DE102017202043A1 - Verfahren und Extrusionsanlage zur Herstellung eines Hubels aus einer keramischen Masse sowie Hubel - Google Patents

Verfahren und Extrusionsanlage zur Herstellung eines Hubels aus einer keramischen Masse sowie Hubel Download PDF

Info

Publication number
DE102017202043A1
DE102017202043A1 DE102017202043.1A DE102017202043A DE102017202043A1 DE 102017202043 A1 DE102017202043 A1 DE 102017202043A1 DE 102017202043 A DE102017202043 A DE 102017202043A DE 102017202043 A1 DE102017202043 A1 DE 102017202043A1
Authority
DE
Germany
Prior art keywords
diameter
mouthpiece
range
hubel
ceramic mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE102017202043.1A
Other languages
English (en)
Other versions
DE102017202043B4 (de
Inventor
Werner Burger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LIW Composite GmbH
Original Assignee
Lapp Insulators GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lapp Insulators GmbH filed Critical Lapp Insulators GmbH
Priority to DE102017202043.1A priority Critical patent/DE102017202043B4/de
Priority to PCT/EP2018/053222 priority patent/WO2018146224A1/de
Priority to CN201880010889.8A priority patent/CN110267784B/zh
Priority to JP2019543034A priority patent/JP6937378B2/ja
Priority to EP18704959.8A priority patent/EP3580029A1/de
Publication of DE102017202043A1 publication Critical patent/DE102017202043A1/de
Application granted granted Critical
Publication of DE102017202043B4 publication Critical patent/DE102017202043B4/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/20Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/003Apparatus or processes for treating or working the shaped or preshaped articles the shaping of preshaped articles, e.g. by bending

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)

Abstract

Es wird ein Verfahren und eine Extrusionsanlage (2) zur Herstellung eines Hubels (10) aus einer keramischen Masse mit einem vorgegebenen ersten Durchmesser (D1) angegeben. Die Extrusionsanlage (2) weist endseitig ein Mundstück (8) mit einem Austrittsdurchmesser (D2) auf, welcher kleiner ist als der erste Durchmesser (D1). Die keramische Masse wird gegen einen verfahrbaren Hubeltisch (14) gepresst, wobei über den Hubeltisch (14) ein Gegendruck auf die das Mundstück (8) verlassende keramische Masse derart erzeugt wird, dass diese zur Ausbildung des Hubels (10) auf den ersten Durchmesser (D1) erweitert wird.

Description

  • Die Erfindung betrifft ein Verfahren sowie eine Extrusionsanlage zur Herstellung eines Hubels aus einer keramischen Masse mit den Merkmalen der Oberbegriffe 1 beziehungsweise 13. Die Erfindung betrifft weiterhin einen Hubel.
  • Die Isolierung von Hochspannungsleitungen und -anlagen stellt einen essentiellen Bestandteil der Hochspannungstechnik dar. Auch bei Umspann- und Umschaltanlagen werden hohe technische Anforderungen an die Isolatoren gestellt. Als Isolatoren werden häufig keramische Isolatoren eingesetzt.
  • Für die Herstellung solcher Isolatoren wird eine keramische Masse verwendet, welche durch ein Extrusionsverfahren zu einem sogenannten Hubel geformt wird. Dieser Hubel, auch Rohling genannt, wird anschließend mit Hilfe von spanabhebenden Verfahren in eine gewünschte Geometrie für die jeweiligen Einsatzanforderungen gebracht. Nach einer Trocknung wird üblicherweise noch eine Glasur beispielsweise im Tauchbad aufgebracht. Anschließend wird der bearbeitete Rohling gebrannt und der Isolator erhalten. Die Materialdichte solcher Hubel spielt bei der Qualität der späteren Isolatoren eine wichtige Rolle. Um eine hohe Materialdichte zu erzeugen werden insbesondere sogenannte Vakuumextrusionsanlagen eingesetzt, die häufig vertikal ausgerichtet sind.
  • Bei Hoch- und Höchstspannungsanlagen werden großkalibrige Isolatoren eingesetzt, die einen Durchmesser im Bereich von 200mm bis 500mm oder bis 600mm aufweisen sowie eine Länge im Meter-Bereich aufweisen.
  • Aus der DE 00 0001 258 775 B ist eine solche vertikale Vakuumextrusionsanlage zu entnehmen. Diese Anlage weist einen Hauptpresszylinder, einen Presskopf und ein zylindrisches Mundstück auf. Die Verfahrensweise sowie die Hauptfunktion zylindrischer Mundstücke ist aus „Technologie der Keramik“, Band 2, VEB Verlag, S. 165-166 zu entnehmen. Hierbei wird eine keramische Masse einem vertikal angeordneten Extruder zugeführt und evakuiert. Anschließend wird die keramische Masse mit Hilfe einer Pressschnecke und einem Presskopf verdichtet und verlässt den Extruder durch das sich an den Presskopf anschließende Mundstück. Um ein Abreißen der das Mundstück verlassenden keramischen Masse zu verhindern, befindet sich ein sogenannter Hubeltisch unterhalb des Mundstücks, welcher die keramische Masse zur Ausbildung des Hubels aufnimmt und sich synchron zur Austrittsgeschwindigkeit des Hubels in eine Vertikalrichtung von dem Mundstück weg bewegt.
  • Mit herkömmlichen Verfahren ist eine Fertigung besonderes von großkalibrigen Hubeln mit hoher Materialverdichtung nur begrenzt möglich.
  • Ausgehend hiervon liegt der Erfindung die Aufgabe zugrunde, ein Verfahren zur Herstellung eines insbesondere großkalibrigen Hubels und eine Extrusionsanlage anzugeben, mit deren Hilfe ein großkalibriger Hubel mit einer hohen Dichte hergestellt werden kann. Weiterhin liegt der Erfindung die Aufgabe zugrunde einen Hubel mit hoher Dichte anzugeben.
  • Die Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren zur Herstellung eines insbesondere großkalibrigen Hubels mit den Merkmalen des Anspruchs 1. Der Hubel wird aus einer keramischen Masse gefertigt und weist einen ersten Durchmesser auf. Der erste Durchmesser beschreibt dabei einen maximalen Außendurchmesser des Hubels und definiert dadurch einen Hubeldurchmesser.
  • Bei dem Verfahren wird eine keramische Masse durch ein Mundstück gepresst und von einem Hubeltisch aufgenommen, welcher einen Gegendruck auf die das Mundstück verlassende Masse ausübt. Von besonderer Bedeutung ist, dass sich das Mundstück in einer Vertikalrichtung ausgehend von einem kleinsten Innendurchmesser insbesondere konisch auf einen Austrittsdurchmesser erweitert, wobei der Innendurchmesser kleiner ist als der Hubeldurchmesser. Durch den Gegendruck des Hubeltisches wird dabei gewährleistet, dass das Mundstück am Ende im Bereich des erweiterten Austrittsdurchmessers homogen mit der Masse gefüllt ist.
  • Untersuchungen haben gezeigt, dass hierdurch in überraschender Weise eine besonders gute Verdichtung erreicht wird. Die Verdichtung wird dabei maßgebend durch den kleinsten Innendurchmesser des Mundstücks bestimmt, da hier die Masse eine höchste Verdichtung erfährt. Diese Verdichtung wird nachfolgend - trotz der Erweiterung des Mundstücks - beibehalten. Die plastische Masse weist daher eine Art Gedächtnis bezüglich der Verdichtung auf. Eine Rückverformung oder Entspannung durch das konische Aufweiten erfolgt nicht oder nur zu einem geringen Teil. Dies zeigt sich auch in einer deutlich reduzierten Schwindung beim Trocknen im Vergleich zu herkömmlich gefertigten Hubeln. Bei herkömmlich gefertigten Hubeln beträgt die Schwindung beim Trocknen etwa 3% (bezogen auf das Volumen). Bei einem mit dem hier beschriebenen neuen Verfahren gefertigten Hubel ist diese Schwindung beim Trocknen auf ca. 1% reduziert. Durch den Gegendruck wird zudem gleichzeitig der gewünschte - im Vergleich zum Innendurchmesser vergrößerte - Hubeldurchmesser erreicht.
  • Der Vorteil dieser Ausgestaltung ist in der einfachen Fertigung großkalibriger Hubel mit hoher Materialdichte zu sehen. Dies führt bei den endgefertigten Isolatoren nach dem Brennen zu einer höheren mechanischen (Biege-) Festigkeit. Untersuchungen haben gezeigt, dass die Festigkeit - im Vergleich zu herkömmlich gefertigten Hubeln / Isolatoren - um ca. 20% bis 25% erhöht werden konnte. Dies erlaubt wiederum bei der Auslegung von Isolatoren mit der erhöhten Festigkeit zu rechnen und kleinere oder dünnere Isolatoren mit weniger Material bei gleichen Festigkeitswerten einzusetzen. Hierdurch ergeben sich daher deutliche Materialeinsparungen. Insgesamt werden durch das neue Verfahren die Güte der Hubel sowie der späteren Isolatoren verbessert. Zudem wird hierdurch auch die Ausschussrate bei der Herstellung der Hubel reduziert. Darüber hinaus erlaubt dies auch die Fertigung von Hubeln mit sehr großem Durchmesser, deren Herstellung (mit ausreichender Festigkeit) mit herkömmlichen Verfahren bisher nicht möglich war.
  • Bei dem Verfahren sind zweckdienlicherweise mehrere Mundstücksvarianten mit unterschiedlichen (minimalen) Innendurchmesser sowie Austrittsdurchmesser einsetzbar. Dabei weist der minimale Innendurchmesser bei allen Varianten vorzugsweise Werte im Bereich von 350mm bis 500mm, insbesondere Werte im Bereich zwischen 430mm und 460mm auf. Der Vorteil dieser Ausgestaltung ist eine einheitliche und einfache Montage der Mundstücksvarianten.
  • Bevorzugt erweitert sich das Mundstück in Vertikalrichtung unter einem Konuswinkel vom Innendurchmesser zum Austrittsdurchmesser. Der Konuswinkel des Mundstücks liegt vorzugsweise im Bereich zwischen 2° und 5° und insbesondere im Bereich von 3° bis 4°. Ein Konuswinkel in diesem Winkelbereich hat sich als besonders geeignet erwiesen für die Herstellung insbesondere großkalibriger Hubel mit einem Durchmesser von mehr als 450mm, welche eine hohe Festigkeit aufweisen.
  • In zweckdienlicher Ausgestaltung weist das Mundstück an einem oberen Ende einen konischen Einzug auf. Dadurch weist das Mundstück an seinem oberen Ende einen im Vergleich zum minimalen Innendurchmesser vergrößerten Durchmesser auf. Dies dient insbesondere bei kleinen Innendurchmesser dazu, das Mundstück an einer Flanschseite zum Presskopf auf eine definierte Größe aufzuweiten, um einen einheitlichen Flansch zur Befestigung für unterschiedliche Mundstücke zu gewährleisten. Durch den konischen Einzug erfährt die keramische Masse im Einzugsbereich zusätzlich eine Verdichtung.
  • Alternativ ist kein Einzug vorgesehen und das Mundstück erweitert sich durchgehend konisch von seinem oberen Ende zu seinem unteren Ende. Das Mundstück weist daher bereits an seinem oberen Ende den Innendurchmesser auf.
  • Für die Herstellung von großkalibrigen Hubeln weist der erste Durchmesser (Hubeldurchmesser) dabei vorzugsweise Werte im Bereich von 400mm bis 650mm und insbesondere im Bereich von 430mm und 620mm auf.
  • Die Erweiterung des Mundstücks dient insbesondere dazu, einen gewünschten Durchmesser des Hubels einzustellen. Der Austrittsdurchmesser weist vorzugsweise Werte im Bereich zwischen 270mm und 600mm, insbesondere im Bereich von 400mm bis 570mm auf.
  • In bevorzugter Ausgestaltung wird die das Mundstück verlassende keramische Masse durch den Gegendruck auf den gewünschten ersten Durchmesser des Hubels erweitert. Der Austrittsdurchmesser des Mundstücks ist daher geringer als der (maximale) Außendurchmesser des Hubels. Der Hubel ist daher selbst konisch ausgebildet und verjüngt sich von seinem ersten Durchmesser (maximaler Hubeldurchmesser) nach oben bis auf den Austrittsdurchmesser.
  • In bevorzugter Ausgestaltung ist der erste Durchmesser um 5% bis 15% und insbesondere um 7% bis 12% größer als der Austrittsdurchmesser, d.h. der Außendurchmesser des Hubels ist größer als der Austrittsdurchmesser des Mundstücks.
  • Die Hubel weisen typischerweise eine Länge im Bereich von 2m bis 3,5m auf. Typischerweise korreliert die Länge mit dem Hubeldurchmesser, vorzugsweise zumindest annähernd proportional. Kurze Hubel (z. B. 2m) weisen daher einen kleinen Hubeldurchmesser von z. B. 400mm - 450mm und lange Hubel (z. B. 3,5m) einen großen Durchmesser von z. B. 580mm bis 630mm auf.
  • Die Hubel weiten sich dabei vorzugsweise konisch unter einem Winkel auf, wobei dieser vorzugsweise im Bereich von 4° bis 7° und insbesondere im Bereich von 5° bis 6°liegt.
  • Das Flächenverhältnis aus einer ersten Querschnittsfläche, welche durch den (maximalen) Außendurchmesser des Hubels bestimmt ist, und einer zweiten Querschnittsfläche definiert eine Verdichtung. Die zweite Querschnittsfläche ist dabei eine austrittsseitige Querschnittsfläche eines Extruders, in dem eine Pressschnecke angeordnet ist, die typischerweise am Ende des Extruders endet. Nachfolgend zum Extruder ist das Mundstück angeordnet, wobei üblicherweise zwischen dem Mundstück und dem Extruder noch ein Presskopf angeordnet ist. Die Verdichtung liegt vorzugsweise im Bereich zwischen 3 und 5. Sie wird beispielsweise durch eine geeignete Wahl des Mundstücks mit definiertem Innendurchmesser und/oder durch die Einstellung eines geeigneten Gegendrucks „eingestellt“. Mit zunehmendem erstem Durchmesser (Hubeldurchmesser) nimmt die Verdichtung üblicherweise ab.
  • Um eine hohe Materialfestigkeit bei der Ausbildung von Hubeln mit einem ersten Durchmesser im Bereich zwischen 400mm und 500mm zu erreichen, wird die Verdichtung vorzugsweise auf einen Wert von 3,5 bis 5 eingestellt.
  • Die Verdichtung für Hubel mit einem ersten Durchmesser im Bereich von 500mm bis 650mm weist vorteilhafterweise einen Wert im Bereich von 3 bis 4 auf. Der Vorteil der gewählten Verdichtungswerte liegt in einer verringerten Ausfallrate der Hubel gegenüber herkömmlichen Hubeln, welche mit einem zylindrischen Mundstück gefertigt werden und eine geringere Verdichtung aufweisen. Die Ausfallrate wurde gegenüber derartigen herkömmlichen Hubeln um ein Drittel bis ein Viertel reduziert.
  • In vorteilhafter Weise weist der Gegendruck des Hubeltisches einen Wert von mehr als 0,5N/mm2 und insbesondere von mehr als 1N/mm2 auf. Vorteilhafterweise beträgt der Wert maximal 3,5N/mm2 oder maximal 2,5N/mm2. Insbesondere liegt der Gegendruck im Bereich zwischen 1,5N/mm2 und 2,5N/mm2.
  • Hierdurch wird zum Einen eine Verformung der Masse im konischen Mundstück und zum Anderen eine untergeordnete Verdichtung von Schnitttexturen im Hubel erreicht. Die Schnitttexturen entstehen durch die im Extruder arbeitende Pressschnecke. Diese erzeugt schraubenförmige Schnittebenen, welche der Schneckensteigung entsprechen. Hierdurch entstehen ineinander liegende Stränge mit stark geglätteter Oberfläche. Diese werden im Presskopf und im Mundstück so verpresst, dass sie eine innige Verbindung eingehen Das Resultat ist ein kompakter Hubel. Je intensiver dies erfolgt, desto höher ist die Verdichtung. Deshalb ist das Verhältnis des Durchmessers der Pressschnecke (welcher die zweite Querschnittsfläche definiert) zum minimalen Innendurchmesser des Mundstücks von besonderer Bedeutung.
  • Mit dem Verfahren werden vorzugsweise großkalibrige Vollkernhubel hergestellt, aus denen üblicherweise Vollkernstützisolatoren gefertigt werden. Diese Isolatorart bietet gegenüber Hohlisolatoren eine verbesserte Durchschlagsfestigkeit im Bereich der Hoch- und Höchstspannung.
  • Die der Erfindung zugrunde liegende Aufgabe wird erfindungsgemäß weiterhin gelöst durch eine Extrusionsanlage zur Herstellung eines Hubels mit den Merkmalen des Anspruchs 13. Der Hubel ist aus einer keramischen Masse mit einem vorgegebenen ersten Durchmesser gebildet. Die Extrusionsanlage weist einen Extruder, sowie endseitig ein Mundstück auf. Üblicherweise ist zwischen dem Extruder und dem Mundstück noch ein Presskopf, häufig ein Stufenpresskopf, angeordnet. Das Mundstück erstreckt sich in eine Vertikalrichtung und weist endseitig einen Austrittsdurchmesser auf. Weiterhin weist die Extrusionsanlage einen in und entgegen der Vertikalrichtung verfahrbaren Hubeltisch und eine Steuereinrichtung auf. Bevorzugt ist der Extruder vertikal ausgerichtet und als Vakuumextruder ausgebildet. Hierbei sind üblicherweise Evakuierungskammern innerhalb des Extruders angeordnet, um die keramische Masse zu entlüften und somit einen vollständigen Materialdurchsatz zu erzeugen sowie qualitätsmindernde Einschlüsse innerhalb der keramischen Masse zu beseitigen.
  • Die vertikale Bauweise bietet dahingehend einen Vorteil, dass sich die keramische Masse zusätzlich zu der durch die Schnecke erzeugten Kraft und der auftretenden Friktion auch aufgrund ihrer Eigenmasse in Richtung des Mundstückes bewegt und somit eine mechanische Entlastung der Pressschnecke erfolgt. Ausgehend hiervon bietet diese Ausgestaltung Vorteile in Bezug auf Wartung und Langlebigkeit des Extruders.
  • Der Presskopf ist beispielsweise derart ausgebildet, dass er als Stufenpresskopf realisiert ist. Die keramische Masse erfährt während des Fertigungsprozesses im Presskopf eine Verdichtung zum Hubel, bevor sie über das endseitig am Presskopf angebrachte Mundstück austritt.
  • Von besonderer Bedeutung ist, dass sich das Mundstück konisch von einem (minimalen) Innendurchmesser auf den Austrittsdurchmesser erweitert. Der Innendurchmesser und vorzugsweise auch der Austrittsdurchmesser ist kleiner als der erste Durchmesser (maximaler Hubeldurchmesser).
  • Die Aufgabe wird erfindungsgemäß weiterhin gelöst durch einen Hubel, welcher insbesondere mittels des zuvor beschriebenen Verfahrens hergestellt ist. Der Hubel erweitert sich konisch unter einem Winkel von einem oberen Ende zu einem unteren Ende. Diese konische Geometrie entsteht durch den Gegendruck des Hubeltisches auf die das Mundstück verlassende keramische Masse bei der Ausbildung des Hubels.
  • Der Winkel liegt vorteilhafterweise im Bereich zwischen 4° und 7°, insbesondere im Bereich von 5° bis 6°.
  • Die im Hinblick auf das Verfahren aufgeführten Vorteile und bevorzugten Ausgestaltungen sind sinngemäß auf die Extrusionsanlage und/oder auf den Hubel zu übertragen und umgekehrt.
  • Ausführungsbeispiele der Erfindung werden nachfolgend anhand der Figuren näher erläutert. Diese zeigen teilweise in stark vereinfachten Darstellungen:
    • 1 einen prinzipiellen Aufbau einer Extrusionsanlage mit verfahrbarem Hubeltisch und Steuerungseinrichtung zu Fertigung eines Hubels,
    • 2A-B eine Längsschnittsdarstellung zweier Ausgestaltungsvarianten eines Mundstücks,
    • 3 eine ausschnittsweise Längsschnittsdarstellung einer Vakuumextrusionsanlage, sowie
    • 4 eine Längsschnittsdarstellung eines Hubels.
  • In den Figuren sind gleichwirkende Teile mit den gleichen Bezugszeichen dargestellt.
  • In 1 ist ein prinzipieller Aufbau einer Extrusionsanlage 2 zur Herstellung eines Hubels 10 aus einer keramischen Masse mit einem vorgegebenen ersten Durchmesser D1 dargestellt. Der erste Durchmesser D1 definiert dabei einen maximalen Außendurchmesser des Hubels 10, vorliegend auch als Hubeldurchmesser bezeichnet. Die in 1 dargestellte Extrusionsanlage 2 ist in vertikaler Bauweise realisiert und erstreckt sich in eine Vertikalrichtung 12. Die Extrusionsanlage 2 dient zur Fertigung von insbesondere großkalibrigen Hubeln 10. Die Vertikalbauweise ermöglicht ein Ausnutzen der auf die keramische Masse wirkende Schwerkraft. Da sich die Produktionsrichtung und die Richtung der Schwerkraft entsprechen, ist die Förderung der keramischen Masse begünstigt.
  • Die Extrusionsanlage 2 weist einen Extruder 4, einen sich endseitig an den Extruder 4 anschließenden Presskopf 6 und ein Mundstück 8 auf. Das Mundstück 8 schließt sich in Vertikalrichtung 12 gesehen an den Presskopf 6 an und weist endseitig einen Austrittsdurchmesser D2 auf. Dabei ist der zweite Durchmesser D2 kleiner als der erste Durchmesser D1.
  • Der Extruder 4 ist vorzugsweise als Vakuumextruder ausgebildet. Durch diese Ausgestaltung ist eine Entlüftung der keramischen Masse ermöglicht.
  • Bevorzugt ist der Presskopf 6 derart ausgebildet, dass er mehrere Pressstufen aufweist. Ein sogenannter Stufenpresskopf ermöglicht eine hohe Verdichtung der keramischen Masse.
  • Das Mundstück 8 ist vorzugsweise mit Hilfe einer Verschraubung endseitig an den Presskopf 6 angebracht und dient in Ergänzung zum Presskopf 6 zur Ausbildung des Hubels 10. Durch die Verschraubung ist ein aufwandsarmer Austausch des Mundstückes 8 gewährleistet.
  • Weiterhin ist das Mundstück 8 konisch ausgebildet. Das Mundstück 8 weist daher einen (minimalen) Innendurchmesser D3 auf, von dem aus es sich zum Austrittsdurchmesser unter einem Konuswinkel α konisch erweitert. Das Mundstück 8 weist typischerweise eine Länge L in Vertikalrichtung 12 auf, die im Bereich zwischen 500mm und 1200mm und insbesondere im Bereich von 700mm bis 900mm liegt.
  • In Vertikalrichtung 12 und damit in Produktionsrichtung gesehen ist unterhalb des Mundstücks 8 ein in und entgegen der Vertikalrichtung 12 verfahrbarer Hubeltisch 14 ausgebildet. Dieser sowie die gesamte Extrusionsanlage 2 werden von einer Steuereinrichtung 16 gesteuert. Der Hubeltisch 14 ist derart ausgebildet, dass er im Betrieb einen Gegendruck auf die das Mundstück 8 verlassende keramische Masse ausübt.
  • Durch den Gegendruck des Hubeltisches 14 wird ein Druck auf die keramische Masse im Mundstück 8 ausgeübt, so dass dieses zuverlässig - trotz der konischen Erweiterung - ausgefüllt wird. Entscheidend ist hierbei, dass durch den im Vergleich zum Austrittsdurchmesser D2 kleineren Innendurchmesser D3 die Masse eine hohe Verdichtung erfährt, die trotzt der nachfolgenden Erweiterung beibehalten bleibt.
  • Durch den Gegendruck wird zudem vorzugsweise weiterhin die das Mundstück 8 verlassende keramische Masse zur Ausbildung des Hubels 10 auf den ersten Durchmesser D1 erweitert. Hierdurch wird ein sich konisch erweiternder Hubel 10 ausgebildet.
  • Hierfür sind die Steuereinheit 16 und der Hubeltisch 14 derart ausgebildet, dass sie im Betrieb den Gegendruck auf einen Wert von mindestens 0,5N/mm2, insbesondere von mehr als 1N/mm2 oder mehr als 1,5N/mm2 einstellen. Zweckdienlicherweise weist der Gegendruck vorzugsweise einen Wert von 2,5N/mm2 auf. Insbesondere liegt er im Bereich von 1,5N/mm2 bis 2,5N/mm2. Die Steuereinheit ist beispielsweise mit Hilfe einer Steuerleitung mit dem Hubeltisch 14 verbunden. Die Steuereinheit 16 ist insgesamt derart ausgebildet, dass sie den gesamten Extrusionsprozess in der gewünschten Weise regelt. Die Regelgröße zur Ansteuerung des Hubeltisches ist vorzugsweise die Gegenkraft.
  • In Fig.2A und 2B sind Längsschnitte von Varianten des Mundstücks 8 dargestellt. Die Mundstücke 8 weisen vorzugsweise ein oberes Ende 8a auf, an dem ein Flansch zum Befestigen an den Presskopf 6 ausgebildet ist. Das Mundstück 8 weist weiterhin ein unteres Ende 8b auf, an dem der Austrittsdurchmesser D2 definiert ist.
  • Das jeweilige Mundstück 8 weist jeweils einen minimalen Innendurchmesser D3 auf. Von diesem erweitert sich das Mundstück insbesondere konisch unter einem Konuswinkel α auf den Austrittsdurchmesser D2 Vorzugsweise ist eine durchgehende, gleichmäßige konische Erweiterung vorgesehen. Grundsätzlich können aber auch nicht konische Teilbereiche vorgesehen sein, z. B. am unteren Ende 8b ein zylindrischer Endbereich,
  • Bevorzugt liegt der Konuswinkel α in einem Bereich zwischen 2° und 5°, insbesondere in einem Bereich von 3° bis 4°. In Verbindung mit der Verpressung durch den Hubeltisch 14 ist durch diese Mundstückstopologie eine um vorzugsweise 50% höhere Verdichtung der keramischen Masse bei der Ausbildung zum Hubel 10 ermöglicht, als bei nach dem Stand der Technik gefertigten Hubeln.
  • Bei der Variante gemäß 2A weist das Mundstück 8 am oberen Ende 8a zusätzlich einen konischen Einzug 18 auf, so dass sich das Mundstück zunächst von einem Eintrittsdurchmesser D4 auf den Innendurchmesser D3 verjüngt. Der konische Einzug 18 erstreckt sich lediglich über ein geringes Teilstück der Länge L1 des Mundstücks 8, beispielsweise maximal über 5% oder maximal über 10% der Länge L1. Hierdurch wird im Bereich des Einzugs 18 eine Verdichtung erzielt. Speziell dient dieser Einzug 18 dazu, das obere Ende 8a mit dem Flansch auf eine definierte Größe zu bringen, um mehrere Mundstücke 8 mit unterschiedlichen Innendurchmesser D3 und Austrittsdurchmesser D2 mit einem Flansch gleicher Größe auszubilden. Dadurch können unterschiedliche Mundstücke 8 an einem gleichen Presskopf 6 angeschlossen werden.
  • Bei der Ausgestaltung der 2B erweitert sich das Mundstück 8 demgegenüber kontinuierlich vom oberen Ende 8a zum unteren Ende 8b. Bei dieser Variante ist daher der Innendurchmesser D3 direkt durch das obere Ende 8a festgelegt.
  • Gemäß 3 weist der Extruder 4 eine an sich bekannte vertikale Bauweise auf. Der im Längsschnitt dargestellte Extruder 4 weist einen ersten Extruderteil 22, einen zweiten Extruderteil 24, eine Pressschnecke 20, den Presskopf 6 sowie das Mundstück 8 auf.
  • Der zweite Extruderteil 24 schließt sich endseitig in Vertikalrichtung 12 gesehen an den ersten Extruderteil 22 an. Der erste Extruderteil 22 dient zur Vorverdichtung der keramischen Masse, die im weiteren Verlauf durch die Pressschnecke 20 weiter verdichtet wird. Zudem weist der zweite Extruderteil 24 im Innern umfangsseitig Längsleisten auf. Die Längsleisten unterstützen die Förderung der keramischen Masse innerhalb des zweiten Extruderteils 24.
  • Der Extruder 4 ist insgesamt als Vakuumextruder ausgebildet und weist hierzu Evakuierungskammern auf, die in 3 nicht dargestellt sind. Mit Hilfe von Evakuierungskammern werden der keramischen Masse durch Entlüftung jegliche Einschlüsse entzogen und ein einheitlicher Materialdurchsatz erreicht.
  • Die Förderung der keramischen Masse wird mit Hilfe der Pressschnecke 20 realisiert. Sie verbringt und verdichtet im Betrieb durch Drehung um eine Rotationsachse 21 die keramische Masse innerhalb des Extruders 4. Wegen der vertikalen Ausgestaltung des Extruders 4 erfährt die Pressschnecke 20 durch die aufgrund der Schwerkraft verursachte Eigenbewegung der keramischen Masse eine mechanische Entlastung. Die Pressschnecke 20 weist an ihrem Ende ein Endschneckenstück auf, welches mit einer zentralen Welle über eine Verzahnung (Hirth-Verzahnung) verbunden ist.
  • Der sich endseitig an den zweiten Extruderteil 24 anschließende Presskopf 6 dient der Verdichtung der keramischen Masse. Die Fläche an der endseitigen Übergangsstelle zwischen zweitem Extruderteil 24 und Presskopf 6, definiert eine zweite Querschnittsfläche F2.
  • Der in 3 dargestellte Presskopf 6 ist als Stufenpresskopf ausgebildet, welcher im Innern ebenfalls umfangsseitig Längsleisten aufweist.
  • An den Presskopf 6 schließt sich endseitig das konische Mundstück 8 an. Am in Vertikalrichtung 12 gelegenen unteren Ende 8b des Mundstücks 8 weist dieses den Austrittsdurchmesser D2 auf.
  • In 3 ist beim Mundstück 8 noch ein zentrales Gestänge 26 angeordnet, an dem endseitig eine glockenförmige Erweiterung befestigt ist. Diese dient zur Ausbildung eines zentralen Hohlraums. Das Mundstück 8 ist daher zur Ausbildung eines Hohlhubels vorgesehen.
  • Vorzugsweise ist jedoch auf ein derartiges Gestänge 26 mit der glockenförmigen Erweiterung verzichtet und das Mundstück 8 ist zur Ausbildung eines Vollkernhubels 10 ausgebildet, der also keinen Hohlraum aufweist.
  • Der in 4 dargestellte Hubel 10 ist als großkalibriger Vollhubel ausgebildet. Vollhubel oder Vollkernhubel dieser Geometrie finden vorzugsweise Verwendung in der Hoch- und Höchstspannungstechnik, da aus ihnen sogenannte Vollkernstützisolatoren gefertigt werden. Dieser Isolatortyp bietet Vorteile im Bereich der Durchschlagsfestigkeit im Vergleich zu Hohlisolatoren und wird daher bevorzugt im Hoch- und Höchstspannungsbereich eingesetzt.
  • Der Hubel 10 weist vorzugsweise einen unter einem Winkel β von einem oberen Ende zu einem unteren Ende konischen Verlauf auf. Der Winkel liegt zweckdienlicherweise im Bereich zwischen 4° und 7°. Der Hubel 10 weist vorzugsweise an einem unteren Ende den ersten Durchmesser D1 auf, durch den eine erste Querschnittsfläche F1 definiert ist. Der erste Durchmesser D1 entspricht dem maximalen Außendurchmesser des Hubels.
  • An einem oberen Ende weist der Hubel 10 einen Durchmesser auf, der dem Austrittsdurchmesser D2 entspricht. Der Hubel 10 weist in Vertikalrichtung 12 von einem oberen Ende zu einem unteren Ende eine Länge L2 auf. Diese liegt typischerweise im Bereich von 2m bis 3,5m.
  • In Ergänzung mit der durch den Extruder 4 endseitig aufweisenden zweiten Querschnittsfläche F2, definiert das Flächenverhältnis zwischen der ersten Querschnittsfläche F1 und der zweiten Querschnittsfläche F2 eine Verdichtung, welche vorzugsweise auf einen Wert zwischen 3 und 5 eingestellt ist.
  • Bezugszeichenliste
  • 2
    Extrusionsanlage
    4
    Extruder
    6
    Presskopf
    8
    Mundstück
    8a
    oberes Ende des Mundstücks
    8b
    unteres Ende des Mundstücks
    10
    Hubel
    12
    Vertikalrichtung
    14
    Hubeltisch
    16
    Steuereinrichtung
    18
    konischer Einzug
    20
    Pressschnecke
    21
    Rotationsachse
    22
    erster Extruderteil
    24
    zweiter Extruderteil
    26
    Gestänge
    α
    Konuswinkel des Mundstücks
    β
    Winkel der konischen Erweiterung des Hubels
    D1
    erster Durchmesser
    D2
    Austrittsdurchmesser
    D3
    Innendurchmesser
    D4
    Eintrittsdurchmesser
    F1
    erste Querschnittsfläche
    F2
    zweite Querschnittsfläche
    L1
    Länge des Mundstücks
    L2
    Länge des Hubels
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 000001258775 B [0005]

Claims (15)

  1. Verfahren zur Herstellung eines Hubeis (10) aus einer keramischen Masse mit einem vorgegebenen ersten Durchmesser (D1), mit Hilfe einer Extrusionsanlage (2), die ein Mundstück (8) mit einem Innendurchmesser (D3) aufweist dadurch gekennzeichnet, dass sich das Mundstücke (8) in einer Vertikalrichtung (12) ausgehend vom Innendurchmesser (D3) zu einem Austrittsdurchmesser (D2) erweitert, dass der Innendurchmesser (D3) kleiner als der erste Durchmesser (D1) ist und dass die keramische Masse in Vertikalrichtung (12) durch das Mundstück (8) gegen einen Hubeltisch (14) gepresst wird, wobei über den Hubeltisch (14) ein Gegendruck auf die das Mundstück (8) verlassende keramische Masse erzeugt wird.
  2. Verfahren nach Anspruch 1 dadurch gekennzeichnet, dass sich das Mundstück (8) konisch unter einem Konuswinkel (α) erweitert, der im Bereich zwischen 2° und 5°, insbesondere im Bereich zwischen 3° und 4°, liegt.
  3. Verfahren nach einem der beiden vorhergehenden Ansprüche dadurch gekennzeichnet, dass das Mundstück (8) an einem oberen Ende (8a) einen konischen Einzug (18) aufweist.
  4. Verfahren nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass der Austrittsdurchmesser (D2) kleiner ist als der erste Durchmesser (D1), sodass als die das Mundstück (8) verlassende keramische Masse durch den vom Hubeltisch (14) ausgeübten Gegendruck zur Ausbildung des Hubels (10) auf den ersten Durchmesser (D1) erweitert wird.
  5. Verfahren nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass der erste Durchmesser (D1) vorzugsweise im Bereich zwischen 300mm und 650mm, insbesondere im Bereich von 430mm bis 620mm liegt.
  6. Verfahren nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass der zweite Durchmesser (D2) vorzugsweise im Bereich zwischen 270mm und 600mm, insbesondere im Bereich von 400mm bis 570mm liegt.
  7. Verfahren nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass der erste Durchmesser (D1) 5% bis 15% und insbesondere 7% bis 12% größer ist als der zweite Durchmesser (D2).
  8. Verfahren nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass durch den ersten Durchmesser (D1) eine erste Querschnittsfläche (F1) definiert ist und das die Extrusionsanlage (2) einen Extruder (4) aufweist, der endseitig eine zweite Querschnittsfläche (F2) aufweist und dass das Flächenverhältnis zwischen der ersten Querschnittsfläche (F1) und der zweiten Querschnittsfläche (F2) eine Verdichtung definiert, wobei die Verdichtung im Betrieb einen Wert im Bereich von 3 bis 5 erzeugt.
  9. Verfahren nach dem vorhergehenden Anspruch dadurch gekennzeichnet, dass im Betrieb die Verdichtung mit einem Wert im Bereich von 3,5 bis 5 für Hubel (10) mit einem ersten Durchmesser (D1) im Bereich von 400mm bis 500mm erzeugt wird.
  10. Verfahren nach Anspruch 8 dadurch gekennzeichnet, dass im Betrieb die Verdichtung mit einem Wert im Bereich von 3 bis 4 für Hubel (10) mit einem ersten Durchmesser (D1) im Bereich von 500mm bis 650mm erzeugt wird.
  11. Verfahren nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass vom Hubeltisch (14) ein Gegendruck von mehr als 0,5 N/mm2 und maximal von 3,5 N/mm2 oder maximal von 2,5 N/mm2, insbesondere von mehr als 1 N/mm2, insbesondere im Bereich zwischen 1,5 N/mm2 und 2,5 N/mm2 ausgeübt wird.
  12. Verfahren nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass der Hubel (10) als Vollkernhubel ausgebildet wird.
  13. Extrusionsanlage (2) zur Herstellung eines Hubels (10) aus einer keramischen Masse mit einem vorgegebenen ersten Durchmesser (D1) die aufweist - einen Extruder (4), - ein Mundstück (8), das sich in eine Vertikalrichtung (12) erstreckt und einen Innendurchmesser (D3) aufweist, - einen in und entgegen einer Vertikalrichtung (12) verfahrbaren Hubeltisch (14), - eine Steuereinrichtung (16), dadurch gekennzeichnet, dass sich das Mundstücke (8) in einer Vertikalrichtung (12) ausgehend vom Innendurchmesser (D3) zu einem Austrittsdurchmesser (D2) erweitert.
  14. Hubel (10), insbesondere hergestellt durch ein Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass er sich konisch unter einem Winkel (β) von einem oberen Ende zu einem unteren Ende erweitert.
  15. Hubel nach dem vorhergehenden Anspruch dadurch gekennzeichnet, dass der Winkel (β) vorzugsweise im Bereich von 4° bis 7°, insbesondere zwischen 5° und 6°, liegt.
DE102017202043.1A 2017-02-09 2017-02-09 Verfahren und Extrusionsanlage zur Herstellung eines Hubels aus einer keramischen Masse sowie Verwendung des Hubels zur Herstellung eines Isolators Expired - Fee Related DE102017202043B4 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE102017202043.1A DE102017202043B4 (de) 2017-02-09 2017-02-09 Verfahren und Extrusionsanlage zur Herstellung eines Hubels aus einer keramischen Masse sowie Verwendung des Hubels zur Herstellung eines Isolators
PCT/EP2018/053222 WO2018146224A1 (de) 2017-02-09 2018-02-08 Verfahren und extrusionsanlage zur herstellung eines hubels aus einer keramischen masse sowie hubel
CN201880010889.8A CN110267784B (zh) 2017-02-09 2018-02-08 用于由陶瓷物料制造基体的方法和挤出设备以及基体
JP2019543034A JP6937378B2 (ja) 2017-02-09 2018-02-08 セラミックの塊からなる素体を製造するための方法および押出し成形装置並びに素体
EP18704959.8A EP3580029A1 (de) 2017-02-09 2018-02-08 Verfahren und extrusionsanlage zur herstellung eines hubels aus einer keramischen masse sowie hubel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017202043.1A DE102017202043B4 (de) 2017-02-09 2017-02-09 Verfahren und Extrusionsanlage zur Herstellung eines Hubels aus einer keramischen Masse sowie Verwendung des Hubels zur Herstellung eines Isolators

Publications (2)

Publication Number Publication Date
DE102017202043A1 true DE102017202043A1 (de) 2018-08-09
DE102017202043B4 DE102017202043B4 (de) 2020-08-06

Family

ID=61198848

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102017202043.1A Expired - Fee Related DE102017202043B4 (de) 2017-02-09 2017-02-09 Verfahren und Extrusionsanlage zur Herstellung eines Hubels aus einer keramischen Masse sowie Verwendung des Hubels zur Herstellung eines Isolators

Country Status (5)

Country Link
EP (1) EP3580029A1 (de)
JP (1) JP6937378B2 (de)
CN (1) CN110267784B (de)
DE (1) DE102017202043B4 (de)
WO (1) WO2018146224A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019204236A1 (de) * 2019-03-27 2020-10-01 Putzmeister Engineering Gmbh Extruderkopf, Extrudersystem und Verwendung eines Extruderkopfs und/oder eines Extrudersystems

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111251419A (zh) * 2020-03-31 2020-06-09 常灿华 一种日用陶瓷把坯机

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB729036A (en) * 1951-07-05 1955-05-04 Garford Bennett Ltd Improvements in and relating to extrusion machines
DE1258775B (de) 1964-03-12 1968-01-11 Kema Keramikmaschinen Veb Vertikales Vakuumstrangpressaggregat
DD130412A3 (de) * 1976-05-31 1978-03-29 Guenter Schulz Verfahren und vorrichtung zum umformen keramischer massen

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2789334A (en) 1953-08-18 1957-04-23 M S Bowne Clay pipe cutting mechanism
DE2601715C3 (de) * 1976-01-19 1979-03-22 Gesellschaft Fuer Keramikmaschinen Mbh & Co Kg, 3418 Uslar Verfahren und Vorrichtung zur Herstellung von Schmelztiegeln, insbesondere Glasschmelzhäfen
JP2000026155A (ja) * 1998-07-08 2000-01-25 Mitsubishi Electric Corp セラミックスの製造方法
JP4066316B2 (ja) * 2001-12-25 2008-03-26 日立金属株式会社 セラミックハニカム構造体の製造方法
JP4462405B2 (ja) * 2003-12-24 2010-05-12 修身 相羽 陶器補修又は造形変更用粘土および陶器補修又は造形変更方法
FR2875428B1 (fr) * 2004-09-22 2006-11-17 Imerys Toiture Soc Par Actions Procede de fabrication d'elements de terre cuite comportant des alveoles paralleles
DE102010002248A1 (de) 2010-02-23 2011-10-06 Bhs Tabletop Ag Vorrichtung und Verfahren zur Aufbereitung von Porzellanmasse
CN105034145B (zh) * 2015-07-10 2017-07-21 台州东新密封有限公司 用于挤压成型封闭端陶瓷管的模具及方法
CN205889482U (zh) * 2016-08-15 2017-01-18 广东银圭新材料科技有限公司 一种陶瓷复合材料生产用造粒装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB729036A (en) * 1951-07-05 1955-05-04 Garford Bennett Ltd Improvements in and relating to extrusion machines
DE1258775B (de) 1964-03-12 1968-01-11 Kema Keramikmaschinen Veb Vertikales Vakuumstrangpressaggregat
DD130412A3 (de) * 1976-05-31 1978-03-29 Guenter Schulz Verfahren und vorrichtung zum umformen keramischer massen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SCHMID, Eugen: Altes Erdwerk bei Janzenhaus (Kanton Bern). In: Anzeiger für schweizerische Altertumskunde, Bd. 2, 1872-1875, H. 7-4, S. 561-562 + Taf. III. - ISSN 1421-0061 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019204236A1 (de) * 2019-03-27 2020-10-01 Putzmeister Engineering Gmbh Extruderkopf, Extrudersystem und Verwendung eines Extruderkopfs und/oder eines Extrudersystems

Also Published As

Publication number Publication date
CN110267784A (zh) 2019-09-20
CN110267784B (zh) 2022-08-02
JP6937378B2 (ja) 2021-09-22
EP3580029A1 (de) 2019-12-18
JP2020506831A (ja) 2020-03-05
DE102017202043B4 (de) 2020-08-06
WO2018146224A1 (de) 2018-08-16

Similar Documents

Publication Publication Date Title
EP3253567A1 (de) Pulverpresse mit kegeligem unterbau
DE2409178A1 (de) Verfahren zur herstellung von rohren aus polytetrafluoraethylen sehr kleiner durchlaessigkeit und nach diesem verfahren hergestellte rohre
EP0224435B1 (de) Verfahren zur Herstellung eines Vlieses aus Endlosfäden sowie Vorrichtung zur Durchführung des Verfahrens
EP3368261B1 (de) Kernsystem, verwendung des kernsystems bei der herstellung eines faserverbundbauteils sowie verfahren zur herstellung eines faserverbundbauteils
DE19639969B4 (de) Werkzeug zum Formen einer Wabenstruktur und eine damit gebildete Wabenstruktur
DE3321285C2 (de) Verfahren zum Herstellen eines Profils aus trockenem Pulvermaterial sowie Vorrichtung hierzu
EP1329910A2 (de) Verfahren zur Herstellung eines Wickelbandes aus ungesintertem Polytetrafluorethylen
DE102017202043B4 (de) Verfahren und Extrusionsanlage zur Herstellung eines Hubels aus einer keramischen Masse sowie Verwendung des Hubels zur Herstellung eines Isolators
EP2877298B1 (de) Direktes oder indirektes metallrohrstrangpressverfahren, metallrohrstrangpresse sowie stranggepresstes metallrohr
DE2301464C2 (de) Verfahren und Vorrichtung zum Expansionstrocknen von Flüssigkeit enthaltenden kautschukartigen polymeren Materialien
DE102014100711A1 (de) Verfahren und Vorrichtung zur Herstellung von Rohrschalen sowie damit hergestellte Rohrschale
EP1068068A1 (de) Verfahren und vorrichtung zur herstellung eines strangpressprofiles
EP2934865B1 (de) Vorrichtung und verfahren zur infiltration einer faserpreform
DE1752349B2 (de) Verfahren zur Herstellung eines Rohrrohlings zur Herstellung von dünnen Rohren
DE1650214C3 (de) Verfahren zur Herstellung eines dickwandigen Druckgefäßes aus einheitlichem metallischem Material für hohe Innen- oder Außendrücke
DE102017007398A1 (de) Lichtbogendrahtbrenner und Anlage zum Lichtbogendrahtspritzen
EP2379899B1 (de) Schraubelement, schraubverbindung sowie verfahren zum herstellen eines schraubenelementes
EP2111127B1 (de) Hochdruckformgebung für tabakmaterial
DE2816931C3 (de) Vorrichtung an einem Druckzyklon
EP3219401B1 (de) Stranggepresstes profil
EP0524379B1 (de) Tabak enthaltende Folienfäden sowie Verfahren und Vorrichtung zu deren Herstellung
EP3727780B1 (de) Verfahren zur herstellung eines geformten hohlkörpers und vorrichtung zur durchführung des verfahrens
EP2981373B1 (de) Verfahren und umformeinrichtung für einen drahtformkörper sowie drahtformkörper
AT248713B (de) Kohle- oder Graphitkörper und Verfahren zu dessen Herstellung
DE3638189A1 (de) Verfahren und vorrichtung zum auftragen und durchtraenken von vliesstoffen mit viskosen fluessigkeiten

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee