DE1644041B1 - METHOD FOR PRODUCING A CARRIER GAS CONTAINING DOCTANT VAPOR FOR THE TREATMENT OF SEMI-CONDUCTOR MATERIAL - Google Patents
METHOD FOR PRODUCING A CARRIER GAS CONTAINING DOCTANT VAPOR FOR THE TREATMENT OF SEMI-CONDUCTOR MATERIALInfo
- Publication number
- DE1644041B1 DE1644041B1 DE19671644041 DE1644041A DE1644041B1 DE 1644041 B1 DE1644041 B1 DE 1644041B1 DE 19671644041 DE19671644041 DE 19671644041 DE 1644041 A DE1644041 A DE 1644041A DE 1644041 B1 DE1644041 B1 DE 1644041B1
- Authority
- DE
- Germany
- Prior art keywords
- carrier gas
- dopant
- vapor
- mixing chamber
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45561—Gas plumbing upstream of the reaction chamber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J4/00—Feed or outlet devices; Feed or outlet control devices
- B01J4/008—Feed or outlet control devices
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/14—Feed and outlet means for the gases; Modifying the flow of the reactive gases
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
- C30B29/06—Silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
Description
Bei der Herstellung von Halbleiterkörpern zur Verwendung in Bauelementen müssen häufig geringe Mengen Dotierstoffe in Behandlungskammern geleitet werden, wo sie in einen Körper oder in auf einem Körper abzuscheidende Schichten eingeführt werden. Solche Dotierstoffmengen müssen in der Größenordnung weniger Teile auf eine Milliarde im Strom des den Dotierstoff enthaltenden Trägergases vorhanden sein, das in die Behandlungskammern geleitet wird. Die Regelung der Zugabe des Dotierstoffes bei diesen niedrigen Gehalten ist sehr schwierig. Auch für die Einstellung höherer Dotierungsgehalte ist eine präzise und zuverlässige Kontrolle der Zugabe des Dotierstoffes mit Problemen behaftet.In the production of semiconductor bodies for use in components, often low Quantities of dopants are passed into treatment chambers, where they are in a body or in on layers to be deposited are introduced into a body. Such amounts of dopant must be in the Order of magnitude fewer parts per billion in the flow of the carrier gas containing the dopant be present, which is passed into the treatment chambers. The regulation of the addition of the dopant at these low levels is very difficult. Also for setting higher doping levels a precise and reliable control of the addition of the dopant is fraught with problems.
Aus der französischen Patentschrift 1410 745 ist ein Verfahren bekannt, bei dem ein Trägergas über die Dotierstoffquelle geleitet wird, hierbei Dotierstoffdampf aufnimmt und zum Niederschlagsgebiet transportiert. Bei diesem bekannten Verfahren wird der Dotierstoff jedoch nicht durch Diffusion in das Trägergas eingeführt.From the French patent 1410 745 a method is known in which a carrier gas over the dopant source is passed, thereby absorbing dopant vapor and to the precipitation area transported. In this known method, however, the dopant is not diffused into the Carrier gas introduced.
Bei einem anderen, aus der französischen Patentschrift 1 345 266 bekannten Verfahren wird ein Kapillarenbündel als Diffusionssperre für flüssigen Übergang verwendet. Ein Konzentrationsgradient über der Kapillarenstrecke von der Eintritts- bis zur Austrittsseite ist bei diesem bekannten Verfahren nicht vorgesehen; vielmehr findet dort ein Flüssigkeitstransport lediglich durch Kapillarwirkung statt.In another method known from French patent specification 1,345,266, a bundle of capillaries is used used as a diffusion barrier for liquid transition. A concentration gradient across the Capillary path from the inlet to the outlet side is not provided in this known method; rather, there is only a transport of liquid there by capillary action.
Keines der bekannten Verfahren ist jedoch in der Lage, eine Regelgenauigkeit zu gewährleisten, die für extrem geringe Gehalte an Dotierstoffen in Trägergasen notwendig ist.However, none of the known methods is able to ensure a control accuracy that for extremely low levels of dopants in carrier gases is necessary.
Bei einem Verfahren zum Herstellen eines zur Behandlung von Halbleitermaterial bestimmten Trägergases, in dem eine vorbestimmte, geringe Menge Dotierstoffdampf enthalten ist, wobei der Dotierstoffdampf in das Trägergas in einer Mischkammer eingebracht wird, in die sowohl das Trägergas als auch der Dotierstoffdampf eingeleitet werden, ist aber eine sehr genaue und zuverlässige Konzentrationskontrolle der Dotierstoffe bei extrem niedrigen Dotierstoffgehalten in einem Trägergas möglich, wenn erfindungsgemäß der Dotierstoffdampf in die Mischkammer durch ein Rohr von einem den Dotierstoff enthaltenden Gefäß mit konstanter Geschwindigkeit eindiffundiert und die Trägergasgeschwindigkeit so eingestellt wird, daß im Rohr keine Turbulenz auftritt. Die geeigneten Bedingungen für die erfindungsgemäß vorgesehene Diffusion von Dotierstoffdampf werden dadurch erreicht, daß die Dotierstoffquelle ebenso wie das Einführungsrohr und zumindest ein Teil der Mischkammer bei gleichen Betriebsbedingungen, z. B. bei gleicher Temperatur, gehalten werden. Längs des den Dotierstoffdampf zur Mischkammer führenden Rohrs ist ein beträchtlicher Konzentrationsgradient vorhanden, so daß am Auslaßende des Rohrs eine Dotierstoffkonzentration von wenigen Teilen pro Milliarde erreicht werden kann, obwohl am eingangsseitigen Ende des Rohrs (bei der Dotierstoffquelle) die Konzentration des Trägergases in der Größenordnung von 30% liegen kann. Durch Verwendung des Prinzips der Gas- bzw. Dampfdiffusion kann eine extrem geringe, praktisch konstante Dotierstoffmenge der Mischkammer zugeführt werden, die praktisch unabhängig von der Strömungsgeschwindigkeit bzw. der der Mischkammer zugeführten Menge des Trägergases ist. Daher kann die Dotierstoffkonzentration durch Steuerung der der Mischkammer zugeführten, vergleichsweise großen Menge an Trägergas eingestellt werden.In a method for producing a carrier gas intended for the treatment of semiconductor material, in which a predetermined, small amount of dopant vapor is contained, the dopant vapor is introduced into the carrier gas in a mixing chamber in which both the carrier gas and the dopant vapor are introduced, but is a very precise and reliable concentration control of the dopants is possible at extremely low dopant contents in a carrier gas if according to the invention the dopant vapor into the mixing chamber through a tube of one of the dopants containing vessel diffused at constant speed and the carrier gas speed so is set so that no turbulence occurs in the pipe. The suitable conditions for the invention provided diffusion of dopant vapor are achieved in that the dopant source as well like the introduction tube and at least part of the mixing chamber under the same operating conditions, e.g. B. at the same temperature. Along the leading the dopant vapor to the mixing chamber Rohrs there is a significant concentration gradient, so that at the outlet end of the tube Dopant concentration of a few parts per billion can be achieved, although on the input side At the end of the tube (at the dopant source) the concentration of the carrier gas is of the order of magnitude of 30%. By using the principle of gas or vapor diffusion, an extreme small, practically constant amount of dopant are fed to the mixing chamber, which is practically independent on the flow rate or the amount of carrier gas supplied to the mixing chamber is. Therefore, the dopant concentration can be adjusted by controlling the amount of material supplied to the mixing chamber. comparatively large amount of carrier gas can be set.
Im folgenden wird die Erfindung in Verbindung mit der Zeichnung näher erläutert. Diese zeigt in schematischer Form eine Diffusionszellenanordnung und eine Reaktionskammer für epitaktische Abscheidung eines Materials aus einem Reaktionsgas auf eine erhitzte Unterlage, wobei dem Reaktionsgas Dotierstoff dosiert zugesetzt werden kann. Die Diffusionszelle besteht aus einem Vorratsbehälter 14, der einen Dotierstoff, z. B. Arsentrichlorid, in flüssiger Form enthält. Der Raum 25 über dem flüssigen Dotierstoff 15 enthält ein Gasgemisch mit dem flüssigen Dotierstoff bei einem Partialdruck pls der von der Temperatur der Flüssigkeit 15 bestimmt wird. Ein Zuführungsrohr 16 mit einem Regelventil 17 ist für die Zugabe flüssigen Dotierstoffs vorgesehen. Der Einfachheit halber ist eine Verschlußkappe 26 vorgesehen, um zusätzliche Dotierstoffmengen mit Hilfe einer Injektionsspritze einführen zu können.In the following the invention is explained in more detail in connection with the drawing. This shows in schematic form a diffusion cell arrangement and a reaction chamber for epitaxial deposition of a material from a reaction gas onto a heated substrate, it being possible to add dopant to the reaction gas in a metered manner. The diffusion cell consists of a reservoir 14 which contains a dopant, e.g. B. arsenic trichloride, contains in liquid form. The space 25 above the liquid dopant 15 contains a gas mixture with the liquid dopant at a partial pressure p ls which is determined by the temperature of the liquid 15. A feed pipe 16 with a control valve 17 is provided for the addition of liquid dopant. For the sake of simplicity, a closure cap 26 is provided in order to be able to introduce additional amounts of dopant with the aid of an injection syringe.
Die Gaskammer 25 über der Flüssigkeit 15 ist mittels einer rohrförmigen Zuleitung 13 mit einer Mischkammer 11 verbunden. Die Mischkammer 11 wird ferner mittels des Trägergasrohrs 12 mit dem Regelventil 18 mit Trägergas, z. B. Wasserstoff, beschickt. Um Turbulenz und Vermischung in der Zuführung 13 zu vermeiden, wird das Gas aus dem Zufuhrrohr 12 in die Mischkammer 11 durch radiale öffnungen 23 im Trägergasrohr 12 eingeführt. In der Mischkammer herrscht der Partialdruck P2- Das Auslaßrohr 20 aus der Mischkammer 11 über Regelventil 19 läßt die den Dotierstoff tragende Gasmischung über das Einlaßrohr 29 in die Kammer 30 für die epitaktische Abscheidung ein.The gas chamber 25 above the liquid 15 is connected to a mixing chamber 11 by means of a tubular feed line 13. The mixing chamber 11 is also by means of the carrier gas tube 12 with the control valve 18 with carrier gas, for. B. hydrogen charged. In order to avoid turbulence and mixing in the feed 13, the gas is introduced from the feed pipe 12 into the mixing chamber 11 through radial openings 23 in the carrier gas pipe 12. The partial pressure P 2 prevails in the mixing chamber . The outlet pipe 20 from the mixing chamber 11 via the control valve 19 lets the gas mixture carrying the dopant into the chamber 30 for the epitaxial deposition via the inlet pipe 29.
Das Nachschubrohr 31 mit einem Regelventil 32 läßt einen Wasserstoffstrom ein, der eine kleine MengeThe supply pipe 31 with a control valve 32 allows a flow of hydrogen, which is a small amount
Siliciumtetrachlorid enthält (SiCl4). Dieser Gasstrom wird mit dem den Dotierstoff führenden Strom vereinigt. Die Mischung fließt durch die Abscheidungskammer 30. Innerhalb dieser Kammer 30 wird eine Scheibe 34 aus halbleitendem Silicium von einem Gestell 33 getragen und mittels einer Induktionsspule 35 erhitzt. Wie wohl bekannt ist, tritt bei geeigneten Temperaturen eine Zersetzungsreaktion ein und ergibt eine Abscheidung von Silicium auf der Scheibe 34. Wenn im speziellen Fall die Originalscheibe 34 monokristallin ist, wird das abgeschiedene Silicium gleichfalls monokristallin sein und eine Leitfähigkeit besitzen, die weitgehend von der Dotierung bestimmt wird, die von der Diffusionszelle gemäß vorliegender Erfindung geliefert wird. Das Trägergas, das nicht umgesetztes Material und Reaktionsprodukte enthält, entweicht aus der Reaktionskammer 30 mittels der Abgasleitung 36.Silicon tetrachloride contains (SiCl 4 ). This gas flow is combined with the flow carrying the dopant. The mixture flows through the deposition chamber 30. Inside this chamber 30, a disk 34 made of semiconducting silicon is supported by a frame 33 and heated by means of an induction coil 35. As is well known, a decomposition reaction occurs at suitable temperatures and results in the deposition of silicon on the wafer 34. In the particular case, if the original wafer 34 is monocrystalline, the deposited silicon will also be monocrystalline and have a conductivity which largely depends on the doping provided by the diffusion cell of the present invention. The carrier gas, which contains unreacted material and reaction products, escapes from the reaction chamber 30 by means of the exhaust line 36.
Für die Anordnung der Diffusionszelle mit der Mischkammer 30, dem Vorratsbehälter 14 und dem Verbindungsrohr 13 sind die folgenden Abmessungen beispielhaft. Die Mischkammer 11 hat 20 mm Außendurchmesser. Die Einlaßöffnungen 23 haben vier Löcher in gleichen Abständen, jedes mit 2 mm Durchmesser. Das Verbindungsrohr 13 ist eine Kapillare mit einem Außendurchmesser von etwa 7 mm und einem Innendurchmesser von etwa 1 mm. Der Vorratsbehälter 14 hat 16 mm Außendurchmesser, und das Füllrohr 16 hat etwa 7 mm Außendurchmesser und 1 mm Innendurchmesser. Das Verbindungsrohr 13 ist etwa 100 mm lang, und der Abstand von der Spitze des Verbindungsrohrs 13 zum Zentrum der Öffnung 23 ist 10 mm. Die Mischkammer hat etwa 70 mm Gesamtlänge. Die verschiedenen Teile einschließlich der Diffusionszelle werden zweckmäßig aus hochschmelzendem Glas hergestellt.For the arrangement of the diffusion cell with the mixing chamber 30, the storage container 14 and the Connecting pipe 13, the following dimensions are exemplary. The mixing chamber 11 has an outside diameter of 20 mm. The inlet openings 23 have four equally spaced holes, each 2 mm in diameter. The connecting tube 13 is a capillary with an outer diameter of about 7 mm and an inside diameter of about 1 mm. The storage container 14 has an outer diameter of 16 mm, and the filling tube 16 has an outer diameter of approximately 7 mm and an inner diameter of 1 mm. The connecting pipe 13 is about 100 mm long, and the distance from the tip of the connecting pipe 13 to the center of the Opening 23 is 10 mm. The total length of the mixing chamber is approximately 70 mm. The various parts including the diffusion cell are expediently made of high-melting glass.
In einem speziellen Ausführungsbeispiel der Erfindung war das zur Mischkammer geschickte Gas Wasserstoff, und es wurden sowohl Arsentrichlorid (AsCl3) als auch Arsentribromid (AsBr3) als Dotierungsmittel benutzt.In a specific embodiment of the invention, the gas sent to the mixing chamber was hydrogen and both arsenic trichloride (AsCl 3 ) and arsenic tribromide (AsBr 3 ) were used as dopants.
In diesem Zusammenhang ist zu erwähnen, daß Arsentribromid bei Raumtemperatur fest ist, insofern es einen Schmelzpunkt von 328° C hat. Aus Bequemlichkeitsgründen werden Zusätze zur Vorrats-Charge in flüssiger Form gemacht, indem man die Temperatur der Einrichtung über den Schmelzpunkt anhebt.In this connection it should be mentioned that arsenic tribromide is solid at room temperature, insofar as it is it has a melting point of 328 ° C. For convenience, additions are made to the stock batch made in liquid form by raising the temperature of the device above the melting point.
Der Teil der Apparatur innerhalb der Umrißlinie 40 wurde in einen Thermostaten eingetaucht, der während der Versuchsläufe auf kontrollierter Temperatur gehalten wurde, womit der Dampfdruck P1 bestimmt wurde. Die Strömungsgeschwindigkeit des Wasserstoffgases wurde bei 100 und 220 ml je Minute gehalten und für verschiedene Versuche fixiert.The part of the apparatus within the outline 40 was immersed in a thermostat which was kept at a controlled temperature during the test runs, with which the vapor pressure P 1 was determined. The flow rate of the hydrogen gas was kept at 100 and 220 ml per minute and fixed for various experiments.
Die Diffusion der Arsentrichlorid-Moleküle oder Arsentribromid-Moleküle aus der Kammer 25 durch das Kapillarrohr 13 in die Mischkammer 11 erfolgt, weil der Partialdruck pu der dem Dampfdruck der Dotierung entspricht, größer als der Partialdruck p2 in der Mischkammer ist. Bei annehmbaren Strömungsgeschwindigkeiten des Wasserstoffgases, insbesondere größer als etwa 10ml je Minute, kann man zeigen, daß p2 im Vergleich zu P1 so klein ist, daß es bei Berechnungen der Diffjisionsgeschwindigkeit der Dotierung durch das Kapillarrohr vernachlässigt werden kann. Demzufolge ist die Menge der durch das Verbindungsrohr 13 zur Mischkammer 11 transportierten Dotierung unabhängig von der Strömungsgeschwindigkeit des Wasserstoffgases. Im speziellen ist die Diffusionsgeschwindigkeit der Dotierung durch die Kapillare 13 durch die nachstehende Gleichung gegeben:The diffusion of the arsenic trichloride molecules or arsenic tribromide molecules from the chamber 25 through the capillary tube 13 into the mixing chamber 11 takes place because the partial pressure p u, which corresponds to the vapor pressure of the doping, is greater than the partial pressure p 2 in the mixing chamber. At acceptable flow rates of the hydrogen gas, in particular greater than about 10 ml per minute, it can be shown that p 2 is so small compared to P 1 that it can be neglected when calculating the diffusion rate of the doping through the capillary tube. As a result, the amount of doping transported through the connecting pipe 13 to the mixing chamber 11 is independent of the flow rate of the hydrogen gas. In particular, the diffusion rate of the doping through the capillary 13 is given by the following equation:
φ =φ =
ADP LRTADP LRT
InIn
P-PzP-Pz
Hierin bedeutetHerein means
φ = Diffusionsgeschwindigkeit (Mol/sec), φ = diffusion rate (mol / sec),
A = Querschnitt der Kapillare (cm2), A = cross section of the capillary (cm 2 ),
D = Diffusionskoeffizienten (cm2/sec), D = diffusion coefficient (cm 2 / sec),
P = Gesamtdruck in M (atm), P = total pressure in M (atm),
R = Gaskonstante (82,06 atm cm3/g Mol 0K), R = gas constant (82.06 atm cm 3 / g mol 0 K),
T = Temperatur (0K), T = temperature ( 0 K),
L = Länge der Kapillare (cm), L = length of the capillary (cm),
P1 = Dampfdruck der Dotierung (atm),P 1 = vapor pressure of the doping (atm),
p2 = Partialdruck der Dotierung im Abgas (atm). p 2 = partial pressure of the doping in the exhaust gas (atm).
In einer Serie von Versuchen unter Verwendung von Arsentrichlorid als Dotierstoff und einer Mischung von 8 Volumprozent Wasserstoff in Helium als Trägergas wurden die nachstehend tabellierten Ergebnisse erhalten:In a series of experiments using arsenic trichloride as a dopant and a mixture of 8 percent by volume of hydrogen in helium as the carrier gas, the results tabulated below were obtained obtain:
Tabelle 1
AsCl3 in 8% H2 in HeTable 1
AsCl 3 in 8% H 2 in He
In einer ähnlichen Reihe von Versuchen unter Verwendung von Arsentribromid als dotierende Verunreinigung wurden die folgenden Resultate erhalten:In a similar series of experiments using arsenic tribromide as a doping impurity the following results were obtained:
Tabelle 2
AsBr3 in 8% H2 in HeTable 2
AsBr 3 in 8% H 2 in He
IOIO
Die Diffusionsgeschwindigkeit wurde durch chemische Analyse des Abgases aus dem Auslaßrohr 20 unter Verwendung einer Coulometrischen Methode gemessen.The diffusion rate was determined by chemical analysis of the exhaust gas from the exhaust pipe 20 measured using a coulometric method.
Man kann aus den vorstehenden tabellieren Ergebnissen ersehen, daß für eine gegebene Temperatur die Diffusionsgeschwindigkeit der Dotierung unabhängig von der Strömungsgeschwindigkeit des Trägergases ist. Beispielsweise mögen Versuche 12 und 16 der Tabelle 1 verglichen werden. Beide Versuche wurden bei einer Temperatur des Verunreinigungsvorrats von 500C durchgeführt und praktisch die gleiche gemessene Diffusionsgeschwindigkeit ermittelt. Jedoch war für Versuch 12 die Strömungsgeschwindigkeit des Verdünnungsgases 106 ml/min, und für Versuch 16 war die Strömungsgeschwindigkeit 220ml/min. So war die Konzentration der Verunreinigung im Trägergasstrom des Versuchs 16 etwa die Hälfte der Verunreinigungs-Konzentration im Gasstrom des Versuchs 12. Der Wechsel in der Diffusionsgeschwindigkeit mit der Temperatur ist aus den verschiedenen Versuchen beobachtbar, die in den vorangegangenen Tabellen dargelegt sind.It can be seen from the tabulated results above that for a given temperature the diffusion rate of the doping is independent of the flow rate of the carrier gas. For example, tests 12 and 16 of Table 1 may be compared. Both experiments were carried out at a temperature of the impurity store of 50 ° C. and practically the same measured diffusion rate was determined. However, for Run 12 the diluent gas flow rate was 106 ml / min and for Run 16 the flow rate was 220 ml / min. The concentration of the impurity in the carrier gas stream of experiment 16 was about half the impurity concentration in the gas stream of experiment 12. The change in the diffusion rate with temperature can be observed from the various experiments set out in the preceding tables.
Dementsprechend kann die relative Dotierungsmenge durch Änderung des Wasserstoff-Volumens eingestellt werden, wenn man die Diffusionsgeschwindigkeit der Dotierung konstant hält. Wenn die Temperatur der Diffusionszelle geändert wird, kann die absolute Menge der dem Trägergas-Strom gelieferten Dotierung geändert werden.Accordingly, the relative amount of doping can be adjusted by changing the hydrogen volume if the diffusion rate of the doping is kept constant. When the temperature the diffusion cell is changed, the absolute amount of the carrier gas flow delivered Endowment can be changed.
Hierzu 1 Blatt Zeichnungen1 sheet of drawings
Claims (3)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US55488866A | 1966-06-02 | 1966-06-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
DE1644041B1 true DE1644041B1 (en) | 1972-03-16 |
Family
ID=24215113
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE19671644041 Pending DE1644041B1 (en) | 1966-06-02 | 1967-05-20 | METHOD FOR PRODUCING A CARRIER GAS CONTAINING DOCTANT VAPOR FOR THE TREATMENT OF SEMI-CONDUCTOR MATERIAL |
Country Status (4)
Country | Link |
---|---|
BE (1) | BE699154A (en) |
DE (1) | DE1644041B1 (en) |
GB (1) | GB1186889A (en) |
NL (1) | NL6706680A (en) |
Families Citing this family (249)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9394608B2 (en) | 2009-04-06 | 2016-07-19 | Asm America, Inc. | Semiconductor processing reactor and components thereof |
US20130023129A1 (en) | 2011-07-20 | 2013-01-24 | Asm America, Inc. | Pressure transmitter for a semiconductor processing environment |
US10714315B2 (en) | 2012-10-12 | 2020-07-14 | Asm Ip Holdings B.V. | Semiconductor reaction chamber showerhead |
US20160376700A1 (en) | 2013-02-01 | 2016-12-29 | Asm Ip Holding B.V. | System for treatment of deposition reactor |
US11015245B2 (en) | 2014-03-19 | 2021-05-25 | Asm Ip Holding B.V. | Gas-phase reactor and system having exhaust plenum and components thereof |
US10858737B2 (en) | 2014-07-28 | 2020-12-08 | Asm Ip Holding B.V. | Showerhead assembly and components thereof |
US10941490B2 (en) | 2014-10-07 | 2021-03-09 | Asm Ip Holding B.V. | Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same |
US10276355B2 (en) | 2015-03-12 | 2019-04-30 | Asm Ip Holding B.V. | Multi-zone reactor, system including the reactor, and method of using the same |
US10458018B2 (en) | 2015-06-26 | 2019-10-29 | Asm Ip Holding B.V. | Structures including metal carbide material, devices including the structures, and methods of forming same |
US10211308B2 (en) | 2015-10-21 | 2019-02-19 | Asm Ip Holding B.V. | NbMC layers |
US11139308B2 (en) | 2015-12-29 | 2021-10-05 | Asm Ip Holding B.V. | Atomic layer deposition of III-V compounds to form V-NAND devices |
US10529554B2 (en) | 2016-02-19 | 2020-01-07 | Asm Ip Holding B.V. | Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches |
US10190213B2 (en) | 2016-04-21 | 2019-01-29 | Asm Ip Holding B.V. | Deposition of metal borides |
US10367080B2 (en) | 2016-05-02 | 2019-07-30 | Asm Ip Holding B.V. | Method of forming a germanium oxynitride film |
US11453943B2 (en) | 2016-05-25 | 2022-09-27 | Asm Ip Holding B.V. | Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor |
US9859151B1 (en) | 2016-07-08 | 2018-01-02 | Asm Ip Holding B.V. | Selective film deposition method to form air gaps |
US10612137B2 (en) | 2016-07-08 | 2020-04-07 | Asm Ip Holdings B.V. | Organic reactants for atomic layer deposition |
US9812320B1 (en) | 2016-07-28 | 2017-11-07 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
KR102532607B1 (en) | 2016-07-28 | 2023-05-15 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus and method of operating the same |
US9887082B1 (en) | 2016-07-28 | 2018-02-06 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US10643826B2 (en) | 2016-10-26 | 2020-05-05 | Asm Ip Holdings B.V. | Methods for thermally calibrating reaction chambers |
US11532757B2 (en) | 2016-10-27 | 2022-12-20 | Asm Ip Holding B.V. | Deposition of charge trapping layers |
US10714350B2 (en) | 2016-11-01 | 2020-07-14 | ASM IP Holdings, B.V. | Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
KR102546317B1 (en) | 2016-11-15 | 2023-06-21 | 에이에스엠 아이피 홀딩 비.브이. | Gas supply unit and substrate processing apparatus including the same |
KR20180068582A (en) | 2016-12-14 | 2018-06-22 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
US11581186B2 (en) | 2016-12-15 | 2023-02-14 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus |
US11447861B2 (en) | 2016-12-15 | 2022-09-20 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus and a method of forming a patterned structure |
KR102700194B1 (en) | 2016-12-19 | 2024-08-28 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
US10269558B2 (en) | 2016-12-22 | 2019-04-23 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US10867788B2 (en) | 2016-12-28 | 2020-12-15 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US11390950B2 (en) | 2017-01-10 | 2022-07-19 | Asm Ip Holding B.V. | Reactor system and method to reduce residue buildup during a film deposition process |
US10468261B2 (en) | 2017-02-15 | 2019-11-05 | Asm Ip Holding B.V. | Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures |
US10529563B2 (en) | 2017-03-29 | 2020-01-07 | Asm Ip Holdings B.V. | Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures |
KR102457289B1 (en) | 2017-04-25 | 2022-10-21 | 에이에스엠 아이피 홀딩 비.브이. | Method for depositing a thin film and manufacturing a semiconductor device |
US10892156B2 (en) | 2017-05-08 | 2021-01-12 | Asm Ip Holding B.V. | Methods for forming a silicon nitride film on a substrate and related semiconductor device structures |
US10770286B2 (en) | 2017-05-08 | 2020-09-08 | Asm Ip Holdings B.V. | Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures |
US10886123B2 (en) | 2017-06-02 | 2021-01-05 | Asm Ip Holding B.V. | Methods for forming low temperature semiconductor layers and related semiconductor device structures |
US12040200B2 (en) | 2017-06-20 | 2024-07-16 | Asm Ip Holding B.V. | Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus |
US11306395B2 (en) | 2017-06-28 | 2022-04-19 | Asm Ip Holding B.V. | Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus |
KR20190009245A (en) | 2017-07-18 | 2019-01-28 | 에이에스엠 아이피 홀딩 비.브이. | Methods for forming a semiconductor device structure and related semiconductor device structures |
US10541333B2 (en) * | 2017-07-19 | 2020-01-21 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US11018002B2 (en) * | 2017-07-19 | 2021-05-25 | Asm Ip Holding B.V. | Method for selectively depositing a Group IV semiconductor and related semiconductor device structures |
US11374112B2 (en) | 2017-07-19 | 2022-06-28 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US10590535B2 (en) | 2017-07-26 | 2020-03-17 | Asm Ip Holdings B.V. | Chemical treatment, deposition and/or infiltration apparatus and method for using the same |
US10770336B2 (en) | 2017-08-08 | 2020-09-08 | Asm Ip Holding B.V. | Substrate lift mechanism and reactor including same |
US10692741B2 (en) | 2017-08-08 | 2020-06-23 | Asm Ip Holdings B.V. | Radiation shield |
US11769682B2 (en) | 2017-08-09 | 2023-09-26 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US11139191B2 (en) | 2017-08-09 | 2021-10-05 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US11830730B2 (en) | 2017-08-29 | 2023-11-28 | Asm Ip Holding B.V. | Layer forming method and apparatus |
KR102491945B1 (en) | 2017-08-30 | 2023-01-26 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
US11056344B2 (en) | 2017-08-30 | 2021-07-06 | Asm Ip Holding B.V. | Layer forming method |
US11295980B2 (en) | 2017-08-30 | 2022-04-05 | Asm Ip Holding B.V. | Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures |
KR102401446B1 (en) | 2017-08-31 | 2022-05-24 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
KR102630301B1 (en) | 2017-09-21 | 2024-01-29 | 에이에스엠 아이피 홀딩 비.브이. | Method of sequential infiltration synthesis treatment of infiltrateable material and structures and devices formed using same |
US10844484B2 (en) | 2017-09-22 | 2020-11-24 | Asm Ip Holding B.V. | Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
US10658205B2 (en) | 2017-09-28 | 2020-05-19 | Asm Ip Holdings B.V. | Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber |
US10403504B2 (en) | 2017-10-05 | 2019-09-03 | Asm Ip Holding B.V. | Method for selectively depositing a metallic film on a substrate |
US10923344B2 (en) | 2017-10-30 | 2021-02-16 | Asm Ip Holding B.V. | Methods for forming a semiconductor structure and related semiconductor structures |
US10910262B2 (en) | 2017-11-16 | 2021-02-02 | Asm Ip Holding B.V. | Method of selectively depositing a capping layer structure on a semiconductor device structure |
US11022879B2 (en) | 2017-11-24 | 2021-06-01 | Asm Ip Holding B.V. | Method of forming an enhanced unexposed photoresist layer |
JP7214724B2 (en) | 2017-11-27 | 2023-01-30 | エーエスエム アイピー ホールディング ビー.ブイ. | Storage device for storing wafer cassettes used in batch furnaces |
WO2019103610A1 (en) | 2017-11-27 | 2019-05-31 | Asm Ip Holding B.V. | Apparatus including a clean mini environment |
US10872771B2 (en) | 2018-01-16 | 2020-12-22 | Asm Ip Holding B. V. | Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures |
CN111630203A (en) | 2018-01-19 | 2020-09-04 | Asm Ip私人控股有限公司 | Method for depositing gap filling layer by plasma auxiliary deposition |
TWI799494B (en) | 2018-01-19 | 2023-04-21 | 荷蘭商Asm 智慧財產控股公司 | Deposition method |
US11018047B2 (en) | 2018-01-25 | 2021-05-25 | Asm Ip Holding B.V. | Hybrid lift pin |
USD880437S1 (en) | 2018-02-01 | 2020-04-07 | Asm Ip Holding B.V. | Gas supply plate for semiconductor manufacturing apparatus |
US11081345B2 (en) | 2018-02-06 | 2021-08-03 | Asm Ip Holding B.V. | Method of post-deposition treatment for silicon oxide film |
US10896820B2 (en) | 2018-02-14 | 2021-01-19 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
JP7124098B2 (en) | 2018-02-14 | 2022-08-23 | エーエスエム・アイピー・ホールディング・ベー・フェー | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
KR102636427B1 (en) | 2018-02-20 | 2024-02-13 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing method and apparatus |
US10975470B2 (en) | 2018-02-23 | 2021-04-13 | Asm Ip Holding B.V. | Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment |
US11473195B2 (en) | 2018-03-01 | 2022-10-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus and a method for processing a substrate |
US11629406B2 (en) | 2018-03-09 | 2023-04-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate |
US11114283B2 (en) | 2018-03-16 | 2021-09-07 | Asm Ip Holding B.V. | Reactor, system including the reactor, and methods of manufacturing and using same |
KR102646467B1 (en) | 2018-03-27 | 2024-03-11 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming an electrode on a substrate and a semiconductor device structure including an electrode |
US11230766B2 (en) | 2018-03-29 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US11088002B2 (en) | 2018-03-29 | 2021-08-10 | Asm Ip Holding B.V. | Substrate rack and a substrate processing system and method |
KR102501472B1 (en) | 2018-03-30 | 2023-02-20 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing method |
TWI843623B (en) | 2018-05-08 | 2024-05-21 | 荷蘭商Asm Ip私人控股有限公司 | Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures |
US12025484B2 (en) | 2018-05-08 | 2024-07-02 | Asm Ip Holding B.V. | Thin film forming method |
KR20190129718A (en) | 2018-05-11 | 2019-11-20 | 에이에스엠 아이피 홀딩 비.브이. | Methods for forming a doped metal carbide film on a substrate and related semiconductor device structures |
KR102596988B1 (en) | 2018-05-28 | 2023-10-31 | 에이에스엠 아이피 홀딩 비.브이. | Method of processing a substrate and a device manufactured by the same |
TWI840362B (en) | 2018-06-04 | 2024-05-01 | 荷蘭商Asm Ip私人控股有限公司 | Wafer handling chamber with moisture reduction |
US11718913B2 (en) | 2018-06-04 | 2023-08-08 | Asm Ip Holding B.V. | Gas distribution system and reactor system including same |
US11286562B2 (en) | 2018-06-08 | 2022-03-29 | Asm Ip Holding B.V. | Gas-phase chemical reactor and method of using same |
KR102568797B1 (en) | 2018-06-21 | 2023-08-21 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing system |
US10797133B2 (en) | 2018-06-21 | 2020-10-06 | Asm Ip Holding B.V. | Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures |
TW202409324A (en) | 2018-06-27 | 2024-03-01 | 荷蘭商Asm Ip私人控股有限公司 | Cyclic deposition processes for forming metal-containing material |
WO2020003000A1 (en) | 2018-06-27 | 2020-01-02 | Asm Ip Holding B.V. | Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material |
KR102686758B1 (en) | 2018-06-29 | 2024-07-18 | 에이에스엠 아이피 홀딩 비.브이. | Method for depositing a thin film and manufacturing a semiconductor device |
US10612136B2 (en) | 2018-06-29 | 2020-04-07 | ASM IP Holding, B.V. | Temperature-controlled flange and reactor system including same |
US10755922B2 (en) | 2018-07-03 | 2020-08-25 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10388513B1 (en) | 2018-07-03 | 2019-08-20 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US11053591B2 (en) | 2018-08-06 | 2021-07-06 | Asm Ip Holding B.V. | Multi-port gas injection system and reactor system including same |
US10883175B2 (en) | 2018-08-09 | 2021-01-05 | Asm Ip Holding B.V. | Vertical furnace for processing substrates and a liner for use therein |
US11430674B2 (en) | 2018-08-22 | 2022-08-30 | Asm Ip Holding B.V. | Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
KR102707956B1 (en) | 2018-09-11 | 2024-09-19 | 에이에스엠 아이피 홀딩 비.브이. | Method for deposition of a thin film |
US11024523B2 (en) | 2018-09-11 | 2021-06-01 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US11049751B2 (en) | 2018-09-14 | 2021-06-29 | Asm Ip Holding B.V. | Cassette supply system to store and handle cassettes and processing apparatus equipped therewith |
TWI844567B (en) | 2018-10-01 | 2024-06-11 | 荷蘭商Asm Ip私人控股有限公司 | Substrate retaining apparatus, system including the apparatus, and method of using same |
US11232963B2 (en) | 2018-10-03 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
KR102592699B1 (en) | 2018-10-08 | 2023-10-23 | 에이에스엠 아이피 홀딩 비.브이. | Substrate support unit and apparatuses for depositing thin film and processing the substrate including the same |
KR102605121B1 (en) | 2018-10-19 | 2023-11-23 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus and substrate processing method |
KR102546322B1 (en) | 2018-10-19 | 2023-06-21 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus and substrate processing method |
USD948463S1 (en) | 2018-10-24 | 2022-04-12 | Asm Ip Holding B.V. | Susceptor for semiconductor substrate supporting apparatus |
US11087997B2 (en) | 2018-10-31 | 2021-08-10 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
KR20200051105A (en) | 2018-11-02 | 2020-05-13 | 에이에스엠 아이피 홀딩 비.브이. | Substrate support unit and substrate processing apparatus including the same |
US11572620B2 (en) | 2018-11-06 | 2023-02-07 | Asm Ip Holding B.V. | Methods for selectively depositing an amorphous silicon film on a substrate |
US11031242B2 (en) | 2018-11-07 | 2021-06-08 | Asm Ip Holding B.V. | Methods for depositing a boron doped silicon germanium film |
US10818758B2 (en) | 2018-11-16 | 2020-10-27 | Asm Ip Holding B.V. | Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures |
US10847366B2 (en) | 2018-11-16 | 2020-11-24 | Asm Ip Holding B.V. | Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process |
US12040199B2 (en) | 2018-11-28 | 2024-07-16 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
US11217444B2 (en) | 2018-11-30 | 2022-01-04 | Asm Ip Holding B.V. | Method for forming an ultraviolet radiation responsive metal oxide-containing film |
KR102636428B1 (en) | 2018-12-04 | 2024-02-13 | 에이에스엠 아이피 홀딩 비.브이. | A method for cleaning a substrate processing apparatus |
US11158513B2 (en) | 2018-12-13 | 2021-10-26 | Asm Ip Holding B.V. | Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures |
JP7504584B2 (en) | 2018-12-14 | 2024-06-24 | エーエスエム・アイピー・ホールディング・ベー・フェー | Method and system for forming device structures using selective deposition of gallium nitride - Patents.com |
TWI819180B (en) | 2019-01-17 | 2023-10-21 | 荷蘭商Asm 智慧財產控股公司 | Methods of forming a transition metal containing film on a substrate by a cyclical deposition process |
KR20200091543A (en) | 2019-01-22 | 2020-07-31 | 에이에스엠 아이피 홀딩 비.브이. | Semiconductor processing device |
CN111524788B (en) | 2019-02-01 | 2023-11-24 | Asm Ip私人控股有限公司 | Method for topologically selective film formation of silicon oxide |
JP2020136678A (en) | 2019-02-20 | 2020-08-31 | エーエスエム・アイピー・ホールディング・ベー・フェー | Method for filing concave part formed inside front surface of base material, and device |
TWI845607B (en) | 2019-02-20 | 2024-06-21 | 荷蘭商Asm Ip私人控股有限公司 | Cyclical deposition method and apparatus for filling a recess formed within a substrate surface |
KR20200102357A (en) | 2019-02-20 | 2020-08-31 | 에이에스엠 아이피 홀딩 비.브이. | Apparatus and methods for plug fill deposition in 3-d nand applications |
KR102626263B1 (en) | 2019-02-20 | 2024-01-16 | 에이에스엠 아이피 홀딩 비.브이. | Cyclical deposition method including treatment step and apparatus for same |
TWI842826B (en) | 2019-02-22 | 2024-05-21 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing apparatus and method for processing substrate |
KR20200108243A (en) | 2019-03-08 | 2020-09-17 | 에이에스엠 아이피 홀딩 비.브이. | Structure Including SiOC Layer and Method of Forming Same |
US11742198B2 (en) | 2019-03-08 | 2023-08-29 | Asm Ip Holding B.V. | Structure including SiOCN layer and method of forming same |
KR20200108242A (en) | 2019-03-08 | 2020-09-17 | 에이에스엠 아이피 홀딩 비.브이. | Method for Selective Deposition of Silicon Nitride Layer and Structure Including Selectively-Deposited Silicon Nitride Layer |
KR20200116033A (en) | 2019-03-28 | 2020-10-08 | 에이에스엠 아이피 홀딩 비.브이. | Door opener and substrate processing apparatus provided therewith |
KR20200116855A (en) | 2019-04-01 | 2020-10-13 | 에이에스엠 아이피 홀딩 비.브이. | Method of manufacturing semiconductor device |
KR20200123380A (en) | 2019-04-19 | 2020-10-29 | 에이에스엠 아이피 홀딩 비.브이. | Layer forming method and apparatus |
KR20200125453A (en) | 2019-04-24 | 2020-11-04 | 에이에스엠 아이피 홀딩 비.브이. | Gas-phase reactor system and method of using same |
KR20200130118A (en) | 2019-05-07 | 2020-11-18 | 에이에스엠 아이피 홀딩 비.브이. | Method for Reforming Amorphous Carbon Polymer Film |
KR20200130121A (en) | 2019-05-07 | 2020-11-18 | 에이에스엠 아이피 홀딩 비.브이. | Chemical source vessel with dip tube |
KR20200130652A (en) | 2019-05-10 | 2020-11-19 | 에이에스엠 아이피 홀딩 비.브이. | Method of depositing material onto a surface and structure formed according to the method |
JP2020188254A (en) | 2019-05-16 | 2020-11-19 | エーエスエム アイピー ホールディング ビー.ブイ. | Wafer boat handling device, vertical batch furnace, and method |
JP2020188255A (en) | 2019-05-16 | 2020-11-19 | エーエスエム アイピー ホールディング ビー.ブイ. | Wafer boat handling device, vertical batch furnace, and method |
USD975665S1 (en) | 2019-05-17 | 2023-01-17 | Asm Ip Holding B.V. | Susceptor shaft |
USD947913S1 (en) | 2019-05-17 | 2022-04-05 | Asm Ip Holding B.V. | Susceptor shaft |
USD935572S1 (en) | 2019-05-24 | 2021-11-09 | Asm Ip Holding B.V. | Gas channel plate |
USD922229S1 (en) | 2019-06-05 | 2021-06-15 | Asm Ip Holding B.V. | Device for controlling a temperature of a gas supply unit |
KR20200141003A (en) | 2019-06-06 | 2020-12-17 | 에이에스엠 아이피 홀딩 비.브이. | Gas-phase reactor system including a gas detector |
KR20200143254A (en) | 2019-06-11 | 2020-12-23 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming an electronic structure using an reforming gas, system for performing the method, and structure formed using the method |
USD944946S1 (en) | 2019-06-14 | 2022-03-01 | Asm Ip Holding B.V. | Shower plate |
USD931978S1 (en) | 2019-06-27 | 2021-09-28 | Asm Ip Holding B.V. | Showerhead vacuum transport |
KR20210005515A (en) | 2019-07-03 | 2021-01-14 | 에이에스엠 아이피 홀딩 비.브이. | Temperature control assembly for substrate processing apparatus and method of using same |
JP7499079B2 (en) | 2019-07-09 | 2024-06-13 | エーエスエム・アイピー・ホールディング・ベー・フェー | Plasma device using coaxial waveguide and substrate processing method |
CN112216646A (en) | 2019-07-10 | 2021-01-12 | Asm Ip私人控股有限公司 | Substrate supporting assembly and substrate processing device comprising same |
KR20210010307A (en) | 2019-07-16 | 2021-01-27 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
KR20210010820A (en) | 2019-07-17 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | Methods of forming silicon germanium structures |
KR20210010816A (en) | 2019-07-17 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | Radical assist ignition plasma system and method |
US11643724B2 (en) | 2019-07-18 | 2023-05-09 | Asm Ip Holding B.V. | Method of forming structures using a neutral beam |
TWI839544B (en) | 2019-07-19 | 2024-04-21 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming topology-controlled amorphous carbon polymer film |
KR20210010817A (en) | 2019-07-19 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | Method of Forming Topology-Controlled Amorphous Carbon Polymer Film |
CN112309843A (en) | 2019-07-29 | 2021-02-02 | Asm Ip私人控股有限公司 | Selective deposition method for achieving high dopant doping |
CN112309900A (en) | 2019-07-30 | 2021-02-02 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
CN112309899A (en) | 2019-07-30 | 2021-02-02 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
US11587815B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11587814B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11227782B2 (en) | 2019-07-31 | 2022-01-18 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
CN118422165A (en) | 2019-08-05 | 2024-08-02 | Asm Ip私人控股有限公司 | Liquid level sensor for chemical source container |
USD965524S1 (en) | 2019-08-19 | 2022-10-04 | Asm Ip Holding B.V. | Susceptor support |
USD965044S1 (en) | 2019-08-19 | 2022-09-27 | Asm Ip Holding B.V. | Susceptor shaft |
JP2021031769A (en) | 2019-08-21 | 2021-03-01 | エーエスエム アイピー ホールディング ビー.ブイ. | Production apparatus of mixed gas of film deposition raw material and film deposition apparatus |
KR20210024423A (en) | 2019-08-22 | 2021-03-05 | 에이에스엠 아이피 홀딩 비.브이. | Method for forming a structure with a hole |
USD930782S1 (en) | 2019-08-22 | 2021-09-14 | Asm Ip Holding B.V. | Gas distributor |
USD979506S1 (en) | 2019-08-22 | 2023-02-28 | Asm Ip Holding B.V. | Insulator |
USD949319S1 (en) | 2019-08-22 | 2022-04-19 | Asm Ip Holding B.V. | Exhaust duct |
USD940837S1 (en) | 2019-08-22 | 2022-01-11 | Asm Ip Holding B.V. | Electrode |
US11286558B2 (en) | 2019-08-23 | 2022-03-29 | Asm Ip Holding B.V. | Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film |
KR20210024420A (en) | 2019-08-23 | 2021-03-05 | 에이에스엠 아이피 홀딩 비.브이. | Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane |
KR20210029090A (en) | 2019-09-04 | 2021-03-15 | 에이에스엠 아이피 홀딩 비.브이. | Methods for selective deposition using a sacrificial capping layer |
KR20210029663A (en) | 2019-09-05 | 2021-03-16 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
US11562901B2 (en) | 2019-09-25 | 2023-01-24 | Asm Ip Holding B.V. | Substrate processing method |
CN112593212B (en) | 2019-10-02 | 2023-12-22 | Asm Ip私人控股有限公司 | Method for forming topologically selective silicon oxide film by cyclic plasma enhanced deposition process |
TWI846953B (en) | 2019-10-08 | 2024-07-01 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing device |
KR20210042810A (en) | 2019-10-08 | 2021-04-20 | 에이에스엠 아이피 홀딩 비.브이. | Reactor system including a gas distribution assembly for use with activated species and method of using same |
KR20210043460A (en) | 2019-10-10 | 2021-04-21 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming a photoresist underlayer and structure including same |
US12009241B2 (en) | 2019-10-14 | 2024-06-11 | Asm Ip Holding B.V. | Vertical batch furnace assembly with detector to detect cassette |
TWI834919B (en) | 2019-10-16 | 2024-03-11 | 荷蘭商Asm Ip私人控股有限公司 | Method of topology-selective film formation of silicon oxide |
US11637014B2 (en) | 2019-10-17 | 2023-04-25 | Asm Ip Holding B.V. | Methods for selective deposition of doped semiconductor material |
KR20210047808A (en) | 2019-10-21 | 2021-04-30 | 에이에스엠 아이피 홀딩 비.브이. | Apparatus and methods for selectively etching films |
KR20210050453A (en) | 2019-10-25 | 2021-05-07 | 에이에스엠 아이피 홀딩 비.브이. | Methods for filling a gap feature on a substrate surface and related semiconductor structures |
US11646205B2 (en) | 2019-10-29 | 2023-05-09 | Asm Ip Holding B.V. | Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same |
KR20210054983A (en) | 2019-11-05 | 2021-05-14 | 에이에스엠 아이피 홀딩 비.브이. | Structures with doped semiconductor layers and methods and systems for forming same |
US11501968B2 (en) | 2019-11-15 | 2022-11-15 | Asm Ip Holding B.V. | Method for providing a semiconductor device with silicon filled gaps |
KR20210062561A (en) | 2019-11-20 | 2021-05-31 | 에이에스엠 아이피 홀딩 비.브이. | Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure |
CN112951697A (en) | 2019-11-26 | 2021-06-11 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
KR20210065848A (en) | 2019-11-26 | 2021-06-04 | 에이에스엠 아이피 홀딩 비.브이. | Methods for selectivley forming a target film on a substrate comprising a first dielectric surface and a second metallic surface |
CN112885692A (en) | 2019-11-29 | 2021-06-01 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
CN112885693A (en) | 2019-11-29 | 2021-06-01 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
JP7527928B2 (en) | 2019-12-02 | 2024-08-05 | エーエスエム・アイピー・ホールディング・ベー・フェー | Substrate processing apparatus and substrate processing method |
KR20210070898A (en) | 2019-12-04 | 2021-06-15 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
TW202125596A (en) | 2019-12-17 | 2021-07-01 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming vanadium nitride layer and structure including the vanadium nitride layer |
US11527403B2 (en) | 2019-12-19 | 2022-12-13 | Asm Ip Holding B.V. | Methods for filling a gap feature on a substrate surface and related semiconductor structures |
TW202140135A (en) | 2020-01-06 | 2021-11-01 | 荷蘭商Asm Ip私人控股有限公司 | Gas supply assembly and valve plate assembly |
KR20210089079A (en) | 2020-01-06 | 2021-07-15 | 에이에스엠 아이피 홀딩 비.브이. | Channeled lift pin |
US11993847B2 (en) | 2020-01-08 | 2024-05-28 | Asm Ip Holding B.V. | Injector |
KR102675856B1 (en) | 2020-01-20 | 2024-06-17 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming thin film and method of modifying surface of thin film |
TW202130846A (en) | 2020-02-03 | 2021-08-16 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming structures including a vanadium or indium layer |
TW202146882A (en) | 2020-02-04 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | Method of verifying an article, apparatus for verifying an article, and system for verifying a reaction chamber |
US11776846B2 (en) | 2020-02-07 | 2023-10-03 | Asm Ip Holding B.V. | Methods for depositing gap filling fluids and related systems and devices |
US11781243B2 (en) | 2020-02-17 | 2023-10-10 | Asm Ip Holding B.V. | Method for depositing low temperature phosphorous-doped silicon |
TW202203344A (en) | 2020-02-28 | 2022-01-16 | 荷蘭商Asm Ip控股公司 | System dedicated for parts cleaning |
KR20210116240A (en) | 2020-03-11 | 2021-09-27 | 에이에스엠 아이피 홀딩 비.브이. | Substrate handling device with adjustable joints |
KR20210116249A (en) | 2020-03-11 | 2021-09-27 | 에이에스엠 아이피 홀딩 비.브이. | lockout tagout assembly and system and method of using same |
CN113394086A (en) | 2020-03-12 | 2021-09-14 | Asm Ip私人控股有限公司 | Method for producing a layer structure having a target topological profile |
KR20210124042A (en) | 2020-04-02 | 2021-10-14 | 에이에스엠 아이피 홀딩 비.브이. | Thin film forming method |
TW202146689A (en) | 2020-04-03 | 2021-12-16 | 荷蘭商Asm Ip控股公司 | Method for forming barrier layer and method for manufacturing semiconductor device |
TW202145344A (en) | 2020-04-08 | 2021-12-01 | 荷蘭商Asm Ip私人控股有限公司 | Apparatus and methods for selectively etching silcon oxide films |
KR20210128343A (en) | 2020-04-15 | 2021-10-26 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming chromium nitride layer and structure including the chromium nitride layer |
US11821078B2 (en) | 2020-04-15 | 2023-11-21 | Asm Ip Holding B.V. | Method for forming precoat film and method for forming silicon-containing film |
US11996289B2 (en) | 2020-04-16 | 2024-05-28 | Asm Ip Holding B.V. | Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods |
KR20210132600A (en) | 2020-04-24 | 2021-11-04 | 에이에스엠 아이피 홀딩 비.브이. | Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element |
TW202146831A (en) | 2020-04-24 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | Vertical batch furnace assembly, and method for cooling vertical batch furnace |
JP2021172884A (en) | 2020-04-24 | 2021-11-01 | エーエスエム・アイピー・ホールディング・ベー・フェー | Method of forming vanadium nitride-containing layer and structure comprising vanadium nitride-containing layer |
KR20210134226A (en) | 2020-04-29 | 2021-11-09 | 에이에스엠 아이피 홀딩 비.브이. | Solid source precursor vessel |
KR20210134869A (en) | 2020-05-01 | 2021-11-11 | 에이에스엠 아이피 홀딩 비.브이. | Fast FOUP swapping with a FOUP handler |
KR20210141379A (en) | 2020-05-13 | 2021-11-23 | 에이에스엠 아이피 홀딩 비.브이. | Laser alignment fixture for a reactor system |
TW202146699A (en) | 2020-05-15 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming a silicon germanium layer, semiconductor structure, semiconductor device, method of forming a deposition layer, and deposition system |
KR20210143653A (en) | 2020-05-19 | 2021-11-29 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
KR20210145078A (en) | 2020-05-21 | 2021-12-01 | 에이에스엠 아이피 홀딩 비.브이. | Structures including multiple carbon layers and methods of forming and using same |
KR102702526B1 (en) | 2020-05-22 | 2024-09-03 | 에이에스엠 아이피 홀딩 비.브이. | Apparatus for depositing thin films using hydrogen peroxide |
TW202201602A (en) | 2020-05-29 | 2022-01-01 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing device |
TW202212620A (en) | 2020-06-02 | 2022-04-01 | 荷蘭商Asm Ip私人控股有限公司 | Apparatus for processing substrate, method of forming film, and method of controlling apparatus for processing substrate |
TW202218133A (en) | 2020-06-24 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | Method for forming a layer provided with silicon |
TW202217953A (en) | 2020-06-30 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing method |
KR102707957B1 (en) | 2020-07-08 | 2024-09-19 | 에이에스엠 아이피 홀딩 비.브이. | Method for processing a substrate |
TW202219628A (en) | 2020-07-17 | 2022-05-16 | 荷蘭商Asm Ip私人控股有限公司 | Structures and methods for use in photolithography |
TW202204662A (en) | 2020-07-20 | 2022-02-01 | 荷蘭商Asm Ip私人控股有限公司 | Method and system for depositing molybdenum layers |
US12040177B2 (en) | 2020-08-18 | 2024-07-16 | Asm Ip Holding B.V. | Methods for forming a laminate film by cyclical plasma-enhanced deposition processes |
KR20220027026A (en) | 2020-08-26 | 2022-03-07 | 에이에스엠 아이피 홀딩 비.브이. | Method and system for forming metal silicon oxide and metal silicon oxynitride |
TW202229601A (en) | 2020-08-27 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming patterned structures, method of manipulating mechanical property, device structure, and substrate processing system |
USD990534S1 (en) | 2020-09-11 | 2023-06-27 | Asm Ip Holding B.V. | Weighted lift pin |
USD1012873S1 (en) | 2020-09-24 | 2024-01-30 | Asm Ip Holding B.V. | Electrode for semiconductor processing apparatus |
US12009224B2 (en) | 2020-09-29 | 2024-06-11 | Asm Ip Holding B.V. | Apparatus and method for etching metal nitrides |
KR20220045900A (en) | 2020-10-06 | 2022-04-13 | 에이에스엠 아이피 홀딩 비.브이. | Deposition method and an apparatus for depositing a silicon-containing material |
CN114293174A (en) | 2020-10-07 | 2022-04-08 | Asm Ip私人控股有限公司 | Gas supply unit and substrate processing apparatus including the same |
TW202229613A (en) | 2020-10-14 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | Method of depositing material on stepped structure |
KR20220053482A (en) | 2020-10-22 | 2022-04-29 | 에이에스엠 아이피 홀딩 비.브이. | Method of depositing vanadium metal, structure, device and a deposition assembly |
TW202223136A (en) | 2020-10-28 | 2022-06-16 | 荷蘭商Asm Ip私人控股有限公司 | Method for forming layer on substrate, and semiconductor processing system |
TW202235649A (en) | 2020-11-24 | 2022-09-16 | 荷蘭商Asm Ip私人控股有限公司 | Methods for filling a gap and related systems and devices |
TW202235675A (en) | 2020-11-30 | 2022-09-16 | 荷蘭商Asm Ip私人控股有限公司 | Injector, and substrate processing apparatus |
US11946137B2 (en) | 2020-12-16 | 2024-04-02 | Asm Ip Holding B.V. | Runout and wobble measurement fixtures |
TW202231903A (en) | 2020-12-22 | 2022-08-16 | 荷蘭商Asm Ip私人控股有限公司 | Transition metal deposition method, transition metal layer, and deposition assembly for depositing transition metal on substrate |
USD980814S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas distributor for substrate processing apparatus |
USD980813S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas flow control plate for substrate processing apparatus |
USD981973S1 (en) | 2021-05-11 | 2023-03-28 | Asm Ip Holding B.V. | Reactor wall for substrate processing apparatus |
USD990441S1 (en) | 2021-09-07 | 2023-06-27 | Asm Ip Holding B.V. | Gas flow control plate |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1345266A (en) * | 1961-12-11 | 1963-12-06 | Western Electric Co | Method for adjusting a gas phase composition |
FR1410745A (en) * | 1963-10-08 | 1965-09-10 | Siemens Ag | Method and device for preparing semiconductor crystals |
-
1967
- 1967-05-12 NL NL6706680A patent/NL6706680A/xx unknown
- 1967-05-20 DE DE19671644041 patent/DE1644041B1/en active Pending
- 1967-05-29 BE BE699154D patent/BE699154A/xx unknown
- 1967-05-31 GB GB2508167A patent/GB1186889A/en not_active Expired
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1345266A (en) * | 1961-12-11 | 1963-12-06 | Western Electric Co | Method for adjusting a gas phase composition |
FR1410745A (en) * | 1963-10-08 | 1965-09-10 | Siemens Ag | Method and device for preparing semiconductor crystals |
Also Published As
Publication number | Publication date |
---|---|
BE699154A (en) | 1967-11-03 |
GB1186889A (en) | 1970-04-08 |
NL6706680A (en) | 1967-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE1644041B1 (en) | METHOD FOR PRODUCING A CARRIER GAS CONTAINING DOCTANT VAPOR FOR THE TREATMENT OF SEMI-CONDUCTOR MATERIAL | |
DE2810492C2 (en) | ||
DE69109224T2 (en) | Method for covering a substrate with a surface layer from the vapor phase and device for applying such a method. | |
DE2064470A1 (en) | Device for exchanging matter between a carrier gas and a substrate surface | |
DE1696628B2 (en) | PROCESS FOR COATING THE SURFACE OF AN OBJECTIVE WITH SILICATE GLASS | |
DE3708967A1 (en) | DEVICE FOR GENERATING A GAS MIXTURE BY THE SATURATION PROCESS | |
DE2110289B2 (en) | Method for depositing semiconductor material and apparatus for carrying it out | |
DE1514807B2 (en) | METHOD OF MANUFACTURING A PLANAR SEMICONDUCTOR ARRANGEMENT | |
DE1034776B (en) | Diffusion process for line type-determining impurities in semiconductor surfaces | |
DE2500197A1 (en) | PROCESS FOR DEPOSITING DOPED MATERIALS, IN PARTICULAR FOR THE PRODUCTION OF SEMI-CONDUCTOR ARRANGEMENTS | |
EP0008642B1 (en) | Method of diffusing boron in silicon bodies | |
DE60212704T2 (en) | CONTINUOUS PROCEDURE FOR CONTROLLED EVAPORATION FROM COLLOIDAL SOLUTIONS | |
DE1667773A1 (en) | Process for the production of wire-shaped boron and device for carrying out the process | |
DE1667242B2 (en) | Device for contacting a gas with a liquid | |
DE1621272C3 (en) | Method for inducing a conductivity type in a semiconductor | |
DE2315894A1 (en) | METHOD OF PERFORMING DIFFUSIONS WITH TWO SOURCES | |
DE1519812B1 (en) | METHOD AND DEVICE FOR MANUFACTURING EPITACTICALLY ON A SINGLE CRYSTALLINE SUBSTRATE OF GROW-UP LAYERS OF GERMANIUM | |
WO2021115904A1 (en) | Method and device for producing a single crystal of silicon, which single crystal is doped with n-type dopant | |
DE4319387C1 (en) | Appts. for vaporising liq. | |
DE2504815A1 (en) | PROCESS FOR PRODUCING A LIQUID-PHASE EPITAXIAL LAYER FROM GALLIUM PHOSPHIDE | |
DE2121975B2 (en) | Process for removing impurities in carbon bodies | |
DE1442793A1 (en) | Process for the production of gaseous chemical compounds in controllable quantities, processes for the application of these compounds and devices for carrying out these processes | |
DE1114784B (en) | Thin film evaporator for the evaporation and distillation of temperature-sensitive liquids | |
DE1060353B (en) | Method and device for the continuous concentration of solutions | |
DE1544276C3 (en) | Process for producing a doped semiconductor rod by crucible-free zone melting |