DE102016203839A1 - Stranggießanlagenwalze für eine Stranggießmaschine - Google Patents

Stranggießanlagenwalze für eine Stranggießmaschine Download PDF

Info

Publication number
DE102016203839A1
DE102016203839A1 DE102016203839.7A DE102016203839A DE102016203839A1 DE 102016203839 A1 DE102016203839 A1 DE 102016203839A1 DE 102016203839 A DE102016203839 A DE 102016203839A DE 102016203839 A1 DE102016203839 A1 DE 102016203839A1
Authority
DE
Germany
Prior art keywords
continuous casting
steel
casting machine
weight
coating part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102016203839.7A
Other languages
English (en)
Inventor
Marcus C Andersson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SKF AB
Original Assignee
SKF AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SKF AB filed Critical SKF AB
Publication of DE102016203839A1 publication Critical patent/DE102016203839A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/128Accessories for subsequent treating or working cast stock in situ for removing
    • B22D11/1287Rolls; Lubricating, cooling or heating rolls while in use
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/20Tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C13/00Rolls, drums, discs, or the like; Bearings or mountings therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Heat Treatment Of Articles (AREA)
  • General Engineering & Computer Science (AREA)
  • Laser Beam Processing (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
  • Continuous Casting (AREA)

Abstract

Die vorliegende Erfindung betrifft eine Stranggießanlagenwalze (28) für eine Stranggießmaschine, umfassend: Ein Grundteil (281) und ein Überzugsteil (282) aus martensitischem rostfreiem Stahl. Der Stahl des Überzugsteils (282) umfasst 12–14 Gewichts% Cr (Chrom), und der Stahl umfasst ferner 0,2–0,5 Gewichts% Nb (Niob), das ein stärkerer Karbidbildner als Cr ist, so dass Cr im Überzugsteil in fester Lösung gehalten wird. Der Rest ist Fe (Eisen), andere Legierungselemente und normalerweise auftretenden Verunreinigungen. Zusätzlich ist ein Herstellverfahren der Stranggießanlagenwalze (28) offenbart, wobei das Überzugsteil (282) durch ein Schweißplattieren oder Laserschweißen aufgebracht wird.

Description

  • TECHNISCHES GEBIET
  • Die vorliegende Erfindung betrifft das Stranggießen von Stahl. Insbesondere, gemäß einem ersten Aspekt, betrifft die Erfindung eine Stranggießanlagenwalze (oder -walzenmantel) einer Stranggießmaschine, zum Tragen und Führen einer Stahlbramme während des Stranggießprozesses. Gemäß einem zweiten Aspekt betrifft die Erfindung ein Herstellverfahren einer Stranggießanlagenwalze.
  • HINTERGRUND
  • Stranggießanlagen (CCM) für Brammen sind sehr große und komplexe Produktionseinheiten. Die Höhe der Maschine ist ungefähr 20 Meter (Bogenradius von etwa 10 m) und die Länge 30 m. Der Strang der CCM besteht aus etwa 200 Walzenreihen (400–600 Rollen abhängig von der einmal oder zweimal geteilten Ausführung) mit unterschiedlichem Durchmesser (140–320 mm Durchmesser), die sowohl innen als auch außen gekühlt werden. Ein schematisches Bild des Stranges ist in 1 zu sehen.
  • Die Kokille ist innen wassergekühlt, um das flüssige Metall im direkten Kontakt mit ihr zu verfestigen. Diese Kühlung wird als Primärkühlung bezeichnet, siehe 1. Die Oberfläche der Bramme unmittelbar unterhalb der Kokille an den ersten Walzen hat eine Temperatur von ca. 1500°C und nimmt kontinuierlich auf etwa 800–900°C am horizontalen Teil des Stranges ab. Die Kühlung der Bramme (und der Walzen) ist unterteilt in eine innere Kühlung und eine äußere Spritzwasserkühlung (sekundäre Kühlung). Die oberen (ersten) Walzen sind nur von außen wassergekühlt, während der Rest der Walzen innen wassergekühlt ist, z.B. gebrauchend eine Mittenbohrungsausgestaltung, Revolverausgestaltung oder Spiralbohrungsausgestaltung.
  • Der gesamte Strang ist durch Sprühen mit einem Luftnebel oder Wasser von außen gekühlt. Die Düsen können so angeordnet werden, dass das Wasser zwischen die Walzen spritzt, um die Abkühlung der Bramme zu maximieren. Die Kombination von sehr hohen Temperaturen und einer nassen und feuchten Umgebung im Strang führt zu extrem harten Bedingungen für die Gießwalzausrüstung im Allgemeinen und für die Gießanlagenwalzen im Besonderen. Die niedrig legierten Gießanlagenwalzen sind daher mit Edelstahl ummantelt, gebrauchend einen Hartauftrag (z.B. Schweiß- oder Laserplattierung). Dies verbessert dramatisch die Oberflächenbeständigkeit der Gießanlagenwalze gegen Ausfallmechanismen und erhöht dadurch die Gesamtnutzungszeitdauer der CCM.
  • Es gibt zwei Arten von Walzenausfallmechanismen, den Sprungvollausfall und die Oberflächenverschlechterung. Der Sprungvollausfall umfasst Walzenhalsbrüche, Risse durch den Körper oder geschmolzene Körper aufgrund von Ausfällen im Strang. Brüche oder Risse sind sehr selten, da die Kernkörper von heute kürzer sind (einmal oder zweimal geteilte Gießanlagenwalzenreihen) im Vergleich zur früheren Generation von Vollkörpergießanlagenwalzen. Ausfälle sind heute auch weniger häufig aufgrund fortgeschrittener moderner Produktionssteuerungssysteme.
  • In Bezug auf Oberflächenverschlechterung sind die Betriebsbedingungen der Gießanlagenwalzen (auch bekannt als Walzenmäntel) komplex und stark abhängig von der Anordnung der Walze innerhalb des Stranges und der Walzenreihe. Es ist jedoch bekannt, dass die am meisten exponierte Walzenreihe dort ist, wo die Bramme ihre Richtung von der vertikalen zur horizontalen ändert. Die Mitte der Walzenreihe ist auch anfälliger für die Verschlechterung im Vergleich zu den Flanken. Viele verschiedene Fehlermechanismen sind für die Oberflächenverschlechterung verantwortlich, die in den Bereichen Korrosion, Verschleiß und Ermüdung zusammengefasst werden können.
  • ZUSAMMENFASSUNG DER ERFINDUNG
  • In Hinblick auf das Obige ist es eine Aufgabe der vorliegenden Erfindung, eine neue Stranggießanlagenwalze zu schaffen, die der rauen Umgebung in der Stranggießmaschine besser widersteht. Darüber hinaus ist es eine Aufgabe der Erfindung, eine Stranggießanlagenwalze zu schaffen, die eine verbesserte Korrosions-, Ermüdungs- und Verschleißbeständigkeit aufweist.
  • Diese und andere Aufgaben werden durch die Gegenstände der unabhängigen Ansprüche gelöst. Bevorzugte und nicht einschränkende beispielhafte Ausführungsformen sind in den Unteransprüchen und in der begleitenden Beschreibung zu finden.
  • Gemäß dem ersten Aspekt der Erfindung werden die Aufgaben durch eine Stranggießanlagenwalze für eine Stranggießmaschine gelöst. Die Stranggießanlagenwalze umfasst ein Grundteil und ein Überzugsteil aus einem martensitischen rostfreien Stahl. Der Stahl des Überzugsteils umfasst 12–14 Gewichts% Cr (Chrom) und der Stahl umfasst ferner 0,2–0,5 Gewichts% Nb (Niob), das ein stärkerer Karbidbildner als Cr ist, so dass Cr in fester Lösung im Überzugsteil gehalten wird. Den Rest bilden Fe (Eisen), andere Legierungselemente und normalerweise auftretende Verunreinigungen.
  • Die Korrosionsbeständigkeit hängt in hohem Maße vom Chromgehalt ab. Durch das Legieren mit Cr und dessen Halten in fester Lösung, oxidiert Cr an der Legierung / Oxid-Grenzfläche als Cr2O3. Da Cr2O3 eine geringe Löslichkeit in FeO hat, bleibt es als Inseln in einer Matrix aus FeO. Wenn der Gehalt an freiem Cr etwa 12 Gewichts% übersteigt und einer Temperatur von 1000°C nicht überschritten wird, ist eine dichte, kontinuierliche und stabile Cr2O3-Schicht an der Oberfläche ausgebildet. Der häufigste (schweiß-plattierte) Überzug ist daher ein martensitischer 12% Cr-Edelstahl, da er eine gute Balance zwischen Korrosionsbeständigkeit und Kosten darstellt. Jedoch hat der Erfinder erkannt, dass diese Materialien für die Sensibilisierung sehr anfällig sind, das heißt, dass das Chrom Keime als Chromkarbide bildet. Dieses Problem wurde verbreitet in schweißplattierten Gießanlagenwalzenüberzügen gefunden, die in den sehr rauen Umgebungen von Stranggießmaschinen verwendet werden. Dies führt zu einer lokalen Reduktion von Chrom in fester Lösung (Sensibilisierung) und der Oberflächenoxidschutz baut sich lokal ab. Es wurde daher erkannt, dass es wichtig ist, Elemente hinzuzufügen, die stärkere Karbidbildnern im Vergleich zu Chrom sind, die Kohlenstoff durch Karbidbildung einfangen und das Chrom in fester Lösung halten. Der Erfinder hat ferner erkannt, dass die Zugabe von Nb als Karbidbildner sehr erfolgreich ist, sowohl hinsichtlich einer Leistungsfähigkeit als auch der Kosten, wenn es mit dem Kohlenstoffgehalt richtig abgestimmt ist. Weiterhin weisen diese Karbide eine Neigung zur Keimbildung mit einer sehr inhomogenen Verteilung entlang der Martensit/δ-Ferrit-Korngrenzen auf und dieses Phänomen ist durch das Schweißplattierungsverfahren aufgrund der mehrfachen Wiedererwärmung weiter gefördert. Durch Maßschneidern der Karbidphasenabscheidung kann eine homogenere Verteilung erzielt werden und dadurch eine bessere Korrosionsbeständigkeit.
  • Die Verschleiß- und Ermüdungsfestigkeit ist auch sehr von einer intakten und hochqualitativen Oberfläche abhängig und profitiert daher auch von einer guten Korrosionsbeständigkeit. Darüber hinaus verbessert eine dichte und homogene Verteilung von kleinen Partikeln auch den Verschleiß (erhöhte Härte) und die Ermüdungsbeständigkeit (Erschweren der Versetzungsbewegung und weniger Spannungen an den Korngrenzen).
  • In einer Ausführungsform ist das Grundmaterial aus Stahl hergestellt, beispielsweise ein Hochtemperatur-Baustahl (beispielsweise 21CrMoV5-11, 25CrMo4, 16CrMo4, S355J2 usw.) mit einem maximalen Kohlenstoffgehalt von 0,3 Gewichts%. Der hartaufgetragene Überzug (Überzugsteil) kann aus einer oder mehreren Schichten aufgebaut sein.
  • In einer Ausführungsform umfasst der Stahl des Überzugsteils 0,2–0,35 Gewichts% Nb.
  • In einer Ausführungsform umfasst der Stahl des Überzugsteils 0,3–0,5 Gewichts% Nb.
  • In einer Ausführungsform umfasst der Stahl des Überzugsteils ferner 1–2,5 Gewichts% Cu (Kupfer).
  • In einer Ausführungsform umfasst der Stahl des Überzugsteils ferner 0,2–0,35 Gewichts% Zr (Zirkonium). Es hat sich nämlich gezeigt, dass Zr hauptsächlich MC-Karbide bei Temperaturen über 1000°C bildet.
  • In einer Ausführungsform ist das Überzugsteil aus einem martensitischen rostfreien Stahl mit weniger als 10 Volumenprozenten Delta-Ferrit ausgebildet. Die chemische Zusammensetzung des Überzugsteils sollte hinsichtlich Korrosions-, Verschleiß- und Ermüdungsfestigkeit optimiert sein. Dies bedeutet, dass Chrom in fester Lösung gehalten werden sollte. Die Karbid-Phasen mit der höchsten Antriebskraft von einem thermodynamischen Standpunkt unterhalb 1000°C ist die M23C6 und M7C3 Phase, wobei M die Gesamtmenge der Karbidbildner wie Cr, Mo, W, V, Nb, Ta, Ti, Zr und Hf ist. Betrachtet man das Verhältnis zwischen den Karbidbildnern und dem Kohlenstoffgehalt (M geteilt durch C), erfordert die M23C6 und M7C3 Phase eine erhebliche Menge an Karbidbildnern: M / C = 23 / 6 = 3,83 und M / C = 7 / 6 = 2,33
  • Die Idee ist deswegen eine Keimbildung der MC-Karbid-Phase, die thermodynamisch stabil über 1000°C sind und dabei allen Kohlenstoff während der Erstarrung einfangen. Auf diese Weise wird der gesamte Kohlenstoff abgereichert, bevor die anderen Karbidphasen stabil werden. Die MC-Karbid-Phase hat einen M/C-Verhältnis von 1, was aus wirtschaftlicher Sicht vorteilhafter ist, da die Karbidbildner minimiert werden können. Zusätzlich bildet diese Karbidphase Keime in einer dichteren und homogeneren Weise verglichen mit den M23C6 und M7C3 Phasen. Die chemische Zusammensetzung der schweißplattierten Überzugsfläche soll daher ein Verhältnis (M/C) in Atomprozent zwischen 0,8 und 1,2 haben, wobei M die Gesamtmenge an MC-Karbid-bildenden Elementen wie V, Nb, Ta, Ti, Zr und Hf ist. Da Chrom ein relativ schwacher Karbidbildner verglichen mit den zuvor erwähnten Elementen ist, bleibt es in fester Lösung während die anderen Karbid-bildenden Elemente mit Kohlenstoff Keime und stabile MC-Karbide bilden.
  • In einer Ausführungsform weist das Überzugsteil einen Kohlenstoffgehalt unter 0,10 Gewichts% auf, um die Karbidbildung zu minimieren und dadurch die Korrosionsbeständigkeit zu optimieren. Dies führt zu einer verringerten Härte, was die Verschleißfestigkeit in negativer Weise beeinflusst. Dies wird durch die Zugabe von Cu zwischen 1,0 und 2,0 Atomprozent kompensiert, das als intermetallische Ausfällungen während des Auftragsschweißprozesses und der möglicherweise nachfolgenden Wärmebehandlung Keime bildet. Die Cu-reichen Ausfällungen ersetzen die Karbide und stellen eine Härte von mehr als 37 HRC bereit. Darüber hinaus bilden sie Keime als nano-skalierte Ausfällungen mit einer sehr dichten und homogenen Verteilung verglichen mit der inhomogenen Verteilung von M23C6 und M7C3 Karbiden. Dies hat auch einen positiven Einfluss auf die Ermüdungs- und Verschleißfestigkeit des hartaufgetragenen Überzugs.
  • In einer Ausführungsform kann der Stahl des Überzugsteils die folgende Zusammensetzung haben:
    Elemente Untere Grenze Ziel Obere Grenze
    Atom% Gew-% Atom% Gew.% Atom% Gew.%
    C 0,23 0,05 0,32 0,07 0,41 0,09
    Mn 0,70 0,70 1,01 1,00 1,31 1,30
    Si 0,79 0,40 1,18 0,60 1,57 0,80
    Cr 12,76 12,00 13,81 13,00 14,85 14,00
    Ni 2,59 2,75 3,06 3,25 3,53 3,75
    Mo 0,23 0,40 0,35 0,60 0,46 0,80
    Nb 0,12 0,20 0,15 0,25 0,21 0,35
    Cu 0,87 1,00 1,30 1,50 1,74 2,00
    Zr 0,12 0,20 0,18 0,30 0,21 0,35
    M/C Verhältnis 1,04 1,03 1,01
    wobei der Rest Fe (Eisen) und normalerweise auftretende Verunreinigungen sind.
  • In einer Ausführungsform sollte der hartaufgetragene Überzug aus einem martensitischen rostfreien Stahl mit weniger als 10 Volumenprozenten Delta-Ferrit sein. Die chemische Zusammensetzung der Überzugsoberfläche sollte hinsichtlich Korrosions-, Verschleiß- und Ermüdungsfestigkeit optimiert sein. Dies bedeutet, dass Chrom in fester Lösung gehalten werden sollte. Die Karbid-Phasen mit der höchsten Antriebskraft von einem thermodynamischen Standpunkt (unterhalb 1000°C) ist die M23C6 gefolgt von der M7C3 Phase, wobei M die Gesamtmenge der Karbidbildner wie Cr, Mo, W, V, Nb, Ta, Ti, Zr und Hf ist. Betrachtet man das Verhältnis zwischen den Karbidbildnern und dem Kohlenstoffgehalt (M geteilt durch C), erfordert die M23C6 Phase die meisten Karbidbildner in Atomprozent: M / C = 23 / 6 = 3,83 und M / C = 7 / 6 = 2,33
  • Die chemische Zusammensetzung des schweißplattierten Überzugs sollte deswegen ein Verhältnis (M/C) in Atomprozent zwischen 2,3 und 3,8 haben, wobei M der Gesamtbetrag von Mo, W, V, Nb, Ta, Ti, Zr und Hf ist. Da Chrom im Vergleich mit den vorgenannten Elementen ein vergleichsweise schwacher Karbidbildner ist, bleibt es in fester Lösung, wohingegen die anderen karbidbildenden Elemente mit dem Kohlenstoff Keime und stabile Karbide bilden.
  • In einer Ausführungsform kann der Stahl des Überzugsteils die folgende Zusammensetzung haben:
    Elemente Untere Grenze Ziel Obere Grenze
    Atom% Gew.% Atom% Gew.% Atom% Gew.%
    C 0.23 0,05 0.32 0,07 0.41 0,09
    Mn 0.70 0,70 1.01 1,00 1.31 1,30
    Si 0.79 0,40 1.18 0,60 1.57 0,80
    Cr 12.76 12,00 13.28 12,50 13.79 13,00
    Ni 3.30 3,50 3.76 4,00 4.23 4,50
    Mo 0.40 0,70 0.58 1,00 0.75 1,30
    Nb 0.18 0,30 0.24 0,40 0.30 0,50
    M/C Verhältnis 2.52 2.56 2.56
    wobei der Rest Fe und normalerweise auftretender Verunreinigungen ist.
  • In einer Ausführungsform sollten die hartaufgetragenen Überzüge einen Kohlenstoffgehalt unter 0,10 Gewichtsprozent aufweisen, um die Karbidbildung zu minimieren und dadurch die Korrosionsbeständigkeit zu optimieren. Dies führt zu einer verringerten Härte, die die Verschleißfestigkeit in negativer Weise beeinflusst. Dies wird durch Zugabe von Cu zwischen 1,0 und 2,0 Atomprozent kompensiert, das als intermetallische Ausfällungen während des Auftragsschweißprozesses und dem möglicherweise nachfolgenden Wärmebehandlung Keime bildet. Die Cu-reichen Ausfällungen ersetzen die Karbide und stellen eine Härte von mehr als 37 HRC bereit. Zusätzlich bilden sie Keime als nanoskalierte Ausfällungen mit einer dichteren und homogeneren Verteilung verglichen mit der inhomogenen Verteilung der M23C6 und M7C3 Karbiden. Dies hat auch einen positiven Einfluss auf die Ermüdungs- und Verschleißfestigkeit des hartaufgetragenen Überzugs.
  • In einer Ausführungsform kann der Stahl des Überzugsteils die folgende Zusammensetzung haben:
    Elemente Untere Grenze Ziel Obere Grenze
    Atom% Gew.% Atom% Gew.% Atom% Gew.%
    C 0,23 0,05 0,32 0,07 0,41 0,09
    Mn 0,71 0,70 1,01 1,00 1,31 1,30
    Si 0,79 0,40 1,18 0,60 1,58 0,80
    Cr 12,78 12,00 13,84 13,00 14,89 14,00
    Ni 2,83 3,00 3,54 3,75 4,24 4,50
    Mo 0,40 0,70 0,58 1,00 0,75 1,30
    Nb 0,18 0,30 0,24 0,40 0,30 0,50
    Cu 1,31 1,50 1,74 2,00 2,18 2,50
    M/C Verhältnis 2.52 2,56 2,56
    wobei der Rest Fe und normalerweise auftretender Verunreinigungen ist.
  • Gemäß einem zweiten Aspekt der Erfindung werden die Aufgaben durch ein Verfahren zum Herstellen einer Stranggießanlagenwalze gemäß jeder der Ausführungsformen des ersten Aspekts der Erfindung gelöst, wobei das Überzugsteil auf dem Grundteil durch Schweißplattieren oder Laserplattieren aufgebracht ist.
  • In einer Ausführungsform ist das Herstellungsverfahren ein Hartauftragsverfahren. In einer anderen Ausführungsform ist das Schweißplattieren entweder ein Tauchlichtbogenschweißen oder ein offenes Lichtbogenschweißen.
  • KURZBESCHREIBUNG DER ZEICHNUNGEN
  • Ausführungsbeispiele der vorliegenden Erfindung werden nun unter Bezugnahme auf die beigefügten Zeichnungen genauer beschrieben, wobei:
  • 1 zeigt ein Beispiel einer Stranggießmaschine.
  • 2 zeigt ein Beispiel einer Walzenlinie.
  • 3 zeigt ein Beispiel einer Stranggießanlagenwalze für eine Stranggießmaschine nach einer Ausführungsform der Erfindung.
  • 4 zeigt ein Flussdiagramm eines Verfahrens gemäß einer Ausführungsform der Erfindung.
  • Die Zeichnungen zeigen schematisch Ausführungsbeispiele der vorliegenden Erfindung und sind daher nicht notwendigerweise maßstabsgerecht gezeichnet. Es versteht sich, dass die gezeigten und beschriebenen Ausführungsformen Beispiele sind und die Erfindung nicht auf diese Ausführungsformen beschränkt ist. Es wird auch angemerkt, dass einige Details in den Zeichnungen übertrieben dargestellt sein mögen, um die Erfindung besser zu beschreiben und zu veranschaulichen.
  • DETAILLIERTE BESCHREIBUNG
  • Die 1 zeigt ein Brammenstranggießverfahren, bei dem geschmolzenes Metall 10 aus einer Gießpfanne 12 abgezapft wird. Nach dem Einwirken beliebiger Schmelzebehandlungen, wie Legieren und Entgasen, und dem Erreichen der richtigen Temperatur, wird geschmolzenes Metall 10 aus der Gießpfanne 12 über einen feuerfesten Kragen zu einer Zwischenpfanne 14 übertragen. Von der Zwischenwanne 14 aus wird Metall oben in die unten offene Kokille 16 abgelassen. Die Kokille 16 ist wassergekühlt um das geschmolzene Metall im direkten Kontakt mit ihr zu verfestigen. In der Kokille 16 verfestigt sich eine dünne Schale aus Metall neben den Kokillewänden vor deren mittleren Abschnitt aus, wobei das nunmehr als Bramme bezeichnete, an der Basis der Kokille 16 in eine Kühlkammer 18 austritt; der Großteil des Metalls innerhalb der Wände der Bramme ist noch geschmolzen. Die Bramme wird durch eng beieinander liegende, wassergekühlte Walzenlinien 20 getragen, die die Wände der Bramme gegen den ferrostatischen Druck der sich noch verfestigenden Flüssigkeit innerhalb der Bramme unterstützen. Um die Erstarrungsgeschwindigkeit zu erhöhen, wird die Bramme mit großen Mengen an Wasser besprüht, während sie die Kühlkammer 18 passiert. Die Enderstarrung der Bramme mag stattfinden, nachdem die Bramme die Kühlkammer 18 verlassen ist.
  • In dem dargestellten Ausführungsbeispiel tritt die Bramme aus der Kokille 16 vertikal (oder auf einer nahezu vertikalen gekrümmten Bahn) aus und beim Durchlaufen der Kühlkammer 18 krümmen die Walzenlinien 20 die Bramme allmählich in Richtung der horizontalen Ebene. (In einer vertikalen Gießmaschine, bleibt die Bramme vertikal, wenn sie durch die Kühlkammer 18 hindurchtritt).
  • Nach dem Austritt aus der Kühlkammer 18 passiert die Bramme gerade richtende Walzenlinien (wenn auf einer anderen als einer Vertikalmaschine gegossen wird) und Entnahmewalzenlinien. Schließlich wird die Bramme in vorbestimmte Längen durch mechanisches Scheren oder durch Durchlaufen eines Azetylen-Sauerstoff-Brenners 22 geschnitten und entweder zu einer Halde oder dem nächsten Formvorgang entnommen. In vielen Fällen durchläuft die Bramme zusätzliche Walzenlinien und andere Mechanismen, die das Metall in seine endgültige Form plätten, walzen oder extrudieren.
  • Die 2 zeigt eine Walzlinie 20 gemäß einer Ausführungsform der vorliegenden Erfindung, nämlich eine Gemeinschaftswellen-Walzenlinie 20. Die Walzenlinie 20 umfasst eine Welle 24 mit einen Außendurchmesser Ø0 und ist von in Lagergehäusen untergebrachten Lagern 26 getragen und eine Mehrzahl von Stranggießanlagenwalzen (oder Walzenmäntel) 28, die aufweisend einen entsprechenden Innendurchmesser Øi auf der Welle 24 angeordnet und befestigt sind, zum Transportieren einer Metallbramme entlang der Außenfläche 34 der Walzen.
  • Die 3 zeigt einen Querschnitt einer Stranggießanlagenwalze 28 gemäß einem Ausführungsbeispiel der Erfindung. Die Walze ist zylinderförmig mit einer axialen Ausdehnung L und umfasst ein Grundteil 281 und ein Überzugsteil 282 (entsprechend der Außenfläche 34 in 2). Das Grundteil kann aus jeder Art von Stahl, vorzugsweise einem Hochtemperatur-Baustahl ausgebildet sein. Das Überzugsteil ist aus einem martensitischen rostfreien Stahl ausgebildet, der 12–14 Gewichts% Cr umfasst. Der Stahl umfasst ferner 0,2–0,5 Gewichts% Nb, das ein stärkerer Karbidbildner als Cr ist, so dass Cr in dem Überzugsteil in fester Lösung gehalten wird. Der Rest ist Fe, andere Legierungselemente und normalerweise auftretenden Verunreinigungen.
  • Die 4 zeigt ein Ablaufdiagramm einer Ausführungsform gemäß dem zweiten Aspekt. In einem ersten Schritt A wird ein zylinderförmiges Grundteil vorgehalten, wobei das Grundteil aus Stahl hergestellt ist, vorzugsweise einem Hochtemperatur-Baustahl. In einem zweiten Schritt B wird das Grundteil auf seiner Außenmantelfläche mit einem Überzugsteil versehen. Das Überzugsteil wird auf dem Grundteil durch ein Schweißplattieren oder Laserschweißen aufgebracht.

Claims (9)

  1. Stranggießanlagenwalze (28) für eine Stranggießmaschine umfassend: – ein Grundteil (281), – ein Überzugsteil (282) aus martensitischem rostfreien Stahl, – wobei der Stahl des Überzugsteils (282) 12–14 Gewichts% Cr (Chrom) umfasst und – wobei der Stahl ferner 0,2–0,5 Gewichts% Nb (Niob) umfasst, das ein stärkerer Karbidbildner als Cr ist, so dass Cr im Überzugsteil in fester Lösung gehalten wird, und der Rest aus Fe (Eisen), anderen Legierungselementen und normalerweise auftretenden Verunreinigungen besteht.
  2. Stranggießanalgenwalze (28) nach Anspruch 1, – wobei der Stahl des Überzugsteils (282) 0,2–0,35 Gewichts% Nb umfasst.
  3. Stranggießanlagenwalze (28) nach Anspruch 1, – wobei der Stahl des Überzugsteil (282) 0,3–0,5 Gewichts% Nb umfasst.
  4. Stranggießanlagenwalze (28) nach einem der vorhergehenden Ansprüche, – wobei der Stahl des Überzugsteils (282) ferner 1–2,5 Gewichts% Cu (Kupfer) umfasst.
  5. Stranggießanlagenwalze (28) nach einem der vorhergehenden Ansprüche, – wobei der Stahl des Überzugsteils (282) ferner 0,2–0,35 Gewichts% Zr (Zirkonium) umfasst.
  6. Stranggießanlagenwalze (28) nach einem der vorhergehenden Ansprüche, – wobei der Stahl des Überzugsteils (282) die folgende Zusammensetzung in Gewichts% hat: C 0,05–0,09 Mn 0,70–1,30 Si 0,40–0,80 Cr 12,00–14,00 Ni 2,75–3,75 Mo 0,40–0,80 Nb 0,20–0,35 Cu 1,00–2,00 Zr 0,20–0,35
    der Rest ist Fe und normalerweise auftretenden Verunreinigungen.
  7. Stranggießanlagenwalze (28) nach einem der Ansprüche 1–5, – wobei der Stahl des Überzugsteil (282) die folgende Zusammensetzung in Gewichts% hat: C 0,05–0,09 Mn 0,70–1,30 Si 0,40–0,80 Cr 12.00–13.00 Ni 3,50–4,50 Mo 0,70–1,30 Nb 0,30–0,50
    der Rest ist Fe und normalerweise auftretenden Verunreinigungen.
  8. Stranggießanlagenwalze (28) nach einem der Ansprüche 1–5, – wobei der Stahl des Überzugsteils (282) die folgende Zusammensetzung in Gewichts% hat: C 0,05–0,09 Mn 0,70–1,30 Si 0,40–0,80 Cr 12,00–14,00 Ni 3,00–4,50 Mo 0,70–1,30 Nb 0,30–0,50 Cu 1,50–2,50
    der Rest ist Fe und normalerweise auftretenden Verunreinigungen.
  9. Verfahren zum Herstellen einer Stranggießanlagenwalze nach einem der Ansprüche 1–8, – wobei das Überzugsteil auf das Grundteil durch ein Schweißplattieren oder Laserschweißen aufgebracht wird.
DE102016203839.7A 2015-03-11 2016-03-09 Stranggießanlagenwalze für eine Stranggießmaschine Pending DE102016203839A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE1550292 2015-03-11
SE1550292-5 2015-03-11

Publications (1)

Publication Number Publication Date
DE102016203839A1 true DE102016203839A1 (de) 2016-09-15

Family

ID=56800717

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102016203839.7A Pending DE102016203839A1 (de) 2015-03-11 2016-03-09 Stranggießanlagenwalze für eine Stranggießmaschine

Country Status (5)

Country Link
US (1) US10047417B2 (de)
CN (2) CN113618032A (de)
AT (1) AT516893B1 (de)
DE (1) DE102016203839A1 (de)
IT (1) ITUA20161598A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2393994B1 (de) 2009-02-04 2018-05-02 Thomas M. Espinosa Betonanker
CN109128068A (zh) * 2018-08-28 2019-01-04 上海大学 能增强有效磁场强度的电磁搅拌辊装置
CN109554630A (zh) * 2018-12-26 2019-04-02 天津理工大学 一种马氏体耐热铸钢缺陷的补焊粉末及补焊方法
CN115341137B (zh) * 2022-04-19 2023-08-25 泽高新智造(广东)科技有限公司 一种钢轨缺陷在线激光熔覆修复的材料及方法
CN115807193B (zh) * 2022-12-23 2024-02-06 安徽马钢重型机械制造有限公司 一种“素化”连铸辊辊坯材料体系及其制备方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935427B2 (ja) * 1981-02-05 1984-08-28 日立造船株式会社 連続鋳造設備に使用するロ−ル材料
CN85102865A (zh) * 1985-04-18 1987-03-04 冶金部钢铁研究总院 高铬轧辊钢及其轧辊
FI86566C (fi) * 1989-10-27 1992-09-10 Valmet Paper Machinery Inc Vals foer anvaendning vid pappersframstaellning och foerfarande foer framstaellning av valsen.
US5305522A (en) * 1991-07-09 1994-04-26 Hitachi Metals, Ltd. Method of producing a compound roll
ZA934072B (en) * 1992-06-19 1994-01-19 Commw Scient Ind Res Org Rolls for metal shaping
JP2795605B2 (ja) 1993-12-21 1998-09-10 川崎製鉄株式会社 連続鋳造用ロール材料
MY118759A (en) * 1995-12-15 2005-01-31 Nisshin Steel Co Ltd Use of a stainless steel as an anti-microbial member in a sanitary environment
JP2002001504A (ja) 2000-06-27 2002-01-08 Nippon Welding Rod Kk 連続鋳造用ロール及びその製造方法並びに肉盛溶接用ステンレス鋼複合ワイヤ
JP3719168B2 (ja) 2001-06-18 2005-11-24 Jfeスチール株式会社 耐熱亀裂性に優れた鋼材
US20060065327A1 (en) * 2003-02-07 2006-03-30 Advance Steel Technology Fine-grained martensitic stainless steel and method thereof
EP1621644B1 (de) * 2003-04-28 2012-08-08 JFE Steel Corporation Martensitischer nichtrostender stahl für scheibenbremse
WO2005007915A1 (ja) * 2003-07-22 2005-01-27 Sumitomo Metal Industries, Ltd. マルテンサイト系ステンレス鋼
CN1289255C (zh) * 2004-08-27 2006-12-13 攀钢集团攀枝花钢铁研究院 一种连铸辊堆焊用药芯焊丝
JP4337712B2 (ja) * 2004-11-19 2009-09-30 住友金属工業株式会社 マルテンサイト系ステンレス鋼
AT506674B9 (de) 2008-04-22 2010-10-15 Siemens Vai Metals Tech Gmbh Rolle zum stützen und transportieren von heissem gut, verfahren zur herstellung der rolle, verfahren zur wiederherstellung einer abgenützten rolle, schweisszusatzwerkstoff und schweissdraht zur herstellung einer auftragsschweissung
JP5306120B2 (ja) * 2009-09-03 2013-10-02 新日鐵住金株式会社 連続鋳造機の鋳片保持ロール

Also Published As

Publication number Publication date
ITUA20161598A1 (it) 2017-09-11
AT516893A2 (de) 2016-09-15
CN105964964A (zh) 2016-09-28
AT516893A3 (de) 2018-05-15
AT516893B1 (de) 2018-05-15
US10047417B2 (en) 2018-08-14
CN105964964B (zh) 2021-07-27
CN113618032A (zh) 2021-11-09
US20160263648A1 (en) 2016-09-15

Similar Documents

Publication Publication Date Title
AT516893B1 (de) Stranggießanlagenwalze für eine Stranggießmaschine
EP2663411B1 (de) Verfahren zum herstellen eines warmgewalzten stahlflachprodukts
EP3332047B1 (de) Verfahren zur herstellung eines flexibel gewalzten stahlflachprodukts und dessen verwendung
EP2428301B1 (de) Rolle zum Stützen und Transportieren von heißem Gut mit einer Auftragsschweißung ; Schweißzusatzwerkstoff zum Herstellen einer Auftragschweißung auf einer Bauteiloberfläche
DE102005061134A1 (de) Bauteil eines Stahlwerks, wie Stranggussanlage oder Walzwerk, Verfahren zur Herstellung eines solchen Bauteils sowie Anlage zur Erzeugung oder Verarbeitung von metallischen Halbzeugen
DE4019845C2 (de) Verfahren zur Herstellung einer Arbeitswalze für ein Metallwalzwerk
DE2513763C3 (de) Verfahren zur Herstellung einer Walze mit einer oder mehreren Umfangsnuten
DE102007003548B3 (de) Gießwalze für eine Zweiwalzengießvorrichtung und Zweiwalzengießvorrichtung
DE1937974A1 (de) Verbundgusswalze
DE3236268C2 (de) Verschleißfeste Gußeisenlegierung
EP2334834B1 (de) Verfahren zur herstellung von verbundmetall-halbzeugen
DE102006023567A1 (de) Wälzlagerbauteil und Verfahren zur Herstellung eines solchen
EP3356077B1 (de) Verwendung eines stahlwerkstücks mit verbesserter oberflächenqualität
EP0054867B1 (de) Verfahren zum Kühlen von Strängen beim Stranggiessen von Stahl
WO2020201352A1 (de) Warmgewalztes stahlflachprodukt und verfahren zu seiner herstellung
DE102005061135A1 (de) Kokille für eine Stranggussanlage und Verfahren zur Herstellung einer Kokille
EP2455180A1 (de) Eisen-Chrom-Molybdän-Mangan Legierung, eine Verwendung dieser Legierung, ein Verfahren zur Erstellung dieser Legierung, eine Rolle für eine Walzanlage mit einer Oberfläche aus dieser Legierung sowie eine Rolle für eine Walzanlage mit einer Oberfläche, die mit einem Verfahren zur Erstellung dieser Legierung erstellt ist
DE2810186A1 (de) Walzwerk und walze zum warmwalzen von nichteisenmetallen sowie verfahren zur herstellung der walze
DE4106420A1 (de) Verschleissfeste verbundwalze
DE102007028824B3 (de) Verfahren zur Herstellung eines Blechs in einer Walzstraße
AT523002A2 (de) Rollenmantel, Rollenkörper und Verfahren
EP3964592A1 (de) Warmgewalztes stahlflachprodukt und verfahren zur herstellung eines warmgewalzten stahlflachprodukts
DE102012109651B4 (de) Gießwalze zum Gießen von metallischem Band und mit einer solchen Gießwalze ausgestattete Zweiwalzengießvorrichtung
DE102004048805B3 (de) Verfahren zum Herstellen von Blechen aus einer Magnesiumschmelze
EP1354649B1 (de) Zweirollen-Giessverfahren zum Herstellen eines hohe Kohlenstoffgehalte aufweisenden martensitischen Stahlbands und Verwendung eines solchen Stahlbands

Legal Events

Date Code Title Description
R012 Request for examination validly filed