DE10234876A1 - 4-Trifluormethylpyrazolyl substituierte Pyridine und Pyrimidine - Google Patents

4-Trifluormethylpyrazolyl substituierte Pyridine und Pyrimidine Download PDF

Info

Publication number
DE10234876A1
DE10234876A1 DE10234876A DE10234876A DE10234876A1 DE 10234876 A1 DE10234876 A1 DE 10234876A1 DE 10234876 A DE10234876 A DE 10234876A DE 10234876 A DE10234876 A DE 10234876A DE 10234876 A1 DE10234876 A1 DE 10234876A1
Authority
DE
Germany
Prior art keywords
halogen
alkyl
hydrogen
alkoxy
compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE10234876A
Other languages
English (en)
Inventor
Michael Gerhard Dr. Hoffmann
Hendrik Dr. Helmke
Lothar Dr. Willms
Thomas Dr. Auler
Hermann Dr. Bieringer
Hubert Dr. Menne
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer CropScience AG
Original Assignee
Bayer CropScience AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer CropScience AG filed Critical Bayer CropScience AG
Priority to DE10234876A priority Critical patent/DE10234876A1/de
Priority to YUP-2005/0030A priority patent/RS20050030A/sr
Priority to UAA200501725A priority patent/UA80149C2/uk
Priority to RU2005105574/04A priority patent/RU2005105574A/ru
Priority to PCT/EP2003/007574 priority patent/WO2004013129A1/de
Priority to CA002493749A priority patent/CA2493749A1/en
Priority to CNA038175975A priority patent/CN1671698A/zh
Priority to PT03740461T priority patent/PT1527067E/pt
Priority to DE50305279T priority patent/DE50305279D1/de
Priority to ES03740461T priority patent/ES2273013T3/es
Priority to AU2003281853A priority patent/AU2003281853A1/en
Priority to PL03375395A priority patent/PL375395A1/xx
Priority to MXPA05000954A priority patent/MXPA05000954A/es
Priority to EP03740461A priority patent/EP1527067B1/de
Priority to DK03740461T priority patent/DK1527067T3/da
Priority to BR0312915-2A priority patent/BR0312915A/pt
Priority to AT03740461T priority patent/ATE341546T1/de
Priority to JP2004525189A priority patent/JP2006505513A/ja
Priority to AR20030102639A priority patent/AR040667A1/es
Priority to TW092120034A priority patent/TW200403026A/zh
Priority to US10/627,256 priority patent/US7282469B2/en
Priority to MYPI20032797A priority patent/MY130697A/en
Publication of DE10234876A1 publication Critical patent/DE10234876A1/de
Priority to HR20050074A priority patent/HRP20050074A2/hr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/561,2-Diazoles; Hydrogenated 1,2-diazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

Es werden 4-Trifluormethylpyrazolyl substituierte Pyridine und Pyrimidine der Formel (I) und ihre Verwendung als Herbizide beschrieben. DOLLAR F1 In dieser allgemeinen Formel (I) stehen R·1·, R·2·, R·3· und R·4· für verschiedene Reste, A für einen aromatischen oder heteroaromatischen Rest, und Z bedeutet ein Stickstoff- oder Kohlenstoffatom.

Description

  • 4-Trifluormethylpyrazolyl substituierte Pyridine und Pyrimidine
  • Die Erfindung betrifft das technische Gebiet der Herbizide, insbesondere das der Herbizide aus der Gruppe der Heteroaryl-Pyrazole zur selektiven Bekämpfung von Unkräutern und Ungräsern in Nutzpflanzenkulturen.
  • Aus verschiedenen Schriften ist bereits bekannt, daß bestimmte durch Azol-Reste, wie Pyrazolyl, Imidazolyl und Triazolyl, substituierte Pyridine und Pyrimidine herbizide Eigenschaften besitzen. So sind aus WO 99/28301 Pyridine und Pyrimidine bekannt, die in 2-Position einen Azol-Rest und in 6-Position einen über ein Kohlenstoffatom gebundenen aromatischen oder heteroaromatischen Rest tragen. WO 98/40379 beschreibt Pyridine und Pyrimidine, die in 2-Position einen Azol-Rest und in 6-Position einen über ein Sauerstoff-, Stickstoff- oder Schwefelatom gebundenen aromatischen oder heteroaromatischen Rest tragen. Der Azol-Rest in 2-Position kann durch verschiedene Reste substituiert sein. Diese Schrift offenbart verschiedene Substituenten für den Pyrazolylrest, die sich stets in 3-Position befinden. EP-A 1 101 764 beschreibt herbizid wirksame 4-Methylpyridine, die in 2-Position durch 3-Trifluormethyl-1-pyrazolyl substituiert sind.
  • Die aus diesen Schriften bekannten Verbindungen zeigen jedoch häufig eine nicht ausreichende herbizide Wirksamkeit. Aufgabe der vorliegenden Erfindung ist daher die Bereitstellung von herbizid wirksamen Verbindungen mit – gegenüber den im dem Stand der Technik offenbarten Verbindungen – verbesserten herbiziden Eigenschaften.
  • Es wurde nun gefunden, daß bestimmte durch 4-Trifluormethylpyrazolyl substituierte Pyridine und Pyrimidine als Herbizide besonders gut geeignet sind. Ein Gegenstand der vorliegenden Erfindung sind daher Verbindungen der Formel (1), deren N-Oxide und deren Salze,
    Figure 00020001
    worin die Reste und Indizes folgende Bedeutungen haben:
    Z bedeutet N oder CR8;
    Y bedeutet einen Rest aus der Gruppe Y1 bis Y6:
    Figure 00020002
    R1 und R2 bedeuten unabhängig voneinander Wasserstoff, Halogen, Cyano, Isocyano, OH, COOR10, COR10, CH2OH, CH2SH, CH2NH2, NO2, CSNH2, CONH2, (C1-C4)-Alkyl, Halogen-(C1-C4)-alkyl, (C3-C6)-Cycloalkyl, (C1-C4)-Alkoxy, Halogen-(C1-C4)-alkoxy, (C1-C2)-Alkoxy-(C1-C2)-alkyl, (C2-C4)-Alkenyl, (C2-C4)-Alkinyl, (C3-C4)-Alkenyloxy, (C3-C4)-Alkinyloxy, (C1-C2)-Alkylthio-(C1-C2)-alkyl, S(O)nR9, (C1-C2)-Alkylsulfonyl-(C1-C2)-alkyl, Amino, (C1-C4)-Alkylamino, (C1-C3)-Alkylcarbonylamino, (C1-C4)-Alkylsulfonylamino oder Di-(C1-C4)-Alkylamino;
    R3 und R4 bedeuten unabhängig voneinander Wasserstoff, Halogen, Cyano, (C1-C4)-Alkyl, Halogen-(C1-C4)-alkyl, (C1-C4)-Alkoxy oder Halogen-(C1-C4)-alkoxy;
    R5 bedeutet Halogen, Cyano, (C1-C4)-Alkyl, Halogen-(C1-C4)-alkyl, (C1-C4)-Alkoxy, Halogen-(C1-C4)-alkoxy, Halogen-(C1-C4)-alkylthio, (C3-C5)-Cycloalkyl, Halogen-(C3-C5)-Cycloalkyl, SF5, S(O)nR9, (C2-C4)-Alkenyl oder (C2-C4)-Alkinyl;
    R6 bedeutet Wasserstoff, Halogen, Cyano, (C1-C4)-Alkyl, Halogen-(C1-C4)-alkyl, (C1-C4)-Alkoxy, Halogen-(C1-C4)-alkoxy oder S(O)nR9;
    R7 bedeutet (C1-C4)-Alkyl;
    R8 bedeutet Wasserstoff, Halogen, Cyano, NO2, (C1-C4)-Alkyl, (C1-C4)-Alkoxy, Hydroxy, Amino, (C1-C4)-Alkylamino, (C1-C3)-Alkylcarbonylamino, (C1-C4)-Alkylsulfonylamino, Di-(C1-C4)-Alkylamino oder S(O)nR9;
    R9 bedeutet Wasserstoff, (C1-C4)-Alkyl oder Halogen-(C1-C4)-alkyl;
    R10 bedeutet Wasserstoff oder (C1-C4)-Alkyl;
    n bedeutet 0, 1 oder 2.
  • In Formel (I) und allen nachfolgenden Formeln können Alkyl-, Alkenyl- und Alkinylreste mit mehr als zwei beziehungsweise drei C-Atomen geradkettig oder verzweigt sein. Alkylreste bedeuten Methyl, Ethyl, n- oder i-Propyl, n-, i-, t- oder 2-Butyl. Alkenyl bedeutet demgemäß Ethenyl, 1-Propenyl, 2-Propenyl sowie die verschiedenen Butenyl-Isomeren. Alkinyl bedeutet Ethinyl, 1-Propinyl, 2-Propinyl sowie die verschiedenen Butinyl-Isomeren. Analog sind die Definitionen in ihren zusammengesetzten Bedeutungen wie Alkoxy, Alkenyloxy, Alkinyloxy und Alkylthio zu verstehen. So steht Alkinyloxy beispielsweise für HC≡CCH2O, CH3C≡CCH2O und CH3C≡CCH2CH2O.
  • Cycloalkyl bedeutet Cyclopropyl, Cyclobutyl, Cyclopentyl oder Cyclohexyl.
  • Im Falle einer zweifach substituierten Aminogruppe, wie Dialkylamino, können diese beiden Substituenten gleich oder verschieden sein.
  • Halogen bedeutet Fluor, Chlor, Brom oder Iod. Halogenalkyl bedeutet durch Halogen, vorzugsweise durch Fluor, Chlor und/oder Brom, insbesondere durch Fluor oder Chlor, teilweise oder vollständig substituiertes Alkyl, z.B. CF3, CHF2, CH2F, CF3CF2, CH2FCHCl, CCl3, CHCl2, CH2CH2Cl; Halogenalkoxy ist z.B. OCF3, OCHF2, OCH2F, CF3CF2O, OCH2CF3 und OCH2CH2Cl; entsprechendes gilt für andere durch Halogen substituierte Reste.
  • Die Verbindungen der Formel (I) können je nach Art und Verknüpfung der Substituenten als Stereoisomere vorliegen. Liegt beispielsweise eine Doppelbindung vor, können Diastereomere auftreten. Sind beispielsweise ein oder mehrere asymmetrische C-Atome vorhanden, so können Enantiomere und Diastereomere auftreten. Stereoisomere lassen sich aus den bei der Herstellung anfallenden Gemischen nach üblichen Trennmethoden, z.B. durch chromatographische Trennverfahren, erhalten. Ebenso können Stereoisomere durch Einsatz stereoselektiver Reaktionen unter Verwendung optisch aktiver Ausgangs- und/oder Hilfsstoffe selektiv hergestellt werden. Die Erfindung betrifft auch alle Stereoisomeren und deren Gemische, die von der allgemeinen Formel (I) umfaßt, jedoch nicht spezifisch definiert sind.
  • Verbindungen der Formel (I) können grundsätzlich N-Oxide bilden. N-Oxide können gemäß dem Fachmann bekannten Methoden durch Umsetzung mit oxidierenden Reagenzien wie Persäuren, Wasserstoffperoxid und Natriumperborat hergestellt werden. Solche Methoden sind beispielsweise in T.L. Gilchrist, Comprehensive Organic Synthesis, Volume 7, Seiten 748 bis 750, S.V. Ley, Ed., Pergamon Press beschrieben.
  • Verbindungen der Formel (I) können grundsätzlich Salze bilden durch Addition mit
    • a) Säuren wie Chlorwasserstoff, Bromwasserstoff, Salpetersäure, Phosphorsäure, Schwefelsäure, Essigsäure, Oxalsäure, oder
    • b) Basen wie Pyridin, Ammoniak, Triethylamin, Natriumcarbonat, Kaliumcarbonat, Natriumhydroxid, Kaliumhydroxid.
  • Bevorzugte Ausführungsformen der erfindungsgemäßen Verbindungen umfassen, soweit im Folgenden nicht anders vermerkt, stets die N-Oxide und Salze.
  • Als vorteilhaft haben sich Verbindungen der Formel (I) herausgestellt, worin R1 und R2 unabhängig voneinander Wasserstoff, Halogen, Cyano, OH, CHO, Vinyl, (C1-C4)-Alkyl, Halogen-(C1-C4)-Alkyl, Vinyl oder (C1-C4)-Alkoxy bedeuten, und die anderen Substituenten und Indices jeweils die weiter oben genannten Bedeutungen haben.
  • Ebenfalls von Vorteil sind Verbindungen der allgemeinen Formel (I), worin R3 und R4 unabhängig voneinander Wasserstoff, Halogen, Methyl oder Methoxy bedeuten, und die anderen Substituenten und Indices jeweils die weiter oben genannten Bedeutungen haben.
  • Bevorzugt sind Verbindungen der allgemeinen Formel (I), worin
    R1 Wasserstoff, Halogen, Cyano, CHO, Methoxy, Methyl oder Ethyl und
    R2 Wasserstoff, OH, Methyl, Ethyl, Methoxy oder Ethoxy bedeuten, und die anderen Substituenten und Indices jeweils die weiter oben genannten Bedeutungen haben.
  • Bevorzugt sind auch Verbindungen der allgemeinen Formel (I), worin R3 und R4 jeweils Wasserstoff oder Methyl bedeuten, und die anderen Substituenten und Indices jeweils die weiter oben genannten Bedeutungen haben.
  • Besonders bevorzugt sind Verbindungen der allgemeinen Formel (I), worin R8 für Wasserstoff, Halogen oder (C1-C4)-Alkyl steht, und die anderen Substituenten und Indices jeweils die weiter oben genannten Bedeutungen haben.
  • Ebenfalls besonders bevorzugt sind Verbindungen der allgemeinen Formel (I), worin R5 Halogen, Cyano, Halogen-(C1-C4)-alkyl, Halogen-(C1-C4)-alkoxy oder Halogen-(C1-C4)-alkylthio bedeutet, und die anderen Substituenten und Indices jeweils die weiter oben genannten Bedeutungen haben.
  • Weiterhin besonders bevorzugt sind Verbindungen der allgemeinen Formel (I), worin R6 Wasserstoff bedeutet, und die anderen Substituenten und Indices jeweils die weiter oben genannten Bedeutungen haben.
  • In allen nachfolgend genannten Formeln haben die Substituenten und Symbole, sofern nicht anders definiert, dieselbe Bedeutung wie unter Formel (I) beschrieben.
  • Erfindungsgemäße Verbindungen können beispielsweise nach den in den folgenden Schemata angegebenen Reaktionswegen hergestellt werden: Nach Schema 1 können Verbindungen der Formel (IIa), in der E1 für eine Fluchtgruppe wie Halogen, Methylsulfonyl oder Tosyl steht, unter Basenkatalyse mit einer Verbindung der Formel (III) umgesetzt werden. Solche Reaktionen sind dem Fachmann bekannt.
  • Schema 1
    Figure 00060001
  • Verbindungen der Formel (IIa), in der E1 für Halogen steht, können beispielsweise nach Schema 2 unter Basenkatalyse aus einer Verbindung der Formel (IV) mit einem Pyrazol der Formel (V) hergestellt werden. Dabei können die Regioisomere (IIa) und (IIb) entstehen, die beispielsweise durch chromatographische Aufarbeitung getrennt werden können. Solche Reaktionen sind dem Fachmann bekannt.
  • Schema 2
    Figure 00070001
  • Verbindungen der Formel (IIa), in der E1 für Methylsulfonyl steht, können beispielsweise nach Schema 3 durch Oxidation mit m-Chlorperbenzoesäure (MCPA) oder Oxone® aus einer Verbindung der Formel (IIc) hergestellt werden. Solche Reaktionen sind dem Fachmann beispielsweise aus J. Manch, Advanced Organic Chemistry, John Wiley, New York, 1992, 4th Ed., Seiten 1201 bis 1203 bekannt.
  • Schema 3
    Figure 00070002
  • Verbindungen der Formel (IIb) können beispielsweise nach Schema 4 durch basenkatalysierte Umsetzung einer Verbindung der Formel (VI) mit dem Pyrazol (V) hergestellt werden. Als Basen eignen sich die Carbonate von Kalium und Natrium, die Hydroxide von Kalium und Natrium sowie Natriumhydrid. Zweckmäßigerweise werden diese Reaktionen in Lösungsmitteln wie Dimethylformamid, Dioxan, THF, Sulfolan und Acetonitril durchgeführt. Solche Reaktionen sind dem Fachmann bekannt.
  • Schema 4
    Figure 00080001
  • Verbindungen der Formel (VI) können beispielsweise aus Verbindungen der Formel (IV), in der E1 und E2 jeweils für Halogen stehen, durch Umsetzung mit einem Natrium- oder Kaliumsalz von Methylmercaptan in Tetrahydrofuran oder Dioxan hergestellt werden. Solche Reaktionen sind dem Fachmann bekannt.
  • Verbindungen der Formel (IV), in der E1 und E2 jeweils für Halogen stehen, sind entweder kommerziell erhältlich oder können gemäß dem Fachmann bekannten Methoden hergestellt werden. Solche dem Fachmann bekannten Methoden werden beispielsweise beschrieben in Advances in Heterocyclic Chemistry, Katritzky, A.R., Ed., Academic Press, New York, 1993, Volume 58, Seiten 301 bis 305; Heterocyclic Compounds, Elderfield, R.C., Ed., John Wiley, New York, 1957, Volume 6, Seiten 265 bis 270.
  • Pyrazole der Formel (V) können gemäß dem Fachmann bekannten Methoden hergestellt werden. Die Darstellung von 4-Trifluormethylpyrazol ist beispielsweise in THL, 37, 11, 1996 Seite 1829–1832 beschrieben.
  • Die erfindungsgemäßen Verbindungen der Formel (I) weisen eine ausgezeichnete herbizide Wirksamkeit gegen ein breites Spektrum wirtschaftlich wichtiger mono- und dikotyler Schadpflanzen auf. Auch schwer bekämpfbare perennierende Unkräuter, die aus Rhizomen, Wurzelstöcken oder anderen Dauerorganen austreiben, werden durch die Wirkstoffe gut erfaßt. Dabei ist es in der Regel unerheblich, ob die Substanzen im Vorsaat-, Vorauflauf- oder Nachauflaufverfahren ausgebracht werden. Im einzelnen seien beispielhaft einige Vertreter der mono- und dikotylen Unkrautflora genannt, die durch die erfindungsgemäßen Verbindungen kontrolliert werden können, ohne daß durch die Nennung eine Beschränkung auf bestimmte Arten erfolgen soll. Auf der Seite der monokotylen Unkrautarten werden z.B. Avena, Lolium, Alopecurus, Phalaris, Echinochloa, Digitaria, Setaria sowie Cyperusarten aus der annuellen Gruppe und auf seiten der perennierenden Spezies Agropyron, Cynodon, Imperata sowie Sorghum und auch ausdauernde Cyperusarten gut erfaßt. Bei dikotylen Unkrautarten erstreckt sich das Wirkungsspektrum auf Arten wie z.B. Galium, Viola, Veronica, Lamium, Stellaria, Amaranthus, Sinapis, Ipomoea, Sida, Matricaria und Abutilon auf der annuellen Seite sowie Convolvulus, Cirsium, Rumex und Artemisia bei den perennierenden Unkräutern. Unter den spezifischen Kulturbedingungen im Reis vorkommende Schadpflanzen wie z.B. Echinochloa, Sagittaria, Alisma, Eleocharis, Scirpus und Cyperus werden von den erfindungsgemäßen Wirkstoffen ebenfalls hervorragend bekämpft. Werden die erfindungsgemäßen Verbindungen vor dem Keimen auf die Erdoberfläche appliziert, so wird entweder das Auflaufen der Unkrautkeimlinge vollständig verhindert oder die Unkräuter wachsen bis zum Keimblattstadium heran, stellen jedoch dann ihr Wachstum ein und sterben schließlich nach Ablauf von drei bis vier Wochen vollkommen ab. Bei Applikation der Wirkstoffe auf die grünen Pflanzenteile im Nachauflaufverfahren tritt ebenfalls sehr rasch nach der Behandlung ein drastischer Wachstumsstop ein und die Unkrautpflanzen bleiben in dem zum Applikationszeitpunkt vorhandenen Wachstumsstadium stehen oder sterben nach einer gewissen Zeit ganz ab, so daß auf diese Weise eine für die Kulturpflanzen schädliche Unkrautkonkurrenz sehr früh und nachhaltig beseitigt wird. Insbesondere zeigen die erfindungsgemäßen Verbindungen eine hervorragende Wirkung gegen Amaranthus retroflexus, Avena sp., Echinochloa sp., Cyperus serotinus, Lolium multiflorum, Setaria viridis, Sagittaria pygmaea, Scirpus juncoides, Sinapis sp. und Stellaria media.
  • Obgleich die erfindungsgemäßen Verbindungen eine ausgezeichnete herbizide Aktivität gegenüber mono- und dikotylen Unkräutern aufweisen, werden Kulturpflanzen wirtschaftlich bedeutender Kulturen wie z.B. Weizen, Gerste, Roggen, Reis, Mais, Zuckerrübe, Baumwolle und Soja nur unwesentlich oder gar nicht geschädigt. Insbesondere weisen sie eine ausgezeichnete Verträglichkeit in Weizen, Gerste, Mais, Reis und Sojabohne auf. Die vorliegenden Verbindungen eignen sich aus diesen Gründen sehr gut zur selektiven Bekämpfung von unerwünschtem Pflanzenwuchs in landwirtschaftlichen Nutzpflanzungen oder in Zierpflanzungen.
  • Aufgrund ihrer herbiziden Eigenschaften können die Wirkstoffe auch zur Bekämpfung von Schadpflanzen in Kulturen von bekannten oder noch zu entwickelnden gentechnisch veränderten Pflanzen eingesetzt werden. Die transgenen Pflanzen zeichnen sich in der Regel durch besondere vorteilhafte Eigenschaften aus, beispielsweise durch Resistenzen gegenüber bestimmten Pestiziden, vor allem bestimmten Herbiziden, Resistenzen gegenüber Pflanzenkrankheiten oder Erregern von Pflanzenkrankheiten wie bestimmten Insekten oder Mikroorganismen wie Pilzen, Bakterien oder Viren. Andere besondere Eigenschaften betreffen z. B. das Erntegut hinsichtlich Menge, Qualität, Lagerfähigkeit, Zusammensetzung und spezieller Inhaltsstoffe. So sind transgene Pflanzen mit erhöhtem Stärkegehalt oder veränderter Qualität der Stärke oder solche mit anderer Fettsäurezusammensetzung des Ernteguts bekannt.
  • Bevorzugt ist die Anwendung der erfindungsgemäßen Verbindungen der Formel (I) oder deren Salze in wirtschaftlich bedeutenden transgenen Kulturen von Nutz- und Zierpflanzen, z. B. von Getreide wie Weizen, Gerste, Roggen, Hafer, Hirse, Reis, Maniok und Mais oder auch Kulturen von Zuckerrübe, Baumwolle, Soja, Raps, Kartoffel, Tomate, Erbse und anderen Gemüsesorten. Vorzugsweise können die Verbindungen der Formel (I) als Herbizide in Nutzpflanzenkulturen eingesetzt werden, welche gegenüber den phytotoxischen Wirkungen der Herbizide resistent sind bzw. gentechnisch resistent gemacht worden sind.
  • Herkömmliche Wege zur Herstellung neuer Pflanzen, die im Vergleich zu bisher vorkommenden Pflanzen modifizierte Eigenschaften aufweisen, bestehen beispielsweise in klassischen Züchtungsverfahren und der Erzeugung von Mutanten. Alternativ können neue Pflanzen mit veränderten Eigenschaften mit Hilfe gentechnischer Verfahren erzeugt werden (siehe z. B: EP-A-0221044, EP-A-0131624). Beschrieben wurden beispielsweise in mehreren Fällen
    • – gentechnische Veränderungen von Kulturpflanzen zwecks Modifikation der in den Pflanzen synthetisierten Stärke (z. B. WO 92/11376, WO 92/14827, WO 91/19806),
    • – transgene Kulturpflanzen, welche gegen bestimmte Herbizide vom Typ Glufosinate (vgl. z. B. EP-A-0242236, EP-A-242246) oder Glyphosate (WO 92/00377) oder der Sulfonylharnstoffe (EP-A-0257993, US-A-5013659) resistent sind,
    • – transgene Kulturpflanzen, beispielsweise Baumwolle, mit der Fähigkeit Bacillus thuringiensis-Toxine (Bt-Toxine) zu produzieren, welche die Pflanzen gegen bestimmte Schädlinge resistent machen (EP-A-0142924, EP-A-0193259).
    • – transgene Kulturpflanzen mit modifizierter Fettsäurezusammensetzung (WO 91/13972).
  • Zahlreiche molekularbiologische Techniken, mit denen neue transgene Pflanzen mit veränderten Eigenschaften hergestellt werden können, sind im Prinzip bekannt; siehe z.B. Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, 2. Aufl. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; oder Winnacker "Gene und Klone", VCH Weinheim 2. Auflage 1996 oder Christou, "Trends in Plant Science" 1 (1996) 423–431).
  • Für derartige gentechnische Manipulationen können Nucleinsäuremoleküle in Plasmide eingebracht werden, die eine Mutagenese oder eine Sequenzveränderung durch Rekombination von DNA-Sequenzen erlauben. Mit Hilfe der obengenannten Standardverfahren können z. B. Basenaustausche vorgenommen, Teilsequenzen entfernt oder natürliche oder synthetische Sequenzen hinzugefügt werden. Für die Verbindung der DNA-Fragmente untereinander können an die Fragmente Adaptoren oder Linker angesetzt werden.
  • Die Herstellung von Pflanzenzellen mit einer verringerten Aktivität eines Genprodukts kann beispielsweise erzielt werden durch die Expression mindestens einer entsprechenden antisense-RNA, einer sense-RNA zur Erzielung eines Cosuppressionseffektes oder die Expression mindestens eines entsprechend konstruierten Ribozyms, das spezifisch Transkripte des obengenannten Genprodukts spaltet.
  • Hierzu können zum einen DNA-Moleküle verwendet werden, die die gesamte codierende Sequenz eines Genprodukts einschließlich eventuell vorhandener flankierender Sequenzen umfassen, als auch DNA-Moleküle, die nur Teile der codierenden Sequenz umfassen, wobei diese Teile lang genug sein müssen, um in den Zellen einen antisense-Effekt zu bewirken. Möglich ist auch die Verwendung von DNA-Sequenzen, die einen hohen Grad an Homologie zu den codierenden Sequenzen eines Genprodukts aufweisen, aber nicht vollkommen identisch sind.
  • Bei der Expression von Nucleinsäuremolekülen in Pflanzen kann das synthetisierte Protein in jedem beliebigen Kompartiment der pflanzlichen Zelle lokalisiert sein. Um aber die Lokalisation in einem bestimmten Kompartiment zu erreichen, kann z. B. die codierende Region mit DNA-Sequenzen verknüpft werden, die die Lokalisierung in einem bestimmten Kompartiment gewährleisten. Derartige Sequenzen sind dem Fachmann bekannt (siehe beispielsweise Braun et al., EMBO J. 11 (1992), 3219–3227; Wolter et al., Proc. Natl. Acad. Sci. USA 85 (1988), 846–850; Sonnewald et al., Plant J. 1 (1991), 95–106).
  • Die transgenen Pflanzenzellen können nach bekannten Techniken zu ganzen Pflanzen regeneriert werden. Bei den transgenen Pflanzen kann es sich prinzipiell um Pflanzen jeder beliebigen Pflanzenspezies handeln, d.h. sowohl monokotyle als auch dikotyle Pflanzen.
  • So sind transgene Pflanzen erhältlich, die veränderte Eigenschaften durch Überexpression, Suppression oder Inhibierung homologer (= natürlicher) Gene oder Gensequenzen oder Expression heterologer (= fremder) Gene oder Gensequenzen aufweisen.
  • Bei der Anwendung der erfindungsgemäßen Wirkstoffe in transgenen Kulturen treten neben den in anderen Kulturen zu beobachtenden Wirkungen gegenüber Schadpflanzen oftmals Wirkungen auf, die für die Applikation in der jeweiligen transgenen Kultur spezifisch sind, beispielsweise ein verändertes oder speziell erweitertes Unkrautspektrum, das bekämpft werden kann, veränderte Aufwandmengen, die für die Applikation eingesetzt werden können, vorzugsweise gute Kombinierbarkeit mit den Herbiziden, gegenüber denen die transgene Kultur resistent ist, sowie Beeinflussung von Wuchs und Ertrag der transgenen Kulturpflanzen. Gegenstand der Erfindung ist deshalb auch die Verwendung der erfindungsgemäßen Verbindungen als Herbizide zur Bekämpfung von Schadpflanzen in transgenen Kulturpflanzen.
  • Darüberhinaus weisen die erfindungsgemäßen Substanzen hervorragende wachstumsregulatorische Eigenschaften bei Kulturpflanzen auf. Sie greifen regulierend in den pflanzeneigenen Stoffwechsel ein und können damit zur gezielten Beeinflussung von Pflanzeninhaltsstoffen und zur Ernteerleichterung wie z.B. durch Auslösen von Desikkation und Wuchsstauchung eingesetzt werden. Desweiteren eignen sie sich auch zur generellen Steuerung und Hemmung von unerwünschtem vegetativen Wachstum, ohne dabei die Pflanzen abzutöten. Eine Hemmung des vegetativen Wachstums spielt bei vielen mono- und dikotylen Kulturen eine große Rolle, da das Lagern hierdurch verringert oder völlig verhindert werden kann.
  • Die erfindungsgemäßen Verbindungen können in Form von Spritzpulvern, emulgierbaren Konzentraten, versprühbaren Lösungen, Stäubemitteln oder Granulaten in den üblichen Zubereitungen angewendet werden. Ein weiterer Gegenstand der Erfindung sind deshalb auch herbizide Mittel, die Verbindungen der Formel (I) enthalten. Die Verbindungen der Formel (I) können auf verschiedene Art formuliert werden, je nachdem welche biologischen und/oder chemisch- physikalischen Parameter vorgegeben sind. Als Formulierungsmöglichkeiten kommen beispielsweise in Frage: Spritzpulver (SP), wasserlösliche Pulver (WP), wasserlösliche Konzentrate, emulgierbare Konzentrate (EC), Emulsionen (EW), wie Öl-in-Wasser- und Wasser-in-Öl-Emulsionen, versprühbare Lösungen, Suspensionskonzentrate (SC), Dispersionen auf Öl- oder Wasserbasis, ölmischbare Lösungen, Kapsel-suspensionen (CS), Stäubemittel (DP), Beizmittel, Granulate für die Streu- und Bodenapplikation, Granulate (GR) in Form von Mikro-, Sprüh-, Aufzugs- und Adsorptionsgranulaten, wasserdispergierbare Granulate (WG), wasserlösliche Granulate (SG), ULV-Formulierungen, Mikrokapseln und Wachse. Diese einzelnen Formulierungstypen sind im Prinzip bekannt und werden beispielsweise beschrieben in: Winnacker-Küchler, "Chemische Technologie", Band 7, C. Hauser Verlag München, 4. Aufl. 1986, Wade van Valkenburg, "Pesticide Formulations", Marcel Dekker, N.Y., 1973; K. Martens, "Spray Drying" Handbook, 3rd Ed. 1979, G. Goodwin Ltd. London.
  • Die notwendigen Formulierungshilfsmittel wie Inertmaterialien, Tenside, Lösungsmittel und weitere Zusatzstoffe sind ebenfalls bekannt und werden beispielsweise beschrieben in: Watkins, "Handbook of Insecticide Dust Diluents and Carriers", 2nd Ed., Darland Books, Caldwell N.J., H.v. Olphen, "Introduction to Clay Colloid Chemistry"; 2nd Ed., J. Wiley & Sons, N.Y.; C. Marsden, "Solvents Guide"; 2nd Ed., Interscience, N.Y. 1963; McCutcheon's "Detergents and Emulsifiers Annual", MC Publ. Corp., Ridgewood N.J.; Sisley and Wood, "Encyclopedia of Surface Active Agents", Chem. Publ. Co. Inc., N.Y. 1964; Schönfeldt, "Grenzflächenaktive Äthylenoxidaddukte", Wiss. Verlagsgesell., Stuttgart 1976; Winnacker-Küchler, "Chemische Technologie", Band 7, C. Hauser Verlag München, 4. Aufl. 1986.
  • Spritzpulver sind in Wasser gleichmäßig dispergierbare Präparate, die neben dem Wirkstoff außer einem Verdünnungs- oder Inertstoff noch Tenside ionischer und/oder nichtionischer Art (Netzmittel, Dispergiermittel), z.B. polyoxyethylierte Alkylphenole, polyoxethylierte Fettalkohole, polyoxethylierte Fettamine, Fettalkoholpolyglykolethersulfate, Alkansulfonate, Alkylbenzolsulfonate, 2,2'-dinaphthylmethan-6,6'-disulfonsaures Natrium, ligninsulfonsaures Natrium, dibutylnaphthalin-sulfonsaures Natrium oder auch oleoylmethyltaurinsaures Natrium enthalten. Zur Herstellung der Spritzpulver werden die herbiziden Wirkstoffe beispielsweise in üblichen Apparaturen wie Hammermühlen, Gebläsemühlen und Luftstrahlmühlen fein gemahlen und gleichzeitig oder anschließend mit den Formulierungshilfsmitteln vermischt.
  • Emulgierbare Konzentrate werden durch Auflösen des Wirkstoffes in einem organischen Lösungsmittel z.B. Butanol, Cyclohexanon, Dimethylformamid, Xylol oder auch höhersiedenden Aromaten oder Kohlenwasserstoffen oder Mischungen der organischen Lösungsmittel unter Zusatz von einem oder mehreren Tensiden ionischer und/oder nichtionischer Art (Emulgatoren) hergestellt. Als Emulgatoren können z.B. verwendet werden: Alkylarylsulfonsaure Calzium-Salze wie Ca-dodecylbenzolsulfonat oder nichtionische Emulgatoren wie Fettsäurepolyglykolester, Alkylarylpolyglykolether, Fettalkoholpolyglykolether, Propylenoxid-Ethylenoxid-Kondensationsprodukte, Alkylpolyether, Sorbitanester wie z.B. Sorbitanfettsäure-ester oder Polyoxethylensorbitanester wie z.B. Polyoxyethylen-sorbitanfettsäureester.
  • Stäubemittel erhält man durch Vermahlen des Wirkstoffes mit fein verteilten festen Stoffen, z.B. Talkum, natürlichen Tonen, wie Kaolin, Bentonit und Pyrophyllit, oder Diatomeenerde.
  • Suspensionskonzentrate können auf Wasser- oder Ölbasis sein. Sie können beispielsweise durch Naß-Vermahlung mittels handelsüblicher Perlmühlen und gegebenenfalls Zusatz von Tensiden, wie sie z.B. oben bei den anderen Formulierungstypen bereits aufgeführt sind, hergestellt werden.
  • Emulsionen, z.B. Öl-in-Wasser-Emulsionen (EW), lassen sich beispielsweise mittels Rührern, Kolloidmühlen und/oder statischen Mischern unter Verwendung von wäßrigen organischen Lösungsmitteln und gegebenenfalls Tensiden, wie sie z.B. oben bei den anderen Formulierungstypen bereits aufgeführt sind, herstellen.
  • Granulate können entweder durch Verdüsen des Wirkstoffes auf adsorptionsfähiges, granuliertes Inertmaterial hergestellt werden oder durch Aufbringen von Wirkstoffkonzentraten mittels Klebemitteln, z.B. Polyvinylalkohol, polyacrylsaurem Natrium oder auch Mineralölen, auf die Oberfläche von Trägerstoffen wie Sand, Kaolinite oder von granuliertem Inertmaterial. Auch können geeignete Wirkstoffe in der für die Herstellung von Düngemittelgranulaten üblichen Weise – gewünschtenfalls in Mischung mit Düngemitteln – granuliert werden.
  • Wasserdispergierbare Granulate werden in der Regel nach den üblichen Verfahren wie Sprühtrocknung, Wirbelbett-Granulierung, Teller-Granulierung, Mischung mit Hochgeschwindigkeitsmischern und Extrusion ohne festes Inertmaterial hergestellt.
  • Zur Herstellung von Teller-, Fließbett-, Extruder- und Sprühgranulaten siehe z.B. Verfahren in "Spray-Drying Handbook" 3rd ed. 1979, G. Goodwin Ltd., London; J.E. Browning, "Agglomeration", Chemical and Engineering 1967, Seiten 147 ff; "Perry's Chemical Engineer's Handbook", 5th Ed., McGraw-Hill, New York 1973, S. 8–57.
  • Für weitere Einzelheiten zur Formulierung von Pflanzenschutzmitteln siehe z.B. G.C. Klingman, "Weed Control as a Science", John Wiley and Sons, Inc., New York, 1961, Seiten 81–96 und J.D. Freyer, S.A. Evans, "Weed Control Handbook", 5th Ed., Blackwell Scientific Publications, Oxford, 1968, Seiten 101–103.
  • Die agrochemischen Zubereitungen enthalten in der Regel 0,1 bis 99 Gew.-%, insbesondere 0,1 bis 95 Gew.-%, Wirkstoff der Formel (I). In Spritzpulvern beträgt die Wirkstoffkonzentration z.B. etwa 10 bis 90 Gew.-%, der Rest zu 100 Gew.-% besteht aus üblichen Formulierungsbestandteilen. Bei emulgierbaren Konzentraten kann die Wirkstoffkonzentration etwa 1 bis 90, vorzugsweise 5 bis 80 Gew.-% betragen. Staubförmige Formulierungen enthalten 1 bis 30 Gew.-% Wirkstoff, vorzugsweise meistens 5 bis 20 Gew.-% an Wirkstoff, versprühbare Lösungen enthalten etwa 0,05 bis 80, vorzugsweise 2 bis 50 Gew.-% Wirkstoff. Bei wasserdispergierbaren Granulaten hängt der Wirkstoffgehalt zum Teil davon ab, ob die wirksame Verbindung flüssig c der fest vorliegt und welche Granulierhilfsmittel, Füllstoffe usw. verwendet werden, Bei den in Wasser dispergierbaren Granulaten liegt der Gehalt an Wirkstoff beispielsweise zwischen 1 und 95 Gew.-%, vorzugsweise zwischen 10 und 80 Gew.-%.
  • Daneben enthalten die genannten Wirkstofformulierungen gegebenenfalls die jeweils üblichen Haft-, Netz-, Dispergier-, Emulgier-, Penetrations-, Konservierungs-, Frostschutz- und Lösungsmittel, Füll-, Träger- und Farbstoffe, Entschäumer, Verdunstungshemmer und den pH-Wert und die Viskosität beeinflussende Mittel.
  • Auf der Basis dieser Formulierungen lassen sich auch Kombinationen mit anderen pestizid wirksamen Stoffen, wie z.B. Insektiziden, Akariziden, Herbiziden, Fungiziden, sowie mit Safenern, Düngemitteln und/oder Wachstumsregulatoren herstellen, z.B. in Form einer Fertigformulierung oder als Tankmix.
  • Als Kombinationspartner für die erfindungsgemäßen Wirkstoffe in Mischungsformulierungen oder im Tank-Mix sind beispielsweise bekannte Wirkstoffe einsetzbar, wie sie z.B. in Weed Research 26, 441–445 (1986) oder "The Pesticide Manual", 11th edition, The British Crop Protection Council and the Royal Soc. of Chemistry, 1997 und dort zitierter Literatur beschrieben sind. Als bekannte Herbizide, die mit den Verbindungen der Formel (I) kombiniert werden können, sind z.B. folgende Wirkstoffe zu nennen (Anmerkung: Die Verbindungen sind entweder mit dem "common name" nach der International Organization for Standardization (ISO) oder mit dem chemischen Namen, ggf. zusammen mit einer üblichen Codenummer bezeichnet):
    acetochlor; acifluorfen; aclonifen; AKH 7088, d.h. [[[1-[5-[2-Chloro-4-(trifluoromethyl)phenoxy]-2-nitrophenyl]-2-methoxyethylidene]-amino]-oxy]-essigsäure und -essigsäuremethylester; alachlor; alloxydim; ametryn; amidosulfuron; amitrol; AMS, d.h. Ammoniumsulfamat; anilofos; asulam; atrazin; azimsulfurone (DPX-A8947); aziprotryn; barban; BAS 516 N, d.h. 5-Fluor-2-phenyl-4H-3,1-benzoxazin-4-on; benazolin; benfluralin; benfuresate; bensulfuron-methyl; bensulide; bentazone; benzofenap; benzofluor; benzoylprop-ethyl; benzthiazuron; bialaphos; bifenox; bromacil; bromobutide; bromofenoxim; bromoxynil; bromuron; buminafos; busoxinone; butachlor; butamifos; butenachlor; buthidazole; butralin; butylate; cafenstrole (CH-900); carbetamide; cafentrazone (ICI-A0051); CDAA, d.h. 2-Chlor-N,N-di-2-propenylacetamid; CDEC, d.h. Diethyldithiocarbaminsäure-2-chlorallylester; chlomethoxyfen; chloramben; chlorazifop-butyl, chlormesulon (ICI-A0051); chlorbromuron; chlorbufam; chlorfenac; chlorflurecol-methyl; chloridazon; chlorimuron ethyl; chlornitrofen; chlorotoluron; chloroxuron; chlorpropham; chlorsulfuron; chlorthal-dimethyl; chlorthiamid; cinmethylin; cinosulfuron; clethodim; clodinafop und dessen Esterderivate (z.B. clodinafop-propargyl); clomeprop; cloproxydim; clopyralid; cumyluron (JC 940); cyanazine; cycloate; cyclosulfamuron (AC 104); cycloxydim; cycluron; cyhalofop und dessen Esterderivate (z.B. Butylester, DEH-112); cyperquat; cyprazine; cyprazole; daimuron; 2,4-DB; dalapon; desmedipham; desmetryn; di-allate; dicamba; dichlobenil; dichlorprop; diclofop und dessen Ester wie diclofop-methyl; diethatyl; difenoxuron; difenzoquat; diflufenican; dimefuron; dimethachlor; dimethametryn; dimethenamid (SAN-582H); dimethazone, clomazon; dimethipin; dimetrasulfuron, dinitramine; dinoseb; dinoterb; diphenamid; dipropetryn; diquat; dithiopyr; diuron; DNOC; eglinazine-ethyl; EL 77, d.h. 5-Cyano-1-(1,1-dimethylethyl)-N-methyl-1N-pyrazole-4-carboxamid; endothal; EPTC; esprocarb; ethalfluralin; ethametsulfuron-methyl; ethidimuron; ethiozin; ethofumesate; F5231, d.h. N-[2-Chlor-4-fluor-5-[4-(3-fluorpropyl)-4,5-dihydro-5-oxo-1H-tetrazol-l-y1]-phenyl]-ethansulfonamid; ethoxyfen und dessen Ester (z.B. Ethylester, HN-252); etobenzanid (HW 52); fenoprop; fenoxan, fenoxaprop und fenoxaprop-P sowie deren Ester, z.B. fenoxaprop-P-ethyl und fenoxaprop-ethyl; fenoxydim; fenuron; flamprop-methyl; flazasulfuron; fluazifop und fluazifop-P und deren Ester, z.B. fluazifop-butyl und fluazifop-P-butyl; fluchloralin; flumetsulam; flumeturon; flumiclorac und dessen Ester (z.B. Pentylester, S-23031); flumioxazin (S-482); flumipropyn; flupoxam (KNW-739); fluorodifen; fluoroglycofen-ethyl; flupropacil (UBIC-4243); fluridone; flurochloridone; fluroxypyr; flurtamone; fomesafen; fosamine; furyloxyfen; glufosinate; glyphosate; halosafen; halosulfuron und dessen Ester (z.B. Methylester, NC-319); haloxyfop und dessen Ester; haloxyfop-P (= R-haloxyfop) und dessen Ester; hexazinone; imazapyr; imazamethabenz-methyl; imazaquin und Salze wie das Ammoniumsalz; ioxynil; imazethamethapyr; imazethapyr; imazosulfuron; isocarbamid; isopropalin; isoproturon; isouron; isoxaben; isoxapyrifop; karbutilate; lactofen; lenacil; linuron; MCPA; MCPB; mecoprop; mefenacet; mefluidid; metamitron; metazachlor; metham; methabenzthiazuron; methazole; methoxyphenone; methyldymron; metabenzuron, methobenzuron; metobromuron; metolachlor; metosulam (XRD 511); metoxuron; metribuzin; metsulfuron-methyl; MH; molinate; monalide; monolinuron; monuron; monocarbamide dihydrogensulfate; MT 128, d.h. 6-Chlor-N-(3-chlor-2-propenyl)-5-methyl-N-phenyl-3-pyridazinamin; MT 5950, d.h. N-[3-Chlor-4-(1-methylethyl)-phenyl]-2-methylpentanamid; naproanilide; napropamide; naptalam; NC 310, d.h. 4-(2,4-dichlorbenzoyl)-1-methyl-5-benzyloxypyrazol; neburon; nicosulfuron; nipyraclophen; nitralin; nitrofen; nitrofluorfen; norflurazon; orbencarb; oryzalin; oxadiargyl (RP-020630); oxadiazon; oxyfluorfen; paraquat; pebulate; pendimethalin; perfluidone; phenisopham; phenmedipham; picloram; piperophos; piributicarb; pirifenop-butyl; pretilachlor; primisulfuron-methyl; procyazine; prodiamine; profluralin; proglinazine-ethyl; prometon; prometryn; propachlor; propanil; propaquizafop und dessen Ester; propazine; propham; propisochlor; propyzamide; prosulfalin; prosulfocarb; prosulfuron (CGA-152005); prynachlor; pyrazolinate; pyrazon; pyrazosulfuron-ethyl; pyrazoxyfen; pyridate; pyrithiobac (KIH-2031); pyroxofop und dessen Ester (z.B. Propargylester); quinclorac; quinmerac; quinofop und dessen Esterderivate, quizalofop und quizalofop-P und deren Esterderivate z.B. quizalofop-ethyl; quizalofop-P-tefuryl und -ethyl; renriduron; rimsulfuron (DPX-E 9636); S 275, d.h. 2-[4-Chlor-2-fluor-5-(2-propynyloxy)-phenyl]-4,5,6,7-tetrahydro-2H-indazol; secbumeton; sethoxydim; siduron; simazine; simetryn; SN 106279, d.h. 2-[[7-[2-Chlor-4-(trifluor-methyl)-phenoxy]-2-naphthalenyl]-oxy]-propansäure und – methylester; sulfentrazon (FMC-97285, F-6285); sulfazuron; sulfometuron-methyl; sulfosate (ICI-A0224); TCA; tebutam (GCP-5544); tebuthiuron; terbacil; terbucarb; terbuchlor; terbumeton; terbuthylazine; terbutryn; TFH 450, d.h. N,N-Diethyl-3-[(2-ethyl-6-methylphenyl)-sulfonyl]-1H-1,2,4-triazol-1-carboxamid; thenylchlor (NSK-850); thiazafluron; thiazopyr (Mon-13200); thidiazimin (SN-24085); thiobencarb; thifensulfuron-methyl; tiocarbazil; tralkoxydim; tri-allate; triasulfuron; triazofenamide; tribenuron-methyl; triclopyr; tridiphane; trietazine; trifluralin; triflusulfuron und Ester (z.B. Methylester, DPX-66037); trimeturon; tsitodef; vernolate; WL 110547, d.h. 5-Phenoxy-1-[3-(trifluormethyl)-phenyl]-1H-tetrazol; UBH-509; D-489; LS 82-556; KPP- 300; NC-324; NC-330; KH-218; DPX-N8189; SC-0774; DOWCO-535; DK-8910; V-53482; PP-600; MBH-001; KIH-9201; ET-751; KIH-6127 und KIN-2023.
  • Zur Anwendung werden die in handelsüblicher Form vorliegenden Formulierungen in üblicher Weise verdünnt z.B. bei Spritzpulvern, emulgierbaren Konzentraten, Dispersionen und wasserdispergierbaren Granulaten mittels Wasser. Staubförmige Zubereitungen, Boden- bzw. Streugranulate sowie versprühbare Lösungen werden vor der Anwendung üblicherweise nicht mehr mit weiteren inerten Stoffen verdünnt. Mit den äußeren Bedingungen wie Temperatur, Feuchtigkeit, der Art des verwendeten Herbizids, u.a. variiert die erforderliche Aufwandmenge der Verbindungen der Formel (I). Sie kann innerhalb weiter Grenzen schwanken, z.B. zwischen 0,001 und 1,0 kg/ha oder mehr Aktivsubstanz, vorzugsweise liegt sie jedoch zwischen 0,005 und 750 g/ha.
  • Die nachstehenden Beispiele erläutern die Erfindung.
  • A. Chemische Beispiele
  • Herstellung von 5-Methyl-4-(3-trifluormethylphenoxy)-2-(4-trifluormethyl-1H-1-pyrazolyl)pyrimidin
  • Eine Mischung aus 11.2 (36.4 mmol) 5-Methyl-4-methylsulfonyl-2-(4-trifluormethyl-1H-1-pyrazolyl)pyrimidin, 7.7g (47.4 mmol) 3-Trifluormethylphenol und 10.1g (72.9 mmol) K2CO3 in 200 ml DMF wird 24 h bei RT gerührt. Danach wird auf 200 ml Wasser gegossen und viermal mit jeweils 100 ml CH2Cl2 extrahiert. Die vereinigte organische Phase wird über Na2SO4 getrocknet, abfiltriert und eingeengt.
  • Chromatographische Reinigung an Kieselgel mit Laufmittel Heptan/Essigester (1:1) ergibt 10.2g (72%) 5-Methyl-4-(3-trifluormethylphenoxy)-2-(4-trifluormethyl-1 H-1-pyrazolyl)pyrimidin als farblose Kristalle mit einem Festpunkt von 103–105°C.
    1H-NMR: δ[CDCl3] 2.40 (s, 3H), 7.45 (m, 1H), 7.55 (s, 1H), 7.62 (m, 2H), 7.92 (s, 1H), 8.33 (s, 1H), 8.52 (s, 1H).
  • Herstellung von 5-Methyl-2-(4-trifluormethyl)-1H-1-pyrazolyl-4-(2-trifluormethyl-4-pyridyloxy)pyrimidin
  • Eine Mischung aus 0.38g (1.23 mmol) 5-Methyl-4-methylsulfonyl-2-(4-trifluormethyl-1H-1-pyrazolyl)pyrimidin, 0.2g (1.23 mmol) 2-Trifluormethyl-4-hydroxypyridn und 0.33g (2.45 mmol) K2CO3 in 10 ml DMF wird 6 h bei 60°C und dann 48 h bei RT gerührt. Danach wird auf 20 ml Wasser gegossen und viermal mit jeweils 15 ml CH2Cl2 extrahiert. Die vereinigte organische Phase wird über Na2SO4 getrocknet, abfiltriert und eingeengt. Chromatographische Reinigung an Kieselgel mit Laufmittel Heptan/Essigester (3:7) ergibt 0.16g (33%) 5-Methyl-2-(4-trifluormethyl)-1H-1-pyrazolyl-4-(2-trifluormethyl-4-pyridyloxy)pyrimidin als hellgelbes Öl.
    1H-NMR: δ[CDCl3] 2.40 (s, 3?), 7.50 (dd, 1H), 7.70 (d, 1H), 7.95 (s, 1H), 8.50 (s, 1H), 8.60 (s, 1H), 8.85 (d, 1H).
  • Herstellung von 2-(1-Methyl-3-trifluormethylpyrazol-5-yl-oxy)-6-(4-trifluormethylpyrazol-1-yl)pyridin
  • 0.262g 4-Trifluormethylpyrazol werden unter Stickstoff in 7 ml Dimethylacetamid vorgelegt und bei 0°C mit 0.0578 NaH versetzt. Man läßt innerhalb von 30 min auf RT kommen und setzt dann 0.5 g 2-Fluor-6-(1-methyl-3-trifluormethylpyrazol-5-yl-oxy)pyridin zu und erwärmt für 7 h auf 140°C, kühlt auf RT ab und gießt auf Wasser. Nach zweimaliger Extraktion mit Essigester/Heptan (1:1) wird mit Wasser und gesättigter Kochsalzlösung gewaschen, über MgSO4 getrocknet und eingeengt. Chromatographische Reinigung an Kieselgel ergibt 0.349 2-(1-Methyl-3-trifluormethylpyrazol-5-yl-oxy)-6-(4-trifluormethylpyrazol-1-yl)pyridin als weisse Kristalle.
    1H-NMR: δ[CDCl3] 3.82 (s, 3H), 6.34 (s, 1H), 7.00 (d, 1H), 7.82 (d, 1H), 7.88 (s, 1H), 7.97 (t, 1H), 8.43 (s, 1H).
  • Herstellung von 4-Methyl-2-(1-methyl-3-trifluormethylpyrazol-5-yl-oxy)-6-(4-trifluormethylpyrazol-1-yl)pyridin
  • 0.3858 4-Trifluormethylpyrazol werden unter Stickstoff in 10 ml Dimethylacetamid vorgelegt und bei 0°C mit 0.0968 NaH versetzt. Man läßt innerhalb von 30 min auf RT kommen und setzt dann 0.757 g 2-Chlor-4-methyl-6-(1-methyl-3-trifluormethylpyrazol-5-yl-oxy)pyridin zu und erwärmt für 7 h auf 140°C, kühlt auf RT ab und gießt auf Wasser. Nach jeweils zweimaliger Extraktion mit Essigester/Heptan (1:1) und Essigester wird mit Wasser und gesättigter Kochsalzlösung gewaschen, über MgSO4 getrocknet und eingeengt.
  • Chromatographische Reinigung an Kieselgel ergibt 0.332g 4-Methyl-2-(1-methyl-3-trifluormethylpyrazol-5-yl-oxy)-6-(4-trifluormethylpyrazol-1-yl)pyridin als weisse Kristalle.
    1H-NMR: δ[CDCl3] 2.50 (s, 3H), 3.82 (s, 3H), 6.30 (s, 1H), 6.82 (d, 1H), 7.67 (s, 1H), 7.86 (s, 1H), 8.43 (s, 1H).
  • Herstellung von 4-Methoxy-2-(1-methyl-3-trifluormethylpyrazol-5-yl-oxy)-6-(4-trifluormethylpyrazol-1-yl)pyridin
  • 0.068g 4-Trifluormethylpyrazol werden unter Stickstoff in 5 ml Dimethylacetamid vorgelegt und bei 0°C mit 0.017g NaH versetzt. Man läßt innerhalb von 30 min auf RT kommen und setzt dann 0.2g 4-Methoxy-2,6-bis-(1-methyl-3-trifluormethylpyrazol-5-yl-oxy)pyridin zu und erwärmt für 5 h auf 135°C, kühlt auf RT ab und gießt auf Wasser. Nach dreimaliger Extraktion mit wird mit Wasser und gesättigter Kochsalzlösung gewaschen, über MgSO4 getrocknet und eingeengt. Chromatographische Reinigung an Kieselgel ergibt 0.036g 4-Methoxy-2-(1-methyl-3-trifluormethylpyrazol-5-yl-oxy)-6-(4-trifluormethylpyrazol-1-yl)pyridin als wachsartige Substanz.
    1H-NMR: δ[CDCl3] 3.81 (s, 3H), 3.99 (s, 3H), 6.29 (s, 1H), 6.44 (d, 1H), 7.40 (d, 1H), 7.85 (s, 1H), 8.42 (s, 1H).
  • Die in nachfolgenden Tabellen aufgeführten Beispiele wurden analog oben genannten Methoden hergestellt beziehungsweise sind analog den oben genannten Methoden erhältlich.
  • Die hier verwendeten Abkürzungen bedeuten:
    Figure 00220001
    Tabelle 1 Erfindungsgemäße Verbindungen der allgemeinen Formel (I), worin die Substituenten und Symbole folgende Bedeutungen haben
    Figure 00230001
    Figure 00240001
    Figure 00250001
    Figure 00260001
    Figure 00270001
    Figure 00280001
    Figure 00290001
    Tabelle 2 Erfindungsgemäße Verbindungen der allgemeinen Formel (I), worin die Substituenten und Symbole folgende Bedeutungen haben
    Figure 00290002
    Figure 00300001
    Figure 00310001
    Figure 00320001
    Figure 00330001
    Figure 00340001
    Figure 00350001
    Tabelle 3 Erfindungsgemäße Verbindungen der allgemeinen Formel (I), worin die Substituenten und Symbole folgende Bedeutungen haben
    Figure 00360001
    Figure 00370001
    Figure 00380001
    Figure 00390001
    Figure 00400001
    Figure 00410001
    Figure 00420001
    Tabelle 4 Erfindungsgemäße Verbindungen der allgemeinen Formel (I), worin die Substituenten und Symbole folgende Bedeutungen haben
    Figure 00420002
    Figure 00430001
    Figure 00440001
    Figure 00450001
    Figure 00460001
    Figure 00470001
    Figure 00480001
    Figure 00490001
    Tabelle 5 Erfindungsgemäße Verbindungen der allgemeinen Formel (I), worin die Substituenten und Symbole folgende Bedeutungen haben
    Figure 00490002
    Figure 00500001
    Figure 00510001
    Figure 00520001
    Figure 00530001
    Figure 00540001
    Figure 00550001
    Tabelle 6 Erfindungsgemäße Verbindungen der allgemeinen Formel (I), worin die Substituenten und Symbole folgende Bedeutungen haben
    Figure 00560001
    Figure 00570001
    Figure 00580001
    Figure 00590001
    Figure 00600001
    Figure 00610001
    Figure 00620001
  • B. Formulierungsbeispieles
  • 1. Stäubemittel
  • Ein Stäubemittel wird erhalten, indem man 10 Gew.-Teile einer Verbindung der allgemeinen Formel (I) und 90 Gew.-Teile Talkum als Inertstoff mischt und in einer Schlagmühle zerkleinert.
  • 2. Dispergierbares Pulver
  • Ein in Wasser leicht dispergierbares, benetzbares Pulver wird erhalten, indem man 25 Gewichtsteile einer Verbindung der allgemeinen Formel (I), 64 Gewichtsteile kaolinhaltigen Quarz als Inertstoff, 10 Gewichtsteile ligninsulfonsaures Kalium und 1 Gew.-Teil oleoylmethyltaurinsaures Natrium als Netz- und Dispergiermittel mischt und in einer Stiftmühle mahlt.
  • 3. Dispersionskonzentrat
  • Ein in Wasser leicht dispergierbares Dispersionskonzentrat wird erhalten, indem man 20 Gewichtsteile einer Verbindung der allgemeinen Formel (I), 6 Gew.-Teile Alkylphenolpolyglykolether (®Triton X 207), 3 Gew.-Teile Isotridecanolpolyglykolether (8 EO) und 71 Gew.-Teile paraffinischem Mineralöl (Siedebereich z.B. ca. 255 bis über 277°C) mischt und in einer Reibkugelmühle auf eine Feinheit von unter 5 Mikron vermahlt.
  • 4. Emulgierbares Konzentrat
  • Ein emulgierbares Konzentrat wird erhalten aus 15 Gew.-Teilen einer Verbindung der allgemeinen Formel (I), 75 Gew.Teilen Cyclohexanon als Lösemittel und 10 Gew.-Teilen oxethyliertes Nonylphenol als Emulgator.
  • 5. Wasserdispergierbares Granulats
  • Ein in Wasser dispergierbares Granulat wird erhalten, indem man 75 Gew.-Teile einer Verbindung der allgemeinen Formel (I),
    10 Gew.-Teile ligninsulfonsaures Calcium,
    5 Gew.-Teile Natriumlaurylsulfat,
    3 Gew.-Teile Polyvinylalkohol und
    7 Gew.-Teile Kaolin
    mischt, auf einer Stiftmühle mahlt und das Pulver in einem Wirbelbett durch Aufsprühen von Wasser als Granulierflüssigkeit granuliert.
  • Ein in Wasser dispergierbares Granulat wird auch erhalten, indem man 25 Gew.-Teile einer Verbindung der allgemeinen Formel (I),
    5 Gew.-Teile 2,2'-dinaphthylmethan-6,6'-disulfonsaures Natrium,
    2 Gew.-Teile oleoylmethyltaurinsaures Natrium,
    1 Gew.-Teil Polyvinylalkohol,
    17 Gew.-Teile Calciumcarbonat und
    50 Gew.-Teile Wasser
    auf einer Kolloidmühle homogenisiert und vorzerkleinert, anschließend auf einer Perlmühle mahlt und die so erhaltene Suspension in einem Sprühturm mittels einer Einstoffdüse zerstäubt und trocknet.
  • C. Biologische Beispiele
  • 1. Herbizide Wirkung gegen Schadpflanzen sowie Kulturpflanzenverträglichkeit im Vorauflauf
  • Samen von mono- und dikotylen Unkrautpflanzen sowie von Kulturpflanzen werden in Papptöpfen in sandiger Lehmerde ausgelegt und mit Erde abgedeckt. Die in Form von benetzbaren Pulvern oder Emulsionskonzentraten formulierten erfindungsgemäßen Verbindungen werden dann als wäßrige Suspension bzw. Emulsion mit einer Wasseraufwandmenge von umgerechnet 600 bis 800 l/ha in unterschiedlichen Dosierungen auf die Oberfläche der Abdeckerde appliziert. Nach der Behandlung werden die Töpfe im Gewächshaus aufgestellt und unter guten Wachstumsbedingungen für die Unkräuter gehalten. Die optische Bonitur der Pflanzen- bzw. Auflaufschäden erfolgt nach dem Auflaufen der Versuchspflanzen nach einer Versuchszeit von 3 bis 4 Wochen im Vergleich zu unbehandelten Kontrollen. Dabei zeigen beispielsweise die erfindungsgemäßen Verbindungen der Beispiele Nr. 1.7 und 4.1 bei einer Dosierung von 320 g Aktivsubstanz pro Hektar eine 100%ige Wirkung gegen Digitaria sanguinalis, Setaria viridis und Amaranthus retroflexus. Bei gleicher Dosierung verursachen diese erfindungsgemäßen Verbindungen keine Schädigung an den Kulturpflanzen Oryza sativa (Reis) und Glycine max (Sojabohne). Die erfindungsgemäße Verbindung des Beispiels Nr. 1.7 zeigt bei einer Dosierung von 20 g Aktivsubstanz pro Hektar eine mindestens 90 %ige Wirkung gegen Alopecurus myosuroides, Setaria viridis, Amaranthus retroflexus und Veronica persica. Bei gleicher Dosierung verursacht diese erfindungsgemäße Verbindung keine Schädigung an den Kulturpflanzen Oryza sativa (Reis), Zea mays (Mais) und Glycine max (Sojabohne). Bei einer Dosierung von 320 g Aktivsubstanz pro Hektar zeigt die erfindungsgemäße Verbindung des Beispiels Nr. 4.146 eine 100 %ige Wirkung gegen Amaranthus retroflexus, Setaria viridis und Stellaria media.
  • 2. Herbizide Wirkung gegen Schadpflanzen sowie Kulturpflanzenverträglichkeit im Nachauflauf
  • Samen von mono- und dikotylen Schadpflanzen sowie von Kulturpflanzen werden in Papptöpfen in sandigem Lehmboden ausgelegt, mit Erde abgedeckt und im Gewächshaus unter guten Wachstumsbedingungen angezogen. Zwei bis drei Wochen nach der Aussaat werden die Versuchspflanzen im Dreiblattstudium behandelt. Die als Spritzpulver bzw. als Emulsionskonzentrate formulierten erfindungsgemäßen Verbindungen werden mit einer Wasseraufwandmenge von umgerechnet 600 bis 800 l/ha in unterschiedlichen Dosierungen auf die Oberfläche der grünen Pflanzenteile gesprüht. Nach 3 bis 4 Wochen Standzeit der Versuchspflanzen im Gewächshaus unter optimalen Wachstumsbedingungen wird die Wirkung der Verbindungen bonitiert. Dabei zeigen beispielsweise bei einer Dosierung von 80 g Aktivsubstanz pro Hektar die erfindungsgemäßen Verbindungen der Beispiele Nr. 4.1 und 4.49 eine mindestens 90 %ige Wirkung gegen Setaria viridis, Digitaria sanguinalis, Matricaria inodora, Amaranthus retroflexus, Pharbitis purpureum, Chenopodium album, Veronica persica und Abutilon theophrasti.

Claims (14)

  1. Verbindungen der Formel (I), deren N-Oxide und deren Salze,
    Figure 00660001
    worin die Reste und Indizes folgende Bedeutungen haben: Z bedeutet N oder CR8; Y bedeutet einen Rest aus der Gruppe Y1 bis Y6:
    Figure 00660002
    R1 und R2 bedeuten unabhängig voneinander Wasserstoff, Halogen, Cyano, Isocyano, OH, COOR10, COR10, CH2OH, CH2SH, CH2NH2, NO2, CSNH2, CONH2, (C1-C4)-Alkyl, Halogen-(C1-C4)-alkyl, (C3-C6)-Cycloalkyl, (C1-C4)-Alkoxy, Halogen-(C1-C4)-akoxy, (C1-C2)-Alkoxy-(C1-C2)-alkyl, (C2-C4)-Alkenyl, (C2-C4)-Alkinyl, (C3-C4)-Alkenyloxy, (C3-C4)-Alkinyloxy, (C1-C2)-Alkylthio-(C1-C2)-alkyl, S(O)nR9, (C1-C2)- Alkylsulfonyl-(C1-C2)-alkyl, Amino, (C1-C4)-Alkylamino, (C1-C3)-Alkylcarbonylamino, (C1-C4)-Alkylsulfonylamino oder Di-(C1-C4)-Alkylamino; R3 und R4 bedeuten unabhängig voneinander Wasserstoff, Halogen, Cyano, (C1-C4)-Alkyl, Halogen-(C1-C4)-alkyl, (C1-C4)-Alkoxy oder Halogen-(C1-C4)-alkoxy; R5 bedeutet Halogen, Cyano, (C1-C4)-Alkyl, Halogen-(C1-C4)-alkyl, (C1-C4)-Alkoxy, Halogen-(C1-C4)-alkoxy, Halogen-(C1-C4)-alkylthio, (C3-C5)-Cycloalkyl, Halogen-(C3-C5)-Cycloalkyl, SF5, S(O)nR9, (C2-C4)-Alkenyl oder (C2-C4)-Alkinyl; R6 bedeutet Wasserstoff, Halogen, Cyano, (C1-C4)-Alkyl, Halogen-(C1-C4)-alkyl, (C1-C4)-Alkoxy, Halogen-(C1-C4)-alkoxy oder S(O)nR9; R7 bedeutet (C1-C4)-Alkyl; R8 bedeutet Wasserstoff, Halogen, Cyano, NO2, (C1-C4)-Alkyl, (C1-C4)-Alkoxy, Hydroxy, Amino, (C1-C4)-Alkylamino, (C1-C3)-Alkylcarbonylamino, (C1-C4)-Alkylsulfonylamino, Di-(C1-C4)-Alkylamino oder S(O)nR9; R9 bedeutet Wasserstoff, (C1-C4)-Alkyl oder Halogen-(C1-C4)-alkyl; R10 bedeutet Wasserstoff oder (C1-C4)-Alkyl; n bedeutet 0, 1 oder 2.
  2. Verbindungen nach Anspruch 1, worin R1 und R2 unabhängig voneinander Wasserstoff, Halogen, Cyano, OH, CHO, Vinyl, (C1-C4)-Alkyl, Halogen-(C1-C4)-Alkyl, Vinyl oder (C1-C4)-Alkoxy bedeuten.
  3. Verbindungen nach Anspruch 1 oder 2, worin R3 und R4 unabhängig voneinander Wasserstoff, Halogen, Methyl oder Methoxy bedeuten.
  4. Verbindungen nach einem der Ansprüche 1 bis 3, worin R1 Wasserstoff, Halogen, Cyano, CHO, Methoxy, Methyl oder Ethyl, und R2 Wasserstoff, OH, Methyl, Ethyl, Methoxy oder Ethoxy bedeuten.
  5. Verbindungen nach einem der Ansprüche 1 bis 4, worin R3 und R4 jeweils Wasserstoff oder Methyl bedeuten.
  6. Verbindungen nach einem der Ansprüche 1 bis 5, worin R8 für Wasserstoff, Halogen oder (C1-C4)-Alkyl steht.
  7. Verbindungen nach einem der Ansprüche 1 bis 6, worin R5 für Halogen, Cyano, Halogen-(C1-C4)-alkyl, Halogen-(C1-C4)-alkoxy oder Halogen-(C1-C4)-alkylthio steht.
  8. Verbindungen nach einem der Ansprüche 1 bis 7, worin R6 Wasserstoff bedeutet.
  9. Herbizide Mittel, gekennzeichnet durch einen herbizid wirksamen Gehalt an mindestens einer Verbindung der allgemeinen Formel (I) gemäß einem der Ansprüche 1 bis 8.
  10. Herbizide Mittel nach Anspruch 9 in Mischung mit Formulierungshilfsmitteln.
  11. Verfahren zur Bekämpfung unerwünschter Pflanzen, dadurch gekennzeichnet, daß man eine wirksame Menge mindestens einer Verbindung der allgemeinen Formel (I) nach einem der Ansprüche 1 bis 8 oder eines herbiziden Mittels nach Anspruch 9 oder 10 auf die Pflanzen oder auf den Ort des unerwünschten Pflanzenwachstums appliziert.
  12. Verwendung von Verbindungen der allgemeinen Formel (I) nach einem der Ansprüche 1 bis 8 oder von herbiziden Mitteln nach Anspruch 9 oder 10 zur Bekämpfung unerwünschter Pflanzen.
  13. Verwendung nach Anspruch 12, dadurch gekennzeichnet, daß die Verbindungen der allgemeinen Formel (I) zur Bekämpfung unerwünschter Pflanzen in Kulturen von Nutzpflanzen eingesetzt werden.
  14. Verwendung nach Anspruch 13, dadurch gekennzeichnet, daß die Nutzpflanzen transgene Nutzpflanzen sind.
DE10234876A 2002-07-25 2002-07-25 4-Trifluormethylpyrazolyl substituierte Pyridine und Pyrimidine Withdrawn DE10234876A1 (de)

Priority Applications (23)

Application Number Priority Date Filing Date Title
DE10234876A DE10234876A1 (de) 2002-07-25 2002-07-25 4-Trifluormethylpyrazolyl substituierte Pyridine und Pyrimidine
PL03375395A PL375395A1 (en) 2002-07-25 2003-07-14 4-trifluoromethylpyrazolyl substituted pyridines and pyrimidines
JP2004525189A JP2006505513A (ja) 2002-07-25 2003-07-14 4−トリフルオロメチルピラゾリル置換ピリジン及びピリミジン
RU2005105574/04A RU2005105574A (ru) 2002-07-25 2003-07-14 Пиридины и пиримидины, замещенные 4-трифторметилпиразолилом
PCT/EP2003/007574 WO2004013129A1 (de) 2002-07-25 2003-07-14 4-trifluormethylpyrazolyl substituierte pyridine und pyrimidine
CA002493749A CA2493749A1 (en) 2002-07-25 2003-07-14 4-trifluoromethylpyrazolyl substituted pyridines and pyrimidines
CNA038175975A CN1671698A (zh) 2002-07-25 2003-07-14 经4-三氟甲基吡唑取代的吡啶和嘧啶类化合物
PT03740461T PT1527067E (pt) 2002-07-25 2003-07-14 Piridinas e pirimidinas substituídas por 4-trifluorometilpirazolilo
DE50305279T DE50305279D1 (de) 2002-07-25 2003-07-14 4-trifluormethylpyrazolyl substituierte pyridine und pyrimidine
ES03740461T ES2273013T3 (es) 2002-07-25 2003-07-14 Piridinas y pirimidinas sustituidas con 4-trifluorometil-pirazolilo.
AU2003281853A AU2003281853A1 (en) 2002-07-25 2003-07-14 4-trifluoromethylpyrazolyl substituted pyridines and pyrimidines
YUP-2005/0030A RS20050030A (en) 2002-07-25 2003-07-14 4-trifluoromethylpyrazolyl substituted pyridines and pyrimidines
MXPA05000954A MXPA05000954A (es) 2002-07-25 2003-07-14 Piridinas y pirimidinas sustituidas con 4-trifluorometil-pirazolilo.
BR0312915-2A BR0312915A (pt) 2002-07-25 2003-07-14 Piridinas e pirimidinas substituìdas com 4-trifluormetilpirazolila
DK03740461T DK1527067T3 (da) 2002-07-25 2003-07-14 4-Trifluormethylpyrazolylsubstituerede pyridiner og pyrimidiner
EP03740461A EP1527067B1 (de) 2002-07-25 2003-07-14 4-trifluormethylpyrazolyl substituierte pyridine und pyrimidine
AT03740461T ATE341546T1 (de) 2002-07-25 2003-07-14 4-trifluormethylpyrazolyl substituierte pyridine und pyrimidine
UAA200501725A UA80149C2 (en) 2002-07-25 2003-07-14 4-trinuoromethylpyrazolyl-substituted pyridines and pyrimidines, herbicide
AR20030102639A AR040667A1 (es) 2002-07-25 2003-07-23 Piridinas y pirimidinas 4-trifluormetilpirazolil sustituidasy su utilizacion como herbicidas
TW092120034A TW200403026A (en) 2002-07-25 2003-07-23 4-Trifluoromethylpyrazolyl-substituted pyridines and pyrimidines
US10/627,256 US7282469B2 (en) 2002-07-25 2003-07-24 4-trifluoromethylpyrazolyl-substituted pyridines and pyrimidines
MYPI20032797A MY130697A (en) 2002-07-25 2003-07-24 4-trifluoromethylpyrazolyl-substituted pyridines and pyrimidines
HR20050074A HRP20050074A2 (en) 2002-07-25 2005-01-24 4-trifluoromethylpyrazolyl substituted pyridines and pyrimidines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10234876A DE10234876A1 (de) 2002-07-25 2002-07-25 4-Trifluormethylpyrazolyl substituierte Pyridine und Pyrimidine

Publications (1)

Publication Number Publication Date
DE10234876A1 true DE10234876A1 (de) 2004-02-05

Family

ID=30010526

Family Applications (2)

Application Number Title Priority Date Filing Date
DE10234876A Withdrawn DE10234876A1 (de) 2002-07-25 2002-07-25 4-Trifluormethylpyrazolyl substituierte Pyridine und Pyrimidine
DE50305279T Expired - Fee Related DE50305279D1 (de) 2002-07-25 2003-07-14 4-trifluormethylpyrazolyl substituierte pyridine und pyrimidine

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE50305279T Expired - Fee Related DE50305279D1 (de) 2002-07-25 2003-07-14 4-trifluormethylpyrazolyl substituierte pyridine und pyrimidine

Country Status (22)

Country Link
US (1) US7282469B2 (de)
EP (1) EP1527067B1 (de)
JP (1) JP2006505513A (de)
CN (1) CN1671698A (de)
AR (1) AR040667A1 (de)
AT (1) ATE341546T1 (de)
AU (1) AU2003281853A1 (de)
BR (1) BR0312915A (de)
CA (1) CA2493749A1 (de)
DE (2) DE10234876A1 (de)
DK (1) DK1527067T3 (de)
ES (1) ES2273013T3 (de)
HR (1) HRP20050074A2 (de)
MX (1) MXPA05000954A (de)
MY (1) MY130697A (de)
PL (1) PL375395A1 (de)
PT (1) PT1527067E (de)
RS (1) RS20050030A (de)
RU (1) RU2005105574A (de)
TW (1) TW200403026A (de)
UA (1) UA80149C2 (de)
WO (1) WO2004013129A1 (de)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014151255A1 (en) 2013-03-15 2014-09-25 Monsanto Technology Llc Methods and compositions for weed control
US9121022B2 (en) 2010-03-08 2015-09-01 Monsanto Technology Llc Method for controlling herbicide-resistant plants
US9416363B2 (en) 2011-09-13 2016-08-16 Monsanto Technology Llc Methods and compositions for weed control
US9422557B2 (en) 2011-09-13 2016-08-23 Monsanto Technology Llc Methods and compositions for weed control
US9422558B2 (en) 2011-09-13 2016-08-23 Monsanto Technology Llc Methods and compositions for weed control
US9540642B2 (en) 2013-11-04 2017-01-10 The United States Of America, As Represented By The Secretary Of Agriculture Compositions and methods for controlling arthropod parasite and pest infestations
EP3115045A3 (de) * 2008-08-26 2017-05-17 Basf Se Nachweis und verwendung niedermolekularer modulatoren des kälte-menthol-rezeptors trpm8
US9777288B2 (en) 2013-07-19 2017-10-03 Monsanto Technology Llc Compositions and methods for controlling leptinotarsa
US9850496B2 (en) 2013-07-19 2017-12-26 Monsanto Technology Llc Compositions and methods for controlling Leptinotarsa
US10041068B2 (en) 2013-01-01 2018-08-07 A. B. Seeds Ltd. Isolated dsRNA molecules and methods of using same for silencing target molecules of interest
EP3434779A1 (de) 2011-09-13 2019-01-30 Monsanto Technology LLC Verfahren und zusammensetzungen zur unkrautbekämpfung
US10240161B2 (en) 2012-05-24 2019-03-26 A.B. Seeds Ltd. Compositions and methods for silencing gene expression
US10334848B2 (en) 2014-01-15 2019-07-02 Monsanto Technology Llc Methods and compositions for weed control using EPSPS polynucleotides
US10378012B2 (en) 2014-07-29 2019-08-13 Monsanto Technology Llc Compositions and methods for controlling insect pests
US10557138B2 (en) 2013-12-10 2020-02-11 Beeologics, Inc. Compositions and methods for virus control in Varroa mite and bees
US10612019B2 (en) 2013-03-13 2020-04-07 Monsanto Technology Llc Methods and compositions for weed control
US10609930B2 (en) 2013-03-13 2020-04-07 Monsanto Technology Llc Methods and compositions for weed control
US10655136B2 (en) 2015-06-03 2020-05-19 Monsanto Technology Llc Methods and compositions for introducing nucleic acids into plants
US10683505B2 (en) 2013-01-01 2020-06-16 Monsanto Technology Llc Methods of introducing dsRNA to plant seeds for modulating gene expression
US10760086B2 (en) 2011-09-13 2020-09-01 Monsanto Technology Llc Methods and compositions for weed control
US10801028B2 (en) 2009-10-14 2020-10-13 Beeologics Inc. Compositions for controlling Varroa mites in bees
US10808249B2 (en) 2011-09-13 2020-10-20 Monsanto Technology Llc Methods and compositions for weed control
US10806146B2 (en) 2011-09-13 2020-10-20 Monsanto Technology Llc Methods and compositions for weed control
US10829828B2 (en) 2011-09-13 2020-11-10 Monsanto Technology Llc Methods and compositions for weed control
US10883103B2 (en) 2015-06-02 2021-01-05 Monsanto Technology Llc Compositions and methods for delivery of a polynucleotide into a plant
US10888579B2 (en) 2007-11-07 2021-01-12 Beeologics Inc. Compositions for conferring tolerance to viral disease in social insects, and the use thereof
US10968449B2 (en) 2015-01-22 2021-04-06 Monsanto Technology Llc Compositions and methods for controlling Leptinotarsa
US10988764B2 (en) 2014-06-23 2021-04-27 Monsanto Technology Llc Compositions and methods for regulating gene expression via RNA interference
US11091770B2 (en) 2014-04-01 2021-08-17 Monsanto Technology Llc Compositions and methods for controlling insect pests
US11807857B2 (en) 2014-06-25 2023-11-07 Monsanto Technology Llc Methods and compositions for delivering nucleic acids to plant cells and regulating gene expression

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004011705A1 (de) 2004-03-10 2005-09-29 Bayer Cropscience Gmbh Substituierte 4-(4-Trifluormethylpyrazolyl)-Pyrimidine
DE102005058418A1 (de) * 2005-12-07 2007-06-21 Bayer Cropscience Gmbh Verfahren zur Herstellung von Haloalkyl(thio)vinimidiniumsalzen und 4-(Haloalkyl(thio))-pyrazolen und deren Umsetzung zu Pflanzenschutzmitteln
US8022061B2 (en) * 2006-10-10 2011-09-20 Amgen Inc. N-aryl pyrazole compounds, compositions, and methods for their use
US20100035934A1 (en) * 2007-02-02 2010-02-11 Neurosearch A/S Pyridinyl-pyrazole derivatives and their use as potassium channel modulators
JP5805767B2 (ja) * 2010-09-01 2015-11-10 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングBayer Intellectual Property GmbH N−(テトラゾール−5−イル)アリールカルボキサミド類及びn−(トリアゾール−5−イル)アリールカルボキサミド類並びに除草剤としてのそれらの使用
CN114349704A (zh) * 2022-01-21 2022-04-15 河南师范大学 三氟甲基缀合的吡唑螺环丙烷类化合物及其合成方法
WO2024072768A1 (en) * 2022-09-30 2024-04-04 Fmc Corporation Substituted fluoropyridine as herbicides

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0970072A1 (de) * 1997-03-11 2000-01-12 E.I. Dupont De Nemours And Company Herbizide heteroaryl-azole
EP1036066B1 (de) * 1997-12-03 2007-04-18 Mid-America Commercialization Corporation Substituierte pyrimidine und pyridine als unkrautbekämpfungsmittel
CA2326020A1 (en) * 1999-11-17 2001-05-17 Basf Corporation Herbicidal 2-aryloxy-4-methyl-6-pyrazol-1-yl-pyridines
US20040198758A1 (en) 2001-08-17 2004-10-07 Rapado Liliana Parra N-heterocyclyl substituted thienyloxy-pyrimidines used as herbicides

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10888579B2 (en) 2007-11-07 2021-01-12 Beeologics Inc. Compositions for conferring tolerance to viral disease in social insects, and the use thereof
EP3115045A3 (de) * 2008-08-26 2017-05-17 Basf Se Nachweis und verwendung niedermolekularer modulatoren des kälte-menthol-rezeptors trpm8
US10801028B2 (en) 2009-10-14 2020-10-13 Beeologics Inc. Compositions for controlling Varroa mites in bees
US9121022B2 (en) 2010-03-08 2015-09-01 Monsanto Technology Llc Method for controlling herbicide-resistant plants
US9988634B2 (en) 2010-03-08 2018-06-05 Monsanto Technology Llc Polynucleotide molecules for gene regulation in plants
US11812738B2 (en) 2010-03-08 2023-11-14 Monsanto Technology Llc Polynucleotide molecules for gene regulation in plants
US10829828B2 (en) 2011-09-13 2020-11-10 Monsanto Technology Llc Methods and compositions for weed control
US10760086B2 (en) 2011-09-13 2020-09-01 Monsanto Technology Llc Methods and compositions for weed control
US9416363B2 (en) 2011-09-13 2016-08-16 Monsanto Technology Llc Methods and compositions for weed control
US9422557B2 (en) 2011-09-13 2016-08-23 Monsanto Technology Llc Methods and compositions for weed control
EP3296402A2 (de) 2011-09-13 2018-03-21 Monsanto Technology LLC Verfahren und zusammensetzungen zur unkrautbekämpfung
US9422558B2 (en) 2011-09-13 2016-08-23 Monsanto Technology Llc Methods and compositions for weed control
US10808249B2 (en) 2011-09-13 2020-10-20 Monsanto Technology Llc Methods and compositions for weed control
EP3382027A2 (de) 2011-09-13 2018-10-03 Monsanto Technology LLC Verfahren und zusammensetzungen zur unkrautbekämpfung
US10806146B2 (en) 2011-09-13 2020-10-20 Monsanto Technology Llc Methods and compositions for weed control
EP3434780A1 (de) 2011-09-13 2019-01-30 Monsanto Technology LLC Verfahren und zusammensetzungen zur unkrautbekämpfung
EP3434779A1 (de) 2011-09-13 2019-01-30 Monsanto Technology LLC Verfahren und zusammensetzungen zur unkrautbekämpfung
US10240162B2 (en) 2012-05-24 2019-03-26 A.B. Seeds Ltd. Compositions and methods for silencing gene expression
US10240161B2 (en) 2012-05-24 2019-03-26 A.B. Seeds Ltd. Compositions and methods for silencing gene expression
US10934555B2 (en) 2012-05-24 2021-03-02 Monsanto Technology Llc Compositions and methods for silencing gene expression
US10041068B2 (en) 2013-01-01 2018-08-07 A. B. Seeds Ltd. Isolated dsRNA molecules and methods of using same for silencing target molecules of interest
US10683505B2 (en) 2013-01-01 2020-06-16 Monsanto Technology Llc Methods of introducing dsRNA to plant seeds for modulating gene expression
US10612019B2 (en) 2013-03-13 2020-04-07 Monsanto Technology Llc Methods and compositions for weed control
US10609930B2 (en) 2013-03-13 2020-04-07 Monsanto Technology Llc Methods and compositions for weed control
US10568328B2 (en) 2013-03-15 2020-02-25 Monsanto Technology Llc Methods and compositions for weed control
WO2014151255A1 (en) 2013-03-15 2014-09-25 Monsanto Technology Llc Methods and compositions for weed control
US9856495B2 (en) 2013-07-19 2018-01-02 Monsanto Technology Llc Compositions and methods for controlling Leptinotarsa
US10597676B2 (en) 2013-07-19 2020-03-24 Monsanto Technology Llc Compositions and methods for controlling Leptinotarsa
US9777288B2 (en) 2013-07-19 2017-10-03 Monsanto Technology Llc Compositions and methods for controlling leptinotarsa
US9850496B2 (en) 2013-07-19 2017-12-26 Monsanto Technology Llc Compositions and methods for controlling Leptinotarsa
US11377667B2 (en) 2013-07-19 2022-07-05 Monsanto Technology Llc Compositions and methods for controlling Leptinotarsa
US10100306B2 (en) 2013-11-04 2018-10-16 Monsanto Technology Llc Compositions and methods for controlling arthropod parasite and pest infestations
US10927374B2 (en) 2013-11-04 2021-02-23 Monsanto Technology Llc Compositions and methods for controlling arthropod parasite and pest infestations
US9540642B2 (en) 2013-11-04 2017-01-10 The United States Of America, As Represented By The Secretary Of Agriculture Compositions and methods for controlling arthropod parasite and pest infestations
US10557138B2 (en) 2013-12-10 2020-02-11 Beeologics, Inc. Compositions and methods for virus control in Varroa mite and bees
US10334848B2 (en) 2014-01-15 2019-07-02 Monsanto Technology Llc Methods and compositions for weed control using EPSPS polynucleotides
US11091770B2 (en) 2014-04-01 2021-08-17 Monsanto Technology Llc Compositions and methods for controlling insect pests
US10988764B2 (en) 2014-06-23 2021-04-27 Monsanto Technology Llc Compositions and methods for regulating gene expression via RNA interference
US11807857B2 (en) 2014-06-25 2023-11-07 Monsanto Technology Llc Methods and compositions for delivering nucleic acids to plant cells and regulating gene expression
US10378012B2 (en) 2014-07-29 2019-08-13 Monsanto Technology Llc Compositions and methods for controlling insect pests
US11124792B2 (en) 2014-07-29 2021-09-21 Monsanto Technology Llc Compositions and methods for controlling insect pests
US10968449B2 (en) 2015-01-22 2021-04-06 Monsanto Technology Llc Compositions and methods for controlling Leptinotarsa
US10883103B2 (en) 2015-06-02 2021-01-05 Monsanto Technology Llc Compositions and methods for delivery of a polynucleotide into a plant
US10655136B2 (en) 2015-06-03 2020-05-19 Monsanto Technology Llc Methods and compositions for introducing nucleic acids into plants

Also Published As

Publication number Publication date
JP2006505513A (ja) 2006-02-16
UA80149C2 (en) 2007-08-27
DE50305279D1 (de) 2006-11-16
TW200403026A (en) 2004-03-01
HRP20050074A2 (en) 2006-03-31
US7282469B2 (en) 2007-10-16
BR0312915A (pt) 2005-07-12
PL375395A1 (en) 2005-11-28
EP1527067A1 (de) 2005-05-04
CA2493749A1 (en) 2004-02-12
MXPA05000954A (es) 2005-05-16
WO2004013129A1 (de) 2004-02-12
EP1527067B1 (de) 2006-10-04
ES2273013T3 (es) 2007-05-01
AR040667A1 (es) 2005-04-13
DK1527067T3 (da) 2007-02-05
PT1527067E (pt) 2007-01-31
CN1671698A (zh) 2005-09-21
MY130697A (en) 2007-07-31
US20040082475A1 (en) 2004-04-29
RS20050030A (en) 2007-09-21
AU2003281853A1 (en) 2004-02-23
ATE341546T1 (de) 2006-10-15
RU2005105574A (ru) 2005-07-20

Similar Documents

Publication Publication Date Title
EP1527067B1 (de) 4-trifluormethylpyrazolyl substituierte pyridine und pyrimidine
EP1280778B1 (de) Benzoylpyrazole und ihre verwendung als herbizide
EP1117639B1 (de) Benzoylcyclohexandione, verfahren zu ihrer herstellung und ihre verwendung als herbizide und pflanzenwachstumsregulatoren
EP1202978B1 (de) Isoxazolyl- und isoxazolinyl-substituierte benzoylcyclohexandione, verfahren zu ihrer herstellung und ihre verwendung als herbizide und pflanzenwachstumsregulatoren
DE10234875A1 (de) 4-Trifluormethylpyrazolyl substituierte Pyridine und Pyrimidine
WO2005089551A1 (de) Substituierte 4-(4-trifluormethylpyrazolyl)-pyrimidine als herbizide
DE102005014906A1 (de) Substituierte N-[Pyrimidin-2-yl-methyl]carboxamide und ihre Verwendung als Herbizide und Pflanzenwachstumsregulatoren
EP1866287A2 (de) Substituierte pyrazolyloxyphenylderivate als herbizide
WO2008110278A2 (de) Verwendung von n2-phenylamidinen als herbizide und diese enthaltende herbizide mittel
EP1585742B1 (de) Substituierte benzoylderivate als herbizide
WO2008125214A1 (de) 4-(4-trifluormethyl-3-thiobenzoyl)pyrazole und ihre verwendung als herbizide
WO2005097754A1 (de) Herbizid wirksame 3-amino-2 thiomethyl -benzoylpyrazole
DE102007026875A1 (de) 3-Cyclopropyl-4-(3-thiobenzoyl)pyrazole und ihre Verwendung als Herbizide
WO2005122768A1 (de) Substituierte benzoylpyrazole als herbizide
DE19953136A1 (de) Benzoylcyclohexandione und Benzoylpyrazole, Verfahren zu ihrer Herstellung und ihre Verwendung als Herbizide und Pflanzenwachstumsregulatoren
WO2005123710A1 (de) Substituierte benzoylcyclohexandione als herbizide
WO2005123726A1 (de) Pyridinylisoxazole und ihre verwendung als herbizide
EP2146966A1 (de) 4-(3-aminobenzoyl)-1-methylpyrazole und ihre verwendung als herbizide
DE19834110A1 (de) Herbizide Heterocyclyl- und heterocyclylalkyl-substituierte Pyrazolylpyrazole, Verfahren zu ihrer Herstellung und ihre Verwendung als Herbizide und Pflanzenwachstumsregulatoren
DE10117503A1 (de) Derivate von Benzoylcyclohexandionen und ihre Verwendung als Herbizide
DE102004059302A1 (de) 3-Cyclopropyl-4-(3-amino-2-methylbenzoyl)pyrazole und ihre Verwendung als Herbizide
DE10014761A1 (de) Substituierte N-Arylpyrazole, Verfahren zu deren Herstellung und ihre Verwendung als Herbizide und Pflanzenwachstumsregulatoren
DE102007029603A1 (de) Verwendung von N2-Phenylamidinen als Herbizide

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee