DE102017208794A1 - Hybridsuperkondensator für Hochtemperaturanwendungen - Google Patents

Hybridsuperkondensator für Hochtemperaturanwendungen Download PDF

Info

Publication number
DE102017208794A1
DE102017208794A1 DE102017208794.3A DE102017208794A DE102017208794A1 DE 102017208794 A1 DE102017208794 A1 DE 102017208794A1 DE 102017208794 A DE102017208794 A DE 102017208794A DE 102017208794 A1 DE102017208794 A1 DE 102017208794A1
Authority
DE
Germany
Prior art keywords
lithium
active material
imide
bis
trifluoromethylsulfonyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102017208794.3A
Other languages
English (en)
Inventor
Lars Brommer
Michael Donotek
Veronika Haug
Mathias Widmaier
Yu-Chuan Chien
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to DE102017208794.3A priority Critical patent/DE102017208794A1/de
Priority to PCT/EP2018/058548 priority patent/WO2018215124A1/de
Publication of DE102017208794A1 publication Critical patent/DE102017208794A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/02Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof using combined reduction-oxidation reactions, e.g. redox arrangement or solion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

Die Erfindung betrifft einen Hybridsuperkondensator (1), umfassend mindestens eine negative Elektrode (21), mindestens eine positive Elektrode (22), mindestens eine Separator (18) und mindestens eine Elektrolytzusammensetzung (15), dadurch gekennzeichnet, dass die negative Elektrode (21) als Aktivmaterial ein rein statisch kapazitives Aktivmaterial umfasst,
die positive Elektrode (22) als Aktivmaterial ein rein elektrochemisches Redoxaktivmaterial oder ein Gemisch aus einem rein elektrochemischen Redoxaktivmaterial und einem rein kapazitiven Aktivmaterial umfasst, und die Elektrolytzusammensetzung (15) mindestens eine ionische Flüssigkeit und mindestens einen Lithium-haltigen Leitzusatz umfasst.
Der erfindungsgemäße Hybridsuperkondensator ist auch bei hohen Temperaturen einsetzbar.

Description

  • Die vorliegende Erfindung betrifft einen Hybridsuperkondensator für Hochtemperaturanwendungen.
  • Stand der Technik
  • Die Speicherung elektrischer Energie mittels elektrochemischer Energiespeichersysteme wie elektrochemischer Kondensatoren (Superkondensatoren) oder elektrochemischer Primär- oder Sekundärbatterien ist seit vielen Jahren bekannt. Die genannten Energiespeichersysteme unterschieden sich dabei in dem der Energiespeicherung zu Grunde liegenden Prinzip.
  • Superkondensatoren umfassen in der Regel eine negative und eine positive Elektrode, welche durch einen Separator voneinander getrennt sind. Zwischen den Elektroden befindet sich außerdem ein Elektrolyt, welcher elektrisch leitfähig ist. Die Speicherung elektrischer Energie beruht darauf, dass sich beim Anlegen einer Spannung an die Elektroden des Superkondensators eine elektrische Doppelschicht an deren Oberflächen ausbildet. Diese Doppelschicht wird aus solvatisierten Ladungsträgern aus dem Elektrolyten gebildet, welche sich an den Oberflächen der entgegensetzt elektrisch geladenen Elektroden anordnen. Eine Redox-Reaktion ist bei dieser Art der Energiespeicherung nicht beteiligt. Superkondensatoren können daher theoretisch beliebig oft Aufgeladen werden und haben somit eine sehr hohe Lebensdauer. Auch die Leistungsdichte der Superkondensatoren ist hoch, wohingegen die Energiedichte im Vergleich zu beispielsweise Lithium-Ionen-Batterien eher gering ist.
  • Die Energiespeicherung in Primär- und Sekundärbatterien findet hingegen durch eine Redox-Reaktion statt. Auch diese Batterie umfassen dabei in der Regel eine negative und eine positive Elektrode, welche durch einen Separator voneinander getrennt sind. Zwischen den Elektroden befindet sich ebenso ein leitfähiger Elektrolyt. In Lithium-Ionen-Batterien, einem der am weitesten verbreiteten Sekundärbatterietypen, findet die Energiespeicherung durch die Einlagerung von Lithium-Ionen in die Elektrodenaktivmaterialien statt. Beim Betrieb der Batteriezelle, also bei einem Entladevorgang, fließen Elektronen in einem äußeren Stromkreis von der negativen Elektrode zur positiven Elektrode. Innerhalb der Batteriezelle wandern Lithium-Ionen bei einem Entladevorgang von der negativen Elektrode zur positiven Elektrode. Dabei lagern die Lithium-Ionen aus dem Aktivmaterial der negativen Elektrode reversibel aus, was auch als Delithiierung bezeichnet wird. Bei einem Ladevorgang der Batteriezelle wandern die Lithium-Ionen von der positiven Elektrode zu der negativen Elektrode. Dabei lagern die Lithium-Ionen wieder in das Aktivmaterial der negativen Elektrode reversibel ein, was auch als Lithiierung bezeichnet wird.
    Lithium-Ionen-Batterien zeichnen sich dadurch aus, dass sie eine hohe Energiedichte haben, d.h. dass sie eine große Menge an Energie pro Masse bzw. Volumen speichern können. Im Gegenzug weisen sie jedoch nur eine begrenzte Leistungsdichte und Lebensdauer auf. Dies ist für viele Anwendungen nachteilig, sodass Lithium-Ionen-Batterien in diesen Bereichen nicht oder nur in geringem Umfang eingesetzt werden können.
  • Hybridsuperkondensatoren stellen eine Kombination dieser Technologien dar und sind geeignet die Lücke in den Anwendungsmöglichkeiten, die die Lithium-Ionen-Batterie-Technologie und die Superkondensatorentechnologie aufweisen, zu schließen.
  • Hybridsuperkondensatoren weisen in der Regel ebenfalls zwei Elektroden auf, die je einen Stromsammler umfassend und durch einen Separator voneinander getrennt sind. Der Transport der elektrischen Ladungen zwischen den Elektroden wird durch Elektrolyte bzw. Elektrolytzusammensetzungen gewährleistet. Die Elektroden umfassen als Aktivmaterial in der Regel ein herkömmliches Superkondensationsmaterial (nachfolgend auch statisch kapazitives Aktivmaterial genannt) sowie ein Material, welches in der Lage ist eine Redox-Reaktion mit den Ladungsträgern des Elektrolyten einzugehen und eine Interkalationsverbindungen davon zu bilden (nachfolgend auch elektrochemisches Redoxaktivmaterial genannt). Das Energiespeicherprinzip der Hybridsuperkondensatoren beruht somit auf der Ausbildung einer elektrischen Doppelschicht in Kombination mit der Bildung einer faradischen Lithium-Interkallationsverbindung. Das so erhaltene Energiespeichersystem besitzt eine hohe Energiedichte bei gleichzeitig hoher Leistungsdichte und hoher Lebensdauer.
  • US 2016/0099474 A1 offenbart ein Energiespeichersystem, umfassend eine Kathode, eine Lithium-basierte Anode, insbesondere auf Basis einer Lithiumlegierung, ein Elektrolyt, welcher aus einer ionischen Flüssigkeit und einem darin gelösten Lithiumsalz gebildet wird, und einem Separator. Das Energiespeichersystem kann in Temperaturbereich von 180°C bis 200°C betrieben werden. Obwohl das Energiespeichersystem bei deutlich höheren Temperaturen als herkömmliche Energiespeicher betrieben werden kann, ist der Temperaturbereich, in dem diese zum Einsatz kommen können, sehr eng. Darüber hinaus neigen Lithium-basierte Anoden zur Abscheidung von Lithium-Dendriten, welche einen Kurzschluss der elektrochemischen Zellen zur Folge haben können. Zudem sind Lithium-basierte Anoden im Vergleich zu Elektroden aus Aktivkohle ratenlimitiert.
  • Herkömmliche Energiespeichersysteme sind in der Regel auf einen engen Temperaturbereich begrenzt, in welchem das System betrieben werden kann. Bei herkömmlichen Superkondensatoren, Hybridsuperkondensatoren oder auch Lithium-Ionen-Batterien, liegt die Obergrenze der Betriebstemperatur häufig bei etwa 60°C. Ein Überschreiten dieser Temperatur kann zum Versagen des Energiespeichers führen. Auf der anderen Seite zeichnen sich spezielle Lithium-Ionen-Batterien für Hochtemperaturanwendungen häufig durch eine schlechte Leistungsdichte und geringe Zyklenstabilität aus.
  • Aufgabe der vorliegenden Erfindung ist es daher, ein elektrochemisches Energiespeichersystem bereitzustellen, welches sowohl eine hohe Leistungsdichte als auch eine hohe Energiedichte und Lebensdauer bei hohen Temperaturen aufweist. Diese Aufgabe wird durch die nachfolgende beschriebene Erfindung gelöst.
  • Offenbarung der Erfindung
  • Gegenstand der Erfindung ist ein Hybridsuperkondensator, umfassend mindestens eine negative Elektrode, mindestens eine positive Elektrode, mindestens einen Separator und mindestens eine Elektrolytzusammensetzung, dadurch gekennzeichnet, dass
    die negative Elektrode als Aktivmaterial ein rein statisch kapazitives Aktivmaterial umfasst,
    die positive Elektrode als Aktivmaterial ein rein elektrochemisches Redoxaktivmaterial oder ein Gemisch aus einem rein elektrochemischen Redoxaktivmaterial und einem rein kapazitiven Aktivmaterial umfasst, und die Elektrolytzusammensetzung mindestens eine ionische Flüssigkeit und mindestens einen Lithium-haltigen Leitzusatz umfasst.
  • Der erfindungsgemäße Hybridsuperkondensator umfasst mindestens eine positive Elektrode und mindestens eine negative Elektrode. Die Elektroden umfassen jeweils einen elektrisch leitenden Stromsammler, sowie ein darauf aufgebrachtes Aktivmaterial. Der Stromsammler umfasst beispielswiese Kupfer oder Aluminium als elektrisch leitendes Material. In einer bevorzugten Ausführungsform ist der Stromsammler der Elektroden aus Aluminium gefertigt.
  • Auf die negative Elektrode ist ein negatives Aktivmaterial aufgebracht. Das negative Aktivmaterial umfasst umfassend ein statisch kapazitives Aktivmaterial, ein elektrochemisches Redoxaktivmaterial oder ein Gemisch davon.
  • Ein statisch kapazitives Aktivmaterial ist im Sinne dieser Erfindung ein Material, welches aus herkömmlichen Doppelschicht-Elektroden bekannt ist und geeignet ist eine statische Doppelschichtkapazität, insbesondere durch das Ausbilden einer Helmholtzschicht, auszubilden. Es ist dabei so gestaltet, dass sich eine möglichst große Oberfläche zur Ausbildung der elektrischen Doppelschicht ergibt. Das am häufigsten verwendete Elektrodenmaterial für Superkondensatoren ist Kohlenstoff in seinen verschiedenen Erscheinungsformen, wie Aktivkohle (AC), Aktivkohlefasern (ACF), Carbid-abgeleiteter Kohlenstoff (CDC), Kohlenstoff-Aerogel, Graphen und Kohlenstoffnanoröhrchen (CNTs). Sämtliche Elektrodenaktivmaterialien sind als statisch kapazitive Aktivmaterialien im Rahmen der Erfindung geeignet.
    Bevorzugt werden die Kohlenstoffmodifikationen Aktivkohle (AC), Aktivkohlefasern (ACF), Carbid-abgeleiteter Kohlenstoff (CDC), Kohlenstoff-Aerogel, Graphen und Kohlenstoffnanoröhrchen (CNTs) eingesetzt,
    insbesondere Aktivkohle.
  • Auf die positive Elektrode ist ein positives Aktivmaterial aufgebracht. Das positive Aktivmaterial umfasst mindestens ein elektrochemisches Redoxaktivmaterial oder ein Gemisch aus mindestens einem elektrochemisches Redoxaktivmaterial und mindestens einem statisch kapazitivem Aktivmaterial, ein.
  • Bezüglich des statisch kapazitiven Materials der positiven Elektrode gelten sämtliche Ausführungen zur negativen Elektrode entsprechend. Die dort genannten Aktivmaterialien sind auch für die positive Elektrode geeignet.
  • Geeignete elektrochemische Redoxaktivmaterialien für die positive Elektrode sind beispielsweise lithiierte Interkalationsverbindungen, welche in der Lage sind Lithium-Ionen reversibel aufzunehmen und freizusetzen. Das positive Aktivmaterial kann ein zusammengesetztes Oxid umfassen, welches mindestens ein Metall, ausgewählt aus der Gruppe bestehend aus Kobalt, Magnesium, Nickel, sowie Lithium, enthält.
  • Eine Ausführungsform der vorliegenden Erfindung enthält ein Aktivmaterial der positiven Elektrode, umfassend eine Verbindung der Formel LiMO2, wobei M ausgewählt ist aus Co, Ni, Mn, Cr oder Gemischen von diesen sowie Gemischen von diesen mit Al. In einer bevorzugten Ausführungsform handelt es sich bei dem Kathodenaktivmaterial um ein Material, welches Nickel umfasst, d.h. LiNi1-xM‘xO2, wobei M‘ ausgewählt ist aus Co, Mn, Cr und Al und 0 ≤ x < 1 ist. Beispiele umfassen Lithium-Nickel-Kobalt-Aluminium-Oxid-Kathoden (z.B. LiNi0,8Co0,15Al0,05O2; NCA) und Lithium-Nickel-Mangan-Kobalt-Oxid-Kathoden (z.B. LiNi0,8Mn0,1Co0,1O2; NMC (811) oder LiNi0,33Mn0,33Co0,33O2; NMC (111)).
  • Ferner sind als bevorzugte positive Aktivmaterialien überlithiierte schichtförmige Oxide zu nennen, welche dem Fachmann bekannt sind. Beispiele hierfür sind Li1+xMn2-yMyO4 mit x ≤ 0,8, y < 2; Li1+xCo1-yMyO2 mit x ≤ 0,8, y < 1; Li1+xNi1-y-zCoyMzO4 mit x ≤ 0,8, y < 1, z < 1 und y+z < 1. In den vorgenannten Verbindungen kann M ausgewählt sein aus Al, Mg und/oder Mn.
  • Zwei oder mehrere der positiven Aktivmaterialien können insbesondere auch in Kombination miteinander verwendet werden. Eine bevorzugte Ausführungsform umfasst beispielsweise Verbindungen der Formel n(Li2MnO3) : n-1(LiN1-xM‘xO2) wobei M‘ ausgewählt ist aus Co, Mn, Cr und Al und 0 < n < 1 ist und 0 < x < 1 ist.
  • Ferner sind insbesondere LiFePO4, LiMn2O4, Li2MnO3, Li1.17Ni0.17Co0.1Mn0.56O2, LiCoO2 und LiNiO2 als geeignete positive Aktivmaterialien hervorzuheben. Besonders bevorzugt ist LiFePO4 als elektrochemisches Redoxaktivmaterial für die positive Elektrode zu verwenden.
  • In einer Ausführungsform umfasst die positive Elektrode ein Gemisch aus statisch kapazitivem Aktivmaterial und elektrochemischen Redoxaktivmaterial, beispielsweise ein Gemisch aus Aktivkohle und LiFePO4. Das Massenverhältnis von kapazitivem Aktivmaterial zu elektrochemischen Redoxaktivmaterial liegt vorzugsweise in einem Bereich von 1: 0,5 bis 1:3.
  • Als weitere Bestandteile kann das negative Aktivmaterial und/oder das positive Aktivmaterial insbesondere Bindemittel wie Styrol-Butadien-Copolymer (SBR), Polyvinylidenfluorid (PVDF), Polytetrafluorethen (PTFE), Polyacrylnitril (PAN) und Ethylen-Propylen-Dien-Terpolymer (EPDM) umfassen, um die Stabilität der Elektroden zu erhöhen. Ferner können Leitadditive wie Leitruß oder Graphit zugegeben werden.
  • Der Separator dient der Aufgabe, die Elektroden von einem direkten Kontakt miteinander zu schützen und so einen Kurzschluss zu unterbinden. Gleichzeitig muss der Separator den Transfer der Ionen von einer Elektrode zur anderen gewährleisten. Geeignete Materialien zeichnen sich dadurch aus, dass sie aus einem elektrisch isolierenden Material mit einer porösen Struktur gebildet sind. Geeignete Materialien sind insbesondere Polymere, wie Cellulose, Polyolefine, Polyester und fluorierte Polymere. Besonders bevorzugte Polymere sind Cellulose, Polyethylen (PE), Polypropylen (PP), Polyethylenterephthalat (PET), Polytetrafluorethen (PTFE) und Polyvinylidenfluorid (PVDF). Ferner kann der Separator keramische Materialen umfassen oder aus diesen bestehen, sofern ein weitgehender (Lithium-)Ionen-Transfer gewährleistet ist. Als Materialien sind insbesondere Keramiken, welche MgO, CuO oder Al2O3 umfassen und Glasfaser, zu nennen. Der Separator kann aus einer Schicht aus einem oder mehreren der zuvor genannten Materialien bestehen oder auch aus mehreren Schichten, in denen jeweils eines oder mehrere der genannten Materialein miteinander kombiniert sind.
  • Ferner umfasst der Hybridsuperkondensator eine Elektrolytzusammensetzung, umfassend mindestens eine ionische Flüssigkeit und mindestens einen Lithium-haltigen Leitzusatz.
  • Ionische Flüssigkeiten im Sinne dieser Erfindung sind organische Salze, die durch Ladungsdelokalisierung und sterische Effekte keine stabilen Kristallgitter bilden. Sie weise daher eine niedrige Schmelztemperatur auf, welche vorzugsweise ≤ 75°C, stärker bevorzugt ≤ 50°C und insbesondere ≤ 30°C ist.
  • Geeignete Kationen der ionischen Flüssigkeiten umfassen Imidazolium-, Pyridinium-, Pyrrolidinium-, Guanidinium-, Uronium-, Thiouronium-, Piperidinium-, Morpholinium-, Ammonium- und Phosphonium-Kationen, welche gegebenenfalls mit einem oder mehreren Alkylrest mit 1 bis 6 Kohlenstoffatomen substituiert sein können. Besonders bevorzugt sind Imidazolium-, Pyridinium-, Pyrrolidinium- und Ammonium-Kationen, die vorzugsweise mit einem oder mehreren Alkylrest(en) mit 1 bis 6 Kohlenstoffatomen substituiert sein können.
  • Geeignete Anionen der ionischen Flüssigkeit umfassen Halogenid-, Tetrafluorborat-, Trifluoracetat-, Triflat-, Hexafluorphosphat-, Phosphinat-, Tosylat- und sterisch anspruchsvolle Imid- und Amid-Anionen. Vorzugsweise sind die Kohlenstoffatome der Anionen perfluoriert. Besonders bevorzugt sind sterisch anspruchsvolle Imid-Anionen, insbesondere perfluorierte Imid-Anionen wie das Bis(trifluormethylsulfonyl)imid-Anion.
  • Bevorzugte ionische Flüssigkeiten sind 1-Ethyl-3-methylimidazolium-bis(trifluormethylsulfonyl)imid, 1-Methyl-1-propylpiperidinium-bis(trifluormethylsulfonyl)imid, 1-Butyl-1-methylpyrrolidinium-bis(trifluormethylsulfonyl)imid, Butyltrimethylammonium-bis(trifluormethylsulfonyl)imid, Diethylmethyl-(methoxyethyl)ammonium-bis(trifluormethylsulfonyl)imid und Gemische davon. Besonders bevorzugt ist 1-Butyl-l-methylpyrrolidinium-bis(trifluormethylsulfonyl)imid.
  • Ferner umfasst die Elektrolytzusammensetzung mindestens einen Lithium-haltigen Leitzusatz. Der Lithium-haltige Leitzusatz kann beispielsweise ausgewählt sein aus der Gruppe bestehend aus Lithiumchlorat (LiClO4), Lithiumtetrafluorborat (LiBF4), Lithiumhexafluorphosphat (LiPF6), Lithiumhexafluorarsenat (LiAsF6), Lithiumtrifluormethansulfonat (LiSO3CF3), Lithiumbis(trifluormethylsulphonyl)imid (LiN(SO2CF3)2), Lithiumbis(pentafluorethylsulphonyl)imid (LiN(SO2C2F5)2), Lithiumbis(oxalato)borat (LiBOB, LiB(C2O4)2), Lithiumdifluor(oxalato)borat (LiBF2(C2O4)), Lithiumdifluor-tri(pentafluorethyl)phosphat (LiPF2(C2F5)3) und Kombinationen davon.
  • Die Konzentration an Lithium-haltigem Leitzusatz liegt vorzugsweise in einem Bereich von 0,01 mol/L bis 1 mol/L, insbesondere in einem Bereich von 0,1 bis 0,5 mol/L.
  • In einer besonders bevorzugten Ausführungsform betrifft die Erfindung einen Hybridsuperkondensator, umfassend mindestens eine negative Elektrode, mindestens eine positive Elektrode, mindestens eine Separator und mindestens eine Elektrolytzusammensetzung, dadurch gekennzeichnet, dass die negative Elektrode als Aktivmaterial ein rein statisch kapazitives Aktivmaterial umfasst,
    die positive Elektrode als Aktivmaterial LiFePO4 oder ein Gemisch aus LiFePO4 und einem rein kapazitiven Aktivmaterial umfasst, und die Elektrolytzusammensetzung 1-Butyl-1-methylpyrrolidinium-bis(trifluormethylsulfonyl)imid und Lithium-bis(trifluormethylsulfonyl)imid umfasst. Es hat sich überraschenderweise gezeigt, dass ein Hybridsuperkondensator aus diesen Bestandteilen eine besonders gute Stabilität im Hochtemperaturbetrieb aufweist.
  • Ein erfindungsgemäßer Hybridsuperkondensator findet vorteilhaft Verwendung in einem Fahrzeug, insbesondere in einem Fahrzeug mit einem herkömmlichen Verbrennungsmotor (ICE), in einem Elektrofahrzeug (EV), in einem Hybridfahrzeug (HEV), oder in einem Plug-In-Hybridfahrzeug (PHEV).
  • Insbesondere in Rekuperationssystemen von Fahrzeugen kann der Hybridsuperkondensator vorteilhaft eingesetzt werden. Darüber hinaus kann der erfindungsgemäße Hybridsuperkondensator vorteilhaft Verwendung finden in Backup-Systemen für sicherheitskritische bzw. sicherheitsrelevante Komponenten, Systeme und/oder Subsysteme in Fahrzeugen. Beispielhafte Systeme sind z.B. das Bremssystem oder auch die Lenkung. Im Anwendungsfall, d.h. beispielsweise dem Ausfall des Bordnetzes, kann vom erfindungsgemäßen Hybridkondensator elektrische Energie zur Aufrechterhaltung der Funktionsfähigkeit der sicherheitskritische bzw. sicherheitsrelevante Komponenten, Systeme und/oder Subsysteme bereitgestellt werden.
  • Ein weiteres Verwendungsbeispiel ist die Performanceerhöhung bei Druckaufbau im Bremssystem sowie Modulation des Druckes in einem elektronischen Stabilitätsprogramm (ESP).
  • Weitere Verwendungsbeispiele sind Werkzeuge sowie Consumer-Elektronik-Produkte. Unter Werkzeugen sind dabei insbesondere Heimwerkzeuge sowie Gartenwerkzeuge zu verstehen. Unter Consumer-Elektronik-Produkten sind insbesondere Mobiltelefone, Tablet-PCs oder Notebooks zu verstehen.
  • Vorteile der Erfindung
  • Der erfindungsgemäße Hybridsuperkondensator zeichnet sich dadurch aus, dass dieser auch bei hohen Betriebstemperaturen, vorzugsweise bei Temperaturen von mehr als 60°C, stärker bevorzugt von mehr als 80°C, insbesondere von mehr als 100°C, stabil ist und keiner Zersetzung der Aktivmaterialien oder der Elektrolytzusammensetzung unterläuft.
  • Figurenliste
  • Ausführungsbeispiele der Erfindung werden anhand einer Zeichnung und der nachfolgenden Beschreibung näher erläutert:
    • 1 zeigt schematisch den grundsätzlichen Aufbau eines Hybridsuperkondensators.
    • 2 zeigt in einem Ragone-Diagramm die Performance eines erfindungsgemäßen Hybridsuperkondensators bei 105°C.
    • 3 zeigt den Verlauf der Abnahme der Energiedichte eines erfindungsgemäßen Hybridsuperkondensators bei 105°C.
  • Ausführungsformen der Erfindung
  • Der 1 ist der Aufbaus eines Hybridsuperkondensators 1 schematisch dargestellt. Ein flächiger Stromsammler 31 kontaktiert eine negative Elektrode 21 und verbindet diese mit dem negativen Terminal 11. Gegenüberliegend befindet sich eine positive Elektrode 22, die ebenfalls leitend mit einem Stromsammler 32 zur Ableitung an das positive Terminal 12 verbunden ist. Die beiden Elektroden 21, 22 werden durch einen Separator 18 getrennt und sind in einem Gehäuse 2 angeordnet. Die leitfähige Elektrolytzusammensetzung 15 stellt eine ionenleitfähige Verbindung zwischen den beiden Elektroden 21, 22 her.
  • Ausführungsbeispiel 1
  • Zur Herstellung der positiven Elektrode 22 wird ein Gemisch aus 33,34 Gewichtsteilen LiFePO4 und 61,9 Gewichtsteilen Aktivkohle als Aktivmaterial (Massenverhältnis LiFePO4/Aktivkohle: 35/65) sowie 4,76 Gewichtsteilen Carbon Black als Leitadditiv hergestellt. Dieses wird 10 Minuten lang bei 1000 U/min in einem Mischer trockenvermischt. Dann werden 105 Gewichtsteile einer 4,76%igen Bindemittellösung (PVDF in Dimethylsulfoxid) zugefügt und die erhaltene Suspension zunächst 2 Minuten lang bei 900 U/min gerührt, diese dann 5 Minuten lang mit Ultraschall behandelt und anschließend nochmals 4 Minuten lang bei 2500 U/min gerührt. Die Suspension wird mittels eines Rakelverfahrens direkt auf einen Stromsammler 32 mit einer Schichtdicke von ca. 100 µm zu einer positiven Elektrode gegossen. und getrocknet.
  • Zur Herstellung der negativen Elektrode 21 wird ein Gemisch aus 95,24 Gewichtsteilen Aktivkohle als Aktivmaterial sowie 4,76 Gewichtsteile Carbon Black als Leitadditiv hergestellt. Dieses wird 10 min lang bei 1000 U/min in einem Mischer trockenvermischt. Dann werden 105 Gewichtsteile einer 4,76 %-igen Bindemittellösung (PVDF in Dimethylsulfoxid) zugefügt und die erhaltene Suspension zunächst 2 Minuten lang bei 900 U/min gerührt, diese dann 5 Minuten lang mit Ultraschall behandelt und anschließend nochmals 4 Minuten lang bei 2500 U/min gerührt. Die Suspension wird mittels eines Rakelverfahrens direkt auf einen Stromsammler 31 mit einer Schichtdicke von ca. 200 µm zu einer negativen Elektrode gegossen und getrocknet.
  • Das Massenverhältnis der Aktivmaterialzusammensetzung von negativer Elektrode zu positiver Elektrode liegt bei 2,5.
  • Der Separator 18 wurde auf Basis von Cellulose hergestellt. Als Elektrolytzusammensetzung 15 wurde eine Lösung von Lithium-bis(trifluormethylsulfonyl)imid in 1-Butyl-1-methylpyrrolidinium-bis(trifluormethylsulfonyl)imid mit einer Li-Salz-Konzentration von 0,5 mol/L verwendet.
  • In dem in 2 darstellen Ragone-Diagramm wird die spezifische Leistung in Abhängigkeit von der spezifischen Energie aufgetragen. 2 zeigt entsprechende Kurve des erfindungsgemäßen Hybridsuperkondensators 1 gemäß Ausführungsbeispiel 1 bei einer Temperatur von 105°C. Die Messung erfolgt in einem Spannungsbereich von 0,8 bis 2,0 V. Es ist ersichtlich, dass sich der erfindungsgemäße Hybridsuperkondensator 1 auch bei erhöhter Temperatur durch eine gute Energiedichte (in 2 mit dem Buchstaben E abgekürzt und in der Einheit Wh/kg angegeben) und Leistungsdichte (in 2 mit dem Buchstaben P abgekürzt und in der Einheit W/kg angegeben) auszeichnet.
  • In 3 zeigt die Degradation der Energiedichte einer Zelle des erfindungsgemäßen Hybridsuperkondensators 1 gemäß Ausführungsbeispiel 1 bei einer Temperatur von 105°C über einen Zeitraum von 130 Stunden. Der Hybridsuperkondensator wird auf einer Spannung von 2 V gehalten, alle 10 Stunden erfolgt die Messung der Entladeenergiedichte durch mehrfaches Laden und Entladen der Zellen. Auf der Abszissenachse ist die Zeit t in Stunden dargestellt. Auf der Ordinatenachse ist die normierte verbliebene Entladungsenergie E dargestellt. Der Ausgangswert bei t=0 ist dabei auf 1 normiert. Es ist erkennbar, dass auch nach einem Zeitraum von 130 Stunden bei 105°C der Erfindungsgemäße Hybridsuperkondensator noch eine Energie von 80% der Ausgangsenergie speichern kann.
  • Die Erfindung ist nicht auf die hier beschriebenen Ausführungsbeispiele und die darin hervorgehobenen Aspekte beschränkt. Vielmehr ist innerhalb des durch die Ansprüche angegebenen Bereichs eine Vielzahl von Abwandlungen möglich, die im Rahmen fachmännischen Handelns liegen
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • US 2016/0099474 A1 [0007]

Claims (10)

  1. Hybridsuperkondensator (1), umfassend mindestens eine negative Elektrode (21), mindestens eine positive Elektrode (22), mindestens eine Separator (18) und mindestens eine Elektrolytzusammensetzung (15), dadurch gekennzeichnet, dass die negative Elektrode (21) als Aktivmaterial ein rein statisch kapazitives Aktivmaterial umfasst, die positive Elektrode (22) als Aktivmaterial ein rein elektrochemisches Redoxaktivmaterial oder ein Gemisch aus einem rein elektrochemischen Redoxaktivmaterial und einem rein kapazitiven Aktivmaterial umfasst, und die Elektrolytzusammensetzung (15) mindestens eine ionische Flüssigkeit und mindestens einen Lithium-haltigen Leitzusatz umfasst.
  2. Hybridsuperkondensator (1) nach Anspruch 1, wobei die ionische Flüssigkeit ausgewählt ist aus 1-Ethyl-3-methylimidazolium-bis(trifluormethylsulfonyl)imid, 1-Methyl-1-propylpiperidinium-bis(trifluormethylsulfonyl)imid, 1-Butyl-1-methylpyrrolidinium-bis(trifluormethylsulfonyl)imid, Butyltrimethylammonium-bis(trifluormethylsulfonyl)imid, Diethylmethyl-(methoxyethyl)ammonium-bis(trifluormethylsulfonyl)imid und Gemische davon.
  3. Hybridsuperkondensator (1) nach Anspruch 1 oder 2, wobei der mindestens eine Lithium-haltige Leitzusatz ein Lithiumsalz ist.
  4. Hybridsuperkondensator (1) nach einem der Ansprüche 1 bis 3, wobei das Lithiumsalz ausgewählt ist aus Lithiumchlorat (LiClO4), Lithiumtetrafluorborat (LiBF4), Lithiumhexafluorphosphat (LiPF6), Lithiumhexafluorarsenat (LiAsF6), Lithiumtrifluormethansulfonat (LiSO3CF3), Lithiumbis(trifluormethylsulphonyl)imid (LiN(SO2CF3)2), Lithiumbis(pentafluorethylsulphonyl)imid (LiN(SO2C2F5)2), Lithiumbis(oxalato)borat (LiBOB, LiB(C2O4)2), Lithiumdifluor(oxalato)borat (LiBF2(C2O4)), Lithiumdifluotri(pentafluorethyl)phosphat (LiPF2(C2F5)3), und Gemischen davon.
  5. Hybridsuperkondensator (1) nach einem der Ansprüche 1 bis 4, wobei das rein elektrochemische Redoxaktivmaterial ausgewählt ist aus LiFePO4, LiMn2O4, Li2MnO3, LiCoO2, LiNiO2 und Li1.17Ni0.17Co0.1Mn0.56O2.
  6. Hybridsuperkondensator (1) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die negative Elektrode (21) als Aktivmaterial ein rein statisch kapazitives Aktivmaterial umfasst, die positive Elektrode (22) als Aktivmaterial LiFePO4 oder ein Gemisch aus LiFePO4 und einem rein kapazitiven Aktivmaterial umfasst, und die Elektrolytzusammensetzung (15) 1-Butyl-1-methylpyrrolidinium-bis(trifluormethylsulfonyl)imid und Lithium-bis(trifluormethylsulfonyl)imid umfasst.
  7. Verwendung einer Zusammensetzung, umfassend mindestens eine ionische Flüssigkeit und mindestens einen Lithium-haltigen Leitzusatz als Elektrolytzusammensetzung (15) in einem Hybridsuperkondensator (1).
  8. Verwendung nach Anspruch 7, wobei die Elektrolytzusammensetzung (15) 1-Butyl-1-methylpyrrolidinium-bis(trifluormethylsulfonyl)imid und Lithium-bis(trifluormethylsulfonyl)imid umfasst.
  9. Verwendung eines Hybridsuperkondensators (1) nach einem der Ansprüche 1 bis 8 in einem Fahrzeug, einem Werkzeug oder einem Consumer-Elektronik-Produkt.
  10. Verwendung eines Hybridsuperkondensators (1) nach Anspruch 9 zur Speicherung von Rekuperationsenergie in einem Fahrzeug oder in Backup-Systemen für sicherheitskritische bzw. sicherheitsrelevante Komponenten, Systeme und/oder Subsysteme in einem Fahrzeug.
DE102017208794.3A 2017-05-24 2017-05-24 Hybridsuperkondensator für Hochtemperaturanwendungen Withdrawn DE102017208794A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102017208794.3A DE102017208794A1 (de) 2017-05-24 2017-05-24 Hybridsuperkondensator für Hochtemperaturanwendungen
PCT/EP2018/058548 WO2018215124A1 (de) 2017-05-24 2018-04-04 Hybridsuperkondensator für hochtemperaturanwendungen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017208794.3A DE102017208794A1 (de) 2017-05-24 2017-05-24 Hybridsuperkondensator für Hochtemperaturanwendungen

Publications (1)

Publication Number Publication Date
DE102017208794A1 true DE102017208794A1 (de) 2018-11-29

Family

ID=61899292

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102017208794.3A Withdrawn DE102017208794A1 (de) 2017-05-24 2017-05-24 Hybridsuperkondensator für Hochtemperaturanwendungen

Country Status (2)

Country Link
DE (1) DE102017208794A1 (de)
WO (1) WO2018215124A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019209236A1 (de) * 2019-06-26 2020-12-31 Airbus Operations Gmbh Netzteil und elektrisches Bordnetz eines Luft- oder Raumfahrzeugs

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011052383A1 (de) 2011-08-03 2013-02-07 Westfälische Wilhelms Universität Münster Elektrolyt für Lithium-basierte Energiespeicher
DE102014207233A1 (de) 2014-04-15 2015-10-15 Bayerische Motoren Werke Aktiengesellschaft Lithium-Zelle, Batterie mit der Lithium-Zelle, sowie Kraftfahrzeug, mobiles Gerät oder stationäres Speicherelement umfassend die Batterie
US20160099474A1 (en) 2010-04-06 2016-04-07 Schlumberger Technology Corporation Electrochemical Devices For Use In Extreme Conditions
EP2162942B1 (de) 2007-06-29 2016-11-23 Commonwealth Scientific and Industrial Research Organisation Lithium-energiespeichereinrichtung

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008282838A (ja) * 2007-05-08 2008-11-20 Nec Tokin Corp ハイブリット電気二重層キャパシタ
KR100931095B1 (ko) * 2008-03-06 2009-12-10 현대자동차주식회사 금속산화물을 양극 및 음극에 적용한 비대칭 하이브리드커패시터
DE102009018804A1 (de) * 2009-04-24 2010-10-28 Li-Tec Battery Gmbh Elektrochemische Zelle mit Lithiumtitanat
DE102015224094A1 (de) * 2015-09-04 2017-03-09 Robert Bosch Gmbh Hybridsuperkondensator
DE102015218433A1 (de) * 2015-09-25 2017-03-30 Robert Bosch Gmbh Hybridsuperkondensator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2162942B1 (de) 2007-06-29 2016-11-23 Commonwealth Scientific and Industrial Research Organisation Lithium-energiespeichereinrichtung
US20160099474A1 (en) 2010-04-06 2016-04-07 Schlumberger Technology Corporation Electrochemical Devices For Use In Extreme Conditions
DE102011052383A1 (de) 2011-08-03 2013-02-07 Westfälische Wilhelms Universität Münster Elektrolyt für Lithium-basierte Energiespeicher
DE102014207233A1 (de) 2014-04-15 2015-10-15 Bayerische Motoren Werke Aktiengesellschaft Lithium-Zelle, Batterie mit der Lithium-Zelle, sowie Kraftfahrzeug, mobiles Gerät oder stationäres Speicherelement umfassend die Batterie

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019209236A1 (de) * 2019-06-26 2020-12-31 Airbus Operations Gmbh Netzteil und elektrisches Bordnetz eines Luft- oder Raumfahrzeugs
US11220349B2 (en) 2019-06-26 2022-01-11 Airbus Operations Gmbh Power supply unit and on-board power supply network of an aircraft or spacecraft

Also Published As

Publication number Publication date
WO2018215124A1 (de) 2018-11-29

Similar Documents

Publication Publication Date Title
DE102019109226A1 (de) Separator für Batterien auf Lithium-Metallbasis
DE102018119769A1 (de) Ether-basisiertes Elektrolytsystem zur Verbesserung oder Unterstützung der anodischen Stabilität von elektrochemischen Zellen mit Lithium-haltigen Anoden
DE102021113542A1 (de) Festkörperbatterie mit einem hybridkondensatormaterial mit einem metallorganischen gerüst
DE102018119665A1 (de) Carbonatbasiertes elektrolytsystem zur verbesserung oder unterstützung der effizienz von elektrochemischen zellen mit lithiumhaltigen anoden
DE102019115873A1 (de) Schutzbeschichtungen für lithiummetallelektroden
DE102016221172A1 (de) Optimierter Hybridsuperkondensator
DE102018202929A1 (de) Hybridsuperkondensator und Verfahren zur Herstellung eines Hybridsuperkondensators
DE102021130557A1 (de) Gel-elektrolyt für festkörperbatterie
DE102021111231A1 (de) Siliciumhaltige elektrochemische zellen und verfahren zu deren herstellung
DE102021113933A1 (de) Elektrolyte und separatoren für lithiummetall-batterien
DE102021112023A1 (de) Überlithiiertes kathodenmaterial
DE102016209963A1 (de) Elektrolytadditive für Hybridsuperkondensatoren zur Verringerung des Charge-Transfer-Resistance und Hybridsuperkondensator umfassend dieselben
DE102022107900A1 (de) Verbund-zwischenschicht für festkörperbatterien auf lithiummetallbasis und verfahren zu deren herstellung
DE102022109020A1 (de) Überlithiierte kathodenmaterialien und verfahren zu deren herstellung
DE102022111248A1 (de) Festkörper-Zwischenschicht für Festkörperbatterie
DE102021114600A1 (de) Elastische bindepolymere für elektrochemische zellen
DE102021114601A1 (de) In-situ-gelierungsverfahren zur herstellung einer bipolaren festkörperbatterie
DE102017208794A1 (de) Hybridsuperkondensator für Hochtemperaturanwendungen
DE102021114599A1 (de) Kondensatorgestützte lithium-schwefel-batterie
DE102022117453B3 (de) Elektrolytadditive für kondensatorgestützten akkumulator
DE102016217709A1 (de) Hybridsuperkondensator mit SEI-Additiven
DE102022126197A1 (de) Schutzbeschichtungen für lithiummetallelektroden und verfahren zu ihrer herstellung
DE102022118225A1 (de) Feste elektrolytbeschichtung aus lithiumdotierten siliciumoxidteilchen als aktives anodenmaterial
DE102022126495A1 (de) Verfahren zum herstellen von schwefel-polyacrylnitril (span)
DE102022126429A1 (de) Lithium-schutzbeschichtungen für lithium-schwefel-batterien und verfahren zum bilden derselben

Legal Events

Date Code Title Description
R163 Identified publications notified
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee