DE102016111534A1 - Niederdruckentlandungslampe - Google Patents

Niederdruckentlandungslampe Download PDF

Info

Publication number
DE102016111534A1
DE102016111534A1 DE102016111534.7A DE102016111534A DE102016111534A1 DE 102016111534 A1 DE102016111534 A1 DE 102016111534A1 DE 102016111534 A DE102016111534 A DE 102016111534A DE 102016111534 A1 DE102016111534 A1 DE 102016111534A1
Authority
DE
Germany
Prior art keywords
low
discharge lamp
pressure discharge
particles
phosphate particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE102016111534.7A
Other languages
English (en)
Inventor
Armin Konrad
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ledvance GmbH
Original Assignee
Ledvance GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ledvance GmbH filed Critical Ledvance GmbH
Priority to DE102016111534.7A priority Critical patent/DE102016111534A1/de
Priority to PCT/EP2017/065501 priority patent/WO2017220765A1/de
Priority to US16/313,391 priority patent/US11024500B2/en
Priority to CN201780038977.4A priority patent/CN109417018A/zh
Publication of DE102016111534A1 publication Critical patent/DE102016111534A1/de
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/70Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr
    • H01J61/72Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr having a main light-emitting filling of easily vaporisable metal vapour, e.g. mercury
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7709Phosphates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7777Phosphates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • H01J61/302Vessels; Containers characterised by the material of the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • H01J61/35Vessels; Containers provided with coatings on the walls thereof; Selection of materials for the coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/38Devices for influencing the colour or wavelength of the light
    • H01J61/42Devices for influencing the colour or wavelength of the light by transforming the wavelength of the light by luminescence
    • H01J61/44Devices characterised by the luminescent material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/38Devices for influencing the colour or wavelength of the light
    • H01J61/42Devices for influencing the colour or wavelength of the light by transforming the wavelength of the light by luminescence
    • H01J61/46Devices characterised by the binder or other non-luminescent constituent of the luminescent material, e.g. for obtaining desired pouring or drying properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

In verschiedenen Ausführungsbeispielen wird eine Niederdruckentladungslampe (1) bereitgestellt. Die Niederdruckentladungslampe weist ein Entladungsgefäß (2) und eine Beschichtungsstruktur (7) auf. Die Beschichtungsstruktur (7) ist auf einer Innenseite (24) des Entladungsgefäßes (2) ausgebildet. Die Beschichtungsstruktur (7) weist nanoskalige Phosphatpartikel (42) und/oder nanoskaliges funktionelles Oxid auf. Alternativ oder zusätzlich sind die Phosphatpartikel (42) frei oder zumindest näherungsweise frei von Metallen der Seltenen-Erden.

Description

  • Die Erfindung betrifft eine Niederdruckentladungslampe.
  • Herkömmliche Niederdruckentladungslampen, beispielsweise Leuchtstofflampen und/oder Kompaktleuchtstofflampen, weisen Entladungsgefäße auf. Ein derartiges Entladungsgefäß ist beispielsweise ein Glasgefäß und/oder eine Entladungsröhre, das bzw. die beispielsweise einen, zwei oder mehr U-förmige, gerade und/oder röhrenförmig ausgebildete Gefäßbereiche aufweisen kann. Das Entladungsgefäß kann an seinen Innenseiten eine Beschichtungsstruktur aufweisen. Ferner kann eine Niederdruckentladungslampe ein elektronisches Vorschaltgerät aufweisen.
  • Die Beschichtungsstruktur kann beispielsweise eine Schutzschicht direkt auf dem Entladungsgefäß und eine Leuchtstoffschicht auf der Schutzschicht aufweisen. Die Schutzschicht dient beispielsweise zum Abschirmen von UV-Strahlung gegenüber einer Umgebung der Niederdruckentladungslampe oder gegebenenfalls zum Verhindern von Diffundieren von Quecksilber in das Glas des Entladungsgefäßes. Die Schutzschicht kann Gamma-Al2O3, insbesondere AluC, in Pulverform aufweisen. Alternativ dazu kann die Beschichtungsstruktur lediglich eine Schicht aufweisen, die als Schutzschicht und Leuchtstoffschicht dient. Die Leuchtstoffschicht weist Leuchtstoffpartikel zum Konvertieren elektromagnetischer Strahlung in farbiges Licht auf, wobei das farbige Licht so gemischt werden kann, dass die Niederdruckentladungslampe weißes Licht emittiert. Die Leuchtstoffschicht kann beispielsweise pulverförmig ausgebildet sein oder ein Pulver aufweisen. Die Leuchtstoffschicht kann zur Erzielung einer ausreichenden Haftfestigkeit Gamma-Aluminiumoxid, insbesondere hochdisperses oder pyrogenes Aluminiumoxid (AluC) aufweisen, beispielsweise mit einer typischen Oberfläche von 50 bis 130 m2/g, was die spezifische Oberfläche des Materials kennzeichnet und mittels BET – Methode bestimmt wird. Details im erforderlichen Umfang finden Sie unter AluC ist bevorzugt pulverförmig. Typischerweise wird ein Anteil von AluC bezogen auf die Masse der Leuchtstoffpartikel im Bereich von 1% bis 5% verwendet, um eine ausreichende Haftfestigkeit zu erzielen.
  • Die Schutzschicht und/oder die Leuchtstoffschicht können in dem Entladungsgefäß gebildet werden beispielsweise durch Einbringen einer die Schutzschicht und/oder die Leuchtstoffpartikel aufweisenden Suspension oder Schlämme in das Entladungsgefäß.
  • Zusätzlich kann dem beschichteten Entladungsgefäß ein Gas und eine geringe Menge an Quecksilber zugegeben werden. Bei Zimmertemperatur in ausgeschaltetem Zustand der Entladungslampe ist das Quecksilber im Inneren des Entladungsgefäßes zum Teil gasförmig und zum Teil flüssig und bildet einen kleinen Tropfen. Schaltet man die Entladungslampe an, so fließt ein elektrischer Strom durch das Gas in dem beschichteten Entladungsgefäß, so dass das Quecksilber erhitzt wird, gasförmig wird und in dem gasförmigen Zustand aufgrund von Stoßionisation beginnt, die elektromagnetische Strahlung, insbesondere UV-Strahlung, abzustrahlen, mittels der die Leuchtstoffpartikel zum Leuchten angeregt werden. Die Leuchtstoffpartikel können in einem Trägermaterial eingebettet sein. Die Leuchtstoffpartikel können durch Anregung mit kurzwelligem Licht bis hin zu UV-Strahlung, beispielsweise der UV-Strahlung des Quecksilbers, sichtbares Licht erzeugen.
  • Die Leuchterscheinungen beruhen beispielsweise auf Fluoreszenz oder Phosphoreszenz. Die Leuchtstoffpartikel können beispielsweise kristalline Wirtsgitter aufweisen, dessen Gitterplätze teilweise durch Aktivatoren ersetzt sind. In anderen Worten kann das Wirtsgitter mit den Aktivatoren dotiert sein. Der Aktivator, also das Dotierungselement, bestimmt die Farbe des erzeugten Lichtes. Die Aktivatoren können beispielsweise Metalle der Seltenen-Erden aufweisen oder von diesen gebildet sein.
  • In der Lampenatmosphäre in dem Entladungsgefäß können sich während des Betriebs der Niederdruckentladungslampe Verunreinigungen, beispielsweise Wasser oder Feuchtigkeit, insbesondere Wasserstoff, Sauerstoff und/oder Kohlenstoff, anreichern. Bei einer erhöhten Umgebungstemperatur kann während des Lampenbetriebs ein Brennspannungsanstieg aufgrund der in der Lampenatmosphäre angereicherten Verunreinigungen erfolgen. Der Brennspannungsanstieg kann zu einer verminderten Lebensdauer und/oder zu einer erhöhten Ausfallwahrscheinlichkeit der Niederdruckentladungslampe beitragen.
  • Es wurde bereits erkannt, dass die Oberflächeneigenschaften des AluC den Anteil gebundener und während des Betriebs der Niederdruckentladungslampe freigesetzter Verunreinigungen bestimmt. Zur Minimierung der Verunreinigungen ist es bekannt, den AluC-Anteil zu verringern, was jedoch zu einer Verminderung der Haftfestigkeit der Beschichtungsstruktur führen kann. Ferner ist es bekannt, zur Minimierung der Verunreinigungen eine Temperatur während einer Evakuierung des Entladungsgefäßes zu maximieren, so dass die Verunreinigungen bereits während des Evakuierens in die Lampenatmosphäre gelangen und abgesaugt werden. Nach wie vor wird jedoch ein Anstieg der Verunreinigungen während des Lampenbetriebs beobachtet.
  • In verschiedenen Ausführungsformen wird eine Niederdruckentladungslampe bereitgestellt, die kostengünstig herstellbar ist, bei erhöhter Umgebungstemperatur keinen oder zumindest nur einen vernachlässigbaren Brennspannungsanstieg zeigt, bei der die Beschichtungsstruktur eine hohe Haftfestigkeit hat, die eine besonders hohe Effizienz hat, die eine besonders lange Lebensdauer hat und/oder die eine besonders geringere Ausfallwahrscheinlichkeit hat.
  • In verschiedenen Ausführungsformen wird eine Niederdruckentladungslampe bereitgestellt. Die Niederdruckentladungslampe weist ein Entladungsgefäß und eine Beschichtungsstruktur auf. Die Beschichtungsstruktur ist auf einer Innenseite des Entladungsgefäßes ausgebildet. Die Beschichtungsstruktur weist nanoskalige Phosphatpartikel und/oder nanoskaliges funktionelles Oxid auf. Alternativ oder zusätzlich zu den nanoskaligen Phosphatpartikeln bzw. dem nanoskaligen funktionellen Oxid weist die Beschichtungsstruktur Phosphatpartikel auf, die frei oder zumindest näherungsweise frei von Metallen der Seltenen-Erden sind. Beispielsweise können die Phosphatpartikel nanoskalig und frei oder zumindest näherungsweise frei von Metallen der Seltenen-Erden sein.
  • Die nanoskaligen Phosphatpartikel und/oder die Phosphatpartikel, die frei oder zumindest näherungsweise frei von Metallen der Seltenen-Erden sind, sind weniger sorbierend und/oder weniger affin, insbesondere für Wasser, Wasserstoff, Hydroxide, Sauerstoff und/oder Kohlenstoff. Dementsprechend setzen diese Phosphatpartikel im Betrieb weniger Verunreinigungen frei. Die in einem entsprechenden Nachweistest bei erhöhten Umgebungstemperaturen freigesetzten Mengen an Verunreinigungen, wie beispielsweis H-, O- und/oder C-Verbindungen können dadurch um das 5- bis 10-fache geringer sein als bei bekannten Niederdruckentladungslampen. Die Niederdruckentladungslampen können dadurch im Betrieb eine 10-fache längere Lebensdauer und eine deutlich geringere Ausfallwahrscheinlichkeit haben. Der Haftmittelanteil liegt dabei im Bereich beispielsweise von 0.25% bis 5%, beispielsweise von 0,5% bis 4%, beispielsweise von 0,5% bis 3%, beispielsweise von 0.6% bis 2.5%, bezogen auf die Masse des Leuchtstoffs. Die ausreichende Haftfestigkeit bleibt dabei erhalten.
  • Die nanoskaligen Phosphatpartikel können LaP04, LaP04:Ce, YP04, YP04:Ce, GdP04, oder GdP04:Ce aufweisen. Diese Phosphatpartikel können beispielsweise eine BET-Oberfläche in einem Bereich von beispielsweise 20 m2/g bis 100 m2/g, beispielsweise 25 m2/g bis 90 m2/g, beispielsweise 30 m2/g bis 80 m2/g, beispielsweise 35 m2/g bis 70 m2/g, aufweisen. Als Phosphatpartikel, die frei oder zumindest näherungsweise frei von Metallen der Seltenen-Erden sind, können grundsätzlich alle Phosphatpartikel verwendet werden, die mit LaP04 und/oder LaP04:Ce vergleichbare Oberflächeneigenschaften bezüglich der Ad- und Desorption, bezüglich der Oberflächenladung und/oder dem Zeta-Potential und/oder bezüglich Absorption von elektromagnetischer Strahlung im UVA und/oder UVC-Bereich haben.
  • Das nanoskalige funktionelle Oxid kann beispielsweise entsprechende Oxidpartikel aufweisen. Das nanoskalige funktionelle Oxid kann beispielsweise Y2O3, Gd2O3 oder YZrO aufweisen.
  • Die Niederdruckentladungslampe kann beispielsweise eine Quecksilber-Niederdruckentladungslampe sein. Die Niederdruckentladungslampe kann beispielsweise einseitig oder zweiseitig gesockelt sein.
  • Bei verschiedenen Ausführungsformen weisen die nanoskaligen Phosphatpartikel eine mittlere Korngröße in einem Bereich von 5 nm bis 800 nm, beispielsweise in einem Bereich von 10 nm bis 650 nm, beispielsweise in einem Bereich von 20 nm bis 200 nm auf. Dass die Phosphatpartikel nanoskalig sind bedeutet somit beispielsweise, dass die entsprechenden Partikel eine mittlere Korngröße in einem Bereich von 5 nm bis 800 nm, beispielsweise in einem Bereich von 10 nm bis 650 nm, beispielsweise in einem Bereich von 20 nm bis 200 nm haben.
  • Bei verschiedenen Ausführungsformen ist ein Anteil der Metalle der Seltenen-Erden in den Phosphatpartikeln kleiner als 500 ppm, beispielsweise kleiner als 50 ppm, beispielsweise kleiner als 5 ppm. Dass die Phosphatpartikel zumindest näherungsweise frei von Metallen der Seltenen-Erden sind, kann somit beispielsweise bedeuten, dass deren Anteil in den entsprechenden Phosphatpartikeln kleiner als 500 ppm, beispielsweise kleiner als 50 ppm, beispielsweise kleiner als 5 ppm. Der Anteil kann beispielsweise ein prozentualer Anteil sein und/oder einem Dotierungsgrad entsprechen.
  • Bei verschiedenen Ausführungsformen sind die Phosphatpartikel nanoskalig und frei oder zumindest näherungsweise frei von Metallen der Seltenen-Erden.
  • Bei verschiedenen Ausführungsformen weist die Beschichtungsstruktur Leuchtstoffpartikel auf und die mittlere Korngröße der Phosphatpartikel ist um einen Faktor 10 bis 50 kleiner als die mittlere Korngröße der Leuchtstoffpartikel. Die Leuchtstoffpartikel können beispielsweise eine mittlere Korngröße von 3 bis 10 µm haben.
  • Bei verschiedenen Ausführungsformen weist die Beschichtungsstruktur eine Schutzschicht, die auf einer Innenseite des Entladungsgefäßes ausgebildet ist, und Leuchtstoffschicht, die auf der Schutzschicht ausgebildet ist und die Leuchtstoffpartikel aufweist, auf. Die Schutzschicht dient zum Abschirmen der in der Niederdruckentladungslampe erzeugten UV-Strahlung gegenüber einer Umgebung der Niederdruckentladungslampe und als Träger für die Leuchtstoffschicht. Alternativ dazu kann die Beschichtungsstruktur lediglich eine Schicht aufweisen, die als Schutzschicht und Leuchtstoffschicht dient und die beispielsweise als Leuchtstoffpartikel aufweisende Schutzschicht ausgebildet ist. Alternativ dazu kann die Beschichtungsstruktur mehr als zwei, beispielsweise drei, vier oder mehr Schichten aufweisen. Diese zusätzlichen Schichten können beispielsweise weitere Leuchtstoffschichten und/oder weitere Schutzschichten sein. Die nanoskaligen Phosphatpartikel und/oder die Phosphatpartikel, die frei oder zumindest näherungsweise frei von Metallen der Seltenen-Erden sind können beispielsweise in der Leuchtstoffschicht und/oder in der Schutzschicht als Haftmittel verwendet werden.
  • Bei verschiedenen Ausführungsformen weist die Schutzschicht die Phosphatpartikeln auf. Alternativ oder zusätzlich wirken die Phosphatpartikel in der Beschichtungsstruktur, beispielsweise in der Leuchtstoffschicht und/oder in der Schutzschicht, als Haftmittel.
  • Bei verschiedenen Ausführungsformen weist die Beschichtungsstruktur bevorzugt eine Schicht auf, die die Phosphatpartikel und Leuchtstoffpartikel aufweist oder von diesen gebildet ist.
  • Bei verschiedenen Ausführungsformen weisen die Phosphatpartikel Lanthanphosphat auf.
  • Bei verschiedenen Ausführungsformen emittiert die Niederdruckentladungslampe im Betrieb weißes Licht.
  • Bei verschiedenen Ausführungsformen ist das nanoskalige funktionelle Oxid nicht dotiert und/oder die nanoskaligen Phosphate sind dotiert.
  • Ausführungsbeispiele der Erfindung sind in den Figuren dargestellt und werden im Folgenden näher erläutert.
  • Es zeigen:
  • 1 eine Seitenansicht eines Ausführungsbeispiels einer Niederdruckentladungslampe;
  • 2 eine Schnittdarstellung der Niederdruckentladungslampe gemäß 1;
  • 3 eine detaillierte Schnittdarstellung eines Ausführungsbeispiels eines Entladungsgefäßes einer Niederdruckentladungslampe;
  • 4 eine erste Tabelle;
  • 5 eine zweite Tabelle.
  • In der folgenden ausführlichen Beschreibung wird auf die beigefügten Zeichnungen Bezug genommen, die Teil dieser Beschreibung bilden und in denen zur Veranschaulichung spezifische Ausführungsbeispiele gezeigt sind, in denen die Erfindung ausgeübt werden kann. In dieser Hinsicht wird Richtungsterminologie wie etwa „oben“, „unten“, „vorne“, „hinten“, „vorderes“, „hinteres“, usw. mit Bezug auf die Orientierung der beschriebenen Figur(en) verwendet. Da Komponenten von Ausführungsbeispielen in einer Anzahl verschiedener Orientierungen positioniert werden können, dient die Richtungsterminologie zur Veranschaulichung und ist auf keinerlei Weise einschränkend. Es versteht sich, dass andere Ausführungsbeispiele benutzt und strukturelle oder logische Änderungen vorgenommen werden können, ohne von dem Schutzumfang der vorliegenden Erfindung abzuweichen. Es versteht sich, dass die Merkmale der hierin beschriebenen verschiedenen Ausführungsbeispiele miteinander kombiniert werden können, sofern nicht spezifisch anders angegeben. Die folgende ausführliche Beschreibung ist deshalb nicht in einschränkendem Sinne aufzufassen, und der Schutzumfang der vorliegenden Erfindung wird durch die angefügten Ansprüche definiert.
  • Im Rahmen dieser Beschreibung werden die Begriffe "verbunden", "angeschlossen" sowie "gekoppelt" verwendet zum Beschreiben sowohl einer direkten als auch einer indirekten Verbindung, eines direkten oder indirekten Anschlusses sowie einer direkten oder indirekten Kopplung. In den Figuren werden identische oder ähnliche Elemente mit identischen Bezugszeichen versehen, soweit dies zweckmäßig ist.
  • 1 zeigt eine Niederdruckentladungslampe 1, die ein Entladungsgefäß 2 und ein Gehäuse 3 aufweist. Die Niederdruckentladungslampe 1 kann beispielsweise eine Leuchtstofflampe, eine Energiesparlampe und/oder eine Kompaktleuchtstofflampe sein. Das Entladungsgefäß 2 kann beispielsweise Glas, beispielsweise Kalknatronglas, aufweisen oder daraus gebildet sein. Das Entladungsgefäß 2 kann auch als Druckentladungsgefäß, Leuchtkolben, Entladungsröhre, Gasentladungsröhre oder als Brenner bezeichnet werden. Das Entladungsgefäß 2 weist beispielsweise zwei an sich U-förmig und im Querschnitt röhrenförmig ausgebildete Gefäßteile 21 und 22 auf, welche durch einen Steg 23 verbunden sind und dadurch einen zusammenhängenden Entladungsraum bilden. Die beiden Gefäßteile 21 und 22 erstrecken sich mit ihren freien Enden in das Gehäuse 3, in dem optional ein elektronisches Vorschaltgerät (nicht dargestellt) angeordnet sein kann. Alternativ dazu kann das Entladungsgefäß 2 stabförmig und/oder gerade, also ohne Krümmung, ausgebildet sein und/oder zwei Gehäuse 3, beispielsweise eines an jedem Ende der Stabform, aufweisen.
  • Das Gehäuse 3 weist einen Sockel 6 und einen Deckel 8 auf. Die Niederdruckentladungslampe 1 kann als einseitig gesockelte Niederdruckentladungslampe 1 bezeichnet werden. Aus dem Sockel 6 führen Kontaktstifte 4 und 5 zum Versorgen der Entladungslampe 1 mit elektrischem Strom und/oder zum Steuern der Entladungslampe 1 nach außen. An den in 1 gezeigten oberen Teilbereichen des Entladungsgefäßes 2 sind die Gefäßteile 21 bogenförmigen ausgebildet. In den bogenförmigen Teilbereichen der Gefäßteile 21, 22 entsprechen Querschnitte B der Gefäßteile 21, 22 im Wesentlichen den Querschnitten, die die Gefäßteile 21 und 22 außerhalb dieser bogenförmigen Teilbereiche aufweisen, beispielsweise den Querschnitten im Bereich der Schnittlinie II. Das Entladungsgefäß 2 kann mittels eines nicht dargestellten Kitts an dem Gehäuse 3 befestigt sein. Beispielsweise kann das Entladungsgefäß 2 an dem Sockel 6 und/oder dem Deckel 8 befestigt sein. Falls das Entladungsgefäß 2 gerade ausgebildet ist, so kann es zwei Sockel 6, insbesondere an jedem Ende einen Sockel 6, aufweisen und die entsprechende Niederdruckentladungslampe 1 kann als zweiseitig gesockelte Niederdruckentladungslampe 1 bezeichnet werden.
  • 2 zeigt eine Schnittdarstellung der Entladungslampe 1 entlang der Schnittlinie II. in 1. Die Schnittdarstellung zeigt zwei Rohrabschnitte 21a, 21b des Gefäßteils 21 und zwei Rohrabschnitte 22a, 22b des Gefäßteils 22. Die Gefäßteile 21, 22 weisen Innenseiten 24 des Entladungsgefäßes 2 auf. An den Innenseiten 24 des Entladungsgefäßes 2 und damit an den Innenseiten 24 der Gefäßteile 21, 22 und somit auch an den Innenseiten 24 der Rohrabschnitte 21a, 21b, 22a, 22b ist eine Beschichtungsstruktur 7 ausgebildet. Das Entladungsgefäß 2 mit der Beschichtungsstruktur 7 kann als beschichtetes Entladungsgefäß 2 bezeichnet werden. Eine Lampenlänge der Niederdruckentladungslampe 1 entspricht einer Summe der Längen der Gefäßteile 21, 22 der Niederdruckentladungslampe 1. Die Längen der Gefäßteile 21, 22 der Niederdruckentladungslampe 1 entsprechen jeweils der Summe der Längen der entsprechenden geraden Rohrabschnitte 21a, 21b, 22a, 22b und des entsprechenden gebogenen Rohrabschnitts, der die entsprechenden geraden Rohrabschnitte 21a, 21b, 22a, 22b verbindet.
  • In dem Entladungsgefäß 2 befindet sich ein Gas, beispielsweise ein Edelgas, das im Betrieb als Elektronenleiter und/oder Elektronenpuffer dient. Als Gas kann beispielsweise Argon oder Krypton verwendet werden. Ferner können optional geringere Mengen an einem, zwei oder mehr weiteren Gasen in dem Entladungsgefäß 2 vorhanden sein. Das Gas kann beispielsweise einen Druck zwischen 1,5 und 3 hpa, beispielsweise von ungefähr 2 hpa, haben.
  • 3 zeigt eine detaillierte Schnittdarstellung eines Ausführungsbeispiels eines Entladungsgefäßes 2, insbesondere von Gefäßteilen 21, 22 des Entladungsgefäßes 2. Das Entladungsgefäß 2 kann beispielsweise das im Vorhergehenden erläuterte Entladungsgefäß 2 sein. Die Gefäßteile 21, 22 können beispielsweise eine Wandstärke zwischen 0,1 mm und 2 mm, beispielsweise zwischen 0,2 mm und 0,8 mm aufweisen.
  • Die Beschichtungsstruktur 7 weist beispielsweise eine Schutzschicht 30 und eine Leuchtstoffschicht 32 auf. Die Schutzschicht 30 ist beispielsweise direkt auf den Innenseiten 24 der Gefäßteile 21, 22 ausgebildet. Die Leuchtstoffschicht 32 ist beispielsweise direkt auf der Schutzschicht 30 ausgebildet. Die Leuchtstoffschicht 30 weist beispielsweise grünes Licht emittierende Leuchtstoffpartikel 34, rotes Licht emittierende Leuchtstoffpartikel 36 und blaues Licht emittierende Leuchtstoffpartikel 38 auf. Alternativ dazu kann die Beschichtungsstruktur 7 lediglich eine Schicht aufweisen, die als Schutzschicht 30 und Leuchtstoffschicht 32 dient und die beispielsweise als Leuchtstoffpartikel 34, 36, 38 aufweisende Schicht 30 ausgebildet ist. Alternativ dazu kann die Beschichtungsstruktur 7 mehr als zwei, beispielsweise drei, vier oder mehr Schichten aufweisen. Diese zusätzlichen Schichten können beispielsweise weitere Leuchtstoffschichten 32 und/oder weitere Schutzschichten 30 sein.
  • Die Leuchtstoffpartikel 34, 36, 38 können beispielsweise in einem Trägermaterial 40 eingebettet und/oder eingebunden sein und/oder Teil eines Leuchtstoffgemischs sein. Das Trägermaterial 40 kann beispielsweise ein Haftmittel aufweisen oder sein. Die Leuchtstoffpartikel 34, 36, 38 können jeweils kristallin ausgebildet sein und je ein Wirtsgitter aufweisen. Das Wirtsgitter kann beispielsweise Yttriumoxid aufweisen oder davon gebildet sein. Die Leuchtstoffpartikel 34, 36, 38 weisen jeweils Aktivatoren auf, die in dem entsprechenden Wirtsgitter eingebunden sind. Beispielsweise sind die Leuchtstoffpartikel 34, 36, 38 und insbesondere die Wirtsgitter mit den Aktivatoren dotiert. Die Aktivatoren weisen beispielsweise Metalle der Seltenen-Erden auf. Die Aktivatoren weisen beispielsweise Cer, Europium und/oder Terbium auf. Beispielsweise können die Wirtsgitter mit Eu2O3 und/oder Tb2O3 dotiert werden und dann Europium bzw. Terbium aufweisen. Als rotes Licht emittierende Leuchtstoffpartikel 34 können beispielsweise Y2O3:Eu-Partikel verwendet werden. Als grünes Licht emittierende Leuchtstoffpartikel 36 können beispielsweise LaPO4:Ce,Tb-Partikel oder LaPO4:Tb-Partikel, im Folgenden als LAP-Partikel bezeichnet, oder CeMgAl11O19:Tb-Partikel, im Folgenden als CAT-Partikel bezeichnet, verwendet werden. Als blaues Licht emittierende Leuchtstoffpartikel 38 können beispielsweise BaMgAl10O17:Eu-Partikel, im Folgenden als BAM-Partikel bezeichnet, verwendet werden. Die Leuchtstoffpartikel 34, 36, 38 können beispielsweise eine mittlere Korngröße von 3 bis 10 µm haben.
  • Die Beschichtungsstruktur 7, insbesondere die Leuchtstoffschicht 32 und/oder die Schutzschicht 30, weist Phosphatpartikel 42 auf, die nanoskalig sind und/oder die frei oder zumindest näherungsweise frei von Metallen der Seltenen-Erden sind. Beispielsweise können die Phosphatpartikel 42 nanoskalig sein und frei oder zumindest näherungsweise frei von Metallen der Seltenen-Erden sein. Alternativ oder zusätzlich weist die Beschichtungsstruktur 7, insbesondere die Leuchtstoffschicht 32 und/oder die Schutzschicht 30, nanoskaliges funktionelles Oxid auf. Die Phosphatpartikel 42 sind lediglich geringfügig sorbierend und/oder affin für Verunreinigungen, insbesondere für Wasser, Wasserstoff, Hydroxide, Sauerstoff und/oder Kohlenstoff. Dementsprechend setzen diese Phosphatpartikel 42 im Betrieb der Niederdruckentladungslampe 1 besonders wenig, beispielsweise vernachlässigbar wenig, Verunreinigungen frei. Die Phosphatpartikel 42 können in der Schicht, in der sie angeordnet sind, als Haftmittel und/oder Haftvermittler dienen. Der Haftmittelanteil kann beispielsweise in der Leuchtstoffschicht 32 in einem Bereich von beispielsweise 0.25% bis 5%, beispielsweise 0.5% bis 4%, beispielsweise 0.5% bis 3%, beispielsweise 0.6% bis 2.5%, bezogen auf die Masse der Leuchtstoffpartikel 34, 36, 38 liegen.
  • Die Phosphatpartikel 42 können beispielsweise LaP04, LaP04:Ce, YP04, YP04:Ce, GdP04, oder GdP04:Ce aufweisen. Die Phosphatpartikel 42 können beispielsweise eine BET-Oberfläche in einem Bereich von beispielsweise 20 m2/g bis 100 m2/g, beispielsweise 25 m2/g bis 90 m2/g, beispielsweise 30 m2/g bis 80 m2/g, beispielsweise 35 m2/g bis 70 m2/g, aufweisen. Die Phosphatpartikel 42 können beispielsweise mit LaP04 und/oder LaP04:Ce vergleichbare Oberflächeneigenschaften bezüglich der Ad- und Desorption, bezüglich der Oberflächenladung und/oder dem Zeta-Potential und/oder bezüglich Absorption von elektromagnetischer Strahlung im UVA und/oder UVC-Bereich haben. Einer der Phosphatpartikel 42 kann beispielsweise ein, zwei, drei oder mehr Moleküle des entsprechenden Phosphats aufweisen. Die mittlere Korngröße der Phosphatpartikel 42 kann beispielsweis um einen Faktor 10 bis 50 kleiner sein als die mittlere Korngröße der Leuchtstoffpartikel.
  • Die nanoskaligen Phosphatpartikel 42 weisen eine mittlere Korngröße in einem Bereich von 5 nm bis 800 nm, beispielsweise in einem Bereich von 10 nm bis 650 nm, beispielsweise in einem Bereich von 20 nm bis 200 nm auf. Dass die Phosphatpartikel 42 nanoskalig sind, kann somit bedeuten, dass die entsprechenden Phosphatpartikel eine mittlere Korngröße in einem Bereich von 5 nm bis 800 nm, beispielsweise in einem Bereich von 10 nm bis 650 nm, beispielsweise in einem Bereich von 20 nm bis 200 nm haben.
  • Alternativ oder zusätzlich zu der nanoskaligen Ausbildung der Phosphatpartikel 42 ist ein Anteil der Metalle der Seltenen-Erden in den Phosphatpartikeln 42 kleiner als 500 ppm, beispielsweise kleiner als 50 ppm, beispielsweise kleiner als 5 ppm. Dass die Phosphatpartikel 42 zumindest näherungsweise frei von Metallen der Seltenen-Erden sind, kann somit beispielsweise bedeuten, dass deren Anteil in den entsprechenden Phosphatpartikeln 42 kleiner als 500 ppm, beispielsweise kleiner als 50 ppm, beispielsweise kleiner als 5 ppm. Der Anteil kann beispielsweise ein prozentualer Anteil sein und/oder einem Dotierungsgrad entsprechen.
  • Optional kann die Beschichtungsstruktur 7 lediglich eine Schicht aufweisen, die als Schutzschicht 30 und Leuchtstoffschicht 32 dient und die beispielsweise als Leuchtstoffpartikel 34, 36, 38 aufweisende Schutzschicht 30 ausgebildet ist. Alternativ dazu kann die Beschichtungsstruktur 7 mehr als zwei, beispielsweise drei, vier oder mehr Schichten aufweisen. Diese zusätzlichen Schichten können beispielsweise weitere Leuchtstoffschichten 32 und/oder weitere Schutzschichten 30 sein. Die Phosphatpartikel 42 können beispielsweise in der Leuchtstoffschicht 32 und/oder in der Schutzschicht 30 als Haftmittel verwendet werden. Optional kann die Schutzschicht 30 von den Phosphatpartikeln 42 gebildet sein.
  • Auf einer Oberseite 7a und/oder in der Leuchtstoffschicht 7 können sich Partikel befinden, die in den Figuren aufgrund ihrer geringen Größe nicht sichtbar bzw. nicht eingezeichnet sind und die beispielsweise dazu beitragen können, dass ein maximaler Lichtstrom im Betrieb schnell erreicht wird und/oder ein Lichtstromanlauf besonders kurz ist. Zusätzlich kann sich eine geringe Menge an Quecksilber in dem Entladungsgefäß 2 befinden, beispielsweise 1 mg Quecksilber oder weniger, wobei das Quecksilber im ausgeschalteten Zustand der Entladungslampe 1 beispielsweise zum Teil flüssig und gasförmig ist und im eingeschalteten Zustand bei maximalem Lichtstrom zu einem kleineren Teil flüssig und zu einem größeren Teil gasförmig ist. Das Quecksilber kann mit den Partikeln auf der Oberfläche 7a der Leuchtstoffschicht 7 eine Verbindung eingehen und beispielsweise mit Indium aufweisenden Partikeln Amalgam bilden. Die Partikel sind beispielsweise Metallpartikel und/oder dienen dazu, Quecksilber zu binden. Beispielsweise weisen die Metallpartikel Indium, Zinn, Titan, Zink, Silber, Gold, Wismut, Aluminium oder Kupfer auf. Die Partikel können beispielsweise eine mittlere Teilchengröße aufweisen zwischen 50 und 2000 nm, zwischen 100 und 500 nm oder zwischen 200 und 300 nm.
  • Die Schutzschicht 30 kann beispielsweise Aluminiumoxid und hochdisperses Aluminiumoxid, beispielsweise pyrogenes Aluminiumoxid (AluC), aufweisen. Beispielsweise kann die Schutzschicht 30 zu 50%–95%, beispielsweise zu ungefähr 70%, Aluminiumoxid und zu 5% bis 50%, beispielsweise zu ungefähr 30% AluC aufweisen.
  • Die Beschichtungsstruktur 7, insbesondere die Schutzschicht 30 und/oder die Leuchtstoffschicht 32, kann beispielsweise mittels Beschlämmen mit einer wässrigen Suspension ausgebildet werden. Die wässrige Suspension kann die Leuchtstoffpartikel 34, 36, 38 bzw. das Material für die Schutzschicht 30 aufweisen. Nach Aufbringen der wässrigen Suspension auf die Innenwände 24 kann diese durch Erhitzen getrocknet werden, indem der Wasseranteil vollständig oder zumindest weitgehend verdampft wird. Das beschlämmte Entladungsgefäß 2 kann dazu auf Temperaturen beispielsweise von 500° C bis 800° C, beispielsweise von 520° C bis 650° C, beispielsweise von 530° C bis 600° C, erhitzt werden. Die Schutzschicht 30 und die Leuchtstoffschicht 32 können beispielsweise in zwei aufeinanderfolgenden Prozeduren ausgebildet werden.
  • Im Betrieb der Entladungslampe 2 wird eine Spannung an die Kontaktstifte 4, 5 des Entladungsgefäßes 2 angelegt. Dadurch fließt ein elektrischer Strom durch das Gas in dem Entladungsgefäß 2 und das Quecksilber wird erhitzt. Dadurch wird das auf die Oberfläche 7a der Leuchtstoffschicht 7 verteilte, gebundene Quecksilber schnell in seine Gasphase überführt. Die gasförmigen Quecksilberatome bzw. -moleküle werden durch die elektrische Energie des elektrischen Stroms angeregt und strahlen über das Entladungsgefäß 2 gleichmäßig verteilt UV-Strahlung, beispielsweise bei einer Wellenlänge von 254 nm, ab. Die UV-Strahlung regt die Leuchtstoffpartikel 34, 36, 38 in der Leuchtstoffschicht 32 zum Leuchten an. Beispielsweise können die Leuchtstoffpartikel 34, 36, 38 rotes, grünes bzw. blaues Licht emittieren, wodurch beispielsweise weißes Licht erzeugt werden kann. Die Lichtausbeute oder Effizienz der Niederdruckentladungslampe 1 kann in einem Bereich liegen beispielsweise von 70 lm/W bis 120lm/W, beispielsweise von 80 lm/W bis 110 lm/W, beispielsweise von 85lm/W bis 100 lm/W. Das erzeugte Licht kann beispielsweise eine Farbtemperatur von 2.500 K bis 8.000K, beispielsweise von 2.600 K bis 6.500 K, beispielsweise von 2.700 K bis 4.500 K aufweisen.
  • 4 zeigt eine erste Tabelle, die Emissionen von Verunreinigungen während eines Betriebs einer herkömmlichen Niederdruckentladungslampe und eines Ausführungsbeispiels einer Niederdruckentladungslampe 1, beispielsweise der im Vorhergehenden erläuterten Niederdruckentladungslampe 1, zeigt. Die herkömmliche Niederdruckentladungslampe weist eine Beschichtungsstruktur mit lediglich einer Schicht auf und die eine Schicht ist von dem Haftmittel Al2O3 gebildet. Das Ausführungsbeispiel der Niederdruckentladungslampe 1 weist eine Beschichtungsstruktur 7 mit lediglich einer Schicht auf und die Beschichtungsstruktur 7 ist von dem Haftmittel LaPO4 gebildet.
  • In den ersten drei Zeilen der ersten Tabelle stehen die Emissionen von Verunreinigungen der herkömmlichen Niederdruckentladungslampe bei 93 mg Al2O3 pro Entladungsgefäß (mg/bulb), bei 63 mg Al2O3 pro Entladungsgefäß (mg/bulb) bzw. bei 33 mg Al2O3 pro Entladungsgefäß (mg/bulb). In der vierten bis sechsten Zeile der ersten Tabelle stehen die Emissionen von Verunreinigungen des Ausführungsbeispiels der Niederdruckentladungslampe 1 bei 93 mg LaPO4 pro Entladungsgefäß (mg/bulb), bei 63 mg LaPO4 pro Entladungsgefäß (mg/bulb) bzw. bei 33 mg LaPO4 pro Entladungsgefäß (mg/bulb).
  • Die Verunreinigungen sind in den Spalten der ersten Tabelle eingetragen und weisen Wasserstoff, Sauerstoff und Kohlenstoff auf. Die Menge der Verunreinigungen sind in dem mittleren Spaltenblock relativ und ohne Einheit angegeben und in dem rechten Spaltenblock je Gramm Schichtgewicht pro Entladungsgefäß (g/bulb) angegeben. Der rechte Block ergibt sich aus dem Quotienten des linke Blockes und der Masse je Kolben. Das Ergebnis ist mit dem Faktor 100 skaliert.
  • Aus der ersten Tabelle geht hervor, dass die Emission von Verunreinigungen bei dem Ausführungsbeispiel der Niederdruckentladungslampe 1 deutlich geringer sind, beispielsweise um das zehnfache und mehr, als bei der herkömmlichen Niederdruckentladungslampe 1.
  • 5 zeigt eine zweite Tabelle, die Emissionen von Verunreinigungen während eines Betriebs einer herkömmlichen Niederdruckentladungslampe und eines Ausführungsbeispiels einer Niederdruckentladungslampe 1, beispielsweise der im Vorhergehenden erläuterten Niederdruckentladungslampe 1, zeigt. Die herkömmliche Niederdruckentladungslampe weist eine Beschichtungsstruktur mit lediglich einer Leuchtstoffschicht auf, die 2 wt% Haftmittel Al2O3 aufweist. Das Ausführungsbeispiel der Niederdruckentladungslampe 1 weist eine Beschichtungsstruktur 7 mit lediglich einer Leuchtstoffschicht 32 auf, die 2 wt% Haftmittel LaPO4 aufweist.
  • In den ersten drei Zeilen der zweiten Tabelle stehen die Emissionen von Verunreinigungen der herkömmlichen Niederdruckentladungslampe bei 2,50 g Schichtgewicht mit Al2O3 Haftmittel pro Entladungsgefäß (g/bulb), bei 2,02 g Schichtgewicht mit Al2O3 Haftmittel pro Entladungsgefäß (g/bulb) bzw. bei 1,46 g Schichtgewicht mit Al2O3 Haftmittel pro Entladungsgefäß (g/bulb). In der vierten bis sechsten Zeile der zweiten Tabelle stehen die Emissionen von Verunreinigungen des Ausführungsbeispiels der Niederdruckentladungslampe 1 bei 2,51 g Schichtgewicht mit LaPO4 Haftmittel pro Entladungsgefäß (g/bulb), bei 2,06 g Schichtgewicht mit LaPO4 Haftmittel pro Entladungsgefäß (mg/b g/bulb) bzw. bei 1,65 g Schichtgewicht mit LaPO4 Haftmittel pro Entladungsgefäß (g/bulb).
  • Die Verunreinigungen sind in den Spalten der zweiten Tabelle eingetragen und weisen Wasserstoff, Sauerstoff und Kohlenstoff auf. Die Menge der Verunreinigungen sind in dem mittleren Spaltenblock relativ und ohne Einheit angegeben und in dem rechten Spaltenblock je Gramm Schichtgewicht pro Entladungsgefäße (g/bulb) angegeben.
  • Aus der zweiten Tabelle geht hervor, dass die Emission von Verunreinigungen bei dem Ausführungsbeispiel der Niederdruckentladungslampe 1 deutlich geringer sind, beispielsweise um das zehnfache und mehr, als bei der herkömmlichen Niederdruckentladungslampe 1.
  • Die Erfindung ist nicht auf die angegebenen Ausführungsbeispiele beschränkt. Beispielsweise kann die Niederdruckentladungslampe 1 eine gerade Form und/oder mehr oder weniger Gefäßteile 21, 22 und/oder mehr oder weniger Rohrabschnitte 21a, 21b, 22a, 22b aufweisen. Ferner können die Leuchtstoffpartikel 34, 36, 38 von anderen chemischen Elementen als den im Vorhergehenden genannten gebildet sein.
  • Bezugszeichenliste
  • 1
    Niederdruckentladungslampe
    2
    Entladungsgefäß
    3
    Gehäuse
    4, 5
    Kontaktstifte
    6
    Sockel
    7
    Beschichtungsstruktur
    7a
    Oberfläche
    8
    Deckel
    21, 22
    Gefäßteile
    23
    Steg
    21a, 21b, 22a, 22b
    Rohrabschnitte
    24
    Innenseiten
    30
    Schutzschicht
    32
    Leuchtstoffschicht
    34
    grünes Licht emittierende Leuchtstoffpartikel
    36
    rotes Licht emittierende Leuchtstoffpartikel
    38
    blaues Licht emittierende Leuchtstoffpartikel
    40
    Trägermaterial
    42
    Phosphatpartikel

Claims (16)

  1. Niederdruckentladungslampe (1), mit einem Entladungsgefäß (2) und einer Beschichtungsstruktur (7), die auf einer Innenseite des Entladungsgefäßes (2) ausgebildet ist und die nanoskalige Phosphatpartikel (42) und/oder nanoskaliges funktionelles Oxid aufweist.
  2. Niederdruckentladungslampe (1) nach Anspruch 1, bei der die nanoskaligen Phosphatpartikel (42) eine mittlere Korngröße haben in einem Bereich von 5 nm bis 800 nm.
  3. Niederdruckentladungslampe (1) nach Anspruch 2, bei der die nanoskaligen Phosphatpartikel (42) eine mittlere Korngröße haben in einem Bereich von 10 nm bis 650 nm.
  4. Niederdruckentladungslampe (1) nach Anspruch 3, bei der die nanoskaligen Phosphatpartikel (42) eine mittlere Korngröße haben in einem Bereich von 20 nm bis 200 nm.
  5. Niederdruckentladungslampe (1), mit einem Entladungsgefäß (2) und einer Beschichtungsstruktur (7), die auf einer Innenseite des Entladungsgefäßes (2) ausgebildet ist und die Phosphatpartikel (42) aufweist, die frei oder zumindest näherungsweise frei von Metallen der Seltenen-Erden sind.
  6. Niederdruckentladungslampe (1) nach Anspruch 5, bei der ein Anteil der Metalle der Seltenen-Erden in den Phosphatpartikeln (42) kleiner als 500 ppm ist.
  7. Niederdruckentladungslampe (1) nach Anspruch 6, bei der ein Anteil der Metalle der Seltenen-Erden in den Phosphatpartikeln (42) kleiner als 50 ppm ist.
  8. Niederdruckentladungslampe (1) nach Anspruch 7, bei der ein Anteil der Metalle der Seltenen-Erden in den Phosphatpartikeln (42) kleiner als 5 ppm ist.
  9. Niederdruckentladungslampe (1) nach einem der vorstehenden Ansprüche, bei der die Phosphatpartikel (42) nanoskalig sind und frei oder zumindest näherungsweise frei von Metallen der Seltenen-Erden sind.
  10. Niederdruckentladungslampe (1) nach einem der vorstehenden Ansprüche, bei der die Beschichtungsstruktur (7) Leuchtstoffpartikel (34, 36, 38) aufweist und bei der die mittlere Korngröße der Phosphatpartikel (42) um einen Faktor 10 bis 50 kleiner ist als die mittlere Korngröße der Leuchtstoffpartikel (34, 36, 38).
  11. Niederdruckentladungslampe (1) nach einem der vorstehenden Ansprüche, bei der die Beschichtungsstruktur (7) aufweist eine Schutzschicht (30), die auf einer Innenseite (24) des Entladungsgefäßes (2) ausgebildet ist, und eine Leuchtstoffschicht (32), die auf der Schutzschicht (30) ausgebildet ist und die Leuchtstoffpartikel (34, 36, 38) aufweist.
  12. Niederdruckentladungslampe (1) nach Anspruch 11, bei der die Schutzschicht (30) von den Phosphatpartikeln (42) gebildet ist und/oder bei der die Phosphatpartikel (42) in der Beschichtungsstruktur (7) als Haftmittel wirken.
  13. Niederdruckentladungslampe (1) nach einem der Ansprüche 1 bis 10, bei der die Beschichtungsstruktur (7) eine Schicht aufweist, die die Phosphatpartikel (42) und Leuchtstoffpartikel (34, 36, 38) aufweist oder von diesen gebildet ist.
  14. Niederdruckentladungslampe (1) nach einem der vorstehenden Ansprüche, bei der die Phosphatpartikel (42) Lanthanphosphat aufweisen.
  15. Niederdruckentladungslampe (1) nach einem der vorstehenden Ansprüche, die im Betrieb weißes Licht emittiert.
  16. Niederdruckentladungslampe (1) nach einem der vorstehenden Ansprüche, bei der das nanoskalige funktionelle Oxid nicht dotiert ist und/oder die nanoskaligen Phosphate dotiert sind.
DE102016111534.7A 2016-06-23 2016-06-23 Niederdruckentlandungslampe Ceased DE102016111534A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE102016111534.7A DE102016111534A1 (de) 2016-06-23 2016-06-23 Niederdruckentlandungslampe
PCT/EP2017/065501 WO2017220765A1 (de) 2016-06-23 2017-06-23 Niederdruckentladungslampe
US16/313,391 US11024500B2 (en) 2016-06-23 2017-06-23 Low-pressure discharge lamp
CN201780038977.4A CN109417018A (zh) 2016-06-23 2017-06-23 低压放电灯

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016111534.7A DE102016111534A1 (de) 2016-06-23 2016-06-23 Niederdruckentlandungslampe

Publications (1)

Publication Number Publication Date
DE102016111534A1 true DE102016111534A1 (de) 2017-12-28

Family

ID=59101486

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102016111534.7A Ceased DE102016111534A1 (de) 2016-06-23 2016-06-23 Niederdruckentlandungslampe

Country Status (4)

Country Link
US (1) US11024500B2 (de)
CN (1) CN109417018A (de)
DE (1) DE102016111534A1 (de)
WO (1) WO2017220765A1 (de)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030011310A1 (en) * 2001-06-20 2003-01-16 Thomas Juestel Low-pressure gas discharge lamp with phosphor coating
WO2004013892A2 (en) * 2002-07-29 2004-02-12 Koninklijke Philips Electronics N.V. Low-pressure mercury vapor discharge lamp
WO2005116164A1 (en) * 2004-05-27 2005-12-08 Philips Intellectual Property & Standards Gmbh Low-pressure mercury vapor discharge lamp comprising uv-a phosphor
US20080266861A1 (en) * 2005-12-16 2008-10-30 Koninklijke Philips Electronics , N.V. Low-Pressure Discharge Lamp Having Improved Efficiency
US20130116756A1 (en) * 2010-07-13 2013-05-09 Koninklijke Philips Electronics N.V. Uv-a or uv-b-emitting discharge lamp

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4459507A (en) * 1982-02-18 1984-07-10 Gte Products Corporation Fluorescent lamps having improved maintenance and method of making same
US5602444A (en) * 1995-08-28 1997-02-11 General Electric Company Fluorescent lamp having ultraviolet reflecting layer
CA2185957A1 (en) * 1995-10-11 1997-04-12 Jon Bennett Jansma Fluorescent lamp having phosphor layer with additive
JPH11312491A (ja) * 1998-04-28 1999-11-09 Matsushita Electron Corp 蛍光ランプおよびその製造方法
EP1188175A2 (de) * 2000-02-01 2002-03-20 Koninklijke Philips Electronics N.V. Niederdruckquecksilberdampfentladungslampe
CN1646117A (zh) * 2002-04-11 2005-07-27 皇家飞利浦电子股份有限公司 低压汞蒸汽放电灯
WO2003100821A1 (en) * 2002-05-29 2003-12-04 Philips Intellectual Property & Standards Gmbh Fluorescent lamp with ultraviolet reflecting layer
US20050218812A1 (en) * 2002-06-04 2005-10-06 Van Den Brakel Ronald A Low-pressure mercury vapor discharge lamp and compact fluorescent lamp
CN101103434A (zh) * 2004-02-02 2008-01-09 皇家飞利浦电子股份有限公司 低压汞蒸气放电灯和紧凑型荧光灯
DE102007026029B4 (de) 2007-06-04 2017-01-26 Schott Ag Mischung, enthaltend Fluoreszenzfarbstoff und Haftmittel für den Fluoreszenzfarbstoff, Verfahren zur Herstellung und Verwendung
US20090079324A1 (en) * 2007-09-20 2009-03-26 Istvan Deme Fluorescent lamp
DE102014204172A1 (de) * 2014-03-06 2015-09-24 Osram Gmbh Niederdruckentladungslampe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030011310A1 (en) * 2001-06-20 2003-01-16 Thomas Juestel Low-pressure gas discharge lamp with phosphor coating
WO2004013892A2 (en) * 2002-07-29 2004-02-12 Koninklijke Philips Electronics N.V. Low-pressure mercury vapor discharge lamp
WO2005116164A1 (en) * 2004-05-27 2005-12-08 Philips Intellectual Property & Standards Gmbh Low-pressure mercury vapor discharge lamp comprising uv-a phosphor
US20080266861A1 (en) * 2005-12-16 2008-10-30 Koninklijke Philips Electronics , N.V. Low-Pressure Discharge Lamp Having Improved Efficiency
US20130116756A1 (en) * 2010-07-13 2013-05-09 Koninklijke Philips Electronics N.V. Uv-a or uv-b-emitting discharge lamp

Also Published As

Publication number Publication date
US11024500B2 (en) 2021-06-01
CN109417018A (zh) 2019-03-01
WO2017220765A1 (de) 2017-12-28
US20190172699A1 (en) 2019-06-06

Similar Documents

Publication Publication Date Title
EP1048620B1 (de) Vorrichtung zur Desinfektion von Wasser mit einer UV-C-Gasentladungslampe
EP1271617A2 (de) Niederdruckgasentladungslampe mit Leuchtstoffbeschichtung
DE69504312T2 (de) Elektrische lampe mit einer unterschicht zur erhöhung der lichtleistung einer lumineszierenden schicht
EP1187174A2 (de) Niederdruckgasentladungslampe mit indiumhaltiger Gasfüllung
JP2008500422A (ja) Uv−a蛍光体を有する低圧水銀蒸気放電ランプ
DE2029303A1 (de)
DE10057881A1 (de) Gasentladungslampe mit Leuchtstoffschicht
EP1253624B1 (de) Gasentladungslampe mit Down-Conversion-Leuchtstoff
DE2953446C2 (de) Hochdruck-Metalldampfentladungslampe
EP2737003B1 (de) Leuchtstoff mit schutzschicht und leuchtstofflampe denselben enthaltend
DE69322834T2 (de) Fluoreszenzlampe mit verbesserter Phosphormischung
EP1253625B1 (de) Gasentladungslampe mit Down-Conversion-Leuchtstoff
EP1104933A2 (de) Gasentladungslampe mit Oxidemitter-Elektrode
DE60313194T2 (de) Niederdruck-quecksilber-entladungs-leuchtstofflampen
DE3109538A1 (de) Leuchtstofflampe mit leuchtstoffkombination
DE10126159A1 (de) Gasentladungslampe mit Down-Conversion-Leuchtstoff
DE10044563A1 (de) Niederdruckgasentladungslampe mit kupferhaltiger Gasfüllung
DE3855685T2 (de) Grünlichtausstrahlende entladungsbirne mit seltenem gas
DE102016111534A1 (de) Niederdruckentlandungslampe
DE69820996T2 (de) Niederdruckquecksilberentladungslampe
DE10130330A1 (de) Gasentladungslampe für dielektrisch behinderte Entladungen mit blauen Leuchtstoff
EP1254943B1 (de) Down-Conversion-Leuchtstoff, und Gasentladungslampe mit diesem Leuchtstoff
EP3114701B1 (de) Niederdruckentladungslampe mit leuchtstoffpartikeln kleiner korngrösse
DE3751015T2 (de) Fluoreszente Lampe mit mehrschichtigem Phosphorüberzug.
DE3025789A1 (de) Hochintensive metallhalid-entladungslampe

Legal Events

Date Code Title Description
R082 Change of representative

Representative=s name: LANCHAVA, BAKURI, DR. RER. NAT., DE

Representative=s name: DF-MP DOERRIES FRANK-MOLNIA & POHLMAN PATENTAN, DE

R163 Identified publications notified
R082 Change of representative

Representative=s name: DF-MP DOERRIES FRANK-MOLNIA & POHLMAN PATENTAN, DE

R012 Request for examination validly filed
R016 Response to examination communication
R002 Refusal decision in examination/registration proceedings
R082 Change of representative

Representative=s name: LANCHAVA, BAKURI, DR. RER. NAT., DE

R003 Refusal decision now final