DE102019105717A1 - Objekterkennungssensorbaugruppe für fahrzeug - Google Patents

Objekterkennungssensorbaugruppe für fahrzeug Download PDF

Info

Publication number
DE102019105717A1
DE102019105717A1 DE102019105717.5A DE102019105717A DE102019105717A1 DE 102019105717 A1 DE102019105717 A1 DE 102019105717A1 DE 102019105717 A DE102019105717 A DE 102019105717A DE 102019105717 A1 DE102019105717 A1 DE 102019105717A1
Authority
DE
Germany
Prior art keywords
slot
sensor
sensor window
chamber
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102019105717.5A
Other languages
English (en)
Inventor
Venkatesh Krishnan
Segundo Baldovino
Haiping Hong
Mario D. Iaquinta
Sunil Patil
James Pizzimenti
Katherine Jo Ralston
Andre Sykula
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ford Global Technologies LLC
Original Assignee
Ford Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford Global Technologies LLC filed Critical Ford Global Technologies LLC
Publication of DE102019105717A1 publication Critical patent/DE102019105717A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4813Housing arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/54Cleaning windscreens, windows or optical devices using gas, e.g. hot air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/56Cleaning windscreens, windows or optical devices specially adapted for cleaning other parts or devices than front windows or windscreens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0006Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means to keep optical surfaces clean, e.g. by preventing or removing dirt, stains, contamination, condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R2011/0001Arrangements for holding or mounting articles, not otherwise provided for characterised by position
    • B60R2011/004Arrangements for holding or mounting articles, not otherwise provided for characterised by position outside the vehicle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • G01S2007/4975Means for monitoring or calibrating of sensor obstruction by, e.g. dirt- or ice-coating, e.g. by reflection measurement on front-screen
    • G01S2007/4977Means for monitoring or calibrating of sensor obstruction by, e.g. dirt- or ice-coating, e.g. by reflection measurement on front-screen including means to prevent or remove the obstruction

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Measuring Fluid Pressure (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

Die Offenbarung stellt eine Objekterkennungssensorbaugruppe für ein Fahrzeug bereit. Eine Baugruppe beinhaltet ein Gehäuse mit einer Kammer. Eine Druckquelle steht mit der Kammer in Fluidverbindung. Ein erstes Sensorfenster und ein zweites Sensorfenster sind jeweils durch das Gehäuse definiert. Das Gehäuse weist einen ersten Schlitz und einen zweiten Schlitz auf, die jeweils mit der Kammer in Fluidverbindung stehen. Der erste Schlitz ist benachbart zu dem ersten Sensorfenster und der zweite Schlitz ist benachbart zu dem zweiten Sensorfenster.

Description

  • TECHNISCHES GEBIET
  • Die Offenbarung betrifft das Gebiet der Fahrzeugsensoren und insbesondere Objekterkennungssensoren eines Fahrzeugs.
  • ALLGEMEINER STAND DER TECHNIK
  • Fahrzeuge, wie etwa autonome Fahrzeuge, beinhalten eine Vielfalt von Sensoren. Einige Sensoren erkennen interne Zustände des Fahrzeugs, beispielsweise Raddrehzahl, Radausrichtung und Motor- und Getriebevariablen. Einige Sensoren erkennen die Position und/oder Ausrichtung des Fahrzeugs, beispielsweise globale Positionsbestimmungssystem (GPS)-Sensoren; Beschleunigungsmesser, wie beispielsweise piezoelektrische oder mikroelektromechanische Systeme (MEMS); Gyroskope, wie beispielsweise Drehratensensoren, Ringlaser- oder faseroptische Gyroskope; Trägheitsmesseinheiten (inertial measurement units - IMU); und Magnetometer. Einige Sensoren sind Objekterkennungssensoren, die die Außenwelt erkennen, zum Beispiel Radarsensoren, Abtastlaserentfernungsmesser, Light Detection and Ranging (LiDAR)-Vorrichtungen und Bildverarbeitungssensoren, wie etwa Kameras. Eine LiDAR-Vorrichtung erkennt Entfernungen zu Objekten durch Emittieren von Laserimpulsen und das Messen der Flugzeit des Impulses, um zu dem Objekt und zurück zu gelangen. Einige Sensoren sind Kommunikationsvorrichtungen, beispielsweise Fahrzeug-zu-Infrastruktur (F2I)- oder Fahrzeug-zu-Fahrzeug (F2F)-Vorrichtungen.
  • KURZDARSTELLUNG
  • Eine Baugruppe beinhaltet ein Gehäuse. Das Gehäuse weist eine Kammer auf. Eine Druckquelle steht mit der Kammer in Fluidverbindung. Ein erstes Sensorfenster und ein zweites Sensorfenster sind jeweils durch das Gehäuse definiert. Das Gehäuse weist einen ersten Schlitz und einen zweiten Schlitz auf. Jeder von dem ersten Schlitz und dem zweiten Schlitz steht mit der Kammer in Fluidverbindung. Der erste Schlitz ist benachbart zum ersten Sensorfenster und der zweite Schlitz ist benachbart zu dem zweiten Sensorfenster.
  • Der erste Schlitz kann dem ersten Sensorfenster zugewandt sein und der zweite Schlitz kann dem zweiten Sensorfenster zugewandt sein.
  • Das erste Sensorfenster und das zweite Sensorfenster können jeweils ein Sichtfeld aufweisen. Der erste Schlitz kann dem Sichtfeld des ersten Sensorfensters zugewandt sein und der zweite Schlitz kann dem Sichtfeld des zweiten Sensorfensters zugewandt sein.
  • Die Baugruppe kann einen dritten Schlitz und einen vierten Schlitz beinhalten. Der dritte Schlitz kann dem ersten Sensorfenster zugewandt sein und der vierte Schlitz kann dem zweiten Sensorfenster zugewandt sein.
  • Der erste Schlitz und der dritte Schlitz können benachbart zueinander sein und der zweite Schlitz und der vierte Schlitz können benachbart zueinander sein.
  • Der erste Schlitz und der dritte Schlitz können in auseinanderlaufende Richtungen weisen. Der zweite Schlitz und der vierte Schlitz können in auseinanderlaufende Richtungen weisen.
  • Der dritte Schlitz und der vierte Schlitz können jeweils mit der Kammer in Fluidverbindung stehen.
  • Das Gehäuse kann eine erste Abschirmung und eine zweite Abschirmung beinhalten. Jede von der ersten Abschirmung und der zweiten Abschirmung erstreckt sich relativ zu der Kammer nach außen. Die erste Abschirmung ist benachbart zum ersten Sensorfenster und die zweite Abschirmung ist benachbart zu dem zweiten Sensorfenster.
  • Die erste Abschirmung und das erste Sensorfenster können in einer horizontalen Ebene angeordnet sein und die zweite Abschirmung und das zweite Sensorfenster können in einer horizontalen Ebene angeordnet sein.
  • Der erste Schlitz kann sich in der ersten Abschirmung befinden und der zweite Schlitz kann sich in der zweiten Abschirmung befinden.
  • Der erste Schlitz kann eine erste Größe aufweisen und der zweite Schlitz kann eine zweite Größe aufweisen, die sich von der ersten Größe unterscheidet.
  • Das Gehäuse kann eine Vielzahl von Sensorfenstern aufweisen, die das erste Sensorfenster und das zweite Sensorfenster beinhaltet. Das Gehäuse kann einen Lufteinlass in Fluidverbindung mit der Kammer beinhalten. Das Gehäuse kann eine Vielzahl von Schlitzen aufweisen, die den ersten Schlitz und den zweiten Schlitz beinhaltet. Jeder der Vielzahl von Schlitzen kann zu einem jeweiligen der Vielzahl von Sensorfenstern benachbart sein. Die Kammer ist mit Ausnahme des Lufteinlasses und der Vielzahl von Schlitzen abgedichtet.
  • Die Baugruppe kann eine Membran beinhalten. Das Gehäuse kann einen Lufteinlass in Fluidverbindung mit der Kammer beinhalten und die Membran kann sich über den Lufteinlass erstrecken.
  • Die Membran kann ein Luftfilter beinhalten.
  • Die Baugruppe kann einen ersten Objekterkennungssensor und einen zweiten Objekterkennungssensor beinhalten. Der erste Objekterkennungssensor kann benachbart zu dem ersten Sensorfenster sein und der zweite Objekterkennungssensor kann benachbart zu dem zweiten Sensorfenster sein.
  • Der erste Objekterkennungssensor und der zweite Objekterkennungssensor können sich in der Kammer befinden.
  • Mindestens einer von dem ersten Objekterkennungssensor und dem zweiten Objekterkennungssensor kann einen Kühlkörper aufweisen.
  • Mindestens einer von dem ersten Objekterkennungssensor und dem zweiten Objekterkennungssensor kann eine Kamera sein.
  • Mindestens einer von dem ersten Objekterkennungssensor und dem zweiten Objekterkennungssensor kann ein LiDAR-System sein.
  • Die Druckquelle kann ein Gebläse sein. Das Gehäuse kann einen Lufteinlass beinhalten und das Gebläse kann mit dem Lufteinlass in Fluidverbindung stehen.
  • Figurenliste
    • 1 ist eine perspektivische Ansicht eines Fahrzeugs mit einer Objekterkennungssensorbaugruppe eines Fahrzeugs.
    • 2 ist eine perspektivische Ansicht der Objekterkennungssensorbaugruppe des Fahrzeugs.
    • 3 ist eine auseinandergezogene Ansicht der Objekterkennungssensorbaugruppe des Fahrzeugs, die eine Druckquelle, ein erstes Sensorfenster, ein zweites Sensorfenster, einen ersten Schlitz und einen zweiten Schlitz beinhaltet.
    • 4 ist eine perspektivische Ansicht eines Abschnitts der Objekterkennungssensorbaugruppe des Fahrzeugs, die die Druckquelle und eine Kammer beinhaltet.
    • 5 ist ein Querschnitt der Objekterkennungssensorbaugruppe des Fahrzeugs.
    • 6 ist ein Querschnitt eines Abschnitts der Objekterkennungssensorbaugruppe des Fahrzeugs, der das erste Sensorfenster, den ersten Schlitz und den zweiten Schlitz beinhaltet.
    • 7 eine perspektivische Ansicht der Objekterkennungssensorbaugruppe des Fahrzeugs, die eine erste Abschirmung und eine zweite Abschirmung beinhaltet.
    • 8 ist eine auseinandergezogene Ansicht der Objekterkennungssensorbaugruppe des Fahrzeugs, die die Druckquelle, das erste Sensorfenster, das zweite Sensorfenster, den ersten Schlitz, den zweiten Schlitz, die erste Abschirmung und die zweite Abschirmung beinhaltet.
    • 9 ist eine perspektivische Ansicht eines Abschnitts der Objekterkennungssensorbaugruppe des Fahrzeugs, der die erste Abschirmung und die zweite Abschirmung beinhaltet.
  • DETAILLIERTE BESCHREIBUNG
  • Unter Bezugnahme auf die Figuren, in denen gleiche Bezugszeichen in den verschiedenen Ansichten gleiche Teile bezeichnen, beinhaltet eine Baugruppe 10 für ein Fahrzeug 12, d. h. eine Objekterkennungssensorbaugruppe 10 des Fahrzeugs, ein Gehäuse 14, 114 mit einer Kammer 16. Eine Druckquelle 18 steht mit der Kammer 16 in Fluidverbindung. Ein Sensorfenster 20 ist durch das Gehäuse 14, 114 definiert und weist ein Sichtfeld auf. Das Gehäuse 14, 114 beinhaltet einen Schlitz 70, 72, 170, 172 in Fluidverbindung mit der Kammer 16 und dem Sichtfeld zugewandt.
  • Das Gehäuse 14, 114 kann mehr als ein Sensorfenster 20 definieren. Gleichermaßen kann das Gehäuse 14, 114 mehr als einen Schlitz 70, 72, 170, 172 aufweisen, von denen jeder mit der Kammer 16 in Fluidverbindung steht. Einer der Schlitze 70, 72, 170, 172 liegt benachbart zu einem der Sensorfenster 20 und ein anderer der Schlitze 70, 72, 170, 172 liegt benachbart zu einem anderen der Sensorfenster 20. Die Druckquelle 18 setzt die Kammer 16 mit Außenluft unter Druck. Die druckbeaufschlagte Luft in der Kammer 16 tritt durch die Schlitze 70, 72, 170, 172 aus dem Gehäuse 14, 114 aus, um die Sensorfenster 20 von Verunreinigungen, z. B. Schmutz, Wasser, Schnee usw., freizuhalten. Genauer strömt die druckbeaufschlagte Luft, die durch die Schlitze 70, 72, 170, 172 austritt, über die Sensorfenster 20, um Verunreinigungen jeweils von den Sensorfenstern 20 zu entfernen und/oder um zu verhindern, dass die Verunreinigungen jeweils die Sensorfenster 20 erreichen. Da die Druckquelle 18 mit der Kammer 16 in Fluidverbindung steht und die Schlitze 70, 72, 170, 172 jeweils mit der Kammer 16 in Fluidverbindung stehen, führt die Druckquelle 18 druckbeaufschlagte Luft zu den Schlitzen 70, 72, 170, 172 zu, um die Sensorfenster 20 von Verunreinigungen freizuhalten. Dies beseitigt die Notwendigkeit individuell angepasster Druckquellen an jedem der Schlitze 70, 72, 170, 172, wodurch Kosten und/oder Komplexität der Baugruppe 10 reduziert werden können.
  • Die Baugruppe 10 beinhaltet einen Objekterkennungssensor 26 in der Kammer 16 benachbart zu dem Sensorfenster 20. Vor dem Austreten durch die Schlitze 70, 72, 170, 172 strömt die druckbeaufschlagte Luft in der Kammer 16 über den Obj ekterkennungssensor 26 und kann den Objekterkennungssensor 26 kühlen. Dies kann dazu beitragen, dass der Objekterkennungssensor 26 ein optimales Temperaturniveau aufrechterhält. Die druckbeaufschlagte Luft kann durch das Strömen über den Objekterkennungssensor 26 erwärmt werden, bevor sie durch die Schlitze 70, 72, 170, 172 austritt. Beim Austreten durch die Schlitze 70, 72, 170, 172 kann die erwärmte druckbeaufschlagte Luft dazu beitragen, das Sensorfenster 20 von Verunreinigungen freizuhalten. Genauer kann die erwärmte druckbeaufschlagte Luft Schnee schmelzen und Wasser auf dem Sensorfenster 20 auflösen und kann auch verhindern, dass Schnee, Wasser oder andere Verunreinigungen das Sensorfenster 20 erreichen.
  • Bei dem Fahrzeug 12 kann es sich um ein autonomes Fahrzeug und/oder halbautonomes Fahrzeug handeln. Das Fahrzeug 12 kann einen Computer beinhalten, der dazu konfiguriert ist, das Fahrzeug 12 vollständig oder in geringerem Ausmaß unabhängig vom Eingreifen eines menschlichen Fahrers zu betreiben. Der Computer kann dazu programmiert sein, den Antrieb, das Bremssystem, die Lenkung und/oder andere Fahrzeugsysteme zu betreiben. Für die Zwecke dieser Offenbarung ist unter einem autonomen Betrieb zu verstehen, dass der Computer den Antrieb, das Bremssystem und die Lenkung steuert; unter einem halbautonomen Betrieb ist zu verstehen, dass der Computer ein oder zwei von dem Antrieb, dem Bremssystem und der Lenkung steuert und ein menschlicher Fahrer den Rest steuert; und unter einem nichtautonomen Betrieb ist zu verstehen, dass der menschliche Fahrer den Antrieb, das Bremssystem und die Lenkung steuert.
  • Unter Bezugnahme auf 1 kann die Baugruppe 10 an einem Dach 28 des Fahrzeugs 12 angebracht sein. Alternativ kann die Baugruppe 10 an jeder geeigneten Stelle des Fahrzeugs 12 angebracht sein.
  • Unter Bezugnahme auf 2 kann die Baugruppe 10 eine Basis 30 beinhalten. Die Basis 30 kann das Gehäuse 14, 114 auf dem Fahrzeug 12, z. B. auf dem Dach 28 des Fahrzeugs 12, lagern. Die Basis 30 ist mit dem Fahrzeug 12 verbunden. Zum Beispiel kann die Basis 30 direkt mit dem Fahrzeug 12 verbunden sein oder kann mit einer Zwischenkomponente, z. B. eine oder mehrere Setzstufen 32, indirekt mit dem Fahrzeug 12 verbunden sein. Die Basis 30 kann in jeder geeigneten Weise mit dem Fahrzeug 12 verbunden sein, z. B. mit Befestigungselementen, Schweißen usw. Die Basis 30 kann eine Komponente des Fahrzeugs 12 sein, kann z. B. einstückig mit dem Dach 28, oder kann getrennt von dem Fahrzeug 12 und mit diesem verbunden sein. Die Basis 30 kann einstückig mit dem Gehäuse 14, 114 sein, d. h. das Gehäuse 14, 114 und die Basis 30 sind gemeinsam als eine einzelne Einheit ausgebildet, oder die Basis 30 und das Gehäuse 14, 114 können getrennt ausgebildet und nachfolgend zusammengebaut werden. Die Basis 30 kann aus einem beliebigen geeigneten Material ausgebildet sein, z. B. Kunststoff, Metall usw.
  • Die Basis 30 weist einen Luftdurchlass 34 auf, um eine Luftansaugung in das Gehäuse 14, 114 zuzulassen. Zum Beispiel kann der Luftdurchlass 34 in eine Fahrzeugvorwärtsrichtung weisen, sodass Luft während der Vorwärtsbewegung des Fahrzeugs 12 in den Luftdurchlass 34 gedrängt wird. In dem in den Figuren gezeigten Beispiel kann der Luftdurchlass 34 teilweise durch das Dach 28 des Fahrzeugs 12 umschlossen sein. Alternativ kann der Luftdurchlass 34 vollständig durch die Basis 30 definiert sein. Zusätzlich oder als Alternative dazu, in die Fahrzeugvorwärtsrichtung zu weisen, kann der Luftdurchlass 34 in jede geeignete Richtung weisen.
  • Das Gehäuse 14, 114 kann einen Lufteinlass 36 in Fluidverbindung mit der Kammer 16 beinhalten. In einem derartigen Beispiel empfängt der Lufteinlass 36 Außenluft, um die Kammer 16 unter Druck zu setzen. Insbesondere kann die Druckquelle 18 Luft durch den Lufteinlass 36 in die Kammer 16 saugen, um die Kammer 16 unter Druck zu setzen. Das Gehäuse 14, 114 kann einen oder mehrere Lufteinlässe 36 beinhalten. Das Gehäuse 14, 114 kann die Kammer 16 mit Ausnahme des einen oder der mehreren Lufteinlässe 36 und der Schlitze 70, 72, 170, 172 vollständig umschließen. Mit anderen Worten kann Luft nur am Lufteinlass 36 und den Schlitzen 70, 72, 170, 172 durch das Gehäuse 14, 114 strömen.
  • Als ein Beispiel kann der Lufteinlass 36 mit dem Luftdurchlass 34 in Fluidverbindung stehen. Die Basis 30 kann derart geformt sein, dass die Basis 30 in dem Beispiel, in dem der Luftdurchlass 34 in die Fahrzeugvorwärtsrichtung weist, Luft in den Lufteinlass 36 führt, wenn sich das Fahrzeug 12 vorwärtsbewegt. Zum Beispiel kann die Basis 30 den Luftdurchlass 34 gegen das Dach 28 umschließen, sodass Luft durch den Luftdurchlass 34 und in den Lufteinlass 36 getrieben wird, wenn sich das Fahrzeug 12 vorwärtsbewegt.
  • Der Lufteinlass 36 kann nach unten weisen. Diese Konfiguration reduziert die Wahrscheinlichkeit, dass fallender Niederschlag dem Lufteinlass 36 nahekommt. Zusätzlich beschattet der Rest des Gehäuses 14, 114 den Lufteinlass 36, sodass relativ kühlere Luft durch den Lufteinlass 36 angesaugt wird, d. h. Luft, die nicht durch Sonnenlicht erwärmt ist. Diese relativ kühlere Luft kann für den Betrieb des Objekterkennungssensors 26 vorteilhaft sein.
  • Die Baugruppe 10 kann eine Membran 38 beinhalten, die sich über den Lufteinlass 36 erstreckt. Mit anderen Worten kreuzt jegliche Luft, die durch den Lufteinlass 36 in die Kammer 16 eintritt, die Membran 38. Die Membran 38 kann zum Beispiel ermöglichen, dass Luft in den Lufteinlass 36 strömt, und kann verhindern, dass andere Elemente, z. B. Wasser, Schmutz, Staub usw., in den Lufteinlass 36 eintreten. In einem Beispiel, in dem das Gehäuse 14, 114 mehr als einen Lufteinlass 36 beinhaltet, kann die Baugruppe 10 mehr als eine Membran 38 beinhalten, wobei die Membranen 38 jeweils die Lufteinlässe 36 bedecken. Die Membran 38 kann einen Luftfilter 40 beinhalten. Der Luftfilter 40 kann zum Beispiel ein Einweg-Luftfilter sein, d. h. er kann ermöglichen, dass Luft durch den Lufteinlass 36 in die Kammer 16 strömt, und verhindern, dass Luft von der Kammer 16 durch den Lufteinlass 36 strömt. Alternativ oder zusätzlich zu dem Luftfilter 40 kann die Membran 38 andere Schichten beinhalten. Eine der Schichten kann GORE-TEX® beinhalten. Die Membran 38 kann winddicht und/oder wasserdicht sein.
  • Unter Bezugnahme auf 3 kann das Gehäuse 14, 114 beispielsweise eine untere Komponente 42, eine obere Komponente 44 und eine Abdeckung 46 beinhalten. In einem derartigen Beispiel umschließen die untere Komponente 42, die obere Komponente 44 und die Abdeckung 46 die Kammer 16. Die untere Komponente 42, die obere Komponente 44 und die Abdeckung 46 können zueinander abgedichtet sein, um einen Luftstrom dazwischen zu verhindern. In dem in den Figuren gezeigten Beispiel definiert die untere Komponente 42 den Lufteinlass 36. In anderen Beispielen kann das Gehäuse 14, 114 mehr oder weniger Komponenten als die untere Komponente 42, die obere Komponente 44 und die Abdeckung 46 beinhalten. In einem Beispiel kann das Gehäuse 14, 114 einstückig sein.
  • Wie vorstehend dargelegt, beinhaltet die Baugruppe 10 eine Druckquelle 18. Eine Druckquelle 18 steht mit der Kammer 16 in Fluidverbindung. Mit anderen Worten ist die Druckquelle 18 positioniert, um Luft durch den Lufteinlass 36 in die Kammer 16 zu bewegen, um Luft in der Kammer 16 unter Druck zu setzen. Wie vorstehend dargelegt, tritt die Luft, die in der Kammer 16 durch die Druckquelle 18 druckbeaufschlagt wurde, an den Schlitzen 70, 72, 170, 172 aus der Kammer 16 aus. Die Druckquelle 18 kann in der Kammer 16 angeordnet sein. In einem derartigen Beispiel kann die Druckquelle 18 an der unteren Komponente 42 gelagert sein und kann beispielsweise an der unteren Komponente 42 in jeder geeigneten Weise, d. h. Befestigungselemente, Schweißen, Kleben, befestigt sein. Die Baugruppe 10 kann eine Druckquelle 18 beinhalten oder kann jede geeignete Anzahl von Druckquellen 18 aufweisen.
  • Die Druckquelle 18 kann benachbart zu dem Lufteinlass 36 liegen. Mit anderen Worten gibt es keine anderen Komponenten zwischen dem Lufteinlass 36 und der Druckquelle 18. In Beispielen, in denen die Baugruppe 10 die Membran 38 beinhaltet, kann die Druckquelle 18 benachbart zu der Membran 38 liegen.
  • Die Druckquelle 18 kann ein Gebläse 48 sein. Das Gebläse 48 kann einen Antriebsmotor (nicht gezeigt) und ein Laufrad (nicht gezeigt), das drehbar an den Antriebsmotor gekoppelt ist, beinhalten. Das Gebläse 48 kann ein Axialventilator, ein Zentrifugalventilator, ein Querstromventilator oder eine beliebige andere Art von Ventilator sein. Der Antriebsmotor kann über oder unter dem Laufrad angeordnet sein. Der Motor kann ein Elektromotor sein, der einen Drehausgang aufweist.
  • Die Baugruppe 10 beinhaltet eine Vielzahl von Sensorfenstern 20 und eine Vielzahl von Objekterkennungssensoren 26. Mindestens ein Objekterkennungssensor 26 ist benachbart zu jedem Sensorfenster 20, wie nachstehend weiter beschrieben wird. Die Adjektive „erste/s/r“, „zweite/r/s“ usw. werden in Bezug auf die Sensorfenster 20 und die Objekterkennungssensoren 26 lediglich als Kennungen verwendet und geben keine Reihenfolge oder Bedeutung an.
  • Die Sensorfenster 20 sind durch das Gehäuse 14, 114 definiert. Die Sensorfenster 20 sind voneinander beabstandet, d. h. Wände 54 des Gehäuses 14, 114 trennten die Sensorfenster 20. Zum Beispiel können die Sensorfenster 20 durch die obere Komponente 44 des Gehäuses 14, 114 definiert sein und können die Wände der oberen Komponente 44 die Sensorfenster 20 trennen. Die Sensorfenster 20 können in die gleiche Richtung oder in unterschiedliche Richtungen weisen. Jedes der Sensorfenster 20 lässt zu, dass Licht hindurchtritt.
  • Jedes der Sensorfenster 20 ist transparent. Jedes der Sensorfenster 20 kann eine Blendenöffnung 56 beinhalten, die durch das Gehäsue 14, 114 definiert ist. Jedes der Sensorfenster 20 kann eine Linse 58 beinhalten, die in der Blendenöffnung 56 an dem Gehäuse 14, 114 befestigt ist. Die Linse 58 kann aus jedem geeigneten Material ausgebildet sein, z. B. Glas, Kunststoff.
  • Wie zuvor dargelegt, liegen die Sensorfenster 20 jeweils benachbart zu den Objekterkennungssensoren 26. Wie in den 3 und 5 gezeigt, sind die Objekterkennungssensoren 26 so ausgerichtet, dass jeder der Objekterkennungssensoren 26 dem jeweiligen Sensorfenster 20 zugewandt ist. Genauer lässt das Sichtfeld jedes der Sensorfenster 20 zu, dass Licht hindurchtritt, und jeder der Objekterkennungssensoren 26 ist positioniert, um das Licht, das jeweils durch das Sichtfeld jedes der Sensorfenster 20 hindurchtritt, zu erfassen. Die Größe jedes der Sensorfenster 20 kann zu dem Sichtfeld jedes Objekterkennungssensors 26, der benachbart zu dem zugehörigen Sensorfenster 20 ist, passen.
  • Die Objekterkennungssensoren 26 können die Außenwelt erkennen. Die Objekterkennungssensoren 26 können zum Beispiel Radarsensoren, Abtastlaserentfernungsmesser, Light-Detection-and-Ranging(LiDAR)-Vorrichtungen und Bildverarbeitungssensoren, wie etwa Kameras, und beliebige andere Sensoren, die Licht erkennen, beinhalten. Die Objekterkennungssensoren 26 können Daten generieren, die ein durch die Objekterkennungssensoren 26 erfasstes Bild darstellen. Jeder der Objekterkennungssensoren 26 kann Phänomene wie Licht und Schall erkennen, beginnend an oder außerhalb von jedem zugehörigen Sensorfenster 20.
  • Wie in den 3 und 5 gezeigt, befinden sich die Objekterkennungssensoren 26 in der Kammer 16. Jeder der Objekterkennungssensoren 26 steht mit der Kammer 16 in Fluidverbindung.
  • Die Objekterkennungssensoren 26 werden durch das Gehäuse 14, 114 gelagert. Die Objekterkennungssensoren 26 können sich in der oberen Komponente 44 befinden. In diesem Beispiel können die Objekterkennungssensoren 26 an der oberen Komponente 44, z. B. mit einem Klebstoff, einem oder mehreren Befestigungselementen usw., gesichert sein.
  • Das Gehäuse 14, 114 kann Teiler 60 beinhalten, die die Objekterkennungssensoren 26 voneinander trennen. Genauer definieren die Teiler 60 Hohlräume 62 innerhalb der Kammer 16, und die Obj ekterkennungssensoren 26 sind in jeweiligen der Hohlräume 62 angeordnet. Die Teiler 60 können beispielsweise an der oberen Komponente 44 befestigt sein, wie in 3 gezeigt ist. In einer solchen Konfiguration definiert die obere Komponente 44 Öffnungen 64, um einen Luftstrom von der unteren Komponente 42 durch die Öffnungen 64 zur oberen Komponente 44 zu ermöglichen.
  • Wenn die Druckquelle 18 die Kammer 16 mit Außenluft, die durch den Lufteinlass 36 in die Kammer 16 gesaugt wurde, unter Druck setzt, zwingt der Druck in der Kammer 16 die Luft, durch die Schlitze 70, 72, 170, 172 aus der Kammer 16 auszutreten. Genauer strömt die Luft von der unteren Komponente 42 durch die Öffnungen 64 und in die obere Komponente 44 und strömt von der oberen Komponente 44 durch die Schlitze 70, 72, 170, 172.
  • Wie zuvor dargelegt, befinden sich die Objekterkennungssensoren 26 in der oberen Komponente 44. Die Druckquelle 18 kann sich zwischen dem Lufteinlass 36 und den Objekterkennungssensoren 26 befinden. Zusätzlich können sich die Obj ekterkennungssensoren 26 zwischen der Druckquelle 18 und den Schlitzen 70, 72, 170, 172 befinden. Somit muss druckbeaufschlagte Luft, die von der Druckquelle 18 stammt und durch die Schlitze 70, 72, 170, 172 strömt, über die Objekterkennungssensoren 26 strömen.
  • Das Gehäuse 14, 114 beinhaltet einen Strömungspfad 66, der sich von dem Lufteinlass 36 zu den Schlitzen 70, 72, 170, 172 und über die Objekterkennungssensoren 26 erstreckt. Unter Bezugnahme auf 5 beginnt der Strömungspfad 66 am Lufteinlass 36 damit, dass Außenluft durch die Druckquelle 18 durch den Lufteinlass 36 angesaugt wird. Die Luft in der Kammer 16, die durch die Druckquelle 18 druckbeaufschlagt wurde, tritt an den Schlitzen 70, 72, 170, 172 aus der Kammer 16 aus. Dementsprechend erstreckt sich der Strömungspfad 66 von dem Lufteinlass 36, durch die Öffnungen 64 und über jeden der Objekterkennungssensoren 26 zu dem jeweiligen Schlitz. Der Strömungspfad 66 erstreckt sich hinter jeden der Objekterkennungssensoren 26 zu den Schlitzen 70, 72, 170, 172, wenn die druckbeaufschlagte Luft hinter jedem der Objekterkennungssensoren 26 weiterströmt und aus den Schlitzen 70, 72, 170, 172 austritt.
  • In einer Konfiguration, in der das Gehäuse 14, 114 Teiler 60 aufweist und die Teiler 60 Hohlräume 62 innerhalb der Kammer 16 definieren, strömt die druckbeaufschlagte Luft in der Kammer 16 in die Hohlräume 62 und über die Objekterkennungssensoren 26. In diesem Fall erstreckt sich der Strömungspfad 66 in die Hohlräume 62 und über die Objekterkennungssensoren 26 und tritt aus den Schlitzen 70, 72, 170, 172 aus.
  • Unter Bezugnahme auf 5 können einer oder mehrere der Objekterkennungssensoren 26 einen Kühlkörper 68 beinhalten. Der Kühlkörper 68 kann sich entlang des Strömungspfads 66 zwischen den Öffnungen 64 und den Schlitzen 70, 72, 170, 172 befinden. In einem Beispiel, in dem einer der Objekterkennungssensoren 26 den Kühlkörper 68 aufweist, strömt die druckbeaufschlagte Luft über den Kühlkörper 68, wenn die druckbeaufschlagte Luft von den Öffnungen 64 zu den Schlitzen 70, 72, 170, 172 strömt. In dem Fall, dass die druckbeaufschlagte Luft kühler als der Kühlkörper 68 ist, nimmt die druckbeaufschlagte Luft Wärme von dem Kühlkörper 68 auf, um den Objekterkennungssensor 26 zu kühlen. Der Kühlkörper 68 kann zum Beispiel Lamellen beinhalten.
  • Wie vorstehend dargelegt, steht jeder der Vielzahl von Schlitzen 70, 72, 170, 172 mit der Kammer 16 in Fluidverbindung. Die Adjektive „erste/s/r“, „zweite/r/s“ usw. werden in Bezug auf die Schlitze 70, 72, 170, 172 lediglich als Kennungen verwendet und geben keine Reihenfolge oder Bedeutung an. Wie nachstehend weiter beschrieben wird, können die Schlitze 70, 72 in einem in den 1-6 gezeigten Beispiel die Luft allgemein nach unten führen. Als ein weiteres Beispiel, wie in den 7-9 gezeigt, können die Schlitze 170, 172 die Luft allgemein horizontal führen.
  • Die Vielzahl von Schlitzen 70, 72, 170, 172 beinhaltet Reinigungsschlitze 70, 170 und Vorhangschlitze 72, 172. Jedes Sensorfenster 20 liegt benachbart zu einem der Reinigungsschlitze 70, 170 und einem der Vorhangschlitze 72, 172. Der Reinigungsschlitz 70, 170 führt druckbeaufschlagte Luft an das jeweilige Sensorfenster 20, um Verunreinigungen von dem jeweiligen Sensorfenster 20 zu entfernen. Der Vorhangschlitz 72, 172 führt druckbeaufschlagte Luft über das Sensorfenster 20, d. h. vor dem Sensorfenster 20, um zu verhindern, dass Verunreinigungen das jeweilige Sensorfenster 20 erreichen. Wie in den 5 und 6 gezeigt, können der Reinigungsschlitz 70, 170 und der Vorhangschlitz 72, 172 an jedem Sensorfenster 20 benachbart zueinander liegen. Mit anderen Worten kann druckbeaufschlagte Luft, die von dem Reinigungsschlitz 70, 170 strömt, neben druckbeaufschlagter Luft, die vom Vorhangschlitz 72, 172 strömt, her strömen, wie in den 5 und 6 gezeigt ist.
  • Wie in den 5 und 6 gezeigt, können der Reinigungsschlitz 70, 170 und der Vorhangschlitz 72, 172 an jedem Sensorfenster 20 in auseinanderlaufende Richtungen weisen. Genauer können der Reinigungsschlitz 70, 170 und der Vorhangschlitz 72, 172 in unterschiedliche Richtungen weisen, wie in den 5 und 6 gezeigt ist. Dementsprechend erzeugen der Reinigungsschlitz 70, 170 und der Vorhangschlitz 72, 172 jeweils einzelne Luftströme 74, 174. Die einzelnen Luftströme 74, 174 können voneinander beabstandet sein oder können sich an ihren Grenzen vermischen.
  • Wie in den 5 und 6 gezeigt, ist der Reinigungsschlitz 70, 170 dem jeweiligen Sensorfenster 20 zugewandt. Mit anderen Worten ist der Reinigungsschlitz 70, 170 auf das jeweilige Sensorfenster 20 gerichtet, sodass druckbeaufschlagte Luft, die an dem Reinigungsschlitz 70, 170 aus der Kammer 16 austritt, auf das jeweilige Sensorfenster 20 strömt, d. h. direkt auf das jeweilige Sensorfenster 20 bläst.
  • Wie in den 5 und 6 gezeigt, ist der Vorhangschlitz 72, 172 dem Sichtfeld des jeweiligen Sensorfensters 20 zugewandt. Mit anderen Worten ist der Vorhangschlitz 72, 172 so ausgerichtet, dass druckbeaufschlagte Luft, die an dem Vorhangschlitz 72, 172 aus der Kammer 16 austritt, über das jeweilige Sensorfenster 20 strömt. Dies erzeugt einen Luftvorhang vor den Sensorfenstern 20, um Verunreinigungen weg von den Sensorfenstern 20 abzulenken, bevor die Verunreinigungen die Sensorfenster 20 erreichen.
  • Die Schlitze 70, 72, 170, 172 können in der Größe und/oder Form variieren, um einen gewünschten Luftstrom von der Kammer 16 durch die Schlitze 70, 72, 170, 172 zu erzielen. Als ein Beispiel können die Reinigungsschlitze 70, 170 in Größe und/oder Form relativ zueinander variieren. Als ein weiteres Beispiel können die Vorhangschlitze 72, 172 in Größe und/oder Form relativ zueinander variieren. Einer oder mehrere der Reinigungsschlitze 70, 170 können in Größe und/oder Form relativ zu einem oder mehreren der Vorhangschlitze 72, 172 variieren. Alternativ können die Reinigungsschlitze 70, 170 und die Vorhangschlitze 72, 172 jeweils eine gemeinsame Form und/oder Größe aufweisen.
  • Das Gehäuse 14, 114 beinhaltet eine Lippe 76, 176. Die Lippe 76, 176 kann sich durchgehend um einen Umfang des Gehäuses 14, 114 erstrecken. Die Lippe 76 definiert einen Abschnitt der Hohlräume 62 und die Schlitze 70, 72 sind in der Lippe 76 definiert. Die Lippe 76 kann über den Sensorfenstern 20 angeordnet sein, sodass Luft, die von den Schlitzen 70, 72 strömt, nach unten über die Sensorfenster 20 strömt. Wie beispielsweise in den 3, 5 und 6 gezeigt, beinhaltet die obere Komponente 44 die Lippe 76.
  • Das Gehäuse 114 kann eine Vielzahl von Abschirmungen 78 beinhalten. Die Abschirmungen 78 hindern zumindest einen Teil des Luftstroms daran, während des Vorwärtsbetriebs des Fahrzeugs 12 über die Sensorfenster 20 zu strömen, um ein korrektes Funktionieren der Schlitze 170, 172 zu ermöglichen, sodass die Luft, die von den Schlitzen 170, 172 strömt, die Reinheit der Sensorfenster 20 korrekt aufrechterhalten kann. Die Adjektive „erste/s/r“, „zweite/r/s“ usw. werden in Bezug auf die Abschirmungen 78 lediglich als Kennungen verwendet und geben keine Reihenfolge oder Bedeutung an.
  • Die Abschirmungen 78 erstrecken sich von dem Gehäuse 114 relativ zu der Kammer 16 nach außen. Die Abschirmungen 78 liegen jeweils benachbart zu den Sensorfenstern 20. Mit anderen Worten ist mindestens eine Abschirmung 78 benachbart zu jedem Sensorfenster 20. Jede Abschirmung 78 ist in einer Fahrzeugvorwärtsrichtung relativ zu dem jeweiligen Sensorfenster 20 positioniert und hindert zumindest einen Teil des Luftstroms daran, während der Vorwärtsbewegung des Fahrzeugs 12 über das jeweilige Sensorfenster 20 zu strömen. Mit anderen Worten erzeugt die Vorwärtsbewegung des Fahrzeugs 12 einen Luftstrom über das Gehäuse 14, 114, d. h. in einer Fahrzeugrückwärtsrichtung, und die Abschirmungen 78 verhindern zumindest einen Teil des Luftstroms über die Sensorfenster 20, um ein korrektes Funktionieren der Schlitze 170, 172 zu ermöglichen.
  • Jede Abschirmung 78 und das jeweilige Sensorfenster 20 sind in einer horizontalen Ebene angeordnet. Als ein Beispiel können alle Abschirmungen 78 und die Sensorfenster 20 in der gleichen horizontalen Ebene liegen. Alternativ können jede Abschirmung 78 und das jeweilige Sensorfenster 20 in einer anderen horizontalen Ebene als eine andere Abschirmung 78 und das jeweilige Sensorfenster 20 liegen.
  • Jede Abschirmung 78 kann die Schlitze 170, 172 definieren. Genauer erstreckt sich der Strömungspfad 66 durch die Abschirmung 78 zu den Schlitzen 170, 172. Mindestens einige der Abschirmungen 78 können allgemein in einer Fahrzeugvorwärtsrichtung relativ zu dem jeweiligen Sensorfenster 20 liegen und die Schlitze 170, 172 können in solchen Beispielen dem jeweiligen Sensorfenster 20 allgemein in einer Fahrzeugrückwärtsrichtung zugewandt sein. Dementsprechend schirmen die Abschirmungen 78 die Schlitze 170, 172 vor zumindest einem Teil des Luftstroms ab, der durch die Rückwärtsbewegung des Fahrzeugs 12 entsteht, um ein korrektes Funktionieren der Schlitze 170, 172 zu ermöglichen.
  • Die Abschirmungen 78 können einstückig mit dem Gehäuse 114 ausgebildet sein, d. h. aus einem einzelnen einheitlichen Materialstück ohne Nähte, Verbindungsstellen, Befestigungselemente oder Klebstoffe, die die Abschirmungen 78 und das Gehäuse 114 zusammenhalten. Als weiteres Beispiel können die Abschirmungen 78 getrennt von dem Gehäuse 114 ausgebildet und nachfolgend an dem Gehäuse 114 befestigt werden. Die Abschirmungen 78 können aus jeder geeigneten Materialart ausgebildet sein, z. B. einem starren Polymer, einem Metall, einem Verbundmaterial usw.
  • Unter Bezugnahme auf die 5 und 6 setzt die Druckquelle 18 im Betrieb die Kammer 16 unter Druck, indem Außenluft durch den Lufteinlass 36 in die Kammer 16 gesaugt wird. Die druckbeaufschlagte Luft von der Kammer 16 tritt durch die Reinigungsschlitze 70, 170 und die Vorhangschlitze 72, 172 aus, um Verunreinigungen von den Sensorfenstern 20 zu entfernen und/oder Verunreinigungen abzuwehren, damit sie die Sensorfenster 20 nicht erreichen. Genauer passiert die druckbeaufschlagte Luft die untere Komponente 42 durch die Öffnungen 64 zu den Hohlräumen 62. Wenn sich der Strömungspfad 66 von den Öffnungen 64 zu den jeweiligen Schlitzen 70, 72, 170, 172 erstreckt, strömt die druckbeaufschlagte Luft über jeden Kühlkörper 68, um den jeweiligen Objekterkennungssensor 26 zu kühlen. Da die Druckquelle 18 die Kammer 16 unter Druck setzt und jeder der Schlitze 70, 72, 170, 172 mit der Kammer 16 in Fluidverbindung steht, beseitigt diese Konfiguration die Notwendigkeit eines dedizierten Gebläses 48 für jeden Objekterkennungssensor 26. Mit anderen Worten erzeugt die Druckquelle 18 den Strömungspfad 66 zum Reinigen/Abwehren von Verunreinigungen von jedem der Sensorfenster 20 und zum Kühlen jedes der Objekterkennungssensoren 26.
  • Die Offenbarung wurde auf veranschaulichende Weise beschrieben und es versteht sich, dass die verwendete Terminologie vielmehr der Beschreibung als der Einschränkung dienen soll. In Anbetracht der vorstehenden Lehren sind viele Modifikationen und Variationen der vorliegenden Offenbarung möglich und die Offenbarung kann anders als konkret beschrieben umgesetzt werden.
  • Gemäß der vorliegenden Erfindung wird eine Baugruppe bereitgestellt, die Folgendes aufweist: ein Gehäuse mit einer Kammer; eine Druckquelle in Fluidverbindung mit der Kammer; und ein erstes Sensorfenster und ein zweites Sensorfenster, die jeweils durch das Gehäuse definiert sind; wobei das Gehäuse einen ersten Schlitz und einen zweiten Schlitz aufweist, die jeweils mit der Kammer in Fluidverbindung stehen, wobei der erste Schlitz benachbart zu dem ersten Sensorfenster ist und der zweite Schlitz benachbart zu dem zweiten Sensorfenster ist.
  • Gemäß einer Ausführungsform ist der erste Schlitz dem ersten Sensorfenster zugewandt und ist der zweite Schlitz dem zweiten Sensorfenster zugewandt.
  • Gemäß einer Ausführungsform beinhalten das erste Sensorfenster und das zweite Sensorfenster jeweils ein Sichtfeld, wobei der erste Schlitz dem Sichtfeld des ersten Sensorfensters zugewandt ist und der zweite Schlitz dem Sichtfeld des zweiten Sensorfensters zugewandt ist.
  • Gemäß einer Ausführungsform ist die vorstehende Erfindung ferner durch einen dritten Schlitz und einen vierten Schlitz gekennzeichnet, wobei der dritte Schlitz dem ersten Sensorfenster zugewandt ist und der vierte Schlitz dem zweiten Sensorfenster zugewandt ist.
  • Gemäß einer Ausführungsform sind der erste Schlitz und der dritte Schlitz benachbart zueinander und sind der zweite Schlitz und der vierte Schlitz benachbart zueinander.
  • Gemäß einer Ausführungsform weisen der erste Schlitz und der dritte Schlitz in auseinanderlaufende Richtungen und weisen der zweite Schlitz und der vierte Schlitz in auseinanderlaufende Richtungen.
  • Gemäß einer Ausführungsform stehen der dritte Schlitz und der vierte Schlitz jeweils mit der Kammer in Fluidverbindung.
  • Gemäß einer Ausführungsform beinhaltet das Gehäuse eine erste Abschirmung und eine zweite Abschirmung, die sich jeweils relativ zu der Kammer nach außen erstecken, wobei die erste Abschirmung benachbart zu dem ersten Sensorfenster ist und die zweite Abschirmung benachbart zu dem zweiten Sensorfenster ist.
  • Gemäß einer Ausführungsform sind die erste Abschirmung und das erste Sensorfenster in einer horizontalen Ebene angeordnet und sind die zweite Abschirmung und das zweite Sensorfenster in einer horizontalen Ebene angeordnet.
  • Gemäß einer Ausführungsform befindet sich der erste Schlitz in der ersten Abschirmung und befindet sich der zweite Schlitz in der zweiten Abschirmung.
  • Gemäß einer Ausführungsform weist der erste Schlitz eine erste Größe auf und weist der zweite Schlitz eine zweite Größe auf, die sich von der ersten Größe unterscheidet.
  • Gemäß einer Ausführungsform weist das Gehäuse eine Vielzahl von Sensorfenstern auf, die das erste Sensorfenster und das zweite Sensorfenster beinhaltet, beinhaltet das Gehäuse einen Lufteinlass in Fluidverbindung mit der Kammer und weist das Gehäuse eine Vielzahl von Schlitzen auf, die den ersten Schlitz und den zweiten Schlitz beinhaltet, wobei jeder der Vielzahl von Schlitzen benachbart zu einem jeweiligen der Vielzahl von Sensorfenstern ist und die Kammer mit Ausnahme des Lufteinlasses und der Vielzahl von Schlitzen abgedichtet ist.
  • Gemäß einer Ausführungsform ist die obige Erfindung ferner durch eine Membran gekennzeichnet, wobei das Gehäuse einen Lufteinlass in Fluidverbindung mit der Kammer beinhaltet und die Membran sich über den Lufteinlass erstreckt.
  • Gemäß einer Ausführungsform beinhaltet die Membran einen Luftfilter.
  • Gemäß einer Ausführungsform ist die obige Erfindung ferner durch einen ersten Objekterkennungssensor und einen zweiten Objekterkennungssensor gekennzeichnet, wobei der erste Objekterkennungssensor benachbart zu dem ersten Sensorfenster ist und der zweite Objekterkennungssensor benachbart zu dem zweiten Sensorfenster ist.
  • Gemäß einer Ausführungsform befinden sich der erste Objekterkennungssensor und der zweite Objekterkennungssensor in der Kammer.
  • Gemäß einer Ausführungsform weist mindestens einer von dem ersten Objekterkennungssensor und dem zweiten Objekterkennungssensor einen Kühlkörper auf.
  • Gemäß einer Ausführungsform ist mindestens einer von dem ersten Objekterkennungssensor und dem zweiten Objekterkennungssensor eine Kamera.
  • Gemäß einer Ausführungsform ist mindestens einer von dem ersten Objekterkennungssensor und dem zweiten Objekterkennungssensor ein LiDAR-System.
  • Gemäß einer Ausführungsform ist die Druckquelle ein Gebläse, wobei das Gehäuse einen Lufteinlass beinhaltet und das Gebläse mit dem Lufteinlass in Fluidverbindung steht.

Claims (15)

  1. Baugruppe, die Folgendes umfasst: ein Gehäuse mit einer Kammer; eine Druckquelle in Fluidverbindung mit der Kammer; und ein erstes Sensorfenster und ein zweites Sensorfenster, die jeweils durch das Gehäuse definiert sind; wobei das Gehäuse einen ersten Schlitz und einen zweiten Schlitz aufweist, die jeweils mit der Kammer in Fluidverbindung stehen, wobei der erste Schlitz benachbart zu dem ersten Sensorfenster ist und der zweite Schlitz benachbart zu dem zweiten Sensorfenster ist.
  2. Baugruppe nach Anspruch 1, wobei der erste Schlitz dem ersten Sensorfenster zugewandt ist und der zweite Schlitz dem zweiten Sensorfenster zugewandt ist.
  3. Baugruppe nach Anspruch 1, wobei das erste Sensorfenster und das zweite Sensorfenster jeweils ein Sichtfeld aufweisen, wobei der erste Schlitz dem Sichtfeld des ersten Sensorfensters zugewandt ist und der zweite Schlitz dem Sichtfeld des zweiten Sensorfensters zugewandt ist.
  4. Baugruppe nach Anspruch 3, ferner umfassend einen dritten Schlitz und einen vierten Schlitz, wobei der dritte Schlitz dem ersten Sensorfenster zugewandt ist und der vierte Schlitz dem zweiten Sensorfenster zugewandt ist.
  5. Baugruppe nach Anspruch 4, wobei der erste Schlitz und der dritte Schlitz benachbart zueinander sind und der zweite Schlitz und der vierte Schlitz benachbart zueinander sind.
  6. Baugruppe nach Anspruch 4, wobei der erste Schlitz und der dritte Schlitz in auseinanderlaufende Richtungen weisen und der zweite Schlitz und der vierte Schlitz in auseinanderlaufende Richtungen weisen.
  7. Baugruppe nach Anspruch 4, wobei der dritte Schlitz und der vierte Schlitz jeweils mit der Kammer in Fluidverbindung stehen.
  8. Baugruppe nach einem der Ansprüche 1-7, wobei das Gehäuse eine erste Abschirmung und eine zweite Abschirmung beinhaltet, die sich jeweils relativ zu der Kammer nach außen erstecken, wobei die erste Abschirmung benachbart zu dem ersten Sensorfenster ist und die zweite Abschirmung benachbart zu dem zweiten Sensorfenster ist.
  9. Baugruppe nach Anspruch 8, wobei die erste Abschirmung und das erste Sensorfenster in einer horizontalen Ebene angeordnet sind und die zweite Abschirmung und das zweite Sensorfenster in einer horizontalen Ebene angeordnet sind.
  10. Baugruppe nach Anspruch 8, wobei sich der erste Schlitz in der ersten Abschirmung befindet und sich der zweite Schlitz in der zweiten Abschirmung befindet.
  11. Baugruppe nach einem der Ansprüche 1-7, wobei der erste Schlitz eine erste Größe aufweist und der zweite Schlitz eine zweite Größe aufweist, die sich von der ersten Größe unterscheidet.
  12. Baugruppe nach einem der Ansprüche 1-7, wobei das Gehäuse eine Vielzahl von Sensorfenstern aufweist, die das erste Sensorfenster und das zweite Sensorfenster beinhaltet, das Gehäuse einen Lufteinlass in Fluidverbindung mit der Kammer beinhaltet und das Gehäuse eine Vielzahl von Schlitzen aufweist, die den ersten Schlitz und den zweiten Schlitz beinhaltet, wobei jeder der Vielzahl von Schlitzen benachbart zu einem jeweiligen der Vielzahl von Sensorfenstern ist und die Kammer mit Ausnahme des Lufteinlasses und der Vielzahl von Schlitzen abgedichtet ist.
  13. Baugruppe nach einem der Ansprüche 1-7, ferner umfassend eine Membran, wobei das Gehäuse einen Lufteinlass in Fluidverbindung mit der Kammer beinhaltet und die Membran sich über den Lufteinlass erstreckt.
  14. Baugruppe nach Anspruch 13, wobei die Membran einen Luftfilter beinhaltet.
  15. Baugruppe nach einem der Ansprüche 1-7, ferner umfassend einen ersten Objekterkennungssensor und einen zweiten Objekterkennungssensor, wobei der erste Objekterkennungssensor benachbart zu dem ersten Sensorfenster ist und der zweite Objekterkennungssensor benachbart zu dem zweiten Sensorfenster ist.
DE102019105717.5A 2018-03-12 2019-03-06 Objekterkennungssensorbaugruppe für fahrzeug Pending DE102019105717A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/918,069 2018-03-12
US15/918,069 US10845465B2 (en) 2018-03-12 2018-03-12 Vehicle object-detection sensor assembly

Publications (1)

Publication Number Publication Date
DE102019105717A1 true DE102019105717A1 (de) 2019-09-12

Family

ID=67701836

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102019105717.5A Pending DE102019105717A1 (de) 2018-03-12 2019-03-06 Objekterkennungssensorbaugruppe für fahrzeug

Country Status (3)

Country Link
US (1) US10845465B2 (de)
CN (1) CN110254360A (de)
DE (1) DE102019105717A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019208766A1 (de) * 2019-06-17 2020-12-17 Siemens Mobility GmbH Fahrzeug und Betriebsverfahren für ein Fahrzeug
DE102020107759A1 (de) 2020-03-20 2021-09-23 Webasto SE Dach mit Sensormodul
DE102020129244B3 (de) 2020-11-06 2022-03-17 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Vorrichtung zur Reinigung von einer Fahrzeugscheibe
DE102020123971A1 (de) 2020-09-15 2022-03-17 Bayerische Motoren Werke Aktiengesellschaft Schutzvorrichtung für ein Optikelement eines Kraftfahrzeugs
DE102022209211A1 (de) 2022-09-05 2024-03-07 Continental Automotive Technologies GmbH Vorrichtung zum Beaufschlagen einer Sensoroberfläche mit Luftströmung
DE102022209212A1 (de) 2022-09-05 2024-03-07 Continental Automotive Technologies GmbH Vorrichtung zum Beaufschlagen einer Sensoroberfläche mit Luftströmung
DE102022209213A1 (de) 2022-09-05 2024-03-07 Continental Automotive Technologies GmbH 7Vorrichtung zum Beaufschlagen einer Sensoroberfläche mit Luftströmung

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019201031A1 (de) * 2019-01-28 2020-07-30 lbeo Automotive Systems GmbH Kühlvorrichtung für einen Objekterkennungssensor
US11279325B2 (en) * 2019-06-24 2022-03-22 Ford Global Technologies, Llc Sensor cleaning
US11478827B2 (en) * 2019-10-01 2022-10-25 Ford Global Technologies, Llc Sensor assembly with cleaning
US11485327B2 (en) 2020-04-22 2022-11-01 Ford Global Technologies, Llc Sensor apparatus with cleaning
DE102020112678B3 (de) * 2020-05-11 2021-09-09 Webasto SE Fahrzeugdach mit Sensormodul und Blendenelement
CN112158168B (zh) * 2020-09-10 2022-02-18 一汽解放汽车有限公司 一种摄像头清洗设备、控制方法及车辆
US11662431B2 (en) * 2020-12-18 2023-05-30 Ford Global Technologies, Llc Rotating sensor assembly
WO2023287791A1 (en) * 2021-07-12 2023-01-19 Nuro, Inc. Methods and apparatus for clearing surfaces of sensors
US20230025984A1 (en) * 2021-07-21 2023-01-26 Argo AI, LLC Self-contained environmental control system for industrial and automotive sensing
CN115649069B (zh) * 2022-12-14 2023-03-03 四川省公路规划勘察设计研究院有限公司 车载激光点云扫描仪

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4414576A (en) 1981-09-25 1983-11-08 Vicon Industries, Inc. Housing assembly for electrical apparatus
KR100189288B1 (ko) 1996-02-15 1999-06-01 윤종용 기류를 이용한 카메라 하우징의 먼지 제거장치
DE10012004A1 (de) 2000-03-11 2001-09-27 Bosch Gmbh Robert Einrichtung zum Sauberhalten optischer Elemente in Kraftfahrzeugen, insbesondere von Sensor- oder Kamera-Abdeckungen
US20060068696A1 (en) 2004-09-16 2006-03-30 Ashford James A Apparatus and method for laser scanner cleaning and protection
FR2875913A1 (fr) 2004-09-29 2006-03-31 Sea On Line Sa Systeme d'alerte anti-collision installe a bord d'un vehicule marin et procede d'analyse anti-collision
JP2006194639A (ja) 2005-01-11 2006-07-27 Denso Corp レーダ装置
JP4513889B2 (ja) 2008-04-03 2010-07-28 株式会社日本自動車部品総合研究所 ウォッシャノズル付カメラおよびウォッシャノズル
JP2010002740A (ja) 2008-06-20 2010-01-07 Mitsubishi Electric Corp カメラケース及びこれを用いたカメラ装置
KR101042302B1 (ko) * 2010-12-27 2011-06-17 위재영 차량 외부 영상 장치용 하우징
EP2605043B1 (de) 2011-12-15 2014-07-23 Upwind Selbstreinigende Lichtdetektions- und Anordnungsvorrichtung
US9707896B2 (en) 2012-10-15 2017-07-18 Magna Electronics Inc. Vehicle camera lens dirt protection via air flow
US10054841B2 (en) * 2013-04-01 2018-08-21 Mitsubishi Electric Corporation Optical device, lidar device and imaging device
US9911454B2 (en) 2014-05-29 2018-03-06 Jaunt Inc. Camera array including camera modules
US10059280B2 (en) 2014-06-06 2018-08-28 Joseph Richard Cooper Obstruction-removal system and method for vehicle-camera lens
US10205930B2 (en) 2015-09-15 2019-02-12 Jaunt Inc. Camera allay including camera modules with heat sinks
US10207684B2 (en) 2016-03-09 2019-02-19 Antony-Euclid C. Villa-Real Bladeless multi-jet surface cleaning system providing clear-view non-distracting visibility for automobile windshields, side-view mirrors, and transparent viewing shieldings of amphibian, aquatic and aerial vehicles, including building viewing panels
US9885526B2 (en) 2016-03-11 2018-02-06 Ford Global Technologies, Llc Cooling system for vehicle sensor modules
US20170305660A1 (en) 2016-04-20 2017-10-26 Cody Brunelle Roof accessible wear panel for aggregate delivery unit
DE102016006039A1 (de) 2016-05-18 2016-11-17 Daimler Ag Reinigungseinrichtung eines Sensormoduls

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019208766A1 (de) * 2019-06-17 2020-12-17 Siemens Mobility GmbH Fahrzeug und Betriebsverfahren für ein Fahrzeug
DE102020107759A1 (de) 2020-03-20 2021-09-23 Webasto SE Dach mit Sensormodul
DE102020107759B4 (de) 2020-03-20 2022-08-11 Webasto SE Dach mit Sensormodul
DE102020123971A1 (de) 2020-09-15 2022-03-17 Bayerische Motoren Werke Aktiengesellschaft Schutzvorrichtung für ein Optikelement eines Kraftfahrzeugs
DE102020129244B3 (de) 2020-11-06 2022-03-17 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Vorrichtung zur Reinigung von einer Fahrzeugscheibe
DE102022209211A1 (de) 2022-09-05 2024-03-07 Continental Automotive Technologies GmbH Vorrichtung zum Beaufschlagen einer Sensoroberfläche mit Luftströmung
DE102022209212A1 (de) 2022-09-05 2024-03-07 Continental Automotive Technologies GmbH Vorrichtung zum Beaufschlagen einer Sensoroberfläche mit Luftströmung
DE102022209213A1 (de) 2022-09-05 2024-03-07 Continental Automotive Technologies GmbH 7Vorrichtung zum Beaufschlagen einer Sensoroberfläche mit Luftströmung

Also Published As

Publication number Publication date
US10845465B2 (en) 2020-11-24
US20190277949A1 (en) 2019-09-12
CN110254360A (zh) 2019-09-20

Similar Documents

Publication Publication Date Title
DE102019105717A1 (de) Objekterkennungssensorbaugruppe für fahrzeug
DE102019105577A1 (de) Objekterkennungssensorbaugruppe für fahrzeug
DE102018115896A1 (de) Sensorreinigungsgerät
DE102019111372A1 (de) Sensorbaugruppe zur objekterfassung für fahrzeuge
DE102015204276B4 (de) Optische Vorrichtung, optisches System und Abbildungsvorrichtung
DE10160669C5 (de) Sensor in einem Fahrzeugfenster
DE3132590C2 (de)
DE102019113150A1 (de) Sensoranordnung mit kühlung
DE102020119777A1 (de) Sensorbaugruppe mit reinigung
DE10131720A1 (de) Head-Up Display System und Verfahren
DE102007045505B4 (de) Filtereinsatz, Ölfilter und Verfahren zur Herstellung eines Ölfilters
DE102009029439A1 (de) Verfahren und Vorrichtung zur Darstellung von Hindernissen in einem Einparkhilfesystem von Kraftfahrzeugen
DE102013002111A1 (de) Sichtsystem für Fahrzeuge, insbesondere Nutzfahrzeuge
DE102018129026A1 (de) Sensorbaugruppe
DE102018129021A1 (de) Sensorbaugruppe
DE102017100672A1 (de) Kameravorrichtung für ein Kraftfahrzeug mit Reinigungseinrichtung zum Bereitstellen des Luftstroms, Kamerasystem sowie Kraftfahrzeug
DE102018204209B4 (de) Kameramodul
EP2247468B1 (de) Störlicht bzw. sonnenblende für eine kamera in einem kraftfahrzeug
DE102020110130A1 (de) Feuchtigkeitskontrolle für sensorbaugruppe
DE102020119081A1 (de) Fahrzeugsensorbaugruppe
DE102019122245A1 (de) Kühlsensorvorrichtung
DE102020124959B4 (de) Kamerasystem
EP3069934B1 (de) Verfahren zum erzeugen eines gesamtbildes einer fahrzeugumgebung eines fahrzeuges und entsprechende vorrichtung
DE102006008272A1 (de) Kraftfahrzeug mit einer optischen Erfassungsvorrichtung
DE102020113821A1 (de) Fahrer-Zustand-Erfassungsvorrichtung

Legal Events

Date Code Title Description
R082 Change of representative

Representative=s name: BONSMANN - BONSMANN - FRANK PATENTANWAELTE, DE