DE10231949A1 - Lithium-Polymer Batterie und Verfahren zur Herstellung von Lithium-Polymer Batterien - Google Patents
Lithium-Polymer Batterie und Verfahren zur Herstellung von Lithium-Polymer Batterien Download PDFInfo
- Publication number
- DE10231949A1 DE10231949A1 DE10231949A DE10231949A DE10231949A1 DE 10231949 A1 DE10231949 A1 DE 10231949A1 DE 10231949 A DE10231949 A DE 10231949A DE 10231949 A DE10231949 A DE 10231949A DE 10231949 A1 DE10231949 A1 DE 10231949A1
- Authority
- DE
- Germany
- Prior art keywords
- lithium
- mass
- polymer battery
- anode
- battery according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920000642 polymer Polymers 0.000 title claims abstract description 61
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 53
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 53
- 238000000034 method Methods 0.000 title claims abstract description 30
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- 235000011837 pasties Nutrition 0.000 claims abstract description 23
- 150000003839 salts Chemical class 0.000 claims abstract description 15
- 239000000010 aprotic solvent Substances 0.000 claims abstract description 14
- 239000000203 mixture Substances 0.000 claims abstract description 13
- 239000000463 material Substances 0.000 claims abstract description 9
- 238000009830 intercalation Methods 0.000 claims abstract description 6
- 230000002687 intercalation Effects 0.000 claims abstract description 5
- 239000002562 thickening agent Substances 0.000 claims description 13
- 239000005062 Polybutadiene Substances 0.000 claims description 12
- 229920002857 polybutadiene Polymers 0.000 claims description 12
- 239000003921 oil Substances 0.000 claims description 11
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 10
- 239000000654 additive Substances 0.000 claims description 6
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 4
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 4
- 239000011245 gel electrolyte Substances 0.000 claims description 4
- 229910044991 metal oxide Inorganic materials 0.000 claims description 4
- 150000004706 metal oxides Chemical class 0.000 claims description 4
- 239000003575 carbonaceous material Substances 0.000 claims description 2
- 229920000570 polyether Polymers 0.000 claims description 2
- 239000004721 Polyphenylene oxide Substances 0.000 claims 1
- 239000002131 composite material Substances 0.000 description 12
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 8
- 238000000576 coating method Methods 0.000 description 7
- 239000003792 electrolyte Substances 0.000 description 7
- 239000011888 foil Substances 0.000 description 7
- 239000010410 layer Substances 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 6
- 229910013870 LiPF 6 Inorganic materials 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 229910052786 argon Inorganic materials 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000003475 lamination Methods 0.000 description 4
- 239000002931 mesocarbon microbead Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 3
- 229920006370 Kynar Polymers 0.000 description 3
- 229910013733 LiCo Inorganic materials 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 239000011889 copper foil Substances 0.000 description 3
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 229920001973 fluoroelastomer Polymers 0.000 description 3
- 229910003002 lithium salt Inorganic materials 0.000 description 3
- 159000000002 lithium salts Chemical class 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 229920002959 polymer blend Polymers 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000012266 salt solution Substances 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- -1 Ethylene, diethyl Chemical group 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N Propene Chemical compound CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 125000005910 alkyl carbonate group Chemical group 0.000 description 2
- 229920001400 block copolymer Polymers 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 239000010406 cathode material Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000010924 continuous production Methods 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000005562 fading Methods 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- GELKGHVAFRCJNA-UHFFFAOYSA-N 2,2-Dimethyloxirane Chemical compound CC1(C)CO1 GELKGHVAFRCJNA-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 102100031416 Gastric triacylglycerol lipase Human genes 0.000 description 1
- 101000941284 Homo sapiens Gastric triacylglycerol lipase Proteins 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910013872 LiPF Inorganic materials 0.000 description 1
- 101150058243 Lipf gene Proteins 0.000 description 1
- 229920002367 Polyisobutene Polymers 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 125000004177 diethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000007888 film coating Substances 0.000 description 1
- 238000009501 film coating Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920005596 polymer binder Polymers 0.000 description 1
- 239000002491 polymer binding agent Substances 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 229920002717 polyvinylpyridine Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- ZAKVZVDDGSFVRG-UHFFFAOYSA-N prop-1-en-2-ylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CC(=C)C1=CC=CC=C1 ZAKVZVDDGSFVRG-UHFFFAOYSA-N 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0565—Polymeric materials, e.g. gel-type or solid-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1391—Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1393—Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/403—Manufacturing processes of separators, membranes or diaphragms
- H01M50/406—Moulding; Embossing; Cutting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/431—Inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Secondary Cells (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
Abstract
Die Erfindung bezieht sich auf eine Lithium-Polymer-Batterie, bestehend aus Kathode, Separator und Anode und Stromkollektoren und ein Verfahren zu ihrer Herstellung. Die Lithium-Polymer Batterie ist dadurch gekennzeichnet, dass die Anode und/oder Kathode jeweils zwischen dem Separator und einem Stromkollektor als pastöse Masse vorhanden ist, und aus einer Mischung, enthaltend Lithiuminterkalationsfähiges Material, Lithium-Leitsalz und aprotisches Lösungsmittel besteht.
Description
- Die Erfindung bezieht sich auf eine Lithium-Polymer Batterie sowie ein Verfahren zur Herstellung von Lithium-Polymer Batterien.
- Lithium-Polymer Batterien bestehen aus Anode, Kathode und einem Polymerelektrolyten als Separator. Anode, Kathode und Separator werden zusammengeführt, so dass ein Verbund entsteht, bei dem der Separator als Zwischenlage für Anode/Kathode dient. Der erhaltene Verbund wird dann zu Mehrfachlagen verarbeitet und zu prismatischen Zellen bzw. Wickelzellen verarbeitet. Nach dem Einhausen und Polen liegt eine Lithium-Polymer Batterie vor. Einzelheiten zur Herstellung und zum System sind im Stand der Technik bekannt und dem „Handbook of Battery Materials" edit. I.O. Besenhard, Verlag VCH, Weinheim, 1999, zu entnehmen. Spezielle Herstellungsverfahren, wie z.B. das sogenannte. Bellcore-Verfahren sind in „Lithium Ion Batteries" edit M. Wakihara et O. Yamamoto, Verlag VCH, Weinheim 1998 S. 235 u.
10 .9 beschrieben. - Zur Herstellung von Lithium-Polymer Batterien werden bisher grundsätzlich zwei unterschiedliche Verfahren verwendet.
- Bei einem Beschichtungsverfahren wird der für die Kathoden- bzw. Anodenmasse erforderliche Polymerbinder gelöst (z.B. 5–10%ige Fluorelastomer-Homo- oder Copolymerisate in N-Methyl-pyrrolidon (NMP)) und die dabei entstehende Polymerlösung mit den kathoden- bzw. anodenspezifischen Zusätzen wie Lithium-interkalierbare Metalloxide bzw. Lithium-interkalierbare Kohlenstoffe (Ruß, Graphit o.ä.) versetzt und dispergiert. Dann wird diese Dispersion mit der Filmbeschichtungstechnik auf Stromkollektoren (Folien, Bändern, Netzen o.ä.; für die Anode bevorzugt Cu, für die Kathode bevorzugt Al) aufgetragen.
- Eine Variante der oben beschriebenen Beschichtungsverfahren besteht darin, wässrige Polymerdispersionen anstelle der Polymerlösungen mit organischen Lösungsmitteln zu verwenden.
- Das Bellcore-Verfahren ist eine weitere Variante der vorher beschriebenen Beschichtungsverfahren. In diesem Verfahren wird in die Anoden- bzw. Kathodenmasse ein Bestandteil (z.B. Dibutylphthalat, DBP) mit eingearbeitet, der vor der Zusammenführung von Anode/Kathode/Separator im sogenannten Bellcore-Verfahren (vgl.: „Lithium Ion Batteries" edit M. Wakihara et O. Yamamoto, Verlag VCH, Weinheim 1998) herausgelöst wird, um so eine ausreichende Porosität, d.h. ein ausreichendes Aufnahmevermögen für die Leitsalzlösung (Elektrolyt), zu schaffen.
- Die durch diese Verfahren erhaltenen Beschichtungen werden nach dem Trocknen zu prismatischen Zellen oder Wickelzellen verarbeitet (gewickelt), wobei als Zwischenlage ein sogenannter Separator z.B. aus Cellgard o.ä. mit porösen Strukturen verwendet wird. Das derartig hergestellte System wird eingehaust und vor dem Verschließen mit Leitsalzlösung gefüllt.
- Ein anderes Verfahren ist die Extrusion vom Separator (Polymer-Gel-Elektrolyt) und einer Elektrode (
US-A-4818643 ,EP-B-015498 DE-A-10020031 ). -
DE-A-10020031 offenbart ein Extruderverfahren zur trägerlösungsmittelfreien Herstellung von Lithium-Polymer Batterien. - Die vorliegende Erfindung hat die Aufgabe, eine hochwertige Lithium-Polymer Batterie sowie ein Verfahren zu ihrer Herstellung zu schaffen. Diese Aufgabe wird unter anderem durch die Kombination der Merkmale der unabhängigen Ansprüche 1 und 20 gelöst. Bevorzugte Ausführungsformen werden in den abhängigen Ansprüchen definiert.
- Eine besonders bevorzugte Ausgestaltung des Verfahrens zur Herstellung einer Lithium-Polymer Batterie, bestehend aus Anode, Separator und Kathode, ist dadurch gekennzeichnet, dass die Anode und/oder Kathode auf einen Separator und/oder einen Stromkollektor im Wesentlichen bei Raumtemperatur als pastöse Masse aufgetragen wird bzw. werden und die pastöse Masse aus einer Mischung enthaltend Lithium-interkalationsfähiges Material, Lithium-Leitsalz und aprotisches Lösungsmittel besteht, wobei die pastöse Masse für die Anode und/oder Kathode zusätzlich ein organisches und/oder anorganisches Verdickungsmittel umfasst,
die pastöse Anodemasse interkalationsfähige synthetische und/oder natürliche Kohlenstoffmaterialien mit einem Anteil von 50–75 Masse-% umfasst,
die pastöse Kathodenmasse interkalationsfähiges Metalloxid mit einem Anteil von 50–85 Masse-% umfasst, der Anteil des aprotischen Lösungsmittels in der Anode 25 –40 Masse-% und in der Kathode 15–40 Masse-% ist, der Anteil des Lithium-Leitsalzes 1–10 Masse-% ist, die Konzentration des Lithium-Leitsalzes 1–1,5 molar ist, der Anteil des Verdickungsmittels 0,1–10 Masse-%, bevorzugt 7,5 Masse-% ist,
das organische Verdickungsmittel aus der aus niedermolekulare Polyether, Polybutadienöle und/oder Polyvinylpryrolidon bestehenden Gruppe oder aus Mischungen davon ausgewählt wird,
das anorganische Verdickungsmittel aus der aus MgO, TiO2 und Al2O3 bestehenden Gruppe oder aus Mischungen davon ausgewählt wird,
der verwendete Separator porös ist, ein Polymer Gel Elektrolyt ist, der Polymere, aprotische Lösungsmittel und Zusatzstoffe umfasst, zusätzlich ein Lithium-Leitsalz umfasst,
der Anteil der Polymere am verwendeten Separator 30–70 Masse-% ist und
der Anteil des aprotischen Lösungsmittels 30–70 Masse-% ist. - Die Erfindung wird im Folgenden anhand von Ausführungsbeispielen unter Bezugnahme auf Zeichnungen näher erläutert.
- In den Zeichnungen zeigen:
-
1 : Eine schematische Darstellung eines Beispiels des erfindungsgemäßen Verfahrens; -
2 : Eine schematische Darstellung eines Ausschnitts einer erfindungsgemäßen Lithium-Polymer Batterie, wobei die Bezugszeichen die gleiche Bedeutung wie in1 haben. - Die in der erfindungsgemäßen Batterie verwendete Anode (3) umfasst Lithium-interkalationsfähigen synthetischen oder natürlichen Kohlenstoff, z.B. Graphit, MCMB® (Ashland), Ruß in Form von Pulver und/oder Fasern. Der Anteil an Lithium-interkalationsfähigen Kohlenstoff beträgt 50–75 Masse-%, bezogen auf die Gesamtmasse der Elektrodenmasse.
- Ferner umfasst die erfindungsgemäße Anode ein Elektrolyt, d.h. Leitsalze. Diese Leitsalze sind bevorzugt Lithium-Salze z.B. LiClO4, LiPF6, Lithium-Organoborate oder solche, die in „Handbook of Battery Materials"-edit. I.O. Besenhard, Verlag VCH, Weinheim, 1999 S. 462/463 beschrieben werden. Die Leitsalze liegen gelöst in einem aprotischen Lösungsmittel wie z.B. Propylencarbonat, Ethylencarbonat, Diethylcarbonat, Dimethylcarbonat, Perfluoralkylether und aprotischen Lösungsmitteln, die in „Handbook of Battery Materials" edit. I.O. Besenhard, Verlag VCH, Weinheim, 1999 Kap. 7.2 beschrieben werden, vor. Die Konzentration des Leitsalzes ist bevorzugt zwischen 1 molar und 1,5 molar. Der Anteil der Leitsalzlösung beträgt bevorzugt 25–40 Masse-%, bezogen auf die Gesamtanodenmasse.
- Ein erfindungsgemäß bevorzugter Elektrolyt umfasst ein Gemisch aus verschiedenen Alkylcarbonaten, z.B. Ethylen-, Diethyl- und Dimethylcarbonat in Mischungsverhältnissen von 1:1:1 bis 4:2:1.
- Außerdem kann die Anode noch Zusätze wie z.B. anorganische und/oder organische Verdickungsmittel umfassen. Als anorganische Verdickungsmittel werden bevorzugt MgO, Al2O3, TiO2 o.ä. verwendet. Als organische Verdickungsmittel werden bevorzugt Polybutadienöle, Polyvinylpyrrolidon oder Polyalkylenoxide-Copolymerisate von Ethylenoxid, mit Propen oder Isobutenoxid, mit ausgewählten Gruppen terminiert, verwendet.
- Der Anteil der Verdickungsmittel beträgt bevorzugt bis zu 10 Masse-%, mehr bevorzugt bis zu 7,5 Masse-%.
- Die in der erfindungsgemäßen Batterie verwendete Anode hat eine Viskosität von 0,1 bis 50⋅103 η/Pa⋅s, bevorzugt eine Viskosität von 5 bis 20⋅103 η/Pa⋅s.
- Die in der erfindungsgemäßen Batterie enthaltene Kathode enthält Lithium-interkalationsfähige Metalloxide wie z.B. Oxide von Co, Ni, Mn, Cr, W, Ta, Mo, V, Ti und/oder solche, die in „Handbook of Battery Materials" edit. I.O. Besenhard, Verlag VCH, Weinheim, 1999 Part 3, dargestellt werden.
- Der Anteil der Lithium-interkaltionsfähigen Metalloxide an der Kathodenmasse beträgt bevorzugt von 50–85 Masse%.
- Ferner umfasst die Kathode ein Elektrolyt, d.h. Leitsalze. Diese Leitsalze sind bevorzugt Lithium-Salze z.B. LiClO4, LiPF6, Lithium-Organoborate und/oder solche, die in „Handbook of Battery Materials" edit. I.O. Besenhard, Verlag VCH, Weinheim, 1999 S. 462/463 beschrieben werden. Die Leitsalze liegen gelöst in einem aprotischen Lösungsmittel wie z.B. Propylencarbonat, Ethylencarbonat, Diethylcarbonat, Dimethylcarbonat, Perfluoralkylether und aprotischen Lösungsmitteln vor, die in „Handbook of Battery Materials" edit. I.O. Besenhard, Verlag VCH, Weinheim, 1999 Kap. 7.2 beschrieben werden. Die Konzentration der Leitsalze ist bevorzugt zwischen 1 molar und 1,5 molar. Der Anteil der Leitsalzlösung beträgt bevorzugt 15–40 Masse-%, bezogen auf die Gesamtkathodenmasse.
- Außerdem kann die Kathode die gleichen Zusätze in der gleichen Menge, wie für die Anode beschrieben, umfassen.
- Die in der erfindungsgemäßen Batterie verwendete Kathode hat eine Viskosität von 0,1 bis 50⋅103 n/Pa⋅s, bevorzugt eine Viskosität von 5 bis 20⋅103 n/Pa⋅s.
- In dem erfindungsgemäßen Verfahren wird im Schritt A auf einen Separator (
1 ) eine Anode (3 ) als pastöse Masse aufgetragen, und anschließend im Schritt B ein Stromkollektor für die Anode aufgebracht. Dann wird der so entstandene Verbund durch eine Umlenkrolle (11 ) gewendet. Nach dem Wenden des Verbundes wird auf der anderen Seite des Separators im Schritt B eine Kathode als pastöse Masse aufgebracht und anschließend ein Stromkollektor für die Kathode aufgebracht. Schließlich wird der Verbund in einer Laminationsvorrichtung (13 ) laminiert, wobei der in2 schematisch dargestellte Verbund entsteht. - In dem erfindungsgemäßen Verfahren zur Herstellung einer Lithium-Polymer-Batterie, die aus Anode (
3 ), Separator (1 ) und Kathode (7 ) besteht, wird die Anode (3 ) oder Kathode (7 ) als pastöse Masse auf einen Separator (1 ) oder einen Stromkollektor (5 ;9 ) im Wesentlichen bei Raumtemperatur aufgetragen. Die jeweilige pastöse Elektrodenmasse (3 ;7 ) mit einer Viskosität von 0,1 bis 50⋅103 n/Pa⋅s, bevorzugt mit einer Viskosität von 5 bis 20⋅103 n/Pa⋅s, wird in einer definierten Dicke von bevorzugt 5–100 μm, mehr bevorzugt 10–30 μm, aufgetragen und dann mit einem Stromkollektor (5 ;9 ) (Ableiterfolie) belegt. Die einseitig beschichtete Separatorfolie (1 ) kann anschließend auf der noch unbeschichteten Seite mit der anderen pastösen Elektrodenmasse (7 ;3 ), ebenfalls mit einer Dicke von bevorzugt 5–100 μm, mehr bevorzugt 10–30 μm, beschichtet, und mit dem entsprechenden Stromkollektor (9 ;5 ) belegt werden. Der Auftrag der Elektrodenmassen und der Stromkollektoren kann auch gleichzeitig erfolgen Der entstandene Verbund kann dann bei Temperaturen von 30 –100 °C mit einer Laminationsvorrichtung (13 ) laminiert werden, und anschließend zu prismatischen Zellen bzw. Wickelzellen entsprechend den herkömmlichen Verfahren verarbeitet werden. Das Gesamtverfahren kann kontinuierlich mit Bandgeschwindigkeiten von 0,1–10 m/Min erfolgen, gegebenenfalls kann auch mit höheren Geschwindigkeiten gearbeitet werden. Die Verarbeitung erfolgt bevorzugt bei Raumtemperatur. - Die pastösen Elektrodenmassen bestehen aus einer Mischung bzw. Dispersion aus Lithium-interkalationsfähigem Material, Lithium-Leitsalz und Lösungsmittel.
- Im erfindungsgemäßen Verfahren kann die Anodenmasse (
3 ) bzw. Kathodenmasse (7 ) in einem Mischer (z.B. einem Voith-Mischer) bei Raumtemperatur unter Argon (reinst) als Schutzgas zubereitet werden. Die Bestandteile werden zu einer streichfähigen Paste (3 ;7 ) verrührt, die dann, wie aus1 ersichtlich, auf die kontinuierlich vorbeigeführte Separatorfolie (1 ) in einer Dicke von z.B. 20 μm mittels einer Breitschlitzdüse bei Raumtemperatur aufgetragen werden kann. Durch das Mischen der Elektrodenmassen (3 ;7 ) vor dem Auftrag wird eine gleichmäßige Konzentration der Komponenten der Elektrodenmassen (3 ;7 ) erzielt. - Bei der erfindungsgemäßen Lösung können Separatoren, wie zum Beispiel im „Handbook of Battery Materials" edit. I.O. Besenhard, Verlag VCH, Weinheim, 1999 Part II, 9 und Part III, 8 beschrieben, verwendet werden. Bevorzugt werden für das erfindungsgemäße Verfahren Polymer-Gel- Elektrolyte als Separatoren verwendet. Sie bestehen aus einem Polymer oder Polymergemisch, welches aprotische Lösungsmittel wie z.B. Alkylkarbonate o.ä. umfasst. Der Separator ist bevorzugt porös. Der Anteil des Polymers bzw. des Polymergemisches beträgt, bezogen auf die Gesamtmasse des Separators, bevorzugt 30–70 Masse%.
- Für den Separator in der erfindungsgemäßen Lithium-Polymer Batterie können als Polymere z.B. Polyolefine, Polyisobuten, Butylkautschuk, Polybutadien, anionisch hergestellte Blockcopolymerisate auf Basis von Styrol (α-Methylstyrol) mit Butadien und/oder Isopren, sowie Fluorelastomere, bevorzugt Terpolymere auf Basis von TFE/PDV/HFP, sowie Polyvinylpyrrolidon, Polyvinylpyridin o.ä. verwendet werden.
- Der Separator kann zudem Lithium-Leitsalze (Elektrolyte), sowie mineralische Zusatzstoffe wie z.B. Al2O3, MgO, TiO2 o.ä. umfassen. Der Anteil der zur Herstellung des Separators verwendeten Leitsalze beträgt bevorzugt 30–70 Masse-%. Der Anteil der zur Herstellung des Separators verwendeten Zusätze beträgt bevorzugt 0,5–20 Masse-%. Die Herstellung des Separators im erfindungsgemäßen Verfahren erfolgt bevorzugt durch Mischen der Einzelbestandteile bei Temperaturen von 25°C bis 160°C, z.B. in einem Voith-Mischer. Das Verfahren kann auch ohne Leitsalzzusatz durchgeführt werden, wobei lediglich die aprotischen Lösungsmittel (Ethylencarbonat, Diethylcarbonat 1:1) in die Polymermischung mit eingearbeitet werden. Die Menge der aprotischen Lösungsmittel beträgt bevorzugt 55 Masse-% (bezogen auf die Gesamtseparatormasse). Auch in diesem Fall wird eine Separatorfolie mit einer Breite von 150 mm und einer Dicke von 25 μm erhalten. Durch das Mischen der Separatormasse vor dem Auftrag wird eine gleichmäßige Konzentration der Komponenten der Seperatormasse erzielt.
- Bei der erfindungsgemäßen Lithium-Polymer Batterie werden als Stromkollektoren bevorzugt Folien, Netze oder Gewebe bzw. Vliese aus Metallen, bevorzugt Cu für die Anode und Al für die Kathode, verwendet. Geeignet sind aber auch Folien aus elektrisch leitfähigen Polymeren wie z.B. Polypyrrol, Polythiophen, Polyphenylen, Polyanilin o.ä., aber auch Vliese aus Kohlenstofffasern oder Kohlenstofffolien. Sie werden in Dicken von bevorzugt 0,1 bis 30 μm, mehr bevorzugt von 0,5 bis 15 μm eingesetzt. Um Korrosion zu vermeiden und besseren Kontakt zu der Anoden- bzw. Kathodenmasse zu erreichen, werden die metallischen Stromkollektoren bevorzugt geprimert, d. h. mit einer elektrisch leitfähigen Adhäsionsschicht versehen.
- Bei den erfindungsgemäßen Beschichtungsverfahren muss durch die Eigenschaften der Bestandteile das in der Elektrodenmassen bzw. im Separator enthaltene organische Lösungsmittel nicht entfernt werden, wodurch das Auftreten von sogenannten „Fading", d.h. dem Nachlassen der Batterie-Effizienz und mangelnde Zyklenstabilität durch verbleibendes Lösungsmittel vermieden wird. Darüber hinaus wird die Wiedergewinnung bzw. Entfernung des organischen Lösungsmittels vermieden, was aus Kosten- und Umweltschutzgründen vorteilhaft ist. Daneben gibt es keine Notwendigkeit von hohen Trocknungstemperaturen bzw. längeren Trocknungszeiten bei niedrigeren Trocknungstemperaturen und Vakuum.
- Wie in
1 dargestellt, werden die Stromkollektoren (5 ;9 ) z.B. kontinuierlich nacheinander auf die Anodenmasse (3 ) bzw. Kathodenmasse (7 ) geschichtet und dann mit einer Laminationsvorrichtung, gegebenenfalls bei erhöhten Temperaturen bis zu 100°C, fest verbunden. In einer Verfahrensvariante kann das Aufbringen der Stromkollektoren (5 ;9 ) synchron erfolgen. - Der Verbund aus Separator (
1 ), Anode (3 ) , Kathode (7 ) in Stromkollektoren (5 ;9 ) entsprechend2 wird nach dem Laminieren bevorzugt kontinuierlich weiterverarbeitet. Es erfolgt z.B. das Wickeln zu prismatischen Zellen oder Rundzellen, mit anschließendem Einhausen und Kontaktieren, d.h. Zusammenfassen der Anode bzw. Kathode zu + bzw. – Pol der Batterien. - Ein wesentlicher Vorteil dieser in
2 ausschnittsweise schematisch dargestellten erfindungsgemäßen Lithium-Polymer Batterie, die als Folie vorliegt, besteht in der vielfältigen Formgebung, die nicht auf die klassische Batterie-Zellformen beschränkt ist, sondern angepasst an den Verwendungszweck in das Arbeitsgerät integriert werden kann. - Die Vorteile des erfindungsgemäßen Verfahrens bestehen in seiner Wirtschaftlichkeit, nämlich:
- – Herstellen der Elektrodenmassen bei Raumtemperatur;
- – Wegfall von Trocknungszeiten und konventionellen Beschichtungseinrichtungen;
- – geringere Kosten für Lösungsmittel;
- – Keine Wiedergewinnung der Lösungsmittel erforderlich;
- – Kontinuierliche Herstellung betriebsbereiter Batterien
- – kostengünstige einfache Fertigung und Schonung der Umwelt.
- In den nachfolgenden Beispielen werden weitere konkrete Ausführungsformen des erfindungsgemäßen Verfahrens erläutert. (Die angegebenen Teile sind Masseteile und die angegeben Prozent sind Masse-%) Beispiel
1 : Zur Herstellung einer erfindungsgemäßen Separatorfolie werden 20 Teile Fluorelastomer Kynar 28® (3M Comp.), 10 Teile Fluorterpolymer THV Dyneon®, 2 Teile Styroflex® (BASF) Styrol/Butadien-Blockcopolymerisat, 8 Teile MgO, 5 Teile Ensaco® (Erachem) bei 120–130°C für 60-Minuten in einem Voith-Mischer unter Argon (reinst) zu einer homogenen Masse verarbeitet, anschließend granuliert und in einem Collin-Extruder gegeben, der bei Temperaturen von 80–85°C betrieben wird. Parallel zu der obigen Masse werden 45 Teile eines Elektrolyts (LP40®, Merck) bestehend aus 1 molarer LiPF6-Lösung in Ethylencarbonat/Diethylcarbonat 1:1, in den Extruder eingeführt. Nach 6–9 Min. wird durch eine Extruderdüse mit einer Austrittstemperatur von 90°C eine 150 mm breite und 10 μm dicke Separatorfolie ausgetragen, die entweder mit Releasepapier versehen und zur diskontinuierlichen Verwendbarkeit gestapelt wird, oder kontinuierlich dem weiteren erfindungsgemäßen Verfahren zugeführt wird. Zur Herstellung der Anodenmasse werden unter Argon (reinst) als Schutzgas 54 Teile MCMB 6/28® (Ashland) mit 8 Teilen Ethylencarbonat, 8 Teilen Diethylcarbonat sowie 10 Teilen Polybutadienöl (Molmasse 10–15.000, 1,2-Vinyl-Anteil 22%) in einem Voith-Mischer bei Raumtemperatur für 45 Min. vermischt und dann 8 Teile Dimethylcarbonat sowie 6 Teile LiPF6 und 1 Teil MgO hinzugefügt und wiederum bei Raumtemperatur für 45 Min. gemischt. Dann werden 5 Teile Ruß (Ensaco®, Erachem) hinzugefügt, für ca. 5–10 Min. gerührt und die Masse bei Raumtemperatur über eine Breitschlitzdüse auf die Separatorfolie aufgebracht. - Zur Herstellung der Kathodenmasse werden unter Argon (reinst) als Schutzgas zu 30 Teilen LiCo-Oxid SS5® (Sony), 9 Teile Ethylencarbonat, 9 Teile Diethylcarbonat, 9 Teile Dimethylcarbonat sowie 3 Teile LiPF6 hinzugegeben, und bei Raumtemperatur 60 Minuten gerührt, dann werden 25 Teile LiCo-Oxid sowie 10 Teile Polybutadienöl (wie in. Beispiel 1) hinzugefügt, für 30 Min. gemischt und dann 5 Teile Ensaco® (Erachem) hinzugegeben und für 10 Min. gemischt. Die entstandene Masse wird später bei Raumtemperatur auf die andere Seite der Separatorfolie aufgebracht.
- Um ein Verbund aus Anodenmasse mit Ableiter und Separatorfolie herzustellen, wird die Anodenmasse mittels einer Düse in einer Dicke von 20 μm auf die Separatorfolie (Breite: 150 mm) aufgetragen und in einem synchronen Arbeitsschritt mit einer Cu-Folie (Ableiter, Stromkollektor) abgedeckt. (Breite der Cu-Folie: 150,6 mm). Auf den Verbund, bestehend aus Cu-Folie, Anodenmasse und Separatorfolie, wird auf die unbeschichtete Seite der Separatorfolie die Kathodenmasse in einer Dicke von 25 μm und einer Breite von 150 mm aufgetragen. Die Kathodenmasse wird mit einem Ableiter versehen, welcher eine 150,7 mm breite Al-Folie, geprimert mit einer Schicht aus einem Dyneon THV®/Rußgemisch 2:1, mit einer Dicke von 0,1–1 μm, ist. Dieser Verbund wird bei einer Temperatur von 90°C mit einem Auspressdruck von 3 MPa laminiert. Anschließend wird dieser Verbund, bestehend aus Anode mit Ableiter und Kathode mit Ableiter sowie dem Separator als Schicht zwischen den Elektroden, eingehaust und Anoden- bzw. Kathodenableiter zum + bzw. – Pol der Batterie gepolt.
- Der hergestellte Verbund wird zu einem Wickel aufgerollt, an den Wickelstirnflächen (0,6 bzw. 0,7 mm überstehend) elektrisch kontaktiert und eingehaust.
- Der Wickeldurchmesser beträgt 8 cm, die galvanostatische Ladung erfolgt stufenweise mit einem Digatron-Ladegerät von zunächst bis 3,0 Volt, dann bis 3,6 Volt und dann bis 4,1 Volt, jeweils mit Strömen von 0,15 mA/cm2. Die Entladung erfolgt ebenfalls mit Strömen von 0,15 mA/cm2. Die Wickelzelle hat eine Entladekapazität von 43 Ah bei einer Aktivfläche von 1,9 m2. Die Zyklenstabilität liegt bei über 200, das "Fading" (Verlust) ist unter 2,5%.
- Beispiel 2:
- Die Herstellung der Lithium-Polymer Batterie erfolgt wie in Beispiel 1, jedoch mit folgenden Besonderheiten: Bei der Herstellung der Anodenmasse werden statt 10 Teilen Polybutadienöl 10 Teile eines Copolymerisats aus Ethylenoxid/Propylenoxid (1:1 mol/mol), mit CH3-terminierten HO-Endgruppen und einer Molmasse von 25.000 –30.000 hinzugefügt.
- Beispiel 3:
- Die Herstellung der Lithium-Polymer Batterie erfolgt wie in Beispiel 1, jedoch mit folgenden Besonderheiten: Die Anodenmasse aus 56 Teilen MCMB 6/28® (Ashland) wird mit 10 Teilen Ethylencarbonat, 10 Teilen Diethylcarbonat und 10 Teilen Propylencarbonat und 4 Teilen LiPF6 versetzt und bei Raumtemperatur 45 Min. gerührt, dann werden 10 Teile Polybutadienöl (wie in Beispiel 1) hinzugefügt und für 45 Min. gerührt und dann 3 Teile Ensaco® (Erachem) hinzugegeben, für 10 Min. gerührt und diese pastöse Masse mittels einer Breitschlitzdüse auf die Separatorfolie aufgetragen und das Verfahren wie in Beispiel 1 fortgeführt.
- Beispiel 4:
- Die Herstellung der Lithium-Polymer Batterie erfolgt wie in Beispiel
1 , jedoch mit folgenden Besonderheiten: In die Kathodenmasse wird statt Polybutadienöl Polyalkylenoxid (ein Copolymerisat von Ethylenoxid/Propylenoxid) hinzugegeben. - Beispiel 5:
- Die Herstellung der Lithium-Polymer Batterie erfolgt wie in Beispiel 1, jedoch mit folgenden Besonderheiten: Für die Anodenmasse wird ein Elektrolyt eingesetzt, welches z.B. aus 65% MCMB 6/28® (Ashland), 30% 1 molare LiPF6 Lösung in Ethylencarbonat/Diethylcarboant/Dimethylcarbonat 1:1:1 sowie 5% Polybutadienöl (Molmasse 15–20000, 1,2-Vinyl-Anteil etwa 22%) besteht.
- Beispiel 6:
- Die Herstellung der Lithium-Polymer Batterie erfolgt wie in Beispiel 1, jedoch mit folgenden Besonderheiten: Die Kathodenmasse wird aus 75 Masse-% LiCo-Oxid mit 20 Masse-% Elektrolyt (1 molare LiPF6-Lösung in einem Gemisch aus Ethylencarbonat, Diethylcarbonat, Dimethylcarbonat) zu einer Paste gemischt, mit 5 Masse-% Polybutadienöl gemischt und dann auf der Gegenseite der Separatorfolie (einseitig mit Anodenmasse beschichtet) mit einer Dicke von 25 μm aufgebracht wird.
- Beispiel 7:
- Die Herstellung der Lithium-Polymer Batterie erfolgt wie in Beispiel
1 , jedoch mit folgenden Besonderheiten: Für die Herstellung des Separators werden 15 Masse-% Kynar 2801® (Atochem), 15 Masse-% Dyneon THV 120®, 5 Masse-% Styroflex® (BASF) und 10 Masse-% MgO, gemischt, intensiv gerührt und auf 150°C erwärmt und dann ausgetragen und granuliert. Die oben beschriebene Mischung kann dann einem Collin-Extruder zugeführt werden und dann werden mit einer Dosierpumpe (kontinuierlich) 55 Masse-% einer 1 molaren LIPF6-Lösung in Ethylencarbonat/Diethylcarbonat (1:1) zugegeben. Dieser Ansatz wird bei einer Extrudertemperatur von 90°C gemischt und bei einer Austrittstemperatur von 80°C an der Breitschlitzdüse mit einer Breite von 150 mm und einer Dicke von 30 μm aufgetragen. Die erhaltene Separatorfolie wird dann entweder für das geführten Verfahren (mit z.B. Isolierpapier als Zwischenlage) aufgewickelt, oder für das kontinuierliche Verfahren direkt der weiteren Verarbeitung d.h. der Beschichtung mit Anoden- bzw. Kathodenmasse zugeführt. - Vergleichsbeispiel 1:
- Die Herstellung der Lithium-Polymer Batterie erfolgt wie in Beispiel 1, jedoch mit folgenden Besonderheiten: Die in einem Voith-Mischer hergestellte Anodenmasse wird mit einem Collin-Extruder bei 80–85°C verarbeitet. Es entsteht keine extrudierbare Masse und keine Masse, die elektrochemisch be- und entladbar ist.
- Vergleichsbeispiel 2:
- Die Herstellung der Lithium-Polymer Batterie erfolgt wie in Beispiel 1, jedoch mit folgenden Besonderheiten: Die in einem Voith-Mischer hergestellte Kathodenmasse wird mit einem Collin-Extruder bei 80–85°C verarbeitet. Es entsteht keine extrudierbare Masse und keine Masse, die elektrochemisch be- und entladbar ist.
- Vergleichsbeispiel 3:
- Die Herstellung der Lithium-Polymer Batterie erfolgt wie in Beispiel 1, jedoch mit folgenden Besonderheiten: Die Elektrodenmassen werden anstatt mit Polybutadienöl mit 10 Teilen Fluorelastomer (Kynar 2801®, Atochem) hergestellt. Die resultierenden Eletrodenmassen können nicht bei Raumtemperatur auf die Separatorfolie aufgetragen werden. Bei Erwärmung und Extrusion bei Temperaturen von etwa 90°C in einem Collin-Extruder entstehen keine homogenen Schichten und bei Temperaturen > 90°C entstehen tief verfärbte Schichten mit Zersetzungsprodukten, die ebenfalls zu keinen guten Batterieeigenschaften führen.
Claims (23)
- Lithium-Polymer Batterie, bestehend aus Anode (
3 ), Separator (1 ) und Kathode (7 ) und Stromkollektorenn (5 ;9 ), dadurch gekennzeichnet, dass die Anode (3 ) und/oder Kathode (7 ) jeweils zwischen dem Separator (1 ) und einem Stromkollektor (5 ;9 ) als pastöse Masse vorhanden ist, und aus einer Mischung enthaltend Lithiuminterkalationsfähiges Material, Lithium-Leitsalz und aprotisches Lösungsmittel besteht. - Lithium-Polymer Batterie nach Anspruch 1, dadurch gekennzeichnet, dass die pastöse Masse für die Anode und/oder Kathode eine Viskosität von 0,1 bis 50⋅103 n/Pa⋅s hat.
- Lithium-Polymer Batterie nach Anspruch 2, dadurch gekennzeichnet, dass die pastöse Masse für die Anode (
3 ) und/oder Kathode eine Viskosität von 5 bis 20.103 n/Pa⋅s hat. - Lithium-Polymer Batterie nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Anoden- und/oder Kathodenschicht (
3 ;7 ) entlang ihres Querschnitts eine gleichmäßige Konzentration der Schichtkomponenten aufweist. - Lithium-Polymer Batterie nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die pastöse Masse für die Anode (
3 ) und/oder Kathode (7 ) zusätzlich ein organisches und/oder anorganisches Verdickungsmittel umfasst. - Lithium-Polymer Batterie nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die pastöse Anodenmasse (
3 ) interkalationsfähige synthetische und/oder natürliche Kohlenstoffmaterialien mit einem Anteil von 50–75 Masse-% umfasst. - Lithium-Polymer Batterie nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die pastöse Kathodenmasse (
7 ) interkalationsfähiges Metalloxid mit einem Anteil von 50–85 Masse-% umfasst. - Lithium-Polymer Batterie nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Anteil des aprotischen Lösungsmittels 15–40 Masse% ist.
- Lithium-Polymer Batterie nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Anteil der Lithium-Leitsalze 1–10 Masse-% ist.
- Lithium-Polymer Batterie nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Konzentration des Lithium-Leitsalzes 1–1,5 molar ist.
- Lithium-Polymer Batterie nach einem der Ansprüche 2 bis 10, dadurch gekennzeichnet, dass der Anteil des Verdickungsmittels 0,1–10 Masse% ist.
- Lithium-Polymer Batterie nach Anspruch 11, dadurch gekennzeichnet, dass der Anteil des Verdickungsmittels 7,5 Masse-% ist.
- Lithium-Polymer Batterie nach einem der Ansprüche 2 bis 12, dadurch gekennzeichnet, dass das organische Verdickungsmittel aus der niedermolekulare Polyether, Polybutadienöle und/oder Polyvinylpryrolidon bestehenden Gruppe oder aus Mischungen davon ausgewählt ist.
- Lithium-Polymer Batterie nach einem der Ansprüche 2 bis 12, dadurch gekennzeichnet, dass das anorganische Verdickungsmittel aus der aus MgO, TiO2 und Al2O3 bestehenden Gruppe oder aus Mischungen davon ausgewählt ist.
- Lithium-Polymer Batterie nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass der Separator (
1 ) porös ist. - Lithium-Polymer Batterie nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass der Separator (
1 ) ein Polymer Gel Elektrolyt ist, der Polymere, aprotische Lösungsmittel und Zusatzstoffe umfasst. - Lithium-Polymer Batterie nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass der Separator (
1 ) zusätzlich ein Lithium-Leitsalz umfasst. - Lithium-Polymer Batterie nach Anspruch 16 oder 17, dadurch gekennzeichnet, dass der Anteil der Polymere am Separator (
1 ) 30–70 Masse-% ist. - Lithium-Polymer Batterie nach einem der Ansprüche 16 bis 18, dadurch gekennzeichnet, dass der Anteil des aprotischen Lösungsmittels 30–70 Masse-% ist.
- Verfahren zur Herstellung einer Lithium-Polymer Batterie, bestehend aus Anode (
3 ), Separator (1 ) und Kathode (7 ), dadurch gekennzeichnet, dass die Anode (3 ) und/oder Kathode (7 ) auf einen Separator (1 ) und/oder einen Stromkollektor (5 ;9 ) im Wesentlichen bei Raumtemperatur als pastöse Masse aufgetragen wird bzw. werden und die pastöse Masse aus einer Mischung enthaltend Lithium-interkalationsfähiges Material, Lithium-Leitsalz und aprotisches Lösungsmittel besteht. - Verfahren nach Anspruch 20, dadurch gekennzeichnet, dass der Anteil des aprotischen Lösungsmittels in der Anode (
3 ) 25–40 Masse-% und in der Kathode (7 ) 15–40 Masse-% ist. - Verfahren nach den Ansprüchen 20 und 21, dadurch gekennzeichnet, dass die pastöse Masse für die Anode (
3 ) und/oder Kathode (7 ) eine Viskosität von 0,1 bis 50⋅103 n/Pa⋅s hat. - Lithium-Polymer Batterie nach Anspruch 22, dadurch gekennzeichnet, dass die pastöse Masse für die Anode (
3 ) und/oder Kathode (7 ) eine Viskosität von 5 bis 20⋅103 n/Pa⋅s hat.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10231949A DE10231949B4 (de) | 2002-07-15 | 2002-07-15 | Lithium-Polymer Batterie und Verfahren zur Herstellung von Lithium-Polymer Batterien |
PCT/EP2003/007584 WO2004008555A2 (de) | 2002-07-15 | 2003-07-14 | Lithium-polymer batterie und verfahren zur herstellung von lithium-polymer batterien |
AU2003250047A AU2003250047A1 (en) | 2002-07-15 | 2003-07-14 | Lithium polymer battery and method for the production of lithium polymer batteries |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10231949A DE10231949B4 (de) | 2002-07-15 | 2002-07-15 | Lithium-Polymer Batterie und Verfahren zur Herstellung von Lithium-Polymer Batterien |
Publications (2)
Publication Number | Publication Date |
---|---|
DE10231949A1 true DE10231949A1 (de) | 2004-02-05 |
DE10231949B4 DE10231949B4 (de) | 2007-05-16 |
Family
ID=30009991
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE10231949A Expired - Fee Related DE10231949B4 (de) | 2002-07-15 | 2002-07-15 | Lithium-Polymer Batterie und Verfahren zur Herstellung von Lithium-Polymer Batterien |
Country Status (3)
Country | Link |
---|---|
AU (1) | AU2003250047A1 (de) |
DE (1) | DE10231949B4 (de) |
WO (1) | WO2004008555A2 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004013044A1 (de) * | 2004-03-09 | 2005-09-29 | Varta Microbattery Gmbh | Galvanisches Element |
DE102020127571A1 (de) | 2020-10-20 | 2022-04-21 | Bayerische Motoren Werke Aktiengesellschaft | Breitschlitzdüse sowie Verfahren zum Herstellen eines Bauteils |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2852148B1 (fr) * | 2003-03-07 | 2014-04-11 | Batscap Sa | Materiau pour electrode composite, procede pour sa preparation |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10020031A1 (de) * | 2000-04-22 | 2001-11-22 | Franz W Winterberg | Verfahren zur Herstellung von Lithium-Polymer-Batterien |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8333388D0 (en) * | 1983-12-15 | 1984-01-25 | Raychem Ltd | Materials for electrical devices |
EP0967678A4 (de) * | 1997-12-22 | 2005-01-19 | Mitsubishi Electric Corp | Lithiumionensekundärbatterie und deren herstellung |
EP0964463A2 (de) * | 1998-06-12 | 1999-12-15 | Rohm And Haas Company | Zusammensetzung auf der Basis von Lithiummanganat |
DE19839217C2 (de) * | 1998-08-28 | 2001-02-08 | Fraunhofer Ges Forschung | Pastöse Massen, Schichten und Schichtverbände, Zellen und Verfahren zur Herstellung |
JP2001325991A (ja) * | 2000-05-15 | 2001-11-22 | Nisshinbo Ind Inc | 電気部品及びその製造方法 |
CA2350702A1 (en) * | 2000-06-16 | 2001-12-16 | Nisshinbo Industries, Inc. | Polymer battery and method of manufacture |
-
2002
- 2002-07-15 DE DE10231949A patent/DE10231949B4/de not_active Expired - Fee Related
-
2003
- 2003-07-14 AU AU2003250047A patent/AU2003250047A1/en not_active Abandoned
- 2003-07-14 WO PCT/EP2003/007584 patent/WO2004008555A2/de not_active Application Discontinuation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10020031A1 (de) * | 2000-04-22 | 2001-11-22 | Franz W Winterberg | Verfahren zur Herstellung von Lithium-Polymer-Batterien |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004013044A1 (de) * | 2004-03-09 | 2005-09-29 | Varta Microbattery Gmbh | Galvanisches Element |
DE102020127571A1 (de) | 2020-10-20 | 2022-04-21 | Bayerische Motoren Werke Aktiengesellschaft | Breitschlitzdüse sowie Verfahren zum Herstellen eines Bauteils |
US12290834B2 (en) | 2020-10-20 | 2025-05-06 | Bayerische Motoren Werke Aktiengesellschaft | Slot die and method for producing a component |
Also Published As
Publication number | Publication date |
---|---|
AU2003250047A8 (en) | 2004-02-02 |
WO2004008555A2 (de) | 2004-01-22 |
WO2004008555A3 (de) | 2005-02-17 |
AU2003250047A1 (en) | 2004-02-02 |
DE10231949B4 (de) | 2007-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102017214200B4 (de) | Gelelektrolyte und vorstufen davon | |
DE10020031C2 (de) | Verfahren zur Herstellung von wiederaufladbaren Lithium-Polymer-Batterien | |
EP2934792B1 (de) | Suspension und verfahren zur herstellung einer lithiumpulveranode | |
DE69738111T2 (de) | Lithiumionensekundärbatterie und deren herstellung | |
DE102015121310A1 (de) | Elektrolyt und negativelektrodenstruktur | |
EP1261048B1 (de) | Elektroden/Separator-Laminat für galvanische Elemente und Verfahren zur dessen Herstellung | |
DE102015102090A1 (de) | Elektrolyt und lithium-basierte batterien | |
DE112013001587T5 (de) | Poröser Metallkörper mit dreidimensionalem Netzwerk für Kollektoren, Elektrode und nicht-wässrige Elektrolyt- Sekundärbatterie | |
EP2460213A1 (de) | Beschichtungsverfahren zur herstellung von elektroden für elektrische energiespeicher | |
DE10252305B4 (de) | Aktivierte Kathodenmasse, Kathode und Verfahren zur Herstellung einer Kathode | |
DE10314826B4 (de) | Verfahren zur Herstellung von Elektroden, Elektroden und Verwendung der Elektroden | |
DE102004053479A1 (de) | Hochleistungsbatterien mit Titanaten als negativem und Eisenphosphat als positivem Elektrodenmaterial und Verfahren zur Herstellung der Hochleistungsbatterien | |
DE10251241B4 (de) | Verfahren zur Herstellung von Lithium-Polymer-Batterien | |
DE102004012476A1 (de) | Lithium-Polymer-Zelle, Lithium-Polymer-Batterie mit der Zelle und Verfahren zu ihrer Herstellung | |
DE10231949A1 (de) | Lithium-Polymer Batterie und Verfahren zur Herstellung von Lithium-Polymer Batterien | |
DE10251194B4 (de) | Verfahren zur Herstellung eines Lithium-Polymer-Batterievorläufers und Verwendung des Verfahrens | |
EP2668685B1 (de) | Elektroden für lithium-ionen-batterien und ihre herstellung | |
DE10107384B4 (de) | Verwendung einer speziellen Polymers als Haftvermittler und Lithium-Polymer-Batterie | |
DE10328572B4 (de) | Lithium-Polymer-Batterie-Systeme und Verfahren zur Herstellung | |
DE102004044478B4 (de) | Lithium-Sekundär-Batterie und Verfahren zur Herstellung einer Lithium-Sekundär-Batterie | |
DE102010020647A1 (de) | Lithium-Polymer-Hochleistungsbatterien mit Titanaten und Fe/V-Phosphaten als elektrochemisch wirksames Elektrodenmaterial auf neuartigen modifizierten Ableitern. | |
DE102007034178A1 (de) | Wiederaufladbare Lithium-Ionen-Zellen und Verfahren zur Herstellung derselben | |
DE102006007220B4 (de) | Verfahren zum Herstellen von Lithium-Polymer-Energiespeichern | |
EP1588451A2 (de) | Verfahren zum herstellen von lithium-polymer-zellen aus mindestens einer als folienband vorgefertigten anoden- und kathodenmasse | |
DE10107423B4 (de) | Verwendung eines anionisch hergestellten 3-Blockpolymeren als Haftvermittler und Lithium-Polymer-Batterie |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OP8 | Request for examination as to paragraph 44 patent law | ||
8127 | New person/name/address of the applicant |
Owner name: DILO TRADING AG, ZUG, CH |
|
8364 | No opposition during term of opposition | ||
R082 | Change of representative | ||
R119 | Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee |