3 | 0,3 | 0,3 | 0,3 | 0,3 | 0,3 | 0,3 | 0,3 | 0,3 |
1,0! | 1,01 | 0,21 | 1,01 | 0,29 | 0,13 | 1,01 | 0.29 | 0,21 | 0,13 |
0,05 | 0,21 | 0,05 | 0,29 | 0,13 | 0,05 | 0,29 | 0,21 | 0,13 | 0,05 |
71
29
66
67
262,40 152,81 152,81 140,98 140,98 140,98 139,07 139,07 139,07 139,07
1,00 0,58 0,58 0,54 0,54 0,54 0,53 0,53 0,53 0,53
Hierzu 2 Blatt Zeichnungen
Claims (2)
1. Verfahren zur Regenerierung eines bei einer Kohlenwasserstoffumwandlung verbrauchten Molekularsieb-Katalysators,
auf dem kohliges Material abgelagert ist, wobei der verbrauchte Katalysator
kontinuierlich mit erhöhter Temperatur in eine Verbrennungszone eingeführt wird, in der er in
einem Wirbelbett mit einer dichten Phase, die von einer verdünnten Phase überlagert ist, gehalten und
kohliges Material mit einem sauerstoffhaitigen Gas davon abgebrannt wird, dadurch gekennzeichnet, daß man die dichte Phase des
Katalysatorbettes in der Regenerationszone in ein erstes und ein zweites Bett mit einer beiden
gemeinsamen verdünnten Phase darüber trennt, den verbrauchten Katalysator kontinuierlich dem ersten
Bett zuführt und in diesem bei einer Temperatur von wenigstens etwa 593° C, die wenigstens etwa 56° C
über der Jnntrittstemperatur des Katalysators in
dieses Bett liegt, wenigstens etwa 65 Gew.-% des kohligen Materials mit einem ersten sauerstoffhaitigen
Gas abbrennt, den so teilweise regenerierten Katalysator kontinuierlich in das zweite Bett
einleitet und in diesem mit einem weiteren sauerstoffhaitigen Gas abbrennt, wobei die Temperatur
in dem zweiten dichten Katalysatorbett zwischen 607 und 732° C und um wenigstens etwa
14°C über der Temperatur des ersten Bettes gehalten wird und wobei der Sauerstoffgehalt des
aus der Ve-hrennungszone austretenden Gases zwischen 0,1 und 1,0 Mol-% gehalten wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet,
daß von dem in dem ersten Wirbelbett teilweise regenerierten Katalysator, bevor er in das
zweite Wirbelbett eingeführt wird, in einem mittleren Wirbelbett weiteres kohliges Material mit
einem sauerstoffhaitigen Gas bei einer Temperatur zwischen derjenigen des ersten und derjenigen dt:s
zweiten Bettes und wenigstens 14° C über der Temperatur des ersten Bettes abgebrannt wird.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US78714868A | 1968-12-26 | 1968-12-26 |
Publications (3)
Publication Number | Publication Date |
---|---|
DE1964647A1 DE1964647A1 (de) | 1970-07-09 |
DE1964647B2 true DE1964647B2 (de) | 1979-06-13 |
DE1964647C3 DE1964647C3 (de) | 1980-02-21 |
Family
ID=25140561
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE1964647A Expired DE1964647C3 (de) | 1968-12-26 | 1969-12-23 | Verfahren zur Regenerierung eines bei einer Kohlenwasserstoffumwandlung verbrauchten Molekularsieb-Katalysators |
Country Status (9)
Country | Link |
---|---|
US (1) | US3563911A (de) |
JP (1) | JPS493632B1 (de) |
BE (1) | BE743752A (de) |
DE (1) | DE1964647C3 (de) |
ES (1) | ES374919A1 (de) |
FR (1) | FR2027158A1 (de) |
GB (1) | GB1300076A (de) |
NL (1) | NL6919325A (de) |
SE (1) | SE368585B (de) |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE792165A (fr) * | 1971-11-30 | 1973-05-30 | Standard Oil Co | Procede perfectionne de cracking catalytique avec combustion sensiblement complete du monoxyde de carbone pendant la regeneration du catalyseur |
US3909392A (en) * | 1972-06-12 | 1975-09-30 | Standard Oil Co | Fluid catalytic cracking process with substantially complete combustion of carbon monoxide during regeneration of catalyst |
US3926778A (en) * | 1972-12-19 | 1975-12-16 | Mobil Oil Corp | Method and system for controlling the activity of a crystalline zeolite cracking catalyst |
US4064038A (en) * | 1973-05-21 | 1977-12-20 | Universal Oil Products Company | Fluid catalytic cracking process for conversion of residual oils |
US3970587A (en) * | 1973-07-18 | 1976-07-20 | Mobil Oil Corporation | Combustion regeneration of hydrocarbon conversion catalyst with recycle of high temperature regenerated catalyst |
US4035284A (en) * | 1973-07-18 | 1977-07-12 | Mobil Oil Corporation | Method and system for regenerating fluidizable catalyst particles |
JPS50123440U (de) * | 1974-03-25 | 1975-10-08 | ||
US4118337A (en) * | 1977-06-20 | 1978-10-03 | Mobil Oil Corporation | Method for regenerating fluidizable solid particles employed in hydrocarbon conversion |
DE2745669A1 (de) * | 1977-10-11 | 1979-04-12 | Texaco Development Corp | Verfahren zum regenerieren von erschoepftem katalysator in einem katalytischen fliessbett-crackverfahren |
US4336160A (en) * | 1980-07-15 | 1982-06-22 | Dean Robert R | Method and apparatus for cracking residual oils |
US4338788A (en) * | 1980-07-22 | 1982-07-13 | Uop Inc. | Cogeneration process linking FCC regenerator and power plant turbine |
US4353811A (en) * | 1980-12-08 | 1982-10-12 | Uop Inc. | Power recovery process using recuperative heat exchange |
US4370222A (en) * | 1981-03-02 | 1983-01-25 | Mobil Oil Corporation | FCC Regeneration |
US4412914A (en) * | 1981-08-10 | 1983-11-01 | Ashland Oil, Inc. | Endothermic removal of coke deposited on sorbent materials during carbo-metallic oil conversion |
US4894141A (en) * | 1981-09-01 | 1990-01-16 | Ashland Oil, Inc. | Combination process for upgrading residual oils |
US4471063A (en) * | 1982-10-21 | 1984-09-11 | Ashland Oil, Inc. | Method and apparatus arrangement for regenerating fluid particles of catalyst |
US4543894A (en) * | 1983-05-17 | 1985-10-01 | Union Oil Company Of California | Process for staged combustion of retorted oil shale |
US4547341A (en) * | 1983-12-08 | 1985-10-15 | Exxon Research And Engineering Co. | Cyclone support system |
US4849091A (en) * | 1986-09-17 | 1989-07-18 | Uop | Partial CO combustion with staged regeneration of catalyst |
US4851196A (en) * | 1987-01-23 | 1989-07-25 | Phillips Petroleum Company | Fluid catalytic cracking unit |
US5462717A (en) * | 1989-09-13 | 1995-10-31 | Pfeiffer; Robert W. | Processes using fluidized solids and apparatus for carrying out such processes |
US5271905A (en) * | 1990-04-27 | 1993-12-21 | Mobil Oil Corporation | Apparatus for multi-stage fast fluidized bed regeneration of catalyst |
US5251565A (en) * | 1990-12-13 | 1993-10-12 | Shell Oil Company | Process and apparatus for removal of carbonaceous materials from particles containing such materials |
FR2932495B1 (fr) * | 2008-06-17 | 2011-03-25 | Inst Francais Du Petrole | Dispositif de controle des conditions operatoires dans une unite de craquage catalytique a deux risers. |
RU2529021C2 (ru) * | 2009-03-31 | 2014-09-27 | Чайна Петролеум & Кемикал Корпорейшн | Способ регенерации катализатора |
JP5789414B2 (ja) * | 2011-05-24 | 2015-10-07 | Jx日鉱日石エネルギー株式会社 | 触媒再生方法および触媒再生装置 |
RU2679258C2 (ru) * | 2013-10-29 | 2019-02-06 | ДАУ ГЛОБАЛ ТЕКНОЛОДЖИЗ ЭлЭлСи | Циклонное разделительное устройство, имеющее кессон с короткой продолжительностью пребывания, установленный в реакционном резервуаре с псевдоожиженным слоем |
CN109926105B (zh) * | 2017-12-15 | 2021-10-08 | 中国石油化工股份有限公司 | 一种加氢催化剂的再生方法 |
CN109926103B (zh) * | 2017-12-15 | 2021-10-08 | 中国石油化工股份有限公司 | 一种失活催化剂的再生方法 |
-
1968
- 1968-12-26 US US787148A patent/US3563911A/en not_active Expired - Lifetime
-
1969
- 1969-12-17 GB GB61595/69A patent/GB1300076A/en not_active Expired
- 1969-12-22 SE SE17806/69A patent/SE368585B/xx unknown
- 1969-12-23 DE DE1964647A patent/DE1964647C3/de not_active Expired
- 1969-12-23 NL NL6919325A patent/NL6919325A/xx not_active Application Discontinuation
- 1969-12-24 ES ES374919A patent/ES374919A1/es not_active Expired
- 1969-12-24 BE BE743752D patent/BE743752A/xx unknown
- 1969-12-26 FR FR6945112A patent/FR2027158A1/fr not_active Withdrawn
- 1969-12-26 JP JP44104482A patent/JPS493632B1/ja active Pending
Also Published As
Publication number | Publication date |
---|---|
DE1964647A1 (de) | 1970-07-09 |
FR2027158A1 (de) | 1970-09-25 |
US3563911A (en) | 1971-02-16 |
NL6919325A (de) | 1970-06-30 |
GB1300076A (en) | 1972-12-20 |
ES374919A1 (es) | 1972-02-16 |
JPS493632B1 (de) | 1974-01-28 |
DE1964647C3 (de) | 1980-02-21 |
SE368585B (de) | 1974-07-08 |
BE743752A (de) | 1970-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE1964647B2 (de) | Verfahren zur Regenerierung eines bei einer Kohlenwasserstoffumwandlung verbrauchten Molekularsieb-Katalysators | |
DE69110349T2 (de) | Katalysatorverteilungssystem für Regeneratoren von FCC-Anlagen. | |
DE2103562A1 (de) | Verfahren und Vorrichtung zur katalytischen Umwandlung von Erdöl kohlenwasserstoffen | |
DE68903174T2 (de) | Apparat und verfahren zur regenerierung von kokshaltigen fliessbettkrackkatalysatoren. | |
DE69217111T2 (de) | Verfahren und Vorrichtung für Wärmeaustausch von festen Teilchen für Regenerierung in katalytischem Cracken | |
DE69530211T2 (de) | Vorrichtung zum strippen von wirbelschichtspaltungskatalysatoren | |
DE2361142A1 (de) | Verfahren zur steuerung der aktivitaet eines kristallinen zeolith-crackkatalysators | |
DE2707478A1 (de) | Verfahren und vorrichtung zur regenerierung von crack-katalysatoren | |
DE2838297A1 (de) | Verfahren und vorrichtung zur kohlenwasserstoffumwandlung und katalysator-regenerierung | |
DE2117019A1 (de) | Verfahren zur stufenweisen Kontaktierung eines fluiden Reaktanten mit festem Material von aufwirbelbarer Teilchengröße | |
WO1996026003A1 (de) | Vorrichtung und ihre verwendung zur oxichlorierung | |
DE68908339T2 (de) | Katalytisches Reformierverfahren in einer Mehrzahl von nebeneinandergestellten Reaktionszonen mit beweglichem Bett. | |
DE2256276C3 (de) | Cyclisches, kontinuierliches Verfahren zum katalytischen Cracken von Erdölkohlenwasserstoffen in fluider Phase unter Katalysatorregenerierung | |
DE69527707T2 (de) | Verfahren unter verwendung von fluidisierten feststoffen und vorrichtung zur durchführung solcher verfahren | |
DE2526839A1 (de) | Verfahren zum regenerieren eines verkokten zeolith-kohlenwasserstoffumwandlungskatalysators | |
DE2349369A1 (de) | Vorrichtung zum katalytischen wirbelschichtcracken von kohlenwasserstoffen | |
DE1122649B (de) | Verfahren und Vorrichtung zur Umwandlung von Kohlenwasserstoffen | |
DE1645806A1 (de) | Anlage zur katalytischen Fluessigcrackung von Kohlenwasserstoffen | |
DE69204413T2 (de) | Verbesserungen an Vorrichtungen für das katalytische Wirbelschichtkracken von Kohlenwasserstoffeinsätzen. | |
DE1144425B (de) | Verfahren zur Umwandlung hochsiedender Kohlenwasserstoffe | |
DE2165658A1 (de) | Verfahren und Vorrichtung zum Regeln der Bewegung fester Teilchen in einem Fließbett | |
DE2114062A1 (de) | Verfahren zum Beseitigen von Kohlenstoff und Teer aus einem Spaltgasprodukt | |
DE3124647A1 (de) | Verfahren zum abbrennen von schwefel-enthaltendem und stickstoff-enthaltendem koks von koks von koks-enthaltenden katalysatorteilchen | |
DE2657601A1 (de) | Verfahren und vorrichtung zum regenerieren von fliessbett-krackkatalysatoren | |
DE2707173C3 (de) | Zyklisches regeneratives katalytisches Crackverfahren |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C3 | Grant after two publication steps (3rd publication) | ||
EHJ | Ceased/non-payment of the annual fee |