DE112015006704T5 - Lade/Entladevorrichtung und Lade/Entladesteuerungsverfahren - Google Patents

Lade/Entladevorrichtung und Lade/Entladesteuerungsverfahren Download PDF

Info

Publication number
DE112015006704T5
DE112015006704T5 DE112015006704.3T DE112015006704T DE112015006704T5 DE 112015006704 T5 DE112015006704 T5 DE 112015006704T5 DE 112015006704 T DE112015006704 T DE 112015006704T DE 112015006704 T5 DE112015006704 T5 DE 112015006704T5
Authority
DE
Germany
Prior art keywords
power
time
charging
instruction
discharging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE112015006704.3T
Other languages
English (en)
Other versions
DE112015006704B4 (de
Inventor
Jun Kudo
Keiichiro Honma
Satoru Shinzaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Publication of DE112015006704T5 publication Critical patent/DE112015006704T5/de
Application granted granted Critical
Publication of DE112015006704B4 publication Critical patent/DE112015006704B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/18Cables specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • H02J3/144Demand-response operation of the power transmission or distribution network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • H02J3/322Arrangements for balancing of the load in a network by storage of energy using batteries with converting means the battery being on-board an electric or hybrid vehicle, e.g. vehicle to grid arrangements [V2G], power aggregation, use of the battery for network load balancing, coordinated or cooperative battery charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00007Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using the power network as support for the transmission
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/62The condition being non-electrical, e.g. temperature
    • H02J2310/64The condition being economic, e.g. tariff based load management
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/121Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using the power network as support for the transmission

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Economics (AREA)
  • Health & Medical Sciences (AREA)
  • General Business, Economics & Management (AREA)
  • Strategic Management (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Tourism & Hospitality (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Eine Lade/Entladevorrichtung umfasst eine Elektrizitätsspeichereinheit, die an einer Transporteinrichtung bereitgestellt ist, eine Leistungsumwandlungseinheit, die eine Umwandlung von Leistung, die zwischen der Elektrizitätsspeichereinheit und einem externen Stromversorgungssystem ausgetauscht wird, durchführt, eine Empfangseinheit, die eine von einer Server-Vorrichtung übertragene Anweisung empfängt, die eine Zeit bestimmt, zu der das Entladen der Elektrizitätsspeichereinheit an das Stromversorgungssystem oder das Laden der Elektrizitätsspeichereinheit durch Leistung, die von dem Stromversorgungssystem geliefert wird, durchgeführt wird, wobei die Anweisung die Zeit umfasst, zu der das Entladen oder Laden durchgeführt wird, und eine Steuereinheit, die basierend auf der Zeit, die von der in der Empfangseinheit empfangenen Anweisung angezeigt wird, anläuft oder stoppt, und einen Betrieb der Leistungsumwandlungseinheit steuert.

Description

  • Technisches Gebiet
  • Die vorliegende Vorrichtung betrifft eine Lade/Entladevorrichtung und ein Lade/Entladesteuerungsverfahren in V2G (Vehicle-to-Grid: Fahrzeugeinspeisung), bei dem ein bidirektionaler Leistungsaustausch zwischen einer an einer Fahrzeugeinheit bereitgestellten Elektrizitätsspeichereinheit und einem Stromversorgungssystem möglich ist.
  • Hintergrundtechnik
  • Die Patentliteratur 1 offenbart ein Ladesystem für ein Fahrzeug mit einer Zeitsteuerungsfunktion, so dass das Laden reserviert werden kann, wobei, selbst wenn die Zeitsteuerungsfunktion unnormal ist, das Laden so weit wie möglich zu einer reservierten Ladestartzeit gestartet werden kann. In dem Ladesystem für ein Fahrzeug bestimmt ein Steuerabschnitt beim Auftreten einer Unregelmäßigkeit in der Zeitsteuerungsfunktion eines Zeitsteuerungsfunktionsabschnitts basierend auf der Restleistung einer 12-V-Batterie und seinem eigenen Leistungsverbrauch, ob das Anlaufen bis zu der Ladestartzeit in einer normalen Betriebsart fortgesetzt werden kann. Wenn bestimmt wird, dass das Anlaufen fortgesetzt werden kann, wird die Ladestartzeit in der normalen Betriebsart abgewartet.
  • Die Patentliteratur 2 offenbart ein Lastausgleichssystem, wobei jede Batterie von mehreren Fahrzeugen während einer Leistungsnachfrage außerhalb der Spitze an einem Geschäftsstandort, der ein Leistungsverbraucher ist, der von einem Stromversorgungsunternehmen gelieferte elektrische Leistung empfängt, oder unter Verwendung von Nachtstromleistung jedes Besitzers geladen wird, und wobei die in der Fahrzeugbatterie geladene elektrische Leistung während der Leistungsnachfragespitze an einem Geschäftsstandort entladen wird.
  • Literatur des bisherigen Stands der Technik
  • Patentliteratur
    • Patentliteratur 1: JP-A-2013-243791
    • Patentliteratur 2: JP-A2007-282383
    • Patentliteratur 3: Japanisches Patent Nr. 4285578
  • Zusammenfassung der Erfindung
  • Probleme, welche die Erfindung lösen soll
  • Gemäß dem in der Patentliteratur 1 offenbarten Ladesystem für ein Fahrzeug ist es, selbst wenn eine Unregelmäßigkeit in der Zeitsteuerungsfunktion des Zeitsteuerungsabschnitts auftritt, möglich, das Laden einer Hochspannungsbatterie zu starten, indem bestimmt wird, dass die Ladestartzeit erreicht ist, da der Steuerabschnitt das Anlaufen in der normalen Betriebsart bis zu der Ladestartzeit fortsetzt. Da jedoch in dem Ladesystem für ein Fahrzeug das Entladen von der an dem Fahrzeug installierten Hochspannungsbatterie an eine externe Stromversorgungsseite nicht durchgeführt wird, ist es nicht möglich, das Ladesystem für ein Fahrzeug der Patentliteratur 1 auf ein V2G-(Vehicle-to-Grid-)System anzuwenden, in dem ein bidirektionaler Leistungsaustausch zwischen einem Stromversorgungssystem, das ein kommerzielles Stromnetz umfasst, und einem Elektrofahrzeug, wie etwa einem EV (Elektrofahrzeug) und einem PHEV (Plugin-Hybrid-Elektrofahrzeug) möglich ist, so dass es nicht möglich ist, zur Stabilisierung eines kommerziellen Stromversorgungsnetzsystems beizutragen.
  • In dem in der Patentliteratur 2 offenbarten Lastausgleichssystem wird Leistung von einer Batterie eines Fahrzeugs, das während des Tages auf einem Parkplatz geparkt ist, an einen Geschäftsstandort geliefert, um einen Lastausgleich durchzuführen, so dass die Batterie des Fahrzeugs, die zu dem Lastausgleich beigetragen hat, am nächsten Morgen an dem Geschäftsstandort geladen wird oder unter Verwendung von Nachtstrom Zuhause geladen wird. Wenn ein Fahrzeug, welches das System verwendet, den Geschäftsstandort erreicht, wird eine an dem Fahrzeug installierte Batterie über einen Inverter mit einer der Parkplatz-Steckdosengruppen verbunden. Zu dem Zeitpunkt, zu dem die Batterie mit der Steckdose verbunden wird, ist das Fahrzeug in einer Bereitschaftsbetriebsart, in der ein Laden und Entladen durchgeführt werden. Jedoch wird zu dem Zeitpunkt, zu dem die Leistungsnachfrage an dem Geschäftsstandort hoch wird, eine Anweisung an das Fahrzeug gesendet, so dass die Bereitschaftsbetriebsart auf eine Entladungsbetriebsart geändert wird und zu dem Zeitpunkt, zu dem die Leistungsnachfrage klein wird, wird eine Anweisung an das Fahrzeug gesendet, so dass die Entladebetriebsart auf die Bereitschaftsbetriebsart geändert wird. Das Lastausgleichssystem führt jedoch einen Lastausgleich durch Austauschen von Leistung zwischen dem Geschäftsstandort und dem Fahrzeug durch und führt in einem Stromversorgungssystem, das ein kommerzielles Stromnetz umfasst, keinen Leistungsausgleich durch. Da es nicht möglich ist, die Anzahl von Fahrzeugen, die an V2G teilnehmen, und die Vereinbarungswahrscheinlichkeit über den Stromhandel zwischen einem Stromversorger und einem Stromverbraucher zu erhöhen, ist es nicht möglich, zur Stabilisierung eines kommerziellen Stromversorgungssystems beizutragen.
  • Eine Aufgabe der vorliegenden Erfindung ist es, eine Lade/Entladevorrichtung und ein Lade/Entladesteuerungsverfahren bereitzustellen, die fähig sind, zur Stabilisierung eines Stromversorgungssystems beizutragen.
  • Mittel zum Lösen des Problems
  • Angesichts der Lösung der Aufgabe definiert der Patentanspruch 1 eine Lade/Entladevorrichtung, die umfasst: eine Elektrizitätsspeichereinheit (z. B. eine Hauptbatterie 104 in der Ausführungsform, die nachstehend beschrieben werden soll), die an einer Transporteinrichtung (z. B. ein Elektrofahrzeug 15 in der Ausführungsform, die nachstehend beschrieben werden soll) bereitgestellt ist, eine Leistungsumwandlungseinheit (z. B. ein bidirektionales Ladegerät 103 in der Ausführungsform, die nachstehend beschrieben werden soll), die eine Umwandlung von Leistung, die zwischen der Elektrizitätsspeichereinheit und einem externen Stromversorgungssystem ausgetauscht wird, durchführt, eine Empfangseinheit (z. B. eine digitale Kommunikationseinheit 102 in der Ausführungsform, die nachstehend beschrieben werden soll), die eine von einer Server-Vorrichtung (z. B. ein Aggregator 17 in einer Ausführungsform, die nachstehend beschrieben werden soll) übertragene Anweisung empfängt, die eine Zeit bestimmt, zu der das Entladen der Elektrizitätsspeichereinheit an das Stromversorgungssystem oder das Laden der Elektrizitätsspeichereinheit durch Leistung, die von dem Stromversorgungssystem geliefert wird, durchgeführt wird, wobei die Anweisung die Zeit umfasst, zu der das Entladen oder Laden durchgeführt wird, und eine Steuereinheit (z. B. ein Lade/Entlade-ESG 107 in der Ausführungsform, die nachstehend beschrieben werden soll), die basierend auf der Zeit, die von der in der Empfangseinheit empfangenen Anweisung angezeigt wird, anläuft oder stoppt und einen Betrieb der Leistungsumwandlungseinheit steuert, wobei die Zeit, zu der das Laden oder das Entladen durchgeführt wird, basierend auf einem Ergebnis, das erhalten wird, wenn die Server-Vorrichtung durch eine Analyse in zeitlicher Reihenfolge einer von einem Stromversorger an das Stromversorgungssystem gelieferten Leistungsmenge und einer von dem Stromversorgungssystem an einen Stromverbraucher gelieferten Leistungsmenge eine Leistungsnachfrage- und Versorgungsvorhersage in dem Stromversorgungssystem durchführt, und einer minimalen Handelseinheit einer Leistungsmenge, die von der Server-Vorrichtung verwaltet wird, wenn Leistung mit dem Stromversorgungssystem ausgetauscht wird, bestimmt wird, wobei die Zeit durch die Anweisung angezeigt wird.
  • Der Patentanspruch 2 definiert basierend auf dem Patentanspruch 1 die Lade/Entladevorrichtung, wobei die Zeit, zu der das Entladen oder Laden durchgeführt wird, basierend auf einem Ergebnis der Leistungsnachfrage- und Versorgungsvorhersage, der minimalen Handelseinheit für eine Leistungsmenge, die von der Server-Vorrichtung verwaltet wird, wenn mit dem Stromversorgungssystem Leistung ausgetauscht wird, und einer Gesamtleistungsmenge, die für den Verkauf von Leistung an das Stromversorgungssystem in der Server-Vorrichtung sichergestellt wird, bestimmt wird, wobei die Zeit durch die Anweisung angezeigt wird.
  • Der Patentanspruch 3 definiert basierend auf dem Patentanspruch 1 oder 2 die Lade/Entladevorrichtung, wobei die Zeit, zu der das Laden durchgeführt wird, basierend auf dem Ergebnis der Leistungsnachfrage- und Versorgungsvorhersage, einem Beitragsgrad der Lade/Entladevorrichtung für das Stromversorgungssystem und einer Ladeeignungshöhe einer Ladezeitspanne der Elektrizitätsspeichereinheit, die aus einem Verschlechterungseinflussgrad, der auf die Elektrizitätsspeichereinheit angewendet wird, abgeleitet wird, derart bestimmt wird, dass die Elektrizitätsspeichereinheit in einer Zeitspanne geladen wird, in welcher die Ladeeignungshöhe hoch ist, da der Beitragsgrad hoch ist, wobei die Zeit durch die Anweisung angezeigt wird.
  • Der Patentanspruch 4 definiert basierend auf einem der Patentansprüche 1 bis 3 die Lade/Entladevorrichtung, wobei die Steuereinheit, wenn eine Leistungsspeichermenge der Elektrizitätsspeichereinheit größer oder gleich einer vorgegebenen Menge ist, den Betrieb der Leistungsumwandlungseinheit derart steuert, dass das Entladen ab einer um eine vorgegebene Zeit früheren Zeit als einer Startzeit des Entladens, die durch die Anweisung angezeigt wird, gestartet wird und bis zu einer durch die Anweisung angezeigten Endzeit des Entladens durchgeführt wird.
  • Der Patentanspruch 5 definiert basierend auf einem der Patentansprüche 1 bis 3 die Lade/Entladevorrichtung, wobei die Steuereinheit, wenn ein vorgegebener Aktivitätsgrad der Entladung der Elektrizitätsspeichereinheit an das Stromversorgungssystem größer oder gleich einem vorgegebenen Grad ist, den Betrieb der Leistungsumwandlungseinheit derart steuert, dass das Entladen ab einer um eine vorgegebene Zeit früheren Zeit als einer Startzeit des Entladens, die durch die Anweisung angezeigt wird, gestartet wird und bis zu einer durch die Anweisung angezeigten Endzeit des Entladens durchgeführt wird.
  • Der Patentanspruch 6 definiert basierend auf einem der Patentansprüche 1 bis 3 die Lade/Entladevorrichtung, wobei die Steuereinheit, wenn eine Leistungsspeichermenge der Elektrizitätsspeichereinheit größer oder gleich einer vorgegebenen Menge ist, den Betrieb der Leistungsumwandlungseinheit derart steuert, dass das Entladen ab einer durch die Anweisung angezeigten Zeit startet, und bis zu einer Zeit durchgeführt wird, die gegenüber einer durch die Anweisung angezeigten Endzeit des Entladens um eine vorgegebene Zeit verzögert ist.
  • Der Patentanspruch 7 definiert basierend auf einem der Patentansprüche 1 bis 3 die Lade/Entladevorrichtung, wobei die Steuereinheit, wenn ein vorgegebener Aktivitätsgrad des Entladens der Elektrizitätsspeichereinheit an das Stromversorgungssystem größer oder gleich einem vorgegebenen Grad ist, den Betrieb der Leistungsumwandlungseinheit derart steuert, dass das Entladen ab einer durch die Anweisung angezeigten Zeit startet und bis zu einer Zeit durchgeführt wird, die gegenüber einer durch die Anweisung angezeigten Endzeit des Entladens um eine vorgegebene Zeit verzögert ist.
  • Der Patentanspruch 8 definiert basierend auf einem der Patentansprüche 1 bis 7 die Lade/Entladevorrichtung, wobei die Steuereinheit zu einem Zeitpunkt um eine vorgegebene Zeit vor der Startzeit des Entladens oder Ladens, die durch die in der Empfangseinheit empfangene Anweisung angezeigt wird, anläuft, und, wenn eine Differenz zwischen der Startzeit und einer Zeit, zu der die Empfangseinheit die Anweisung empfängt, kürzer als eine vorgegebene Zeit ist, zu einem Zeitpunkt anläuft, zu dem die Empfangseinheit die Anweisung empfängt.
  • Die Erfindung gemäß dem Patentanspruch 9 ist eine Transporteinrichtung, die die Lade/Entladevorrichtung nach einem der Patentansprüche 1 bis 8 umfasst.
  • Der Patentanspruch 10 definiert ein Lade/Entladesteuerungsverfahren einer Lade/Entladevorrichtung, die eine Elektrizitätsspeichereinheit (z. B. eine Hauptbatterie 104 in einer Ausführungsform, die nachstehend beschrieben werden soll), die an einer Transporteinrichtung (z. B. ein Elektrofahrzeug 15 in der Ausführungsform, die nachstehend beschrieben werden soll) bereitgestellt ist, und eine Leistungsumwandlungseinheit (z. B. ein bidirektionales Ladegerät 103 in der Ausführungsform, die nachstehend beschrieben werden soll) zum Durchführen einer Umwandlung von Leistung, die zwischen der Elektrizitätsspeichereinheit und einem externen Stromversorgungssystem ausgetauscht wird, umfasst, und umfasst das Empfangen einer Anweisung, die von einer Server-Vorrichtung (z. B. ein Aggregator 17 in einer Ausführungsform, die nachstehend beschrieben werden soll) übertragen wird, die eine Zeit bestimmt, zu der das Entladen der Elektrizitätsspeichereinheit an das Stromversorgungssystem oder das Laden der Elektrizitätsspeichereinheit durch Leistung, die von dem Stromversorgungssystem geliefert wird, durchgeführt wird, wobei die Anweisung die Zeit umfasst, zu der das Entladen oder Laden durchgeführt wird, und Steuern eines Betriebs der Leistungsumwandlungseinheit durch eine Steuereinheit basierend auf der Zeit, die von der in empfangenen Anweisung angezeigt wird, so dass der Betrieb anläuft oder gestoppt wird und den Betrieb der Leistungsumwandlungseinheit steuert, wobei die Zeit, zu der das Entladen oder das Laden durchgeführt wird, basierend auf einem Ergebnis, das erhalten wird, wenn die Server-Vorrichtung durch eine Analyse in zeitlicher Reihenfolge einer von einem Stromversorger an das Stromversorgungssystem gelieferten Leistungsmenge und einer von dem Stromversorgungssystem an einen Stromverbraucher gelieferten Leistungsmenge eine Leistungsnachfrage- und Versorgungsvorhersage in dem Stromversorgungssystem durchführt, und einer minimalen Handelseinheit einer Leistungsmenge, die von der Server-Vorrichtung verwaltet wird, wenn Leistung mit dem Stromversorgungssystem ausgetauscht wird, bestimmt wird, wobei die Zeit durch die Anweisung angezeigt wird.
  • Vorteile der Erfindung
  • Gemäß den Patentansprüchen 1, 9 und 10 wird die Steuereinheit zum Steuern des Ladens/Entladens der Elektrizitätsspeichereinheit basierend auf der Zeit, die durch die von der Server-Vorrichtung übertragenen Anweisung angezeigt wird, gestartet oder gestoppt. Wie vorstehend beschrieben, arbeitet die Steuereinheit, abgesehen von der Lade/Entladezeit gemäß einer Anweisung von der Server-Vorrichtung und ihrer Bereitschaftszeit nicht, daher ist es möglich, die Haltbarkeit der Steuereinheit sicherzustellen. Außerdem ist es möglich, den Leistungsverbrauch durch die Steuereinheit während nicht geladen/entladen wird, zu verringern.
  • Außerdem wird die Lade/Entladezeit, die durch die von der Server-Vorrichtung übertragene Anweisung angezeigt wird, basierend auf dem Ergebnis der Leistungsnachfrage- und Versorgungsvorhersage bestimmt. Wenn in einer Zeitspanne, in der eine Leistungsversorgungsmenge kleiner als eine Leistungsnachfragemenge ist, gemäß einer Anweisung von der Server-Vorrichtung Leistung von der Lade/Entladevorrichtung an das Stromversorgungssystem geliefert wird, wird die Stabilität der Lieferung von Leistung von dem Stromversorgungssystem an einen Stromverbraucher verbessert. Wenn die Elektrizitätsspeichereinheit der Lade/Entladevorrichtung in einer Zeitspanne, in der es eine Differenz in der Leistungsversorgungsmenge in Bezug auf die Leistungsnachfragemenge gibt, geladen wird, wird die Stabilität des Stromversorgungssystems verbessert. Außerdem wird ein Anreiz in dem Fall, in dem das Laden/Entladen gemäß einer Anweisung von der Server-Vorrichtung durchgeführt wird, hoch festgelegt, was zu einer Erhöhung eines Gewinnanteils eines Besitzers der Lade/Entladevorrichtung führt. Überdies wird die Lade/Entladezeit, die durch die von der Server-Vorrichtung übertragene Anweisung angezeigt wird, von der Server-Vorrichtung basierend auf der minimalen Handelseinheit einer Leistungsmenge, die verwaltet wird, wenn Leistung zwischen der Server-Vorrichtung und dem Stromversorgungssystem ausgetauscht wird, bestimmt. Somit ist es möglich, die Wahrscheinlichkeit einer Vereinbarung über den Leistungsverkauf von der Lade/Entladevorrichtung an die Server-Vorrichtung und die Wahrscheinlichkeit des Leistungsverkaufs von der Server-Vorrichtung an das Stromversorgungssystem zu verbessern. Durch derartige Vorteile ist es möglich, das aktive Entladen der Lade/Entladevorrichtung zu fördern, so dass die Stabilität des Stromversorgungssystems ebenfalls erreicht wird. Wie vorstehend beschrieben, ist es möglich, einen Gewinn von vier Rollen der Server-Vorrichtung, eines Besitzers der Lade/Entladevorrichtung, einer Person, die das Stromversorgungssystem betreibt, und des Stromverbrauchers, die an V2G beteiligt sind, zu maximieren.
  • Gemäß dem Patentanspruch 2 wird die Zeit, zu der das Entladen in der Lade/Entladezeit durchgeführt wird, basierend auf dem Ergebnis der Leistungsnachfrage- und Versorgungsvorhersage, der minimalen Handelseinheit, die in einem Stromhandelsmarkt verwendet wird und die im Allgemeinen überhaupt nicht klein ist, und der Gesamtleistungsmenge, die in der Server-Vorrichtung für den Verkauf von Leistung an das Stromversorgungssystem sichergestellt wird, bestimmt. Da die an der Transporteinrichtung bereitgestellte Elektrizitätsspeichereinheit Schwierigkeiten in der Ansammlung einer hohen Leistung in dem Maß hat, dass die minimale Handelseinheit erfüllt wird, und das Entladen einer hohen Leistung für die Lade/Entladevorrichtung nicht erforderlich ist, wird die Vereinbarungswahrscheinlichkeit für den Leistungsverkauf von der Lade/Entladevorrichtung an die Server-Vorrichtung verbessert.
  • Gemäß dem Patentanspruch 3 wird die Zeit, zu der das Laden in der Lade/Entladevorrichtung durchgeführt wird, basierend auf dem Ergebnis der Leistungsnachfragevorhersage, dem Beitragsgrad für das Stromversorgungssystem und der Ladeeignungshöhe bestimmt, so dass die Elektrizitätsspeichereinheit in einer Zeitspanne geladen wird, in welcher die Ladeeignungshöhe hoch ist, da der Beitragsgrad hoch ist. Da es viele Fälle gibt, in denen der Ladestart in einer Zeitspanne angewiesen wird, in welcher die Ladeeignungshöhe in Bezug auf die Lade/Entladevorrichtung mit einem hohen Beitragsgrad hoch ist, ist es möglich, das Fortschreiten der Verschlechterung der Elektrizitätsspeichereinheit zu verzögern. Insbesondere ist es in der Zeitspanne, in der die Ladeeignungshöhe hoch ist, möglich, zu ermöglichen, dass das Fortschreiten der Verschlechterung der Elektrizitätsspeichereinheit ungefähr null ist. Durch derartige Vorteile ist es möglich, das aktive Entladen der Lade/Entladevorrichtung in Bezug auf einen Besitzer der Lade/Entladevorrichtung, der aufgrund von Sorgen, wie etwa der Verschlechterung der Elektrizitätsspeichereinheit, falls er an V2G teilnimmt, mit der Teilnahme an V2G zögert, zu fordern.
  • Gemäß den Patentansprüchen 4 bis 7 wird die Elektrizitätsspeichereinheit der Lade/Entladevorrichtung länger als eine Anweisung von der Server-Vorrichtung entladen. Wenn die Elektrizitätsspeichereinheit länger als die Anweisung von der Server-Vorrichtung entladen wird, und wenn der Beitragsgrad für das Stromversorgungssystem hoch festgelegt wird, wird ein Gewinnanteil eines Besitzers der Lade/Entladevorrichtung zur Zeit des Ladens hoch, so dass es möglich ist, das aktive Entladen der Lade/Entladevorrichtung zu fördern. Außerdem wird in dem Fall des Entladens in der Zeitspanne, in der die Leistungsversorgungsmenge kleiner als die Leistungsnachfragemenge ist, die Stabilität des Stromversorgungssystems verbessert. Außerdem gibt es in einem Stromhandelsmarkt in dem V2G getrennt von einem normalen Handelsmarkt einen unmittelbar vorhergehenden Anpassungsmarkt, in dem eine Einheitshandelszeit und eine Einheitshandelsmenge klein sind, und wenn die Elektrizitätsspeichereinheit länger als die von der Entscheidungseinheit bestimmte Entladezeit entladen werden kann, kann die Lade/Entladevorrichtung den Leistungsverkauf in dem unmittelbar vorhergehenden Anpassungsmarkt durchführen, so dass es möglich ist, weiter zu der Stabilisierung des Stromversorgungssystems beizutragen. Wie vorstehend beschrieben, ist es möglich, einen Gewinn von vier Rollen der Server-Vorrichtung, eines Besitzers der Lade/Entladevorrichtung, einer Person, die das Stromversorgungssystem betreibt, und des Stromverbrauchers, die an V2G beteiligt sind, zu maximieren.
  • Gemäß dem Patentanspruch 8 ist es möglich, das häufige Auftreten des Anlaufens und Stoppens der Steuereinheit zu verhindern. Das Auftreten des Anlaufens und Stoppens der Steuereinheit verursacht nicht nur Leistungsverbrauch, sondern hat auch einen Einfluss auf die Haltbarkeit der Steuereinheit
  • Kurze Beschreibung der Zeichnungen
  • 1 ist ein Diagramm, das einen Gesamtaufbau eines V2G-Systems darstellt.
  • 2 ist ein Blockdiagramm, das eine externe Stromversorgung und ein Elektrofahrzeug, die einen Teil des in 1 dargestellten V2G-Systems bilden, darstellt.
  • 3 ist ein Blockdiagramm, das einen Aggregator und ein Kommunikationsnetz, die einen Teil des in 1 dargestellten V2G-Systems bilden, darstellt.
  • 4 ist ein Flussdiagramm zur Erklärung der Lade/Entladesteuerung einer Hauptbatterie, die in einem von dem Aggregator verwalteten Elektrofahrzeug bereitgestellt ist.
  • 5 ist ein Diagramm, das jede Änderung in der Ausgabe und dem Ladezustand einer in einem Elektrofahrzeug bereitgestellten Hauptbatterie, begleitet von einem Beispiel für das Laden/Entladen (einschließlich des V2G) der Hauptbatterie darstellt.
  • 6 ist ein Diagramm, das jede Änderung in der Ausgabe und dem Ladezustand einer in einem Elektrofahrzeug bereitgestellten Hauptbatterie, begleitet von einem anderen Beispiel für das Laden/Entladen (einschließlich des V2G) der Hauptbatterie darstellt.
  • 7 ist ein Diagramm, das jede Änderung in der Ausgabe und dem Ladezustand einer in einem Elektrofahrzeug bereitgestellten Hauptbatterie, begleitet von einem anderen Beispiel für das Laden/Entladen (einschließlich des V2G) der Hauptbatterie darstellt.
  • 8 ist ein Diagramm, das eine Änderung in einem Nachfrage- und Versorgungsgleichgewicht eines Strommarktes und einer Temperatur in einer in 5 dargestellten V2G-Teilnahmezeitspanne und einer früheren Zeitspanne als der V2G-Teilnahmezeitspanne darstellt.
  • Arten der Ausführung der Erfindung
  • Hier nachstehend wird eine Ausführungsform der vorliegenden Erfindung unter Bezug auf die Zeichnungen beschrieben.
  • V2G (Vehicle-to-Grid) ist ein System, das einen Leistungsaustausch zwischen einem Stromversorgungssystem, das ein kommerzielles Stromversorgungsnetz umfasst, und einem Elektrofahrzeug durchführt, und wenn das Elektrofahrzeug nicht als eine Bewegungseinrichtung verwendet wird, wird eine an dem Elektrofahrzeug installierte Elektrizitätsspeichereinheit als eine Leistungsspeichereinrichtung verwendet. Daher wird zwischen dem Elektrofahrzeug, das an dem V2G teilnimmt, und dem Stromversorgungssystem ein bidirektionaler Leistungsaustausch durchgeführt.
  • 1 ist ein Diagramm, das einen Gesamtaufbau des V2G-Systems darstellt. Wie in 1 dargestellt, umfasst das V2G-System ein Stromversorgungssystem, das umfasst: ein Elektrizitätswerk 11 zum Erzeugen von Leistung durch Energie aus thermischer Energie, Windenergie, Atomenergie, Sonnenlicht und ähnlichem, ein Leistungsübertragungsnetz 12 für Leistung, die von einem Stromversorger, der das Elektrizitätswerk 11 und ähnliches umfasst, erzeugt wird, einen Stromverbraucher 13, der die Versorgung mit Strom gemäß der Elektrizitätsnachfrage empfängt, eine externe Stromversorgung 14, die über eine (nicht dargestellte) Leistungsverteilungseinrichtung mit dem Leistungsübertragungsnetz 12 verbunden ist, ein Elektrofahrzeug 15, wie etwa ein EV (Elektrofahrzeug) und PHEV (Plugin-Hybrid-Elektrofahrzeug) mit einer ladbaren/entladbaren Elektrizitätsspeichereinheit, ein Kommunikationsnetz 16 und einen Aggregator 17, der das Laden/Entladen der Elektrizitätsspeichereinheit des Elektrofahrzeugs 15 über die externe Stromversorgung 14, die mit dem Kommunikationsnetz 16 verbunden ist, verwaltet. Der Aggregator 17 kann das Laden/Entladen mehrerer Leistungsspeichervorrichtungen einschließlich der Elektrizitätsspeichereinheit des Elektrofahrzeugs 15 verwalten, wodurch die Anforderungen eines elektrischen Stromversorgungsunternehmens, welches das Elektrizitätswerk 11 betreibt, eines Leistungsübertragungsunternehmens, welches das Leistungsübertragungsnetz 12 betreibt, und ähnlicher erfüllt werden.
  • 2 ist ein Blockdiagramm, das die externe Stromversorgung 14 und das Elektrofahrzeug 15, die einen Teil des in 1 dargestellten V2G-Systems bilden, darstellt. Wie in 2 dargestellt, umfasst die externe Stromversorgung 14 einen Verbinder 22, der an einem distalen Ende eines Kabels 21 bereitgestellt ist, und eine digitale Kommunikationseinheit 23. Das Elektrofahrzeug 15 umfasst einen Zugang 101, eine digitale Kommunikationseinheit 102, ein bidirektionales Ladegerät 103, eine Hauptbatterie 104, einen Wandler (CONV) 105, eine Nebenbatterie 106, ein Lade/Entlade-ESG 107, ein Batterie-ESG 108 und eine Funkeinheit 109. Wenn das Elektrofahrzeug 15 an dem V2G teilnimmt, dauert der Anlaufzustand einer elektrischen Komponente des Elektrofahrzeugs 15 aufgrund des Ladens/Entladens der Elektrizitätsspeichereinheit des Elektrofahrzeugs 15 oder seiner Bereitschaft Stunden. Da jedoch die langfristige Fortsetzung des Anlaufzustands der elektrischen Komponente im Hinblick auf die Haltbarkeit nicht bevorzugt wird, wird es bevorzugt, die elektrische Komponente nach Bedarf zu stoppen.
  • Hier nachstehend wird jedes Element der externen Stromversorgung 14 beschrieben.
  • Der Verbinder 22 führt in dem Zustand, in dem er mit dem Eingang 101 des Elektrofahrzeugs 15 verbunden ist, den Leistungsaustausch zwischen der externen Stromversorgung 14 und dem Elektrofahrzeug 15 durch. Die digitale Kommunikationseinheit 23 ist über ein Home Gateway 18 mit dem Kommunikationsnetz 16 verbunden und überlagert der Elektrizität ein von dem Aggregator 17 erhaltenes Signal, das zwischen der externen Stromversorgung 14 und dem Elektrofahrzeug 15 unter Verwendung einer Stromleitungskommunikationstechnologie ausgetauscht wird. Daher wird ein Steuersignal von dem Aggregator 17 an das Elektrofahrzeug 15 gesendet, wenn der Verbinder 22 mit dem Eingang 101 des Elektrofahrzeugs 15 verbunden ist.
  • Als nächstes wird jedes Element des Elektrofahrzeugs 15 beschrieben.
  • An dem Eingang 101 ist der Verbinder 22 der externen Stromversorgung 14 abnehmbar. Die digitale Kommunikationseinheit 102 empfängt das der Elektrizität überlagerte Signal von der externen Stromversorgung 14 durch die Stromleitungskommunikations-(digitale Kommunikations-)Technologie in dem Zustand, in dem der Verbinder 22 der externen Stromversorgung 14 an dem Eingang 101 montiert ist, und wenn das Elektrofahrzeug 15 an dem V2G teilnimmt, führt die digitale Kommunikationseinheit 102 einen Betrieb gemäß einer von dem Signal angezeigten Anweisung durch. Die Verbindungsform zwischen der externen Stromversorgung 14 und dem Elektrofahrzeug 15 ist nicht auf die physikalische Verbindung durch den Eingang 101 und den Verbinder 22 beschränkt und kann jede elektromagnetische Verbindung, wie etwa ein berührungsloses Laden/Entladen in dem Zustand, in dem der Eingang 101 und der Verbinder 22 sich einander nähern, umfassen.
  • Das bidirektionale Ladegerät 103 wandelt eine von der externen Stromversorgung 14 über den Eingang 101 und die digitale Kommunikationseinheit 102 erhaltene Wechselspannung in eine Gleichspannung um. Durch die Leistung, die von dem bidirektionalen Ladegerät 103 in die Gleichspannung umgewandelt wird, wird die Hauptbatterie 104 geladen. Außerdem wandelt das bidirektionale Ladegerät 103 eine von der Hauptbatterie 104 entladene Gleichspannung in eine Wechselspannung um. Die von dem bidirektionalen Ladegerät 103 in die Wechselspannung umgewandelte Leistung wird über den Eingang 101 an die externe Stromversorgung 14 gesendet. Die Hauptbatterie 104 ist zum Beispiel eine Sekundärbatterie, die eine hohe Gleichspannung von 100 V bis 200 V ausgibt und Leistung an einen (nicht dargestellten) Elektromotor, der eine Antriebsquelle des Elektrofahrzeugs 15 ist, liefert.
  • Der Wandler 105 senkt die Ausgangsspannung der Hauptbatterie 104 auf eine konstante Gleichspannung. Durch die von dem Wandler 105 gesenkte Leistung wird die Nebenbatterie 106 geladen. Die Nebenbatterie 106 ist zum Beispiel eine Sekundärbatterie, die eine niedrige Gleichspannung von 12 V ausgibt und die Leistung an eine Hilfsmaschine und ähnliche des Elektrofahrzeugs 15 liefert.
  • Das Lade/Entlade-ESG 107, das Batterie-ESG 108 und die Funkeinheit 109, die von einer gestrichelten Linie von 2 umgeben sind, laufen auch dann gemäß der Anweisung an, die durch das in der digitalen Kommunikationseinheit 102 empfangene Signal angezeigt wird, wenn das Elektrofahrzeug 15 geparkt ist. Das Lade/Entlade-ESG 107 steuert einen Betrieb des bidirektionalen Ladegeräts 103. Das Lade/Entlade-ESG 107 steuert einen Betrieb des bidirektionalen Ladegeräts 103, so dass die Hauptbatterie 104 geladen oder entladen wird. Das Batterie-ESG 108 leitet eine Restkapazität (SOC: State of Charge) der Hauptbatterie 104 ab und führt die Steuerung relativ zu einem Leistungsspeicherzustand und ähnlichem der Hauptbatterie 104 durch.
  • Die Funkeinheit 109 überträgt drahtlos Informationen über die Teilnahme oder Nichtteilnahme des Elektrofahrzeugs 15 an dem V2G, den Grad der Aktivität im Fall der Teilnahme an dem V2G, eine Zeitspanne, in der die Teilnahme an dem V2G möglich ist, einen Entladungszustand der Hauptbatterie 104 und ähnliches an den Aggregator 17. Die Teilnahme oder Nichtteilnahme an dem V2G, der Grad der Aktivität im Fall der Teilnahme an dem V2G und die Zeitspanne, in der die Teilnahme an dem V2G möglich ist, werden von einem Besitzer des Elektrofahrzeugs 15 im Voraus festgelegt. Es wird angenommen, dass der Besitzer des Elektrofahrzeugs 15 versteht, dass eine Entladegelegenheit und eine Entlademenge der Hauptbatterie 104 groß sind, wenn der Grad der Teilnahmeaktivität an dem V2G hoch ist.
  • 3 ist ein Blockdiagramm, das den Aggregator 17 und das Kommunikationsnetz 16, die einen Teil des in 1 dargestellten V2G-Systems bilden, darstellt. Wie in 3 dargestellt, umfasst der Aggregator 17 eine Leistungsmengendatenbank 201, eine Einstellungsinformationsdatenbank 202, eine Analyseeinheit 203, eine Entscheidungseinheit 204, eine Übertragungseinheit 205 und eine Funkeinheit 206.
  • Die Leistungsmengendatenbank 201 ist eine Datenbank mit vergangenen und aktuellen Informationen über eine von dem Stromversorger einschließlich des Elektrizitätswerks 11 an das Stromversorgungssystem gelieferte Leistungsmenge und eine von dem Stromversorgungssystem an den Stromverbraucher 13 gelieferte Leistung. Die Einstellungsinformationsdatenbank 202 ist eine Datenbank mit Informationen über die Teilnahme oder Nichtteilnahme jedes Elektrofahrzeugs 15 an dem V2G, den Aktivitätsgrad im Fall der Teilnahme an dem V2G und die Zeitspanne, in der die Teilnahme an dem V2G möglich ist, den Beitragsgrad zu dem Stromversorgungssystem und ähnliche.
  • Die Analyseeinheit 203 führt in zeitlicher Reihenfolge unter Verwendung der Informationen der Leistungsmengendatenbank 201 eine Analyse einer Leistungsmenge durch, wodurch die Leistungsnachfrage/Versorgungsvorhersage in dem Stromversorgungssystem durchgeführt wird. Die Entscheidungseinheit 204 bestimmt für jedes Elektrofahrzeug 15 basierend auf dem von der Analyseeinheit 203 erhaltenen Leistungsnachfrage/Versorgungsvorhersageergebnis, Informationen jedes Elektrofahrzeugs 15, die in der Einstellungsinformationsdatenbank 202 gespeichert sind, und ähnlichem eine Zeit, zu der das Entladen der Hauptbatterie 104 des Elektrofahrzeugs 15 an das Stromversorgungssystem oder das Laden der Hauptbatterie 104 durch von dem Stromversorgungssystem gelieferte Leistung durchgeführt wird. Die Übertragungseinheit 205 überträgt über das Kommunikationsnetzwerk 16 und die externe Stromversorgung 14 eine Anweisung an das Elektrofahrzeug 15, wobei die Anweisung die Zeit, zu der das Entladen oder das Laden der Hauptbatterie 104 durchgeführt wird, und die Zeit, die von der Entscheidungseinheit 204 bestimmt wird, umfasst. Die Entscheidungseinheit 204 legt gemäß einer Anweisung von dem Aggregator 17 einen Anreiz, wenn das Laden/Entladen der Hauptbatterie 104 des Elektrofahrzeugs 15 durchgeführt wird, höher als einen Anreiz fest, wenn das Laden/Entladen in anderen Zeitspannen durchgeführt wird. Der Anreiz ist ein Gewinn eines Besitzers des Elektrofahrzeugs 15, wenn das Elektrofahrzeug Strom verkauft und einkauft, und der Gewinn ist hauptsächlich Geld.
  • Die Funkeinheit 206 empfängt die Informationen über die Teilnahme oder Nichtteilnahme an dem V2G, den Aktivitätsgrad in dem Fall der Teilnahme an dem V2G, die Zeitspanne, in der die Teilnahme an dem V2G möglich ist, den Entladungszustand der Hauptbatterie 104 und ähnliche, die drahtlos von dem Elektrofahrzeug 15 übertragen werden. Die in der Funkeinheit 206 empfangenen Informationen werden in der Einstellungsinformationsdatenbank 202 gespeichert.
  • Als nächstes wird das Laden/Entladen der Hauptbatterie 104 des Elektrofahrzeugs 15, das von dem Aggregator 17 verwaltet wird, unter Bezug auf 4 beschrieben. Wenn der Verbinder 22 der externen Stromversorgung 14 an dem Eingang 101 des Elektrofahrzeugs 15 montiert ist, bestätigt die digitale Kommunikationseinheit 102 des Elektrofahrzeugs 15, ob es möglich ist, über die externe Stromversorgung 14 und das Kommunikationsnetz 16 mit dem Aggregator 17 zu kommunizieren (Schritt S101). Als nächstes stoppen das Lade/Entlade-ESG 107, das Batterie-ESG 108 und die Funkeinheit 109 des Elektrofahrzeugs 15 den Betrieb (Schritt S103). Wenn die digitale Kommunikationseinheit 102 des Elektrofahrzeugs 15 als nächstes ein Signal von dem Aggregator 17 empfängt, das eine Anweisung zum Entladen oder Laden der Hauptbatterie 104 enthält (Schritt S105: Ja), geht das Verfahren weiter zu Schritt S107.
  • In dem Schritt S107 bestimmt die digitale Kommunikationseinheit 102, ob die aktuelle Zeit eine um eine vorgegebene Zeit frühere Zeit als eine Startzeit des Entladens oder Ladens ist, die durch die Anweisung von dem Aggregator 17 angezeigt wird. Wenn die aktuelle Zeit eine um die vorgegebene Zeit frühere Zeit ist, geht das Verfahren weiter zu Schritt S109, und wenn die aktuelle Zeit eine um die vorgegebene Zeit oder mehr frühere Zeit ist, kehrt das Verfahren zu Schritt S105 zurück. Wenn der Signalempfangspunkt in Schritt S105 die Zeit, die um die vorgegebene Zeit früher als die Startzeit ist, bereits überschreitet, geht das Verfahren weiter zu Schritt S109, um das häufige Auftreten von Anlaufen und Stoppen zu verhindern. In dem Schritt S109 startet die digitale Kommunikationseinheit 102 den Betrieb des Lade/Entlade-ESG 107, des Batterie-ESG 108 und der Funkeinheit 109. Wenn als nächstes die Startzeit erreicht wird, wird das Entladen oder Laden der Hauptbatterie 104 des Elektrofahrzeugs 15 gestartet (Schritt S111). Wenn als nächstes eine Endzeit erreicht wird, die durch eine Voraus von dem Aggregator 17 empfangene Anweisung angezeigt wird, oder wenn die digitale Kommunikationseinheit 102 eine Entlade- oder Ladeendanweisung von dem Aggregator 17 empfängt (Schritt S113: Ja), kehrt das Verfahren zu Schritt S103 zurück, so dass das Lade/Entlade-ESG 107, das Batterie-ESG 108 und die Funkeinheit 109 des Elektrofahrzeugs 15 den Betrieb stoppen.
  • Wie vorstehend beschrieben, startet das Lade/Entlade-ESG 107 das Entladen der Hauptbatterie 104 zu der Entladestartzeit, die durch eine Anweisung von dem Aggregator 17 angezeigt wird, und beendet das Entladen der Hauptbatterie 104 zu der Entladeendzeit, die durch eine Anweisung von dem Aggregator 17 angezeigt wird. Wenn jedoch der SOC der Hauptbatterie 104 größer oder gleich einem vorgegebenen Wert ist oder der Aktivitätsgrad der Teilnahme an dem V2G größer oder gleich einem vorgegebenen Wert ist, kann das Lade/Entlade-ESG 107 das Entladen ab einer früheren Zeit als der Startzeit, die durch die Anweisung von dem Aggregator 17 angezeigt wird, starten oder das Entladen nach dem Ende der durch die Anweisung angezeigten Zeit beenden. Zum Beispiel ist die durch die Anweisung von dem Aggregator 17 angezeigte Startzeit 18:00 und die Endzeit 19:00, das Lade/Entlade-ESG 107 kann das Entladen der Hauptbatterie 104 um 17:30 starten oder das Entladen der Hauptbatterie 104 um 19:30 beenden. Wie vorstehend beschrieben, legt der Aggregator 17 den Beitragsgrad für das Stromversorgungssystem und einen Anreiz in dem Elektrofahrzeug 15, dessen Hauptbatterie 104 länger als nach der Anweisung von dem Aggregator 17 entladen wird, höher fest. Außerdem gibt es in einem Stromhandelsmarkt in dem V2G getrennt von einem normalen Handelsmarkt einen unmittelbar vorhergehenden Anpassungsmarkt, in dem eine Einheitshandelszeit und eine Einheitshandelsmenge klein sind. Wenn die Hauptbatterie 104 länger als nach Anweisung von dem Aggregator 17 entladen werden kann, ist es möglich, den Leistungsverkauf in dem unmittelbar vorhergehenden Anpassungsmarkt durchzuführen, so dass es möglich ist, weiter zu der Stabilisierung des Stromversorgungssystems beizutragen.
  • Als nächstes wird die Verwaltung des Aggregators 17 relativ zu dem Laden/Entladen der Hauptbatterie 104 des Elektrofahrzeugs 15 beschrieben. 5 ist ein Diagramm, das jede Änderung in der Ausgabe und der SOC der in dem Elektrofahrzeug 15 bereitgestellten Hauptbatterie 104 begleitet von einem Beispiel des Ladens/Entladens (einschließlich dem V2G) der Hauptbatterie 104 darstellt. In dem in 5 dargestellten Beispiel fährt das Elektrofahrzeug 15 zum Beispiel am Morgen von seinem eigenen Zuhause zu einem Büro, und dann wird die Hauptbatterie 104 in dem Büro geladen. Dann wird die Hauptbatterie 104 bis etwa 18:00 stehen gelassen, und das Elektrofahrzeug 15 fährt um etwa 18:00 von dem Büro zu seinem eigenen Zuhause. Wenn das Elektrofahrzeug 15 sein eigenes Zuhause erreicht und mit der externen Stromversorgung 14 verbunden wird, kann es an dem V2G teilnehmen. Da in dem in 5 dargestellten Beispiel eine Leistungsnachfrage ab etwa 18:00, wenn das Elektrofahrzeug 15 zu seinem eigenen Zuhause zurückkehrt, etwa 2 Stunden lang schnell steigt und eine Leistungsversorgungsmenge kleiner als die Leistungsnachfragemenge ist, wird von dem Aggregator 17 eine Entladeanweisung an das mit der externen Stromversorgung 14 verbundene Elektrofahrzeug 15 gesendet, so dass die Hauptbatterie 104 kontinuierlich entladen wird. Wenn die Leistungsnachfrage danach verringert wird, wird die Hauptbatterie 104 gemäß einer Anweisung von dem Aggregator 17 bis etwa 3:00 nachts geladen und entladen. Nach 3:00 nachts ist die Hauptbatterie 104 für den nächsten Morgen vollständig aufgeladen.
  • Innerhalb der in 5 dargestellten V2G-Teilnahmezeitspanne kann in einer anderen Zeitspanne als dem kontinuierlichen Entladen eine Lade/Entladeanweisung an das Elektrofahrzeug 15 gesendet werden, um Leistung zum Einstellen einer Frequenz in dem Stromversorgungssystem, das stabilisiert werden soll, zu liefern. Obwohl tatsächlich keine Leistung an das Stromversorgungssystem geliefert wird, kann der Aggregator 17 den Beitragsgrad für das Stromversorgungssystem in dem Elektrofahrzeug 15, das zu der Stabilisierung der Frequenz in dem Stromversorgungssystem beiträgt, hoch festlegen. Wenn außerdem in einem Büro die externe Stromversorgung 14 bereitgestellt wird, die mit dem Aggregator 17 kommunizieren kann, kann die V2G-Teilnahme, die von etwa 18:00 bis etwa 3:00 durchgeführt wird, die in 5 dargestellt wird, wie in 6 und 7 dargestellt, in einer Zeitspanne am Tag durchgeführt werden. Wie bei dem in 6 und 7 dargestellten Beispiel werden ein Stoppzustand und ein Anlaufzustand des Lade/Entlade-ESG 107 und ähnlicher für ein Fahrzeug, das aktiv an V2G teilnimmt, umgeschaltet, so dass es möglich ist, die Haltbarkeit dieser elektrischen Komponenten sicherzustellen.
  • 8 ist ein Diagramm, das eine Änderung in einem Nachfrage- und Versorgungsgleichgewicht eines Strommarktes und einer Temperatur in einer in 5 dargestellten V2G-Teilnahmezeitspanne und einer früheren Zeitspanne als der V2G-Teilnahmezeitspanne darstellt. Da es, wie in 8 dargestellt, in einem Strommarkt eines Tages bis etwa 17:00 eine Differenz einer Leistungsversorgungsmenge in Bezug auf eine Leistungsnachfragemenge gibt, weist der Aggregator 17 das Elektrofahrzeug 15, das an dem V2G teilnehmen kann, an, die Hauptbatterie 104 durch Leistung von dem Stromversorgungssystem zu laden. Da jedoch die Leistungsversorgungsmenge etwa zwei Stunden ab etwa 18:00 bei Einbruch der Dunkelheit kleiner als die Nachfragemenge ist, weist der Aggregator 17 das Elektrofahrzeug 15, das an dem V2G teilnehmen kann, an, das Entladen der Hauptbatterie 104 an das Stromversorgungssystem durchzuführen. Da es danach nachts ebenso eine Differenz der Leistungsversorgungsmenge in Bezug auf die Leistungsnachfragemenge gibt, weist der Aggregator 17 das Elektrofahrzeug 15, das an dem V2G teilnehmen kann, an, die Hauptbatterie 104 durch Leistung von dem Stromversorgungssystem zu laden.
  • Wie vorstehend beschrieben, sendet der Aggregator 17 eine Entlade- oder Ladeanweisung an die Hauptbatterie 104 des Elektrofahrzeugs 15, das an dem V2G teilnehmen kann, wobei die Anweisung eine Startzeit und eine Endzeit des Ladens oder Entladens anweist. Das Elektrofahrzeug 15 tauscht abhängig von einer Zeit von der Startzeit bis zu der Endzeit eine Leistungsmenge mit dem Stromversorgungssystem aus. Jedoch ist eine Leistungsmenge (Wh) pro Einheitszeit, die zwischen dem Elektrofahrzeug 15 und dem Stromversorgungssystem ausgetauscht wird, kleiner als eine minimale Handelseinheit (= eine Einheitszeit × eine Einheitshandelsmenge), die verwaltet wird, wenn der Aggregator 17 Leistung mit dem Stromversorgungssystem austauscht. Daher bestimmt die Entscheidungseinheit 204 des Aggregators 17 eine Entladezeit jedes Elektrofahrzeugs 15 derart, dass eine Differenz zwischen einem Vielfachen der minimalen Handelseinheit und einer Gesamtleistungsmenge, die in dem Aggregator 17 für den Leistungsverkauf an das Stromversorgungssystem sichergestellt wird, durch eine Leistungsmenge, die von der Hauptbatterie 104 jedes Elektrofahrzeugs 15 entladen wird, vergütet werden kann. In 8 wird die minimale Handelseinheit durch eine Quadratform ausgedrückt, und die Gesamtleistungsmenge, die in dem Aggregator 17 für den Leistungsverkauf an das Stromversorgungssystem sichergestellt wird, wird durch eine schraffierte Fläche ausgedrückt. Die Gesamtleistungsmenge, die in dem Aggregator 17 für den Leistungsverkauf an das Stromversorgungssystem sichergestellt wird, umfasst neben einer von anderen Elektrofahrzeugen entladenen Leistungsmenge eine Leistungsmenge, die von dem Stromversorger einschließlich des Elektrizitätswerks 11 geliefert wird.
  • Indessen ist eine Leistungsmenge, die von einem Elektrofahrzeug rückwärts geliefert (verkauft) werden kann, etwa 15 kWh bis 50 kWh. Andererseits ist in der vorstehend erwähnten minimalen Handelseinheit, die in einem Stromhandelsmarkt verwendet wird, zum Beispiel ein Wert von 0,1 MWh (= 1 hr × 0,1 MW) bis 1 MWh (= 1 hr × 1 MW), der im Allgemeinen überhaupt nicht klein ist, festgelegt. Folglich ist es schwierig, die minimale Handelseinheit nur durch ein einziges Elektrofahrzeug oder eine kleine Anzahl von Elektrofahrzeugen zu erfüllen. Daher ist es unter Berücksichtigung der in dem Aggregator 17 für den Leistungsverkauf an das Stromversorgungssystem sichergestellten Leistungsmenge beim Festlegen von Entladezeiten jedes Elektrofahrzeugs wichtig, einen Stromhandel festzulegen, der eine Vereinbarung für den Leistungsverkauf von dem Elektrofahrzeug 15 an den Aggregator 17 umfasst.
  • Wenn Gesetze für ein umweltfreundliches Auto in jedem Land, wie etwa ein ZEV-Gesetz (Zero Emission Vehicle: emissionsfreies Fahrzeug) durchgesetzt werden, wird eine beschleunigte Zunahme der Anzahl von Elektrofahrzeugen, die an dem V2G in einem Geschäft teilnehmen können, erwartet. Folglich bestimmt der Aggregator 17 Entladezeiten jedes Elektrofahrzeugs, so dass es möglich ist, die minimale Handelseinheit zu erfüllen, und somit die Leistung jedes Elektrofahrzeugs, die an das Stromversorgungssystem geliefert werden soll, schnell zu erhöhen.
  • Außerdem bestimmt die Entscheidungseinheit 204 des Aggregators 17 basierend auf dem Leistungsnachfrage/Versorgungsvorhersageergebnis durch die Analyseeinheit 203, dem Beitragsgrad jedes Elektrofahrzeugs 15 für das Stromversorgungssystem, der in der Einstellungsinformationsdatenbank 202 gespeichert ist, und einer Ladeeignungshöhe einer Ladezeitspanne der Hauptbatterie 104, die aus dem auf die Hauptbatterie 104 angewendeten Verschlechterungseinflussgrad abgeleitet wird, eine Ladezeit des Elektrofahrzeugs 15 derart, dass die Hauptbatterie 104 in einer Zeitspanne geladen wird, in der die Ladeeignungshöhe hoch ist, da der Beitragsgrad hoch ist. Als eine Folge gibt es viele Fälle, in denen eine Ladestartzeit in dem Elektrofahrzeug 15 mit einem hohen Beitragsgrad eine Zeitspanne ist, in der die Ladeeignungshöhe hoch ist, so dass es möglich ist, das Fortschreiten der Verschlechterung der Hauptbatterie 104 in dem Elektrofahrzeug 15 mit einem hohen Beitragsgrad zu verzögern.
  • Der auf die Hauptbatterie 104 angewendete Verschlechterungseinflussgrad wird basierend auf einer Änderungsvorhersage einer Tagestemperatur in der Position des Elektrofahrzeugs 15 abgeleitet. Wenn eine Temperatur während eines Ladens einer Sekundärbatterie übermäßig hoch ist, wird im Allgemeinen ein Verschlechterungseinflussgrad hoch. Da in dem dargestellten Beispiel in 8 in einer Zeitspanne, die sich gerade vom Einbruch der Dunkelheit in die Nacht geändert hat, eine Temperatur immer noch hoch ist und der Verschlechterungseinflussgrad hoch ist, ist die Ladeeignungshöhe niedrig. Wenn die Temperatur jedoch in einer Zeitspanne mitten in der Nacht fällt und zum Beispiel etwa 25°C erreicht, wird die Ladeeignungshöhe hoch, da der Verschlechterungseinflussgrad gering wird.
  • Im Gegensatz dazu fällt die Temperatur in einem kalten Bereich in einer Zeitspanne mitten in der Nacht. Wenn die Temperatur zur Ladezeit fällt, ist es notwendig, einen Ladestrom unter Berücksichtigung der Verschlechterung der Haltbarkeit für das Laden/Entladen der Hauptbatterie zu begrenzen, da ein Abscheidungsphänomen eines aktiven Materials in einer negativen Elektrode auftritt, das als Elektroabscheidung bezeichnet wird. Wenn in einer allgemeinen Lithiumionenbatterie außerdem die Temperatur zur Zeit des Ladens fällt, ist eine lange Zeit für das Laden der Hauptbatterie 104 durch Laden mit konstanter Spannung erforderlich, da die Aktivität einer chemischen Reaktion in der Hauptbatterie 104 sinkt. Da aufgrund dieser Faktoren eine lange Zeit für das vollständige Laden der Hauptbatterie 104 benötigt wird, wird abhängig von der Ladung auch eine lange Zeit benötigt, um elektrische Komponenten zu verwenden. Da die Nutzungsverschlechterung der elektrischen Komponenten als eine Folge ebenfalls gefördert wird, ist die Ladeeignungshöhe des kalten Bereichs in der Zeitspanne mitten in der Nacht gering. Da es andererseits in dem Fall der Zeitspanne, die sich gerade vom Einbruch der Dunkelheit in die Nacht geändert hat, die Temperatur höher als die der Zeitspanne mitten in der Nacht ist, ist es nicht notwendig, den Ladestrom zu begrenzen. Da außerdem keine lange Zeit für das vollständige Aufladen der Hauptbatterie 104 benötigt wird, ist die Ladeeignungshöhe höher als die der Zeitspanne mitten in der Nacht.
  • Außerdem legt der Aggregator 17 den Beitragsgrad für das Stromversorgungssystem und einen Anreiz in dem Elektrofahrzeug 15 mit der Hauptbatterie 104, die länger als die von der Entscheidungseinheit 204 bestimmte Entladezeit entladen wird, hoch fest. Wenn die Startzeit der Entladezeit, die von der Entscheidungseinheit 204 bestimmt wird, zum Beispiel 18:00 ist und die Endzeit 19:00 ist, legt der Aggregator 17 den Beitragsgrad in dem Elektrofahrzeug 15 der Hauptbatterie 104, die von 17:30 bis 19:00 entladen wird, oder dem Elektrofahrzeug 15:00 der Hauptbatterie 104, die von 18:00 bis 19:30 entladen wird, hoch fest.
  • Wie vorstehend beschrieben, wird gemäß der vorliegenden Ausführungsform die Lade/Entladezeit der Hauptbatterie 104 des Elektrofahrzeugs 15, das an dem V2G teilnimmt, durch den Aggregator 17 basierend auf dem Leistungsnachfrage/Versorgungsvorhersageergebnis oder ähnlichem in dem Stromversorgungssystem bestimmt. Daher wird in der Zeitspanne, in welcher die Leistungsversorgungsmenge kleiner als die Leistungsnachfragemenge ist, wenn gemäß einer Anweisung von dem Aggregator 17 Leistung von dem Elektrofahrzeug 15 an das Stromversorgungssystem geliefert wird, die Stabilität der Stromversorgung an den Stromverbraucher 13 von dem Stromversorgungssystem verbessert. Wenn die Hauptbatterie 104 in der Zeitspanne geladen wird, in der es eine Differenz der Leistungsversorgungsmenge in Bezug auf die Leistungsnachfragemenge gibt, wird die Stabilität des Stromversorgungssystems verbessert. Außerdem wird ein Anreiz für einen Besitzer des Elektrofahrzeugs 15 in dem Fall der Durchführung des Ladens/Entladens gemäß einer Anweisung von dem Aggregator 17 hoch festgelegt, was zu einer Erhöhung des Gewinnanteils des Besitzers des Elektrofahrzeugs 15 führt, wenn das V2G durchgeführt wird. Überdies wird die Lade/Entladezeit der Hauptbatterie 104 des Elektrofahrzeugs 15 durch den Aggregator 17 basierend auf der minimalen Handelseinheit einer Leistungsmenge, die verwaltet wird, wenn mit dem Stromversorgungssystem Leistung ausgetauscht wird, bestimmt. Somit ist es möglich, die Wahrscheinlichkeit einer Vereinbarung über den Leistungsverkauf von dem Elektrofahrzeug 15 an den Aggregator 17 und die Wahrscheinlichkeit des Leistungsverkaufs von dem Aggregator 17 an das Stromversorgungssystem zu erhöhen. Durch derartige Vorteile ist es möglich, die aktive Teilnahme des Elektrofahrzeugs 15 an dem V2G zu fördern, so dass die Stabilität des Stromversorgungssystems ebenfalls erreicht wird. Wie vorstehend beschrieben, ist es gemäß der vorliegenden Ausführungsform möglich, den Gewinn von vier Rollen des Aggregators 17, eines Besitzers des Elektrofahrzeugs 15, einer Person, die das Stromversorgungssystem betreibt, und des Stromverbrauchers 13, die an V2G beteiligt sind, zu maximieren. Da überdies das Lade/Entlade-ESG 107, das Batterie-ESG 108 und die Funkeinheit 109 des Elektrofahrzeugs 15 abgesehen von deren Bereitschaftszeit nicht betrieben werden, ist es möglich, die Haltbarkeit dieser Elemente, die stoppen können, sicherzustellen. Außerdem ist es möglich, den Leistungsverbrauch durch diese Elemente, die stoppen können, zu verringern.
  • Außerdem bestimmt der Aggregator 17 eine Entladezeit jedes Elektrofahrzeugs 15 derart, dass eine Differenz zwischen einem Vielfachen der minimalen Handelseinheit, die in einem Stromhandelsmarkt verwendet wird und im Allgemeinen überhaupt nicht klein ist, und einer Gesamtleistungsmenge, die in dem Aggregator 17 für den Leistungsverkauf an das Stromversorgungssystem sichergestellt wird, durch eine Leistungsmenge abgegolten werden kann, die von der Hauptbatterie 104 jedes Elektrofahrzeugs 15 entladen wird. Die Hauptbatterie 104 des Elektrofahrzeugs 15 hat in dem Maß Schwierigkeiten in der Ansammlung einer hohen Leistung, dass die minimale Handelseinheit erfüllt wird und das Entladen einer hohen Leistung für das Elektrofahrzeug 15 nicht erforderlich ist, aber da die vorstehend erwähnte Differenz kleiner als die minimale Handelseinheit ist, wird die Vereinbarungswahrscheinlichkeit des Leistungsverkaufs von dem Elektrofahrzeug 15 an den Aggregator 17 verbessert. Außerdem kann der Aggregator 17 den Leistungsverkauf an das Stromversorgungssystem maximal durchführen.
  • Außerdem bestimmt der Aggregator 17 die Ladezeit des Elektrofahrzeugs 15 basierend auf dem Beitragsgrad für das Stromversorgungssystem und der Ladeeignungshöhe, so dass die Hauptbatterie 104 in der Zeitspanne geladen wird, in der die Ladeeignungshöhe hoch ist, da der Beitragsgrad hoch ist. Da es viele Fälle gibt, in denen der Ladestart in der Zeitspanne angewiesen wird, in der die Temperatur in Bezug auf das Elektrofahrzeug 15 mit einem hohen Beitragsgrad niedrig ist, ist es möglich, das Fortschreiten der Verschlechterung der Hauptbatterie 104 zu verzögern. Insbesondere ist es in der Zeitspanne, in der die Ladeeignungshöhe hoch ist, möglich, zu ermöglichen, dass das Fortschreiten der Verschlechterung der Hauptbatterie 104 ungefähr null ist. Durch derartige Vorteile ist es möglich, die aktive Teilnahme des Elektrofahrzeugs an dem V2G in Bezug auf einen Besitzer des Elektrofahrzeugs 15 zu fördern, der aufgrund einer Sorge, wie etwa der Verschlechterung der Elektrizitätsspeichereinheit, wenn er an dem V2G teilnimmt, mit der Teilnahme an V2G zögert.
  • Wenn der SOC der Hauptbatterie 104 außerdem größer oder gleich einem vorgegebenen Wert ist oder der Teilnahmeaktivitätsgrad an V2G größer oder gleich einem vorgegebenen Wert ist, legt der Aggregator 17 den Beitragsgrad für das Stromversorgungssystem und einen Anreiz in dem Elektrofahrzeug 15, dessen Hauptbatterie 104 länger als gemäß einer Anweisung von dem Aggregator 17 entladen wird, hoch fest. Folglich wird ein Gewinnanteil eines Besitzers des Elektrofahrzeugs 15, wenn V2G durchgeführt wird, hoch, so dass es möglich ist, die aktive Teilnahme des Elektrofahrzeugs 15 an dem V2G zu fördern. Außerdem wird in dem Fall des Entladens in der Zeitspanne, in der die Leistungsversorgungsmenge kleiner als die Leistungsnachfragemenge ist, die Stabilität des Stromversorgungssystems verbessert. Außerdem gibt es in einem Stromhandelsmarkt in dem V2G getrennt von einem normalen Handelsmarkt einen unmittelbar vorhergehenden Anpassungsmarkt, in dem die Einheitshandelszeit und die Einheitshandelsmenge klein sind, und wenn die Hauptbatterie 104 länger als gemäß der Anweisung von dem Aggregator 17 entladen werden kann, kann das Elektrofahrzeug 15 den Leistungsverkauf in dem unmittelbar vorhergehenden Anpassungsmarkt durchführen, so dass es möglich ist, weiter zu der Stabilisierung des Stromversorgungssystems beizutragen. Wie vorstehend beschrieben, ist es möglich, einen Gewinn von vier Rollen des Aggregators 17, eines Besitzers des Elektrofahrzeugs 15, einer Person, die das Stromversorgungssystem betreibt, und des Stromverbrauchers 13, die an V2G beteiligt sind, zu maximieren.
  • Beachten Sie, dass die vorliegende Erfindung nicht auf die vorstehend erwähnte Ausführungsform und Modifikation beschränkt ist, und eine Verbesserung und ähnliches geeignet vorgenommen werden können. Zum Beispiel können das bidirektionale Ladegerät 103 und das Lade/Entlade-ESG 107 des Elektrofahrzeugs 15 an der externen Stromversorgung 14 bereitgestellt werden. In diesem Fall wird der Leistungsaustausch zwischen dem Elektrofahrzeug 15 und der externen Stromversorgung 14 durch einen Gleichstrom durchgeführt. Außerdem laufen das Batterie-ESG 108 und die Funkeinheit 109 des Elektrofahrzeugs 15 selbst dann gemäß einer Anweisung, die von einem Signal angezeigt wird, das in der digitalen Kommunikationseinheit 102 empfangen wird, an oder stoppen, wenn das Elektrofahrzeug 15 geparkt ist.
  • Bezugszeichenliste
  • 11
    Elektrizitätswerk
    12
    Leistungsübertragungsnetz
    13
    Stromverbraucher
    14
    externe Stromversorgung
    15
    Elektrofahrzeug
    16
    Kommunikationsnetz
    17
    Aggregator
    18
    Home Gateway
    21
    Kabel
    22
    Verbinder
    23
    digitale Kommunikationseinheit
    101
    Eingang
    102
    digitale Kommunikationseinheit
    103
    bidirektionales Ladegerät
    104
    Hauptbatterie
    105
    Wandler
    106
    Nebenbatterie
    107
    Lade/Entlade-ESG
    108
    Batterie-ESG
    109
    Funkeinheit
    201
    Leistungsmengendatenbank
    202
    Einstellungsinformationsdatenbank
    203
    Analyseeinheit
    204
    Entscheidungseinheit
    205
    Übertragungseinheit
    206
    Funkeinheit

Claims (10)

  1. Lade/Entladevorrichtung, die aufweist: eine Elektrizitätsspeichereinheit, die an einer Transporteinrichtung bereitgestellt ist; eine Leistungsumwandlungseinheit, die eine Umwandlung von Leistung, die zwischen der Elektrizitätsspeichereinheit und einem externen Stromversorgungssystem ausgetauscht wird, durchführt; eine Empfangseinheit, die eine von einer Server-Vorrichtung übertragene Anweisung empfängt, die eine Zeit bestimmt, zu der das Entladen der Elektrizitätsspeichereinheit an das Stromversorgungssystem oder das Laden der Elektrizitätsspeichereinheit durch Leistung, die von dem Stromversorgungssystem geliefert wird, durchgeführt wird, wobei die Anweisung die Zeit umfasst, zu der das Entladen oder Laden durchgeführt wird; und eine Steuereinheit, die basierend auf der Zeit, die von der in der Empfangseinheit empfangenen Anweisung angezeigt wird, anläuft oder stoppt und einen Betrieb der Leistungsumwandlungseinheit steuert, wobei die Zeit, zu der das Laden oder das Entladen durchgeführt wird, basierend auf einem Ergebnis, das erhalten wird, wenn die Server-Vorrichtung durch eine Analyse in zeitlicher Reihenfolge einer von einem Stromversorger an das Stromversorgungssystem gelieferten Leistungsmenge und einer von dem Stromversorgungssystem an einen Stromverbraucher gelieferten Leistungsmenge eine Leistungsnachfrage- und Versorgungsvorhersage in dem Stromversorgungssystem durchführt, und einer minimalen Handelseinheit einer Leistungsmenge, die von der Server-Vorrichtung verwaltet wird, wenn Leistung mit dem Stromversorgungssystem ausgetauscht wird, bestimmt wird, wobei die Zeit durch die Anweisung angezeigt wird.
  2. Lade/Entladevorrichtung nach Anspruch 1, wobei die Zeit, zu der das Entladen oder Laden durchgeführt wird, basierend auf einem Ergebnis der Leistungsnachfrage- und Versorgungsvorhersage, der minimalen Handelseinheit für eine Leistungsmenge, die von der Server-Vorrichtung verwaltet wird, wenn mit dem Stromversorgungssystem Leistung ausgetauscht wird, und einer Gesamtleistungsmenge, die für den Verkauf von Leistung an das Stromversorgungssystem in der Server-Vorrichtung sichergestellt wird, bestimmt wird, wobei die Zeit durch die Anweisung angezeigt wird.
  3. Lade/Entladevorrichtung nach Anspruch 1 oder 2, wobei die Zeit, zu der das Laden durchgeführt wird, basierend auf dem Ergebnis der Leistungsnachfrage- und Versorgungsvorhersage, einem Beitragsgrad der Lade/Entladevorrichtung für das Stromversorgungssystem und einer Ladeeignungshöhe einer Ladezeitspanne der Elektrizitätsspeichereinheit, die aus einem Verschlechterungseinflussgrad, der auf die Elektrizitätsspeichereinheit angewendet wird, abgeleitet wird, derart bestimmt wird, dass die Elektrizitätsspeichereinheit in einer Zeitspanne geladen wird, in welcher die Ladeeignungshöhe hoch ist, da der Beitragsgrad hoch ist, wobei die Zeit durch die Anweisung angezeigt wird.
  4. Lade/Entladevorrichtung nach einem der Ansprüche 1 bis 3, wobei die Steuereinheit, wenn eine Leistungsspeichermenge der Elektrizitätsspeichereinheit größer oder gleich einer vorgegebenen Menge ist, den Betrieb der Leistungsumwandlungseinheit derart steuert, dass das Entladen ab einer um eine vorgegebene Zeit früheren Zeit als einer Startzeit des Entladens, die durch die Anweisung angezeigt wird, gestartet wird und bis zu einer durch die Anweisung angezeigten Endzeit des Entladens durchgeführt wird.
  5. Lade/Entladevorrichtung nach einem der Ansprüche 1 bis 3, wobei die Steuereinheit, wenn ein vorgegebener Aktivitätsgrad der Entladung der Elektrizitätsspeichereinheit an das Stromversorgungssystem größer oder gleich einem vorgegebenen Grad ist, den Betrieb der Leistungsumwandlungseinheit derart steuert, dass das Entladen ab einer um eine vorgegebene Zeit früheren Zeit als einer Startzeit des Entladens, die durch die Anweisung angezeigt wird, gestartet wird und bis zu einer durch die Anweisung angezeigten Endzeit des Entladens durchgeführt wird.
  6. Lade/Entladevorrichtung nach einem der Ansprüche 1 bis 3, wobei die Steuereinheit, wenn eine Leistungsspeichermenge der Elektrizitätsspeichereinheit größer oder gleich einer vorgegebenen Menge ist, den Betrieb der Leistungsumwandlungseinheit derart steuert, dass das Entladen ab einer durch die Anweisung angezeigten Zeit startet, und bis zu einer Zeit durchgeführt wird, die gegenüber einer durch die Anweisung angezeigten Endzeit des Entladens um eine vorgegebene Zeit verzögert ist.
  7. Lade/Entladevorrichtung nach einem der Ansprüche 1 bis 3, wobei die Steuereinheit, wenn ein vorgegebener Aktivitätsgrad des Entladens der Elektrizitätsspeichereinheit an das Stromversorgungssystem größer oder gleich einem vorgegebenen Grad ist, den Betrieb der Leistungsumwandlungseinheit derart steuert, dass das Entladen ab einer durch die Anweisung angezeigten Zeit startet und bis zu einer Zeit durchgeführt wird, die gegenüber einer durch die Anweisung angezeigten Endzeit des Entladens um eine vorgegebene Zeit verzögert ist.
  8. Lade/Entladevorrichtung nach einem der Ansprüche 1 bis 7, wobei die Steuereinheit zu einem Zeitpunkt um eine vorgegebene Zeit vor der Startzeit des Entladens oder Ladens, die durch die in der Empfangseinheit empfangene Anweisung angezeigt wird, anläuft, und, wenn eine Differenz zwischen der Startzeit und einer Zeit, zu der die Empfangseinheit die Anweisung empfängt, kürzer als eine vorgegebene Zeit ist, zu einem Zeitpunkt anläuft, zu dem die Empfangseinheit die Anweisung empfängt.
  9. Transporteinrichtung, die die Lade/Entladevorrichtung nach einem der Patentansprüche 1 bis 8 aufweist.
  10. Lade/Entladesteuerungsverfahren einer Lade/Entladevorrichtung, die eine Elektrizitätsspeichereinheit, die an einer Transporteinrichtung bereitgestellt ist, eine Leistungsumwandlungseinheit zum Durchführen einer Umwandlung von Leistung, die zwischen der Elektrizitätsspeichereinheit und einem externen Stromversorgungssystem ausgetauscht wird, umfasst, das aufweist: Empfangen einer Anweisung, die von einer Server-Vorrichtung übertragen wird, die eine Zeit bestimmt, zu der das Entladen der Elektrizitätsspeichereinheit an das Stromversorgungssystem oder das Laden der Elektrizitätsspeichereinheit durch Leistung, die von dem Stromversorgungssystem geliefert wird, durchgeführt wird, wobei die Anweisung die Zeit umfasst, zu der das Entladen oder Laden durchgeführt wird; und Steuern eines Betriebs der Leistungsumwandlungseinheit durch eine Steuereinheit basierend auf der Zeit, die von der in empfangenen Anweisung angezeigt wird, so dass der Betrieb anläuft oder gestoppt wird und der Betrieb der Leistungsumwandlungseinheit gesteuert wird, wobei die Zeit, zu der das Laden oder das Entladen durchgeführt wird, basierend auf einem Ergebnis, das erhalten wird, wenn die Server-Vorrichtung durch eine Analyse in zeitlicher Reihenfolge einer von einem Stromversorger an das Stromversorgungssystem gelieferten Leistungsmenge und einer von dem Stromversorgungssystem an einen Stromverbraucher gelieferten Leistungsmenge eine Leistungsnachfrage- und Versorgungsvorhersage in dem Stromversorgungssystem durchführt, und einer minimalen Leistungsmenge, die von der Server-Vorrichtung verwaltet wird, wenn Leistung mit dem Stromversorgungssystem ausgetauscht wird, und einer minimalen Handelseinheit einer Leistungsmenge, die von der Server-Vorrichtung verwaltet wird, wenn Leistung mit dem Stromversorgungssystem ausgetauscht wird, bestimmt wird, wobei die Zeit durch die Anweisung angezeigt wird.
DE112015006704.3T 2015-07-15 2015-07-15 Lade/Entladevorrichtung und Lade/Entladesteuerungsverfahren Active DE112015006704B4 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/070280 WO2017009977A1 (ja) 2015-07-15 2015-07-15 充放電装置及び充放電制御方法

Publications (2)

Publication Number Publication Date
DE112015006704T5 true DE112015006704T5 (de) 2018-04-05
DE112015006704B4 DE112015006704B4 (de) 2024-04-25

Family

ID=57757229

Family Applications (1)

Application Number Title Priority Date Filing Date
DE112015006704.3T Active DE112015006704B4 (de) 2015-07-15 2015-07-15 Lade/Entladevorrichtung und Lade/Entladesteuerungsverfahren

Country Status (5)

Country Link
US (1) US10511171B2 (de)
JP (1) JP6402255B2 (de)
CN (1) CN107851997B (de)
DE (1) DE112015006704B4 (de)
WO (1) WO2017009977A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022238455A1 (de) * 2021-05-12 2022-11-17 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum betreiben einer energiemarktplattform für einen energiehandel für zumindest einen aggregator mittels einer elektronischen recheneinrichtung, computerprogrammprodukt sowie energiemarktplattform

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6522820B1 (ja) * 2018-03-02 2019-05-29 株式会社ビットメディア コンピュータシステム、電力供給安定化方法及びプログラム
CN112513916A (zh) * 2018-07-31 2021-03-16 本田技研工业株式会社 电力预测系统、电力预测装置、电力预测方法、程序及存储介质
JP6552769B1 (ja) * 2018-10-15 2019-07-31 三菱電機株式会社 エネルギー表示システム、表示装置およびエネルギー表示方法
JP6918032B2 (ja) * 2019-01-17 2021-08-11 本田技研工業株式会社 送受電管理装置及びプログラム
CN111106628B (zh) * 2020-01-04 2021-08-24 深圳市中业智能系统控制有限公司 基于发电机和储能系统的调频控制方法、装置及终端设备
JP7294172B2 (ja) * 2020-02-04 2023-06-20 トヨタ自動車株式会社 電力量計測システム、電力量計測方法および電力量計測装置
JP7379249B2 (ja) * 2020-03-27 2023-11-14 本田技研工業株式会社 制御装置、管理サーバ、制御方法、およびプログラム
WO2023004562A1 (zh) 2021-07-27 2023-02-02 宁德时代新能源科技股份有限公司 充放电交互方法、充放电装置、云端服务器、系统及介质
JP2024021292A (ja) * 2022-08-03 2024-02-16 トヨタ自動車株式会社 車両、電力調整システム、および電力設備

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4862153B2 (ja) 2006-04-07 2012-01-25 国立大学法人九州工業大学 電力負荷平準化方法及びシステム
JP4285578B1 (ja) 2008-01-15 2009-06-24 トヨタ自動車株式会社 車両の充電装置
US9159108B2 (en) * 2009-10-23 2015-10-13 Viridity Energy, Inc. Facilitating revenue generation from wholesale electricity markets
US8892264B2 (en) * 2009-10-23 2014-11-18 Viridity Energy, Inc. Methods, apparatus and systems for managing energy assets
US9153966B2 (en) 2009-12-24 2015-10-06 Hitachi, Ltd. Power grid control system using electric vehicle, power grid control apparatus, information distribution apparatus, and information distribution method
DE102011083150A1 (de) 2011-09-21 2013-03-21 Siemens Aktiengesellschaft Steuerung einer Energie-Rückspeisung von einer Anzahl von Kraftfahrzeug-Akkumulatoren in ein Energienetz
EP2768113A4 (de) 2011-10-14 2015-03-04 Toyota Motor Co Ltd Ladevorrichtung für ein elektrofahrzeug
US9735619B2 (en) 2012-02-08 2017-08-15 Mitsubishi Electric Corporation Power conversion device
JP2013176226A (ja) * 2012-02-24 2013-09-05 Toshiba Corp 蓄電池空き能力借用方法、電力系統の運用方法、電力運用システム、需要家側制御装置、需要家側制御装置に用いるプログラム、系統側制御装置及び系統側制御装置に用いるプログラム
JP5794202B2 (ja) 2012-05-17 2015-10-14 株式会社デンソー 車両用充電システム
JP5998046B2 (ja) * 2012-12-27 2016-09-28 株式会社日立製作所 電力抑制制御システムおよび電力抑制制御方法
EP3041105A4 (de) 2013-08-29 2017-04-12 Kyocera Corporation Energieverwaltungsvorrichtung, energieverwaltungsverfahren und energieverwaltungssystem
JP6113030B2 (ja) 2013-09-05 2017-04-12 京セラ株式会社 エネルギー管理装置、エネルギー管理方法及びエネルギー管理システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022238455A1 (de) * 2021-05-12 2022-11-17 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum betreiben einer energiemarktplattform für einen energiehandel für zumindest einen aggregator mittels einer elektronischen recheneinrichtung, computerprogrammprodukt sowie energiemarktplattform

Also Published As

Publication number Publication date
WO2017009977A1 (ja) 2017-01-19
CN107851997B (zh) 2021-03-09
CN107851997A (zh) 2018-03-27
US10511171B2 (en) 2019-12-17
JPWO2017009977A1 (ja) 2018-03-22
DE112015006704B4 (de) 2024-04-25
JP6402255B2 (ja) 2018-10-10
US20180205230A1 (en) 2018-07-19

Similar Documents

Publication Publication Date Title
DE112015006711B4 (de) V2G-System und Lade/Entladesteuerungsverfahren
DE112015006704B4 (de) Lade/Entladevorrichtung und Lade/Entladesteuerungsverfahren
DE112015006708B4 (de) Server-Vorrichtung
DE112017005534T5 (de) Stromspeichervorrichtung, Transporteinrichtung und Steuerverfahren
DE102018214196A1 (de) Lade- und Entlade-Verwaltungsvorrichtung
DE112017005524T5 (de) Servervorrichtung und Steuerverfahren
DE102011008676A1 (de) System und Verfahren zum Aufladen von Batterien von Fahrzeugen
DE102011008675A1 (de) Verfahren zum Aufladen einer Batterie eines Fahrzeuges
DE102014103039A1 (de) Aufladesystem für Elektrofahrzeuge
DE102013216090A1 (de) Ein Fahrzeug unter erneuerbarer Energie betreibendes Managementsystem
DE102012202465A1 (de) Stromversorgungssystem
EP3135529A1 (de) Zentrale ladesteuerung für eine mehrzahl von elektrofahrzeugen
DE102010002237A1 (de) Verfahren und Vorrichtung zur elektrischen Energieverteilung
DE102011008674A1 (de) Verfahren zum Aufladen einer in einem Fahrzeug angeordneten Batterie
DE102013214287A1 (de) Steuervorrichtung für elektrische Energie
DE102020129232A1 (de) Fahrzeugladesteuersysteme und -verfahren
DE102009043380A1 (de) Unidirektionales V2G
DE102020203199A1 (de) Verfahren und System zum Laden und zur Lastverteilung
DE102017205968A1 (de) Verfahren zum Koordinieren eines Leistungsaustauschs zwischen einer Vielzahl von technischen Kleineinheiten und einem elektrischen Übertragungsnetz
WO2020043654A1 (de) Verfahren zur koordination von auf- und/oder entladevorgängen mobiler speichereinheiten und portal zur durchführung des verfahrens
DE102017112617A1 (de) Ladungs-Entladungs-Steuerung
DE112018007057T5 (de) Verwaltungssystem, verwaltungsverfahren, strom- bzw. leistungsvorrichtung, fahrzeugmontierte vorrichtung und verwaltungsserver
EP2253059B2 (de) Elektrische lade- und/oder entladevorrichtung
EP3199397A1 (de) Verfahren zum beladen einer traktionsbatterie von zumindest teilweise elektrisch angetriebenen fahrzeugen sowie ladestation
DE102019127054A1 (de) Verfahren zum Bereitstellen einer elektrischen Versorgungsgröße in einem elektrischen Versorgungssystem und Vorrichtung zur Durchführung des Verfahrens

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R084 Declaration of willingness to licence
R079 Amendment of ipc main class

Free format text: PREVIOUS MAIN CLASS: H02J0003320000

Ipc: B60L0055000000

R016 Response to examination communication
R018 Grant decision by examination section/examining division