DE102020108668A1 - Nadelhubschalter und Kraftstoffinjektor mit einem solchen Nadelhubschalter - Google Patents

Nadelhubschalter und Kraftstoffinjektor mit einem solchen Nadelhubschalter Download PDF

Info

Publication number
DE102020108668A1
DE102020108668A1 DE102020108668.7A DE102020108668A DE102020108668A1 DE 102020108668 A1 DE102020108668 A1 DE 102020108668A1 DE 102020108668 A DE102020108668 A DE 102020108668A DE 102020108668 A1 DE102020108668 A1 DE 102020108668A1
Authority
DE
Germany
Prior art keywords
seat plate
injector
lift switch
ceramic
needle lift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102020108668.7A
Other languages
English (en)
Inventor
Norbert Schöfbänker
Richard Pirkl
Klaus Weraneck
Carina Rauscher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liebherr Components Deggendorf GmbH
Original Assignee
Liebherr Components Deggendorf GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liebherr Components Deggendorf GmbH filed Critical Liebherr Components Deggendorf GmbH
Priority to DE102020108668.7A priority Critical patent/DE102020108668A1/de
Priority to US17/907,524 priority patent/US20230146257A1/en
Priority to EP21716974.7A priority patent/EP4090844B1/de
Priority to PCT/EP2021/057776 priority patent/WO2021198024A1/de
Priority to CN202180026244.5A priority patent/CN115349052A/zh
Publication of DE102020108668A1 publication Critical patent/DE102020108668A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0671Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/166Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1886Details of valve seats not covered by groups F02M61/1866 - F02M61/188
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M65/00Testing fuel-injection apparatus, e.g. testing injection timing ; Cleaning of fuel-injection apparatus
    • F02M65/005Measuring or detecting injection-valve lift, e.g. to determine injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/90Selection of particular materials
    • F02M2200/9007Ceramic materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/168Assembling; Disassembling; Manufacturing; Adjusting

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Electromagnetism (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Die Erfindung betrifft einen Nadelhubschalter und einen Kraftstoffinjektor mit einem solchen Nadelhubschalter, wobei der Nadelhubschalter für einen Kraftstoffinjektor eine Sitzplatte mit einem plattenartigen Grundkörper und einem die beiden flächigen Seite des plattenartigen Grundkörpers verbindenden Durchgang, ein Ankerelement, das von dem Durchgang der Sitzplatte abhebbar und darauf dichtend aufsetzbar ist, und ein Steuerventil umfasst, das an der zum Ankerelement gegenüberliegenden Seite der Sitzplatte angeordnet ist und dazu ausgelegt ist, mit einer Düsennadel zusammenzuwirken, wobei die Sitzplatte gegenüber einem sie umgebenden Injektorgehäuse elektrisch isoliert und eine elektrische Verbindung mit dem Injektorgehäuse nur über die mit der Sitzplatte zusammenwirkende Düsennadel verwirklichbar ist. Ferner ist der Nadelhubschalter dadurch gekennzeichnet, dass mindestens ein die Sitzplatte kontaktierendes Keramik- und/oder Kunststoffteil vorhanden ist, um die Isolierung der Sitzplatte gegenüber dem sie umgebenden Injektorgehäuse zu erzeugen.

Description

  • Die vorliegende Erfindung betrifft einen Nadelhubschalter und einen Kraftstoffinjektor mit einem solchen Nadelhubschalter.
  • In Brennkraftmaschinen wie Dieselmotoren oder auch Benzinmotoren wird in der Regel über einen Injektor Kraftstoff mit einer bestimmten Menge und für eine bestimmte Zeitdauer in einen Brennraum eingespritzt. Dabei ist es aufgrund der sehr geringen Einspritzdauern, die im Mikrosekundenbereich liegen, erforderlich, die Austrittsöffnung des Injektors mit einer sehr hohen Frequenz zu öffnen beziehungsweise zu schließen. Für eine genaue Ansteuerung dieser Schließzeiten und zum genauen Erfassen eines Injektorzustands ist es erforderlich, eine Injektorzustandsdetektion vorzusehen, damit eine übergeordnete Steuereinheit sämtliche Informationen eines einzelnen Injektors erhält, insbesondere Informationen bezüglich seiner Schließ- oder Öffnungszeiten.
  • Ein solcher Injektor verfügt typischerweise über eine Düsennadel (auch: Injektornadel), die einen mit einem hohen Druck beaufschlagten Kraftstoff bei Freigeben eines Austrittslochs des Injektors nach außen treten lässt. Diese Düsennadel wirkt im Zusammenspiel mit dieser Austrittsöffnung wie ein Pfropfen, der bei einem Anheben ein Austreten des Kraftstoffs ermöglicht. Demnach ist es also erforderlich, diese Nadel in relativ kurzen Zeitabständen anzuheben und nach einer kurzen Zeit erneut in die Austrittsöffnung zurückgleiten zu lassen. Dabei können hydraulische Servoventile verwendet werden, die das Auslösen dieser Bewegung ansteuern. Solche Ventile wiederum werden mithilfe eines Elektromagneten angesteuert. Alternativ dazu kann ein Piezoelement verwendet werden, das schneller als das mittels Elektromagneten angesteuerte Ventil reagiert.
  • Aufgrund der hohen Einspritzdrücke von über 2500 bar ist es nicht möglich, die Düsennadel direkt mithilfe eines Magnetventils anzusteuern beziehungsweise zu bewegen. Hierbei wäre die erforderliche Kraft zum Öffnen und Schließen der Düsennadel zu groß, sodass ein solches Verfahren nur mithilfe von sehr großen Elektromagneten realisierbar wäre. Eine solche Konstruktion scheidet aber aufgrund des nur beschränkt zur Verfügung stehenden Bauraums in einem Motor aus.
  • Typischerweise werden anstelle der direkten Ansteuerung sogenannte Servoventile verwendet, die die Düsennadel ansteuern und selbst über ein Elektromagnetventil bzw. Piezoventil gesteuert werden. Dabei wird in einem mit der Düsennadel zusammenwirkenden Steuerraum mithilfe des unter hohem Druck zur Verfügung stehenden Kraftstoffs ein Druckniveau aufgebaut, das auf die Düsennadel in Verschlussrichtung wirkt. Dieser Steuerraum, bzw. dieses Steuerventil ist typischerweise über eine Zulaufdrossel mit dem Hochdruckbereich des Kraftstoffs verbunden. Ferner weist dieser Steuerraum eine kleine verschließbare Ablaufdrossel auf, aus der der Kraftstoff hin zu einem Niederdruckbereich entweichen kann. Tut er dies, ist der Druck in dem Steuerraum und die auf die Düsennadel wirkende Verschlusskraft verringert, da der unter hohem Druck stehende Kraftstoff des Steuerraums abfließen kann. Dadurch kommt es zu einer Bewegung der Düsennadel, welche die Austrittsöffnung an der Injektorspitze freigibt. Um die Bewegung der Düsennadel steuern zu können, wird also die Ablaufdrossel des Ventils mithilfe eines Ankerelements wahlweise verschlossen oder geöffnet.
  • Da das allgemeine Prinzip eines Injektors zum Einspritzen von Kraftstoff dem Fachmann bekannt ist, wird nachfolgend nicht tiefergehender auf die Funktionalität dieses Bauteils eingegangen.
  • Wie bereits oben kurz angerissen, ist die Injektorzustandsdetektion von hoher Wichtigkeit für ein geregeltes Betreiben des Injektors. Bei bisherigen Injektoren ist es dabei nicht notwendig oder sehr aufwendig eine Sitzplatte des Injektors vorzusehen, die vom Injektorgehäuse elektrisch getrennt ist und Strom an bestimmten Stellen durchleitet, damit das darunter angeordnete Steuerventil und die Düsennadel mit der darüber angeordneten Injektorspule verbunden sind. Die Fähigkeit ein elektrisches Signal durch die Sitzplatte durchzuleiten ist aber hinsichtlich einer Zustandserkennung von Vorteil, da somit bei geschlossenem Injektor ein elektrischer Kreis über die den Kontakt der Düsennadel in dem Düsennadelsitz des Injektors erzeugbar ist. Voraussetzung hierfür ist natürlich, dass dieser elektrische Kreis nicht an einer anderen Stelle bereits geschlossen wird, so dass unter anderem die Sitzplatte gegenüber dem Injektorgehäuse elektrisch isoliert sein muss. Das Schließen des elektrischen Kreises darf nur über die Düsennadel und den Düsennnadelsitz erfolgen.
  • Die Sitzplatte des Injektors ist demnach ein Bauteil, das nach der Erfindung sowohl als Kontaktelement zum Durchleiten eines elektrischen Signals genutzt wird und gleichzeitig gegen das Injektorgehäuse isoliert sein muss. Ferner enthält die Sitzplatte einen von oben nach unten verlaufenden Durchgang, der die Ablaufdrossel eines Injektors darstellt. Durch Aufsetzen eines Ankerelements und Abdichten des Durchgangs füllt sich der darunter liegende Steuerraum über einen Zulauf mit unter hohem Druck befindlichen Kraftstoff, sodass die Düsennadel in ihre Verschlussposition gedrängt wird. Bei einem Abheben des Ankerelements von einer Durchgangsöffnung strömt der unter hohem Druck gespeicherte Kraftstoff ab und verringert den auf die Düsennadel wirkenden Krafteinfluss, sodass sich diese von ihren Auslassöffnungen abhebt und hierdurch Kraftstoff ausströmen kann.
  • Die nähere Funktionsweise eines Injektors ist beispielsweise in der DE 10 2017 116 383.2 wiedergegeben.
  • Bisher ist es bekannt, eine Isolierung der Sitzplatte mittels einer auf der Sitzplatte angebrachten DLC-Schicht (DLC steht dabei für „diamond-like carbon“) umzusetzen, wobei sich jedoch gezeigt hat, dass die Robustheit einer solchen DLC-Schicht nicht für anspruchsvolle Injektorkonzepte ausreichend ist. Insbesondere dann, wenn die Sitzplatte mittels einer Schraube axial vorgespannt wird, ist eine verbesserte Robustheit der Isolierschicht erforderlich.
  • So haben Langzeittests gezeigt, dass diese Schichten die Tendenz aufweisen unter mechanischer Belastung elektrisch leitfähig zu werden. Dies ist auf ihren mechanischen Verschleiß zurückzuführen, so dass keine fortwährende elektrische Isolation über die übliche Lebensdauer eines Injektors gewährleistet werden kann.
  • Es ist daher das Ziel der vorliegenden Erfindung, einen Nadelhubschalter zu schaffen, der den aufgeführten Nachteil überwindet und auch bei herausfordernden Injektorkonzepten verwendet werden kann.
  • Dies gelingt mit einem Nadelhubschalter für einen Injektor nach dem Anspruch 1.
  • Nach der Erfindung ist vorgesehen, dass der Nadelhubschalter für einen Kraftstoffinjektor eine Sitzplatte mit einem plattenartigen Grundkörper und einem die beiden flächigen Seite des plattenartigen Grundkörpers verbindenden Durchgang, ein Ankerelement, das von dem Durchgang der Sitzplatte abhebbar und darauf dichtend aufsetzbar ist, und ein Steuerventil umfasst, das an der zum Ankerelement gegenüberliegenden Seite der Sitzplatte angeordnet ist und dazu ausgelegt ist, mit einer Düsennadel zusammenzuwirken, wobei die Sitzplatte gegenüber einem sie umgebenden Injektorgehäuse elektrisch isoliert und eine elektrische Verbindung mit dem Injektorgehäuse nur über die mit der Sitzplatte zusammenwirkende Düsennadel verwirklichbar ist. Ferner ist der Nadelhubschalter dadurch gekennzeichnet, dass mindestens ein die Sitzplatte kontaktierendes Keramik- und/oder Kunststoffteil vorhanden ist, um die Isolierung der Sitzplatte gegenüber dem sie umgebenden Injektorgehäuse zu erzeugen.
  • Nach der Erfindung kann ferner vorgesehen sein, dass das mindestens eine Keramik- und/oder Kunststoffteil ein Vollkeramikteil ist. So ist Keramik insbesondere unter hoher und auch pulsierender Druckbelastung formstabil und zeigt eine herausragende Verschleißbeständigkeit.
  • Weiter kann nach der Erfindung das mindestens eine Keramik- und/oder Kunststoffteil lösbar zu der Sitzplatte ausgeführt sein. Demnach ist klar, dass das Keramik- und/oder Kunststoffteil nicht lediglich eine Beschichtung der Sitzplatte darstellt sondern ein zur Sitzplatte separates Teil ist.
  • Nach einer weiteren optionalen Modifikation der Erfindung kann vorgesehen sein, dass das mindestens eine Keramik- und/oder Kunststoffteil die Bestandteile Al2O3 und/oder Si3Ni3 umfasst oder aus diesen Bestandteilen besteht.
  • Weiter kann nach der Erfindung vorgesehen sein, dass das mindestens eine Keramik- und/oder Kunststoffteil eine Hülsenform, insbesondere eine Ringform oder eine Zylindermantelform, aufweist, die zum radialen Umgeben der Sitzplatte geeignet ist, wobei vorzugsweise die Sitzplatte in das hülsenförmige Keramik- und/oder Kunststoffteil eingesetzt ist, um eine radiale Zentrierung der Sitzplatte zu erreichen und eine elektrische Isolierung zwischen Sitzplatte und Injektorgehäuse zu bilden.
  • Dieses hülsenförmige Keramik- und/oder Kunststoffteil dient im Wesentlichen dazu, die stromführende Sitzplatte von einem direkten elektrischen Kontakt mit dem die Sitzplatte umgebenden Injektorgehäuse zu schützen. Eine Kontaktierung mit dem Injektorgehäuse soll ausschließlich über die Düsennadel und den die Düsennadel im geschlossenen Zustand des Injektors aufnehmenden Düsennadelsitz erfolgen, um auf einfache Art und Weise zu erfassen, ob der Injektor offen oder geschlossen ist.
  • Dabei kann vorgesehen sein, dass das hülsenförmige Keramik- und/oder Kunststoffteil zum radialen Umgeben der Sitzplatte fest mit dem Injektorgehäuse verbunden ist, vorzugsweise durch eine stoff- oder formschlüssige Verbindung wie Kleben oder Löten.
  • Nach einer weiteren Fortbildung der Erfindung kann vorgesehen sein, dass das mindestens eine Keramik- und/oder Kunststoffteil ein Sitzteil ist, das mit dem Ankerelement zusammenwirkt und auf den Durchgang der Sitzplatte dichtend aufsetzbar ist, wobei vorzugsweise das Sitzteil eine Zylinderform aufweist.
  • Dabei kann das Sitzteil zum Aufsetzen auf den Durchgang der Sitzplatte abgerundete Ecken aufweisen, um ein Ausbrechen der Kanten zu vermeiden, wobei vorzugsweise zum Fertigen der abgerundeten Ecken das Gleitschleifverfahren genutzt wird. Das Vorsehen von abgerundeten Ecken ist vorteilhaft, da somit ein Ausbrechen der Kanten im Betrieb vermieden werden kann.
  • Ferner kann dabei das Sitzteil ein Keramikteil sein, das vorzugsweise durch heißisostatisches Pressen hergestellt ist. Keramik zeigt zudem auch dann eine hervorragende Verschleißbeständigkeit, wenn im Kraftstoff kleine Festkörperpartikel enthalten sind, die bei einem Entlangströmen an dem Sitzteil eine abrasive Wirkung erzielen. Insbesondere wenn der Injektor Kraftstoff einspritzt und das Sitzteil von dem Durchgang der Sitzplatte abgehoben ist, strömt Kraftstoff mit sehr hoher Geschwindigkeit aus dem Durchgang heraus und kommt dabei mit dem Sitzteil in Kontakt.
  • Ferner kann nach der Erfindung vorgesehen sein, dass das Sitzteil die Sitzplatte zum Ankerelement und zu einer Ankerführung des Ankerelements elektrisch isoliert.
  • Eine weitere vorteilhafte Fortbildung der Erfindung sieht vor, dass das mindestens eine Keramik- und/oder Kunststoffteil eine Sitzplattenauflage ist, die auf der zum Ankerelement gewandten flächigen Seite des plattenartigen Grundkörpers der Sitzplatte angeordnet ist, und die Sitzplatte von einer Ankerführung des Ankerelements bzw. dem Injektorgehäuse elektrisch isoliert.
  • Dabei kann vorgesehen sein, dass die Sitzplattenauflage auf der zum Ankerelement gewandten flächigen Seite des plattenartigen Grundkörpers der Sitzplatte aufliegt und vorzugweise eine Ringform aufweist.
  • Durch die Sitzplattenauflage wird ein leitender Kontakt von der Ankerführung auf die Sitzplatte unterbunden, so dass diese gegenüber dieser elektrisch isoliert ist.
  • Die Erfindung betrifft ferner einen Kraftstoffinjektor mit einem Nadelhubschalter nach einer der vorhergehenden Varianten.
  • Dabei kann vorgesehen sein, dass der Kraftstoffinjektor über eine Injektorzustandserkennung verfügt, die einen Injektorzustand eines geschlossenen Injektors anhand eines durch Düsennadel und Injektorgehäuse fließenden Stroms erkennt.
  • Weiter ist von der Erfindung ein Motor mit einem Kraftstoffinjektor nach einer der vorstehenden Varianten umfasst.
  • Weitere Vorteile, Merkmale und Einzelheiten der Erfindung werden aufgrund der nachfolgenden Figurenbeschreibung ersichtlich. Dabei zeigen:
    • 1: eine schematische Darstellungen zum Erläutern des vorbekannten Stands der Technik,
    • 2: eine schematische Darstellung der erfindungsgemäßen Vorrichtung, und
    • 3: eine vergrößerte Darstellung eines erfindungsgemäßen Ausführungsbeispiels der vorliegenden Erfindung.
  • 1 zeigt eine Teilschnittansicht eines Injektors 10 aus dem Stand der Technik. Man erkennt den Injektor 10, der ein Gehäuse 14 aufweist, in den mehrere Injektorkomponenten angeordnet sind. Wesentlich für die Funktion des Injektors 10 sind dabei die Injektornadel 15, das durch Anker 11 und Sitzplatte 1 gebildete Ventil sowie der Elektromanget 12, 13, der eine Spulenwicklung 16, einen inneren Magnetpol 12 und einem äußeren Magnetpol 13 aufweist. Darüber hinaus ist in den inneren Magnetpol 12 eine Ausnehmung zum Anordnen der Feder 17 vorgesehen, die das Ankerelement 11 in Richtung des Ventils drückt, um die Ablaufdrossel des Ventils in einem unbestromten Zustand des Elektromagneten 12, 13 fluiddicht zu verschließen.
  • Aktiviert man den Elektromagnet 12, 13, zieht dieser mit Hilfe von Magnetkraft das Ankerelement 11 von dem Ventil weg, sodass aus einem durch das Ventil verschließbaren Steuerraum unter hohem Druck stehender Kraftstoff aus dem Durchgang 6 ausströmen kann. Da sich hierdurch der Druck in dem Steuerraum verringert, der auf die Injektornadel 15 wirkt, kann diese aus einer Schließposition herausgleiten und ermöglicht das Abgeben von Kraftstoff aus dem Injektor 10. Versetzt man hingegen den Elektromagneten 12, 13 in einen unbestromten Zustand, so lässt die auf das Ankerelement 11 wirkende Magnetkraft nach, sodass das Federelement 17 das Ankerelement 11 auf die Austrittsöffnung des Ventils drückt und den Steuerraum bzw. den Durchgang 6 abdichtet. Dadurch steigt der auf die Injektornadel 15 wirkende Druck, wodurch diese wieder in ihre Schließposition gedrückt wird. Es kommt demnach nicht mehr zu einem Ausströmen von Kraftstoff aus der Austrittsöffnung des Injektors 10.
  • 2 zeigt eine Schnittansicht eines Injektors 10 mit einem erfindungsgemäßen Nadelhubschalter 20.
  • Zur Isolierung der Sitzplatte 1 sind mehrere aus Keramik und/oder Kunststoff bestehende Teile vorgesehen, von denen jedes mit der Sitzplatte 1 in Kontakt steht.
  • Um die umlaufende Randfläche der etwa plattenartig ausgestalteten Sitzplatte 1 von einem elektrisch leitfähigen Kontakt mit dem Injektorgehäuse zu schützen, ist ein hülsenförmiges Keramik- und/oder Kunststoffteil 3 vorgesehen, das die Sitzplatte in radialer Umfangsrichtung umgibt. Die Hülse 3 kann dabei mit dem Injektorgehäuse fest verbunden sein, insbesondere verklebt oder verlötet sein. Neben der elektrischen Isolation dient die Hülse 3 zur radialen Zentrierung der Sitzplatte 1.
  • Daneben ist in 2 ein Sitzteil 4 zu erkennen, das vorzugsweise aus Keramik (bspw. Al2O3 oder Si2Ni3) besteht, und mit dem Ankerelement 11 so zusammenwirkt, dass es den Durchgang 6 der Sitzplatte verschließen kann. Wird das Ankerelement 11 von der Sitzplatte 1 angezogen, öffnet sich auch der Durchgang 6 der Sitzplatte 1 und es kommt zu einem Ausströmen von unter hohem Druck stehenden Kraftstoff, so dass der Druck im Steuerraum sinkt und es zu einem Abheben der Düsennadel 15 aus ihrem Düsennadelsitz kommt.
  • Um nun eine elektrische Isolierung der Sitzplatte gegenüber dem Ankerelement 11 zu erreichen, der in der Regel auf den Durchgang 6 der Sitzplatte 1 aufgesetzt wird, ist nun zwischen Ankerelement 11 und Sitzplatte ein isolierendes Sitzteil 4 vorgesehen. Dieses in der Regel zylinderförmige Element kann abgerundete Kanten besitzen und ist aufgrund der dynamisch schlagenden Beanspruchung auf Rissfreiheit zu prüfen. Ferner ist es von Vorteil, wenn es über heißisostatisches Pressen hergestellt ist.
  • Für das Sitzteil ist es von besonderem Vorteil, wenn es aus Keramik gefertigt ist, da Keramik eine ausgezeichnete Verschleißbeständigkeit aufweist und insbesondere auch gegen die abrasive Wirkung von im Kraftstoff vorhandenen Festteilchen haltbar ist. So strömt an der Unterseite des Sitzteils 4 Kraftstoff mit hoher Geschwindigkeit, falls der Injektor in seiner geöffneten Position ist.
  • Das Sitzteil 4 isoliert die Sitzplatte 1 elektrisch gegen das Ankerelement 11 und die Ankerführung bzw. dem Injektorgehäuse.
  • Als weiteres Keramik- und/oder Kunststoffteil ist eine Sitzplattenauflage 5 gezeigt, die die Sitzplatte 1 an ihrer zum Ankerelement 11 zugewandten Seite von der Ankerführung bzw. dem Injektorgehäuse 14 trennt.
  • Auch hier gilt aufgrund der pulsierenden Druckbeanspruchung, dass die Sitzplattenauflage vorteilhafterweise aus Keramik ist. Keramik bleibt auch unter hoher Druckbelastung formstabil, so dass eine die Ankerhubeinstellung verändernde Verformung nicht auftreten kann.
  • Die Sitzplattenauflage 5 ist vorteilhafterweise in Ring, der einen Innendurchmesser aufweist, der größer als der Außendurchmesser des Sitzteils 4 ist. Schließlich liegen beide Keramik- und/oder Kunststoffteile 4, 5 an der zum Ankerelement 11 zugewandten flächigen Seite der Sitzplatte 1 an.
  • 3 ist eine vergrößerte Darstellung aus 2, aus welcher man die Keramik- und/oder Kunststoffteile besonders gut erkennen kann.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 102017116383 [0009]

Claims (15)

  1. Nadelhubschalter (20) für einen Kraftstoffinjektor (10), umfassend: eine Sitzplatte (1) mit einem plattenartigen Grundkörper und einem die beiden flächigen Seite des plattenartigen Grundkörpers verbindenden Durchgang (6), ein Ankerelement (11), das von dem Durchgang (6) der Sitzplatte (1) abhebbar und darauf dichtend aufsetzbar ist, und ein Steuerventil (2), das an der zum Ankerelement (11) gegenüberliegenden Seite der Sitzplatte (1) angeordnet ist und dazu ausgelegt ist, mit einer Düsennadel (15) zusammenzuwirken, wobei die Sitzplatte (1) gegenüber einem sie umgebenden Injektorgehäuse (14) elektrisch isoliert und eine elektrische Verbindung mit dem Injektorgehäuse (14) nur über die mit der Sitzplatte (1) zusammenwirkende Düsennadel (15) verwirklichbar ist, gekennzeichnet durch mindestens ein die Sitzplatte (1) kontaktierendes Keramik- und/oder Kunststoffteil (3, 4, 5), um die Isolierung der Sitzplatte (1) gegenüber dem sie umgebenden Injektorgehäuse (14) zu erzeugen.
  2. Nadelhubschalter (20) nach Anspruch 1, wobei das mindestens eine Keramik- und/oder Kunststoffteil (3, 4, 5) ein Vollkeramikteil ist.
  3. Nadelhubschalter (20) nach einem der vorhergehenden Ansprüche, wobei das mindestens eine Keramik- und/oder Kunststoffteil (3, 4, 5) lösbar zu der Sitzplatte (1) ausgeführt ist.
  4. Nadelhubschalter (20) nach einem der vorhergehenden Ansprüche, wobei das mindestens eine Keramik- und/oder Kunststoffteil (3, 4, 5) die Bestandteile Al2O3 und/oder Si3Ni3 umfasst oder aus mindestens einem dieser beiden Bestandteilen besteht.
  5. Nadelhubschalter (20) nach einem der vorhergehenden Ansprüche, wobei das mindestens eine Keramik- und/oder Kunststoffteil (3) eine Hülsenform, insbesondere eine Ringform oder eine Zylindermantelform, aufweist, die zum radialen Umgeben der Sitzplatte (1) geeignet ist, wobei vorzugsweise die Sitzplatte (1) in das hülsenförmige Keramik- und/oder Kunststoffteil (3) eingesetzt ist, um eine radiale Zentrierung der Sitzplatte (1) zu erreichen und eine elektrische Isolierung zwischen Sitzplatte (1) und Injektorgehäuse (14) zu bilden.
  6. Nadelhubschalter (20) nach Anspruch 5, wobei das hülsenförmige Keramik- und/oder Kunststoffteil (3) zum radialen Umgeben der Sitzplatte (1) fest mit dem Injektorgehäuse (14) verbunden ist, vorzugsweise durch eine stoff- oder formschlüssige Verbindung wie Kleben oder Löten.
  7. Nadelhubschalter (20) nach einem der vorhergehenden Ansprüche, wobei das mindestens eine Keramik- und/oder Kunststoffteil ein Sitzteil (4) ist, das mit dem Ankerelement (11) zusammenwirkt und auf den Durchgang (6) der Sitzplatte (1) dichtend aufsetzbar ist, wobei vorzugsweise das Sitzteil (4) eine Zylinderform aufweist.
  8. Nadelhubschalter (20) nach Anspruch 7, wobei das Sitzteil (4) zum Aufsetzen auf den Durchgang (6) der Sitzplatte (1) abgerundete Ecken aufweist, um ein Ausbrechen der Kanten zu vermeiden, wobei vorzugsweise zum Fertigen der abgerundeten Ecken das Gleitschleifverfahren genutzt wird.
  9. Nadelhubschalter (20) nach einem der vorhergehenden Ansprüche 7 oder 8, wobei das Sitzteil (4) ein Keramikteil ist, das vorzugsweise durch heißisostatisches Pressen hergestellt ist.
  10. Nadelhubschalter (20) nach einem der vorhergehenden Ansprüche 7 bis 9, wobei das Sitzteil (4) die Sitzplatte (1) zum Ankerelement (11) und zu einer Ankerführung des Ankerelements (11) elektrisch isoliert.
  11. Nadelhubschalter (20) nach einem der vorhergehenden Ansprüche, wobei das mindestens eine Keramik- und/oder Kunststoffteil eine Sitzplattenauflage (5) ist, die auf der zum Ankerelement (11) gewandten flächigen Seite des plattenartigen Grundkörpers der Sitzplatte (1) angeordnet ist, und die Sitzplatte (1) von einer Ankerführung des Ankerelements (11) bzw. dem Injektorgehäuse (14) elektrisch isoliert.
  12. Nadelhubschalter (20) nach Anspruch 11, wobei die Sitzplattenauflage (5) auf der zum Ankerelement (11) gewandten flächigen Seite des plattenartigen Grundkörpers der Sitzplatte (1) aufliegt und vorzugweise eine Ringform aufweist.
  13. Kraftstoffinjektor (10) mit einem Nadelhubschalter (20) nach einem der vorhergehenden Ansprüche.
  14. Kraftstoffinjektor (10) nach Anspruch 13, wobei der Kraftstoffinjektor (10) über eine Injektorzustandserkennung verfügt, die einen Injektorzustand eines geschlossenen Injektors (10) anhand eines durch Düsennadel (15) und Injektorgehäuse (14) fließenden Stroms erkennt.
  15. Motor mit einem Kraftstoffinjektor (10) nach Anspruch 13 oder 14.
DE102020108668.7A 2020-03-30 2020-03-30 Nadelhubschalter und Kraftstoffinjektor mit einem solchen Nadelhubschalter Pending DE102020108668A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE102020108668.7A DE102020108668A1 (de) 2020-03-30 2020-03-30 Nadelhubschalter und Kraftstoffinjektor mit einem solchen Nadelhubschalter
US17/907,524 US20230146257A1 (en) 2020-03-30 2021-03-25 Needle stroke switch and fuel injector having such a needle stroke switch
EP21716974.7A EP4090844B1 (de) 2020-03-30 2021-03-25 Nadelhubschalter und kraftstoffinjektor mit einem solchen nadelhubschalter
PCT/EP2021/057776 WO2021198024A1 (de) 2020-03-30 2021-03-25 Nadelhubschalter und kraftstoffinjektor mit einem solchen nadelhubschalter
CN202180026244.5A CN115349052A (zh) 2020-03-30 2021-03-25 针行程开关和具有这种针行程开关的燃料喷射器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102020108668.7A DE102020108668A1 (de) 2020-03-30 2020-03-30 Nadelhubschalter und Kraftstoffinjektor mit einem solchen Nadelhubschalter

Publications (1)

Publication Number Publication Date
DE102020108668A1 true DE102020108668A1 (de) 2021-09-30

Family

ID=75426563

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102020108668.7A Pending DE102020108668A1 (de) 2020-03-30 2020-03-30 Nadelhubschalter und Kraftstoffinjektor mit einem solchen Nadelhubschalter

Country Status (5)

Country Link
US (1) US20230146257A1 (de)
EP (1) EP4090844B1 (de)
CN (1) CN115349052A (de)
DE (1) DE102020108668A1 (de)
WO (1) WO2021198024A1 (de)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3624218A1 (de) 1985-07-18 1987-01-22 Diesel Kiki Co Elektromagnetventil
DE3739124A1 (de) 1986-11-21 1988-06-01 Lucas Ind Plc Kraftstoff-einspritzduese zum zufuehren von kraftstoff zum verbrennungsraum eines motors
DE3834444A1 (de) 1988-10-10 1990-04-12 Mesenich Gerhard Elektromagnetisches einspritzventil mit membranfeder
DE19738351A1 (de) 1996-09-02 1998-03-05 Denso Corp Speicherkraftstoffeinspritzsystem
DE102005018589A1 (de) 2005-04-21 2006-11-02 Siemens Ag Nadelführungskörper für einen Injektor eines Einspritzsystems sowie Kontaktiervorrichtung mit einem Nadelführungskörper und Injektor mit einer Kontaktiervorrichtung
DE102008044326A1 (de) 2008-02-22 2009-08-27 DENSO CORPORATION, Kariya-shi Solenoidventil und Kraftstoffinjektor mit diesem
FR3050770A1 (fr) 2016-04-29 2017-11-03 Delphi Int Operations Luxembourg Sarl Injecteur de carburant
DE102017116383A1 (de) 2017-07-20 2019-01-24 Liebherr-Components Deggendorf Gmbh Injektor zum Einspritzen von Krafstoff
DE102018101351A1 (de) 2018-01-22 2019-07-25 Liebherr-Components Deggendorf Gmbh Sitzplatte für einen Injektor und Verfahren zur Herstellung einer solchen Sitzplatte
DE102019121538A1 (de) 2019-08-09 2021-02-11 Liebherr-Components Deggendorf Gmbh Sitzplatte für einen Injektor und Verfahren zum Herstellen einer solchen Sitzplatte

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3624218A1 (de) 1985-07-18 1987-01-22 Diesel Kiki Co Elektromagnetventil
DE3739124A1 (de) 1986-11-21 1988-06-01 Lucas Ind Plc Kraftstoff-einspritzduese zum zufuehren von kraftstoff zum verbrennungsraum eines motors
DE3834444A1 (de) 1988-10-10 1990-04-12 Mesenich Gerhard Elektromagnetisches einspritzventil mit membranfeder
DE19738351A1 (de) 1996-09-02 1998-03-05 Denso Corp Speicherkraftstoffeinspritzsystem
DE102005018589A1 (de) 2005-04-21 2006-11-02 Siemens Ag Nadelführungskörper für einen Injektor eines Einspritzsystems sowie Kontaktiervorrichtung mit einem Nadelführungskörper und Injektor mit einer Kontaktiervorrichtung
DE102008044326A1 (de) 2008-02-22 2009-08-27 DENSO CORPORATION, Kariya-shi Solenoidventil und Kraftstoffinjektor mit diesem
FR3050770A1 (fr) 2016-04-29 2017-11-03 Delphi Int Operations Luxembourg Sarl Injecteur de carburant
DE102017116383A1 (de) 2017-07-20 2019-01-24 Liebherr-Components Deggendorf Gmbh Injektor zum Einspritzen von Krafstoff
DE102018101351A1 (de) 2018-01-22 2019-07-25 Liebherr-Components Deggendorf Gmbh Sitzplatte für einen Injektor und Verfahren zur Herstellung einer solchen Sitzplatte
DE102019121538A1 (de) 2019-08-09 2021-02-11 Liebherr-Components Deggendorf Gmbh Sitzplatte für einen Injektor und Verfahren zum Herstellen einer solchen Sitzplatte

Also Published As

Publication number Publication date
US20230146257A1 (en) 2023-05-11
EP4090844A1 (de) 2022-11-23
WO2021198024A1 (de) 2021-10-07
CN115349052A (zh) 2022-11-15
EP4090844B1 (de) 2024-02-21

Similar Documents

Publication Publication Date Title
DE19808067A1 (de) Elektromagnetisch betätigbares Ventil
DE10034444A1 (de) Brennstoffeinspritzventil
DE19639117A1 (de) Brennstoffeinspritzventil
DE102009000183A1 (de) Brennstoffeinspritzventil
DE102010028835A1 (de) Kraftstoffinjektor
DE112011104463T5 (de) Solenoidaktuator und Kraftstoffinjektor mit demselben
DE102007056913A1 (de) Einspritzdüse für Kraftstoff mit Kugelventil
DE10118164B4 (de) Brennstoffeinspritzventil
DE102007025614A1 (de) Ankerhubeinstellung für Magnetventil
DE102007044356A1 (de) Injektor
DE102016212075A1 (de) Ventil zum Eindüsen von gasförmigem Kraftstoff
DE102010000244A1 (de) Brennstoffeinspritzvorrichtung
DE102010064097A1 (de) Elektromagnetisch betätigbares Ventil
DE102010041109A1 (de) Kraftstoffinjektor
DE112006002067T5 (de) Vermeidung eines Funkschadens an Ventilgliedern
EP4090844B1 (de) Nadelhubschalter und kraftstoffinjektor mit einem solchen nadelhubschalter
DE102011087005A1 (de) Ventil zum Zumessen eines strömenden Mediums
DE10046306A1 (de) Brennstoffeinspritzventil
EP2496824B1 (de) Steuerventilanordnung
DE102014225994A1 (de) Brennstoffeinspritzventil
DE102007049945A1 (de) Brennstoffeinspritzventil
DE102019121538A1 (de) Sitzplatte für einen Injektor und Verfahren zum Herstellen einer solchen Sitzplatte
DE102011089360A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE102007040115A1 (de) Steuerventil für einen Kraftstoffinjektor
DE102020108665A1 (de) Düsennadel für einen Kraftstoffinjektor und Injektorgehäuse für eine Düsennadel

Legal Events

Date Code Title Description
R163 Identified publications notified