DE102015116447A1 - Optische Einheit, optische Vorrichtung, die dieselbe verwendet, Lichtquellenvorrichtung und Projektionsanzeigevorrichtung - Google Patents

Optische Einheit, optische Vorrichtung, die dieselbe verwendet, Lichtquellenvorrichtung und Projektionsanzeigevorrichtung Download PDF

Info

Publication number
DE102015116447A1
DE102015116447A1 DE102015116447.7A DE102015116447A DE102015116447A1 DE 102015116447 A1 DE102015116447 A1 DE 102015116447A1 DE 102015116447 A DE102015116447 A DE 102015116447A DE 102015116447 A1 DE102015116447 A1 DE 102015116447A1
Authority
DE
Germany
Prior art keywords
light
mirror
light fluxes
concave
fluxes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE102015116447.7A
Other languages
English (en)
Other versions
DE102015116447B4 (de
Inventor
Kazuhiro Inoko
Takashi Sudo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015176821A external-priority patent/JP6072177B2/ja
Application filed by Canon Inc filed Critical Canon Inc
Publication of DE102015116447A1 publication Critical patent/DE102015116447A1/de
Application granted granted Critical
Publication of DE102015116447B4 publication Critical patent/DE102015116447B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/106Beam splitting or combining systems for splitting or combining a plurality of identical beams or images, e.g. image replication
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/141Beam splitting or combining systems operating by reflection only using dichroic mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/10Mirrors with curved faces
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Projection Apparatus (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

Eine optische Einheit enthält eine Vielzahl von paraboloiden Spiegeln, die konfiguriert sind, Lichtflüsse aus einer Vielzahl von LDs zu reflektieren und sie zu einer konkaven Linse zu leiten. Die Lichtflüsse aus den paraboloiden Spiegeln sind eine Vielzahl von konvergenten Lichtflüssen, und die paraboloiden Spiegel reflektieren die Lichtflüsse aus den LDs so, dass Abstände dazwischen kürzer werden, wenn die konvergenten Lichtflüsse sich weiter weg von den paraboloiden Spiegeln ausbreiten.

Description

  • HINTERGRUND DER ERFINDUNG
  • Gebiet der Erfindung
  • Die vorliegende Erfindung bezieht sich auf eine optische Einheit, eine optische Vorrichtung, die dieselbe verwendet, eine Lichtquellenvorrichtung und eine Projektionsanzeigevorrichtung. Die vorliegende Erfindung bezieht sich insbesondere auf eine Lichtquellenvorrichtung unter Verwendung einer festen Lichtquelle wie z. B. einem Halbleiterlaser als einer Lichtquelle.
  • Beschreibung des Stands der Technik
  • In den letzten Jahren, wurde ein Projektor entwickelt, der einen Fluoreszenzkörper mit Lichtflüssen bestrahlt, die von Hochleistungslaserdioden (LD) als Anregungslicht emittiert werden, und der wellenlängenumgewandeltes Fluoreszenzlicht verwendet.
  • Es wird angenommen, dass mehrere LDs angeordnet sind und verwendet werden, um eine hohe Lumineszenz in einem Projektor zu realisieren. Jedoch wird die Lichtausgabe der LDs bei einer höheren Temperatur reduziert, und deswegen wird die Lichtausgabe der LDs reduziert, wenn die LDs, wenn die LDs dicht angeordnet werden, um einer Verkleinerung des Projektors Priorität zu geben, einander Wärme abgeben, was eine Helligkeit eines projizierten Bildes verschlechtert.
  • Aus diesem Grund ist es nötig, dass die LDs mit größeren Abständen angeordnet werden, sodass der gegenseitige Heizeffekt so weit wie möglich reduziert ist. Wenn jedoch die Anordnungsabstände größer werden, werden die von der Gruppe der LDs ausgehenden Lichtflüsse dicker und eine Größer eines nachfolgenden optischen Elements wird auch vergrößert, was in Bezug auf Kosten und Gewicht nicht wünschenswert ist.
  • Im Hinblick auf das obige Problem wird eine Technik in der japanischen Patentanmeldungsoffenlegungsschrift Nr. 2011-65770 und der US Patentoffenlegungsanmeldung Nr. 2014/0111775 beschrieben, um Lichtflüsse, die von einer Gruppe von LDs ausgehen, so dünn wie möglich zu machen.
  • Die japanische Patentanmeldungsoffenlegung Nr. 2011-65770 diskutiert eine Technik, bei der eine Vielzahl von planaren Spiegeln in einer Ausbreitungsrichtung von Lichtflüssen von einer Vielzahl von LDs bereitgestellt sind, und der Winkel von jedem der planaren Spiegel ist so angepasst, dass er das Licht auf einen fluoreszierenden Körper kondensiert.
  • US Patentoffenlegungsanmeldung Nr. 2014/0111775 diskutiert eine Technik, bei der ein paraboloider Spiegel in einer Ausbreitungsrichtung von Lichtflüssen von einer Vielzahl von LDs bereitgestellt ist, und die Lichtflüsse von dem paraboloiden Spiegel werden auf einen Spiegel reflektiert, sodass sie auf einem fluoreszierenden Körper kondensiert werden.
  • Durch Anwenden der in der japanischen Patentanmeldungsoffenlegung Nr. 2011-65770 und US Patentanmeldungsoffenlegung Nr. 2014/0111775 diskutierten Techniken kann ein Anwachsen in einer Größe des optischen Elements verhindert werden.
  • Jedoch sind in der in der japanischen Patentanmeldungsoffenlegung Nr. 2011-65770 beschriebenen Struktur die reflektierenden Oberflächen der Spiegel planar, und dadurch ist es schwierig, parallele Lichtflüsse, die auf den Spiegeln reflektiert werden, auf ein kleines Gebiet auf dem fluoreszierenden Körper zu kondensieren.
  • Wenn ein Kondensationspunkt auf dem fluoreszierenden Körper groß ist, verringert sich eine Parallelität von Licht, wenn das Licht auf das nachfolgende optische System einfällt, und eine Lichtausnutzungseffizienz kann verschlechtert werden.
  • Auf der anderen Seite werden in der in der US Patentanmeldungsoffenlegung Nr. 2014/0111775 beschriebenen Struktur konvergente Lichtflüsse von einem paraboloiden Spiegel auf eine kleine Fläche auf dem fluoreszierenden Körper kondensiert, weil der paraboloide Spiegel verwendet wird, was die Verschlechterung in einer Lichtausnutzungseffizienz verhindert.
  • Jedoch wird in der in der US Patentanmeldungsoffenlegung Nr. 2014/0111775 beschriebenen Struktur der paraboloide Spiegel größer in einer Fläche und tiefer, wenn die Anzahl an LDs wächst, um eine höhere Luminanz zu erhalten, was die Größe der Lichtquellenvorrichtung vergrößern kann.
  • ZUSAMMENFASSUNG DER ERFINDUNG
  • Die vorliegende Erfindung ist auf eine optische Vorrichtung, die in der Lage ist, eine Abnahme in einer Lichtausnutzungseffizienz zu reduzieren und eine kleinere Lichtquellenvorrichtung zu erreichen, eine Lichtquellenvorrichtung, die dieselbe verwendet, und eine Projektionsanzeigevorrichtung gerichtet.
  • Gemäß einem Aspekt der vorliegenden Erfindung enthält eine optische Einheit eine Vielzahl von reflektierenden Oberflächen, die konfiguriert sind, Lichtflüsse von einer Vielzahl von Lichtquellen zu reflektieren und die Lichtflüsse zu einer Linseneinheit zu führen, wobei die reflektierenden Oberflächen so konfiguriert sind, dass die Lichtflüsse, die auf den reflektierenden Oberflächen reflektiert werden, eine Vielzahl von konvergenten Lichtflüssen sind, und ein Abstand zwischen jedem der konvergenten Lichtflüsse kürzer wird, wenn die konvergenten Lichtflüsse sich weiter weg von den reflektierenden Oberflächen ausbreiten, wobei die reflektierenden Oberflächen eine Vielzahl von konkaven Spiegeln sind, jeder der konkaven Spiegel ein Teil einer verschiedenen einer Vielzahl von konkaven Oberflächen ist, die eine voneinander verschiedene Form haben, und je weiter ein konkaver Spiegel aus den konkaven Spiegeln von der Linseneinheit weg positioniert ist, desto länger wird eine Brennweite des konkaven Spiegels.
  • Weitere Merkmale der vorliegenden Erfindung werden aus der folgenden Beschreibung von beispielhaften Ausführungsbeispielen mit Bezug auf die anhängenden Zeichnungen offenbar.
  • KURZE BESCHREIBUNG DER ZEICHNUNGEN
  • 1 ist ein erklärendes Diagramm, das die Struktur einer Projektionsanzeigevorrichtung illustriert, bei der eine optische Vorrichtung und eine Lichtquellenvorrichtung gemäß einem beispielhaften Ausführungsbeispiel der vorliegenden Erfindung montiert sind.
  • 2A und 2B sind beispielhafte Diagramme, die die Struktur der Lichtquellenvorrichtung gemäß dem beispielhaften Ausführungsbeispiel der vorliegenden Erfindung illustrieren.
  • 3A, 3B und 3C sind beispielhafte Diagramme einer Paraboloidspiegelanordnung gemäß dem beispielhaften Ausführungsbeispiel der vorliegenden Erfindung.
  • 4 ist ein Bilddiagramm der Paraboloidspiegelanordnung gemäß dem beispielhaften Ausführungsbeispiel der vorliegenden Erfindung.
  • 5 ist ein erklärendes Diagramm, das eine Beziehung zwischen einem Brennpunkt der Paraboloidspiegelanordnung en und einem Brennpunkt einer konkaven Linse gemäß dem beispielhaften Ausführungsbeispiel der vorliegenden Erfindung illustriert.
  • BESCHREIBUNG DER AUSFÜHRUNGSBEISPIELE
  • Ein beispielhaftes Ausführungsbeispiel gemäß der vorliegenden Erfindung wird unten mit Bezug auf die Zeichnungen beschrieben. Die Formen oder relativen Anordnungen der in dem beispielhaften Ausführungsbeispiel beschriebenen Komponenten sollen wie benötigt basierend auf einer Struktur einer Vorrichtung, auf die die vorliegende Erfindung angewendet wird, oder verschiedenen anderen Bedingungen geändert werden. Das heißt, die Formen oder relativen Anordnungen der Komponenten sind nicht definiert, um den Bereich der vorliegenden Erfindung innerhalb des folgenden beispielhaften Ausführungsbeispiels einzuschränken.
  • [Struktur der Projektionsanzeigevorrichtung]
  • Die Struktur eines Projektors 1000, bei dem eine optische Vorrichtung gemäß dem beispielhaften Ausführungsbeispiel der vorliegenden Erfindung montiert ist, wird zunächst mit Bezug auf 1 beschrieben.
  • Der Projektor (Projektionsanzeigevorrichtung) 1000 enthält eine Lichtquellenvorrichtung 100, ein optisches Beleuchtungssystem 200, ein Farbtrenn-Kombinationssystem 300 und eine Projektionslinse 400. Mit dieser Struktur kann der Projektor 1000 ein Bild auf einen Schirm 500 projizieren.
  • Die Lichtquellenvorrichtung 100 enthält eine Vielzahl von Laserdioden 1 (LDs) als eine Lichtquelle, eine Vielzahl von Kollimatorlinsen (positiven Linsen) 2, auf die eine Vielzahl von den LDs 1 emittierten Lichtflüssen einfällt, und eine optische Vorrichtung 10. Die Lichtquellenvorrichtung 100 enthält ferner einen dichroitischen Spiegel 12, eine Kondensorlinseneinheit 20 und einen fluoreszierenden Körper (Wellenlängenumwandlungseinrichtung) 13.
  • Die Lichtquellenvorrichtung 100 enthält ferner einen Motor (Antriebseinheit) 14, der konfiguriert ist, den fluoreszierenden Körper 13 zu drehen, und eine Basis 15, die konfiguriert ist, den Motor 14 zu stützen.
  • Die LDs 1 emittieren blaues Licht und die Kollimatorlinsen 2 wandeln divergente Lichtflüsse, die von den LDs 1 emittiert werden, in parallele Lichtflüsse um. 1 illustriert nur einige der LDs 1 und der Kollimatorlinsen 2, die in 2A bis 5 illustriert sind, wie unten beschrieben.
  • Der fluoreszierende Körper 13 konvertiert einen Teil der aus der optischen Vorrichtung 10 transmittierten Lichtflüsse in Fluoreszenzlicht (umgewandeltes Licht) mit einer Wellenlänge, die verschieden von einer Wellenlänge der Lichtflüsse ist, die von der optischen Vorrichtung 10 transmittiert werden. Ferner emittiert der fluoreszierende Körper 13 das Fluoreszenzlicht und nicht-umgewandeltes Licht, das dieselbe Wellenlänge wie die der Lichtflüsse hat, die aus der optischen Vorrichtung 10 transmittiert werden.
  • Das Fluoreszenzlicht enthält grüne und rote Lichtflüsse und nicht-konvertiertes Licht ist ein blauer Lichtfluss gemäß dem vorliegenden beispielhaften Ausführungsbeispiel.
  • Der dichroitische Spiegel 12 reflektiert den blauen Lichtfluss, der durch die optische Vorrichtung in einen dünnen parallelen Lichtfluss komprimiert wurde, und führt den blauen Lichtfluss zu dem fluoreszierenden Körper 13 über die Kondensorlinseneinheit 20.
  • Gemäß dem beispielhaften Ausführungsbeispiel der vorliegenden Erfindung enthält die Kondensorlinseneinheit 20 drei Kondensorlinsen, nämlich 20A, 20B und 20C.
  • Ferner reflektiert der dichroitische Spiegel 12 das nicht-konvertierte Licht aus dem Fluoreszenzlicht und das nicht-konvertierte Licht, das sich aus dem fluoreszierenden Körper 13 über die Kondensorlinseneinheit 20 ausbreitet. Auf der anderen Seite geht das fluoreszierende Licht durch den dichroitischen Spiegel 12 und wird zu dem optischen Beleuchtungssystem 200 geführt, das unten beschrieben wird. Ferner wird von dem nicht-konvertierten Licht aus dem fluoreszierenden Körper 13, das nicht-konvertierte Licht, das nicht auf den dichroitischen Spiegel 12 fällt, zu dem optischen Beleuchtungssystem 200 geführt, das unten beschrieben wird.
  • Auf diese Weise kann gemäß dem vorliegenden beispielhaften Ausführungsbeispiel das blaue nicht-konvertierte Licht und das Fluoreszenzlicht mit dem grünen und dem roten Lichtfluss zu dem optischen Beleuchtungssystem 200 geführt werden.
  • Die optische Vorrichtung 10 wird in dem beispielhaften Ausführungsbeispiel der vorliegenden Erfindung beschrieben, und eine Struktur davon ist wie folgt:
    Das optische Beleuchtungssystem 200 führt Lichtflüsse, die von der Lichtquellenvorrichtung 100 emittiert werden, zu dem Farbtrenn-Kombinationssystem 300, das unten beschrieben wird.
  • Die aus der Lichtquellenvorrichtung 100 austretenden Lichtflüsse werden durch eine erste Fliegenaugenlinse 41 und eine zweite Fliegenaugenlinse 42 geteilt. Ferner werden die aus der Lichtquellenvorrichtung 100 austretenden Lichtflüsse in S-polarisiertes Licht durch eine Polarisationsumwandlungseinrichtung 43 umgewandelt. Das S-polarisierte Licht ist ein Lichtfluss, der in der vertikalen Richtung senkrecht zu dem Blatt linear polarisiert ist.
  • Eine Kondensorlinseneinheit 44 kondensiert die Lichtflüsse, die aus der Polarisationsumwandlungseinrichtung 43 austreten, auf solch eine Weise, dass die Flüssigkristallplatten 58 (58R, 58G und 58B), die unten beschrieben werden, in einer überlappenden Weise beleuchtet werden.
  • Zusätzlich enthält die Kondensorlinseneinheit 44 gemäß dem beispielhaften Ausführungsbeispiel der vorliegenden Erfindung drei Kondensorlinsen, nämlich 44A, 44B und 44C.
  • Das Farbtrenn-Kombinationssystem 300 trennt den Lichtfluss von dem optischen Beleuchtungssystem 200 nach der Wellenlänge, kombiniert Bildlicht, das auf dem Schirm anzuzeigen ist, und leitet das Bildlicht an die unten beschriebene Projektionslinse 400.
  • Ein dichroitischer Spiegel 50 hat eine Eigenschaft, dass er rotes Licht (R-Licht) und blaues Licht (B-Licht) reflektiert und grünes Licht (G-Licht) transmittiert. Das R-Licht und B-Licht, die auf dem dichroitischen Spiegel 50 reflektiert werden, fallen auf eine wellenlängenselektive Phasenplatte 54. Die wellenlängenselektive Phasenplatte 54 hat eine eigene Eigenschaft, dass sie eine Phasendifferenz entsprechend einer halben Wellenlänge dem B-Licht gibt, und keine Phasendifferenz dem R-Licht gibt. Entsprechend wechselt das auf die wellenlängenselektive Phasenplatte 54 einfallende B-Licht in P-polarisiertes Licht und das R-Licht wechselt in S-polarisiertes Licht, die beide auf einen Polarisationsstrahlteiler (PBS) 53 fallen, der unten beschrieben wird. Das P-polarisierte Licht ist ein Lichtfluss, der linear in der horizontalen Richtung des Blatts polarisiert ist.
  • Der PBS 53 hat eine Eigenschaft, dass er das P-polarisierte Licht transmittiert und das S-polarisierte Licht reflektiert. Dadurch transmittiert das B-Licht durch den PBS 53 und fällt auf die Flüssigkristallplatte 58B. Das R-Licht wird auf dem PBS 53 reflektiert und fällt auf die Flüssigkristallplatte 58R.
  • Auf der anderen Seite geht das durch den dichroitischen Spiegel 50 transmittierte G-Licht durch ein Dummy-Glas 56, das konfiguriert ist, eine optische Pfadlänge anzupassen, und fällt dann auf einen PBS 51. Der PBS 51 hat eine Eigenschaft, dass er das P-polarisierte Licht transmittiert und das S-polarisierte Licht reflektiert, und dadurch wird das G-Licht durch den PBS 51 reflektiert und fällt auf die Flüssigkristallplatte 58G.
  • Oben wurde eine Weise beschrieben, auf die die von der Lichtquellenvorrichtung 100 emittierten Lichtflüsse auf die Flüssigkristallplatten 58 einfallen. Unten wird eine Weise beschrieben, auf die das Bildlicht die Flüssigkristallplatten 58 verlässt und ein Bild auf dem Bildschirm 500 projiziert wird. Das Bildlicht ist ein Lichtfluss zum Anzeigen eines Bildes, das auf den Schirm 500 zu projizieren ist.
  • Einem Lichtfluss, der auf eine jeweilige der Flüssigkristallplatten (Lichtmodulationseinrichtungen) 58 fällt, wird eine Phasendifferenz gegeben, sodass der Lichtfluss eine gewünschte Polarisationsrichtung gemäß dem Modulationszustand eines Pixels hat, der auf den Flüssigkristallplatten 58 angeordnet ist. Unter den Lichtflüssen, denen eine Phasendifferenz gegeben wird, kehrt eine Komponente, die die gleiche Polarisationsrichtung wie der von der Lichtquellenvorrichtung 100 emittierte Lichtfluss zeigt, zu Seite der der Lichtquellenvorrichtung 100 zurück und wird von dem Bildlicht ausgeschlossen. Auf der anderen Seite wird eine Komponente, die eine Polarisationsrichtung zeigt, die um 90 Grad von dem Lichtfluss verschieden ist, der von der Lichtquellenvorrichtung 100 emittiert wird, zu einem Kombinationsprisma 32 geführt.
  • Wenn das aus der Lichtquellenvorrichtung 100 emittierte R-Licht von dem S-polarisierten Licht in das P-polarisierte Licht durch die Flüssigkristallplatte 58R für das R-Licht umgewandelt wird, transmittiert das in das P-polarisierte Licht umgewandelte R-Licht durch den PBS 53 und fällt auf eine wellenlängeselektive Phasenplatte 55. Die wellenlängenselektive Phasenplatte 55 hat eine Eigenschaft, dass sie dem B-Licht keine Phasendifferenz gibt und dem R-Licht eine Phasendifferenz gibt, die einer halben Wellenlänge entspricht. Deswegen fällt das R-Licht, das durch die wellenlängenselektive Phasenplatte 55 geht, auf ein Kombinationsprisma 52 als das S-polarisierte Licht.
  • Wenn das aus der Lichtquellenvorrichtung 100 emittierte B-Licht von dem P-polarisierten Licht in das S-polarisierte Licht durch die Flüssigkristallplatte 58B für das B-Licht umgewandelt wird, wird das S-polarisierte Licht durch den PBS 53 reflektiert und transmittiert durch die wellenlängenselektive Phasenplatte 55. Die wellenlängenselektive Phasenplatte 55 gibt dem B-Licht keine Phasendifferenz, und dadurch fällt das B-Licht mit dem S-polarisierten Licht auf das Kombinationsprisma 52.
  • Wenn das aus der Lichtquellenvorrichtung 100 emittierte Licht von dem S-polarisierten Licht in das P-polarisierte Licht durch die Flüssigkristallplatte 58G für das G-Licht umgewandelt wird, geht das P-polarisierte Licht durch den PBS 51 und fällt auf ein Dummy-Glas 57, das konfiguriert ist, eine optische Pfadlänge anzupassen. Das durch das Dummy-Glas 57 gehende G-Licht fällt auf das Kombinationsprisma 52.
  • Das G-Licht transmittiert durch das Kombinationsprisma 52, und das B-Licht und das R-Licht werden durch das Kombinationsprisma 52 reflektiert, sodass sie zu der Projektionslinse 400 geführt werden, weil das Kombinationsprisma 52 eine Eigenschaft hat, dass es das P-polarisierte Licht transmittiert und das S-polarisierte Licht reflektiert, wenn die oben beschriebene Modulation durchgeführt wird. Folglich kann ein Farbbild auf dem Schirm 500 über die Projektionslinse 400 projiziert werden.
  • Ein erstes beispielhaftes Ausführungsbeispiel gemäß der vorliegenden Erfindung wird unten beschrieben. Die Struktur der Lichtquellenvorrichtung, die an der optischen Vorrichtung gemäß dem ersten beispielhaften Ausführungsbeispiel der vorliegenden Erfindung montiert ist, wird mit Bezug auf 2A bis 5 beschrieben.
  • 2A und 2B sind Diagramme, die die Struktur der Lichtquellenvorrichtung illustrieren, die an der optischen Vorrichtung gemäß dem vorliegenden beispielhaften Ausführungsbeispiel montiert ist. 2A ist ein Projektionsdiagramm auf den YZ-Querschnitt, und 2B ist ein Projektionsdiagramm auf den XZ-Querschnitt.
  • In 2A bis 5 wird die Richtung parallel zu der optischen Achse einer Konkavlinse 5 (die unten beschrieben wird) als eine Y-Richtung bezeichnet, die Richtung senkrecht zu der Y-Achse und parallel zu den langen Seiten der reflektierenden Oberflächen der planaren Spiegel 4 (die unten beschrieben werden) wird als eine X-Richtung bezeichnet, und die Richtung senkrecht zu der Y-Achsenrichtung und der X-Achsenrichtung wird als eine Z-Achsenrichtung bezeichnet.
  • Die optische Vorrichtung 10 enthält eine Vielzahl von paraboloiden Spiegeln (reflektierenden Oberflächen) 3. Die optische Einrichtung 10 enthält ferner die konkave Linse (Linseneinheit) 5 und eine Spiegeleinheit 40.
  • Die Lichtquellenvorrichtung 100 enthält die Vielzahl von LDs 1 und die Kollimatorlinsen 2 zusätzlich zu der optischen Vorrichtung 10, die oben beschrieben wurde, und ist so konfiguriert, dass sie einen komprimierten parallelen Lichtfluss aus der konkaven Linse 5 emittiert. In dem vorliegenden beispielhaften Ausführungsbeispiel wird die Vielzahl von paraboloiden Spiegeln 3 kollektiv als eine Paraboloidspiegelanordnung (optische Einheit) 30 bezeichnet und die planaren Spiegel 4 werden kollektiv als eine Spiegeleinheit 40 bezeichnet. Ein Prisma mit einer Vielzahl von reflektierenden Oberflächen kann anstelle der Spiegeleinheit 40 angewendet werden. Das Prisma ist konfiguriert, einen Lichtfluss, der aus der Paraboloidspiegelanordnung 30 transmittiert wird, zu der konkaven Linse 5 wie in der Spiegeleinheit 40 zu leiten.
  • Eine Weise, in der Lichtflüsse von den LDs 1 sich hin zu der Paraboloidspiegelanordnung 30 über die Kollimatorlinsen 2 ausbreiten, wird zunächst beschrieben.
  • Wie oben beschrieben, würde das ausschließliche Bereitstellen der LDs 1 die Größe des nachfolgenden optischen Elements vergrößern, weil die aus den LDs 1 austretenden Lichtflüsse divergente Lichtflüsse sind. Deswegen sind die Kollimatorlinsen 2 so bereitgestellt, dass die Lichtflüsse, die aus den LDs 1 austreten, sofort auf die Kollimatorlinsen 2 treffen. Entsprechend werden die divergenten Lichtflüsse, die von den LDs 1 emittiert werden, durch die Kollimatorlinsen 2 in parallele Lichtflüsse umgewandelt, und dadurch wird ein Anwachsen in einer Größe des optischen Elements verhindert.
  • Der Lichtfluss von den Kollimatorlinsen 2 muss nicht vollständig parallel sein und kann ein wenig divergent oder ein wenig konvergent innerhalb eines Bereichs sein, der für den Betrieb der Vorrichtung verwendbar ist.
  • In dem vorliegenden Ausführungsbeispiel sind, wie in 2A und 2B illustriert, zwei Gruppen von LDs, die jeweils 24 LDs insgesamt enthalten (sechs Zeilen in der X-Achsenrichtung und vier Spalten in der Z-Achsenrichtung), symmetrisch um die Konkavlinse 5 bereitgestellt. Die Anzahl der LDs 1 ist 48.
  • Das Folgende beschreibt, wie der Lichtfluss, der aus den Kollimatorlinsen 2 austritt, sich hin zu den planaren Spiegeln 4 über die Paraboloidspiegelanordnung en 30 ausbreitet.
  • 3A, 3B und 3C sind Diagramme, die die Funktion der Paraboloidspiegelanordnung 30 illustrieren. 3A ist ein Projektionsdiagramm auf den YZ-Querschnitt, 3B ist ein Projektionsdiagramm auf den XZ-Querschnitt, und 3C ist ein Projektionsdiagramm auf den XY-Querschnitt.
  • In 3A, 3B und 3C sind die oben beschriebene Spiegeleinheit 40 und die Konkavlinse 5 weggelassen, um die Funktion der Paraboloidspiegelanordnung 30 zu erklären. In 3A, 3B und 3C ist nur eine der zwei Paraboloidspiegelanordnung en 30 illustriert.
  • Wie in 3A illustriert, kann gesehen werden, dass die Paraboloidspiegelanordnung 30 parallele Lichtflüsse, die von der Vielzahl von Kollimatorlinsen 2 kommen, in konvergente Lichtflüsse umwandelt, und die konvergenten Lichtflüsse von der Paraboloidspiegelanordnung 30 auf einen Brennpunkt F kondensieren.
  • Genauer wandelt die Vielzahl von paraboloiden Spiegeln 30 die parallelen Lichtflüsse von den LDs 1 in die konvergenten Lichtflüsse und reflektiert die parallelen Lichtflüsse, die aus den LDs 1 emittiert werden, sodass der Abstand zwischen jedem der konvergenten Lichtflüsse kleiner wird, wenn sie sich von den paraboloiden Spiegeln 3 ausbreiten.
  • Mit anderen Worten breiten sich Zentrallichtstrahlen der aus den LDs 1 emittierten Lichtflüsse aus, während ihre gegenseitigen Abstände hin zu der Konkavlinse 5 über die paraboloiden Spiegel 3 abnehmen.
  • Mit anderen Worten breitet sich eine Vielzahl der Lichtstrahlen aus, die jeweils durch die optische Achse der entsprechenden Kollimatorlinse gehen, während sie ihre gegenseitigen Abstände hin zu der Konkavlinse über die paraboloiden Spiegel 3 reduzieren.
  • Wie in 3A illustriert, ist es wünschenswert, dass die Paraboloidspiegelanordnung 30 so konfiguriert ist, dass der Brennpunkt F, an dem die Lichtflüsse, die aus den paraboloiden Spiegeln 3 austreten, konvergieren, mit Bezug auf die Paraboloidspiegelanordnung 30 (in der positiven Y-Richtung) gegenüber den LDs 1 und den Kollimatorlinsen 2 positioniert ist. Dadurch können die Lichtflüsse aus den paraboloiden Spiegeln 3 dünner als in einem Fall gemacht werden, in dem der Brennpunkt F auf derselben Seite wie die LDs 1 und die Kollimatorlinsen 2 mit Bezug auf die Paraboloidspiegelanordnung 3 (in der negativen Y-Richtung) positioniert ist. Mit anderen Worten kann der Querschnitt des konvergenten Lichtflusses, der aus den paraboloiden Spiegeln 3 austritt, viel kleiner gemacht werden. Folglich kann der Lichtfluss aus der konkaven Linse 5 dünner sein und das nachfolgende optische System kann weiter verkleinert werden.
  • Mit anderen Worten ist der paraboloide Spiegel 3 so konfiguriert, dass ein Winkel, der zwischen einer senkrechten Linie, bei der ein Hauptlichtstrahl des Lichtflusses aus einer Lichtquelle den paraboloiden Spiegel kreuzt, und dem Hauptstrahl gebildet ist, 45 Grad oder größer ist. Mit anderen Worten ist die Paraboloidspiegelanordnung 30 so konfiguriert, dass ein Winkel, der zwischen der Zentrallinie eines Kreiskegels, der von den konvergenten Lichtflüssen aus den paraboloiden Spiegeln 3 umschrieben wird, und dem Lichtstrahl 90 Grad oder größer ist.
  • Nicht alle die paraboloiden Spiegel 3 müssen so wie oben beschrieben konfiguriert sein. Es kann auch nur einer der paraboloiden Spiegel 3 in der oben beschriebenen Weise konfiguriert sein. Es ist mehr wünschenswert, dass mehr als eine Hälfte der paraboloiden Spiegel 3 in der oben beschriebenen Weise konfiguriert sind. Das heißt, es ist wünschenswert, dass zumindest einer der paraboloiden Spiegel 3 so konfiguriert werden kann, dass ein Lichtfluss von diesem paraboloiden Spiegel 3 näher an die optische Achsenrichtung der konkaven Linse 5 kommt, wenn der Lichtfluss sich weg von dem paraboloiden Spiegel 3 ausbreitet.
  • Während die paraboloiden Spiegel 3 einen Brennpunkt F haben, der den paraboloiden Oberflächen gemeinsam ist, ist jeder der paraboloiden Spiegel 3 an einer jeweils anderen Position angeordnet. Als ein Ergebnis sind die paraboloiden Spiegel 3 in ihren Formen unterschiedlich zueinander. Mit den unterschiedlichen Formen können die aus der Vielzahl von paraboloiden Spiegeln 3 austretende Lichtflüsse auf den Brennpunkt F kondensiert werden.
  • Genauer vergleiche man, wie in 3A illustriert, von den paraboloiden Spiegeln 3 in dem YZ-Querschnitt eine Form eines paraboloiden Spiegels 3a, der am nächsten zu der optischen Achse der Konkavenlinse 5 ist, mit der eines paraboloiden Spiegels 3b, der am weitesten von der optischen Achse der Konkavenlinse 5 ist. Aus dem Vergleich der beiden Formen kann gesehen werden, dass eine paraboloide Scheitelposition und ein paraxialer Krümmungsradius voneinander verschieden sind.
  • Das heißt, die Scheitelpositionen der paraboloiden Spiegel 3a und 3b sind verschieden voneinander, aber die Brennpunkte davon sind gemeinsam, das heißt der Brennpunkt F.
  • Der paraboloide Spiegel 3a und paraboloide Spiegel 3b sind an jeweils unterschiedlichen Positionen in dem YZ-Querschnitt bereitgestellt. Jedoch sind die Brennweiten der paraboloiden Spiegel 3a und 3b voneinander verschieden, sodass die paraboloiden Spiegel 3a und 3b den gemeinsamen Brennpunkt F haben.
  • Genauer ist die Paraboloidspiegelanordnung 30 so konfiguriert, dass, je weiter der paraboloide Spiegel 3 von der optischen Achse der konkaven Linse weg ist, desto länger wird die Brennweite.
  • Wenn alle paraboloiden Spiegel 3 jeweils einen Teil einer identischen paraboloiden Form bilden, würde es schwierig, die konvergenten Lichtflüsse, die aus den paraboloiden Spiegeln 3 transmittiert werden, auf einen Punkt zu konvergieren.
  • Ferner würde ein kontinuierlich geformtes Paraboloid gebildet, wenn alle paraboloiden Spiegel 3 jeweils einen Teil einer identischen paraboloiden Form bilden würden, wenn die Positionen der Vielzahl von paraboloiden Spiegeln 3 in solch einer Weise angepasst würden, dass sie die paraboloiden Spiegel 3 verbinden, um die konvergenten Lichtflüsse, die aus den paraboloiden Spiegeln 3 transmittiert werden, auf einen Punkt zu kondensieren. Mit solch einer Struktur kann eine Größe der Paraboloidspiegelanordnung 30 verglichen mit der Struktur gemäß dem vorliegenden beispielhaften Ausführungsbeispiel wachsen.
  • Wenn die Paraboloidspiegelanordnung 30 in ihrer Größe wächst, wird der Lichtfluss aus der Paraboloidspiegelanordnung 30 dicker, und dadurch würden auch die Spiegeleinheit 40 und die Konkavlinse 5 in ihren Größen wachsen.
  • Man nehme an, dass eine Struktur, in der ein kontinuierlich geformter paraboloider Spiegel angewendet wird, angewendet wird, ohne dass die Größe der Spiegeleinheit und der Konkavlinse wachsen. In solch einer Struktur, muss, wenn paraboloide Spiegel symmetrisch mit Bezug auf die optische Achse der konkaven Linse wie in dem vorliegenden beispielhaften Ausführungsbeispiel bereitgestellt sind, der Abstand zwischen den rechten und linken paraboloiden Spiegeln größer sein als in der Struktur gemäß dem vorliegenden beispielhaften Ausführungsbeispiel. Entsprechend würde die ganze Lichtquellenvorrichtung in ihrer Größe wachsen.
  • Wenn nur ein paraboloider Spiegel verwendet würde, müssten die Spiegeleinheit und die konkave Linse weiter weg von dem paraboloiden Spiegel als in der Struktur gemäß dem vorliegenden beispielhaften Ausführungsbeispiel bereitgestellt werden. Dadurch würde die ganze Lichtquellenvorrichtung in ihrer Größe in solch einem Fall wachsen.
  • Das heißt, in der Struktur gemäß dem vorliegenden beispielhaften Ausführungsbeispiel, in der die paraboloiden Spiegel 3 jeweils einen Teil einer verschiedenen paraboloiden Form bilden, sind die paraboloiden Spiegel 3 weiter von der konkaven Linse 5 getrennt, je weiter ihre Brennweiten sind. Deswegen kann ein Anwachsen der Vorrichtungsgröße verhindert werden.
  • Die Tatsache, dass die paraboloiden Spiegel 3 voneinander in ihren Formen verschieden sind, zeigt an, dass die paraboloiden Spiegel 3 untereinander verschiedene Brennweiten haben.
  • Ferner gibt die Tatsache, dass die paraboloiden Spiegel 3, je weiter sie von der konkaven Linse 5 getrennt sind, desto längere Brennweiten haben, an, dass paraboloide Spiegel, die näher an den LDs 1 sind, größere Brennweiten haben.
  • Die Tatsache, dass paraboloide Spiegel 3 weiter weg von der Konkavlinse 5 sind, gibt an, dass die optischen Pfadlängen von den paraboloiden Spiegeln 3 zu der Konkavlinse länger sind oder dass die paraboloiden Spiegel 3 entfernter von der Konkavlinse 5 positioniert sind, oder beides.
  • Ferner kann mit der Paraboloidspiegelanordnung 30 gemäß dem vorliegenden beispielhaften Ausführungsbeispiel eine Vielzahl von konvergenten Lichtflüssen aus den paraboloiden Spiegeln 3 auf einen Punkt kondensiert werden, und deswegen kann eine Parallelität von den Lichtflüssen, die den fluoreszierenden Körper verlassen, erhöht werden.
  • Eine Oberfläche, die die optische Achse der konkaven Linse 5 enthält und parallel zu der langen Seite der Spiegeleinheit 40 ist, wird als ein erster Querschnitt bezeichnet, und eine Oberfläche senkrecht zu dem ersten Querschnitt, und die die optische Achse der konkaven Linse enthält, wird als ein zweiter Querschnitt bezeichnet. Von den paraboloiden Spiegeln 3 sind paraboloide Spiegel 3 (reflektierende Oberflächen), die symmetrisch mit Bezug auf den ersten Querschnitt oder den zweiten Querschnitt bereitgestellt sind ein Teil einer identischen paraboloiden Form. Entsprechend dem vorliegenden beispielhaften Ausführungsbeispiel ist der erste Querschnitt der XY-Querschnitt und der zweite Querschnitt ist der YZ-Querschnitt.
  • Mit anderen Worten bilden paraboloide Spiegel 3, die mit dem gleichen Abstand von der optischen Achse der konkaven Linse 5 in dem XZ-Querschnitt positioniert sind, einen Teil derselben paraboloiden Form. Mit der Struktur der Paraboloidspiegelanordnung 30 kann die Vielzahl von konvergenten Lichtflüssen aus der Paraboloidspiegelanordnung 30 auf einen Punkt kondensiert werden, selbst wenn die Paraboloidspiegelanordnung en 30 symmetrisch mit Bezug auf die optische Achse der konkaven Linse 5 angeordnet sind, wie in 2A illustriert.
  • Wie in 4 illustriert, ist die Paraboloidspiegelanordnung 30 als ein optisches Element konfiguriert. Genauer ist die Vielzahl von paraboloiden Spiegeln 3 diskontinuierlich auf einem Basisbauteil 6 bereitgestellt. Mit anderen Worten sind die paraboloiden Spiegel 3 auf dem Basisbauteil 6 getrennt voneinander mit einem vorbestimmten Abstand bereitgestellt. Der Abstand zwischen jedem der paraboloiden Spiegel 3 wird an dem Abstand zwischen den angeordneten LDs 1 ausgerichtet.
  • Die Paraboloidspiegelanordnung 30 als das optische Element, das in 4 illustriert ist, kann durch Gießen eines Glasmaterials, oder durch Schneiden oder Gießen einer Metallkomponente gebildet werden.
  • Wenn die paraboloiden Spiegel 3 jeweils ein Teil einer verschiedenen paraboloiden Form bilden, können die paraboloiden Spiegel 3 diskontinuierlich gebildet werden, wie in 4 illustriert.
  • Wenn die Paraboloidspiegelanordnung 30 durch Glasformen unter Verwendung einer Gussform hergestellt wird, ist es wünschenswert, dass die Paraboloidspiegelanordnung 30 weniger Unebenheit zeigt, um zu verhindern, dass ein Schertropfen auftritt, wenn die Paraboloidspiegelanordnung 30 von der Gussform entfernt wird. Das heißt, es ist wünschenswert, dass der Abstand zwischen dem Basisbauteil 6 und einem Endpunkt eines paraboloiden Spiegels 3 in der Y-Achsenrichtung kurz ist.
  • Entsprechend ist es wünschenswert, dass die Lücken zwischen den paraboloiden Spiegeln 3 mit einem Glasmaterial oder einem Metallmaterial gefüllt sind, das eine glatte Kurve hat, wie z. B. eine Splinekurve, die durch die Endpunkte der paraboloiden Spiegel 3 geht. Dadurch kann die Unebenheit auf der Oberfläche der Paraboloidspiegelanordnung 30 reduziert werden, was ergibt, dass ein Schertropfen zur Zeit des Gießens, wie oben beschrieben, verhindert wird.
  • Zusätzlich muss das Basisbauteil 6 nicht plattenförmig sein, sondern es kann z. B. eine gekrümmte Form haben.
  • Anstelle der Struktur, in der das Basisbauteil 6 mit den paraboloiden Spiegeln 3 bereitgestellt ist, kann die Paraboloidspiegelanordnung eine stufenweise Form haben, die eine konstante Dicke und eine Vielzahl von reflektierenden Oberflächen hat. Solch eine Paraboloidspiegelanordnung kann z. B. durch Pressgießen einer ebenen Metallplatte gemacht werden. Zusätzlich sind die reflektierenden Oberflächen der paraboloiden Spiegel 3 beschichtet. Das Beschichtungsmaterial kann eine metallische reflektierende Schicht wie z. B. Aluminium oder Silber oder eine dielektrische Mehrlagenschicht sein. Wenn eine dielektrische Mehrlagenschicht angewendet wird, sollte die Reflektivität davon maximal bei der Wellenlänge des Lichtflusses sein, der von den LDs 1 emittiert wird, sodass die Lichtverwendungseffizienz erhöht wird.
  • Die LDs emittieren im Allgemeinen linear-polarisiertes Licht. Wenn die Vielzahl der LDs so angeordnet ist, dass die Polarisationsrichtung des Lichtflusses von jeder der LDs parallel zu der X-Achsenrichtung ist, wird die Reflektivität auf den paraboloiden Spiegeln 3 in dem YZ-Querschnitt erhöht, und die Lichtverwendungseffizienz kann weiter erhöht werden.
  • Wie in 2A illustriert, müssen Lichtflüsse aus den LDs 1 mit einem spitzeren Winkel in dem YZ-Querschnitt als in anderen Querschnitten reflektiert werden, sodass alle die Lichtflüsse von den LDs 1, die in der Z-Achsenrichtung angeordnet sind, auf die Spiegeleinheit 40 einfallen können.
  • Dazu ist es wünschenswert, dass die Vielzahl von LDs so angeordnet ist, dass die Polarisationsrichtung von Lichtflüssen aus den LDs 1 parallel zu der X-Achsenrichtung ist, um die Reflektivität auf den paraboloiden Spiegeln 3 in dem YZ-Querschnittt zu erhöhen.
  • Der Einfallswinkel des Lichtflusses, der aus einer LD 1 emittiert wird und auf jeden der paraboloiden Spiegel 3 eintritt, unterscheidet sich für jeden paraboloiden Spiegel 3. Dies deswegen, weil die Paraboloidspiegelanordnung 30 so konfiguriert ist, dass der Winkel, der zwischen der optischen Achse der konkaven Linse 5 und einem paraboloiden Spiegel 3 gebildet wird, kleiner wird, wenn der Lichtfluss von weiter weg von der optischen Achse der konkaven Linse 5 auf den paraboloiden Spiegel 3 einfällt, der den Lichtfluss zu der Spiegeleinheit 40 führt.
  • Deswegen kann durch Anpassen der Beschichtung von jedem der paraboloiden Spiegel 3 in solch einer Weise, dass die Reflektivität davon maximal bei dem Einfallswinkel des Lichtflusses ist, der in den paraboloiden Spiegel 3 aus der LD 1 eintritt, die Lichtverwendungseffizienz weiter erhöht werden.
  • Die vorliegende Erfindung ist nicht auf die Struktur beschränkt, in der die Beschichtung für jeden der paraboloiden Spiegel 3 angepasst ist. Die Beschichtung kann dieselbe für alle paraboloiden Spiegel 3 sein.
  • In solch einer Struktur ist es wünschenswert, eine Beschichtung anzuwenden, die einen Bereich eines Einfallswinkels hat, bei dem die Reflektivität maximal ist, anstelle eines Anwendens der Beschichtung, bei der die Reflektivität bei einem vorbestimmten Einfallswinkel maximal ist.
  • Der Einfallswinkel des aus einer LD 1 emittierten Lichtflusses, der in den jeweiligen paraboloiden Spiegel 3 eintritt, entspricht dem Winkel, der zwischen einer senkrechten Linie und einem Einfallslichtstrahl gebildet wird. Die senkrechte Linie wird dort gebildet, wo aus den Lichtflüssen, die aus der LD 1 emittiert werden, ein Lichtstrahl, der durch die optische Achse der Kollimatorlinse 2 geht, auf den paraboloiden Spiegel 3 einfällt.
  • Der zwischen der optischen Achse der konkaven Linse 5 und einem paraboloiden Spiegel 3 gebildete Winkel kann der Winkel sein, der zwischen einer Linie, die die Endpunkte des paraboloiden Spiegels 3 verbindet, und der optischen Achse der konkaven Linse 5 gebildet wird. Ferner kann der zwischen der optischen Achse der konkaven Linse 5 und einem paraboloiden Spiegel 3 gebildete Winkel der Winkel sein, der zwischen einer tangentialen Linie und der optischen Achse der konkaven Linse 5 auf dem paraboloiden Spiegel 3 gebildet wird. Die Tangentiallinie wird dort gebildet, wo aus dem Lichtfluss von der LD 1 der Lichtstrahl, der durch die optische Achse der Kollimatorlinse 2 geht, einfällt.
  • Gemäß dem vorliegenden beispielhaften Ausführungsbeispiel emittieren alle LDs 1 blaues Licht, aber die vorliegende Erfindung ist darauf nicht beschränkt.
  • Zum Beispiel kann die Vielzahl der LDs 1 eine Blaulicht-LD, ein Rotlicht-LD und eine Grünlicht-LD enthalten. Ferner kann die Vielzahl der LDs 1 die Blaulicht-LD und die Rotlicht-LD enthalten.
  • Wie oben beschrieben kann die Beschichtung der einzelnen paraboloiden Spiegel 3 unterschiedlich gemäß der Wellenlänge von einer LD sein, wenn die Vielzahl an LDs 1 LDs enthält, die jeweils unterschiedliche Wellenlängen haben. Ferner braucht der oben beschriebene dichroitische Spiegel 12 und der fluoreszierende Körper 13 nicht bereitgestellt zu werden, wenn die Vielzahl der LDs die Blaulicht-, Rotlicht- und Grünlicht-LDs enthält.
  • Das Folgende beschreibt, wie der Lichtfluss, der aus der Spiegeleinheit 40 austritt, sich hin zu einem nachfolgenden System über die konkave Linse 5 ausbreitet.
  • Eine Vielzahl von konvergenten Lichtflüssen, die aus der Paraboloidspiegelanordnung 30 austritt, wird auf der Spiegeleinheit 40 reflektiert und tritt in die konkave Linse 5 ein.
  • Die konkave Linse 5 ist eine Meniskuslinse mit einer negativen Brechkraft und einer konvexen Seite, auf der die Lichtflüsse von den LDs 1 einfallen.
  • Wie oben beschrieben, wird die Vielzahl von konvergenten Lichtflüssen von der Paraboloidspiegelanordnung 30 auf den gemeinsamen Brennpunkt F kondensiert, wenn keine Spiegeleinheit 40 bereitgestellt ist, wie in 3A gezeigt.
  • Ferner wird gemäß dem vorliegenden beispielhaften Ausführungsbeispiel in einem Fall, in dem der Brennpunkt der konkaven Linse F' ist, wie in 5 illustriert, die Vielzahl der konvergenten Lichtflüsse aus der Spiegeleinheit 40 auf den Brennpunkt F' kondensiert, wenn keine konkave Linse 5 existiert.
  • Genauer überlappen der Brennpunkt von jedem der paraboloiden Spiegel 3 und der Brennpunkt der konkaven Linse 5 miteinander. Mit solch einer Struktur kann die konkave Linse 5 die konvergenten Lichtflüsse, die aus der Spiegeleinheit 40 transmittiert werden, in parallele Lichtflüsse umwandeln.
  • Wenn die konkave Linse 5 als eine sphärische Linse konfiguriert ist, tritt eine sphärische Abberation auf. Als ein Ergebnis kann die Parallelität der Lichtflüsse aus der konkaven Linse 5 reduziert sein.
  • In solch einem Fall wird durch Anpassen der Position des Brennpunkts der paraboloiden Spiegel 3 auf solch eine Weise, dass die sphärische Abberation aufgrund der konkaven Linse 5 kompensiert wird, eine Reduktion in einer Parallelität der Lichtflüsse aus der konkaven Linse 5 verhindert.
  • Genauer ist die Paraboloidspiegelanordnung 30 so konfiguriert, dass der Winkel zwischen der optischen Achse der konkaven Linse 5 und einem paraboloiden Spiegel 3 kleiner wird, wenn ein Lichtfluss, den der paraboloide Spiegel 3 leitet, weiter weg von der optischen Achse der konkaven Linse 5 auf die Spiegeleinheit 40 einfällt. Mit anderen Worten ist in der Paraboloidspiegelanordnung 30 der Winkel, der zwischen der optischen Achse der konkaven Linse 5 und dem paraboloiden Spiegel 3 gebildet wird, umso schmaler, je weiter weg ein paraboloider Spiegel 3 von der konkaven Linse 5 ist.
  • Solch eine Struktur verhindert die sphärische Abberation aufgrund der konkaven Linse 5, während die Vielzahl an konvergenten Lichtflüssen aus den paraboloiden Spiegeln 3 auf einen kleineren Bereich auf dem fluoreszierenden Körper kondensiert werden kann.
  • Das beispielhafte Ausführungsbeispiel gemäß der vorliegenden Erfindung wurde oben beschrieben, aber die vorliegende Erfindung ist nicht auf das beispielhafte Ausführungsbeispiel beschränkt und kann verschiedentlich innerhalb des Bereichs der vorliegenden Erfindung modifiziert und geändert werden.
  • [Weitere beispielhafte Ausführungsbeispiele]
  • Das obige Ausführungsbeispiel beschreibt die Struktur, bei der der Lichtfluss aus der Paraboloidspiegelanordnung in den parallelen Lichtfluss durch die konkave Linse umgewandelt wird, d. h., die Struktur, bei der die Linseneinheit eine negative Brechkraft hat. Jedoch ist die vorliegende Erfindung nicht darauf beschränkt. In dem Fall einer optischen Vorrichtung, die eine Lichtquelleneinrichtung verkleinern kann, während eine Reduktion in einer Lichtverwendungseffizienz verhindert wird, kann z. B. eine konvexe Linse weiter in der Y-Achsenrichtung als eine Kondensationsposition der Lichtflüsse bereitgestellt werden, die aus der Spiegeleinheit 40 kommen. Das heißt, die Linseneinheit kann eine positive Brechkraft haben. In solch einer Struktur wird die konvexe Linse so bereitgestellt, dass der Brennpunkt der konvexen Linse an der Kondensationsposition der Lichtflüsse aus der Spiegeleinheit 40 lokalisiert ist.
  • Das obige beispielhafte Ausführungsbeispiel beschreibt die Struktur, bei der die Vielzahl von paraboloiden Spiegeln 3 als reflektierende Oberflächen und als konkave Spiegel verwendet wird, aber die vorliegende Erfindung ist nicht darauf beschränkt. Zum Beispiel kann eine Vielzahl von planaren Spiegeln als reflektierende Oberflächen angewendet werden, und zweite positive Linsen können zwischen den Kollimatorlinsen 2 und den ebenen Spiegeln bereitgestellt werden, um die konvergenten Lichtflüsse auf die planaren Spiegel zu leiten. Die zweiten positiven Linsen wandeln die parallelen Lichtflüsse aus den Kollimatorlinsen 2 in die konvergenten Lichtflüsse um. Mit anderen Worten sind die Lichtflüsse aus der Vielzahl von Lichtquellen nicht auf die parallelen Lichtflüsse beschränkt, und die reflektierenden Oberflächen sind nicht auf die konkaven Spiegel mit den paraboloiden Oberflächen beschränkt.
  • Während die vorliegende Erfindung mit Bezug auf die beispielhaften Ausführungsbeispiele beschrieben wurde, versteht es sich, dass die Erfindung nicht auf die offenbarten beispielhaften Ausführungsbeispiele beschränkt ist. Dem Bereich der folgenden Patentansprüche soll die breiteste Interpretation zugestanden werden, sodass er alle solche Modifikationen und äquivalenten Strukturen und Funktionen umfasst.
  • Eine optische Einheit enthält eine Vielzahl von paraboloiden Spiegeln, die konfiguriert sind, Lichtflüsse aus einer Vielzahl von LDs zu reflektieren und sie zu einer konkaven Linse zu führen. Die Lichtflüsse aus den paraboloiden Spiegeln sind eine Vielzahl von konvergenten Lichtflüssen und die paraboloiden Spiegel reflektieren die Lichtflüsse aus den LDs so, dass die Abstände dazwischen umso kürzer werden, je weiter sich die konvergenten Lichtflüsse aus den paraboloiden Spiegeln ausbreiten.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • JP 2011-65770 [0005, 0006, 0008, 0009]

Claims (9)

  1. Optische Einheit mit: einer Vielzahl von reflektierenden Oberflächen, die konfiguriert sind, Lichtflüsse von einer Vielzahl von Lichtquellen zu reflektieren und die Lichtflüsse zu einer Linseneinheit zu führen, wobei die reflektierenden Oberflächen so konfiguriert sind, dass die auf den reflektierenden Oberflächen reflektierten Lichtflüsse eine Vielzahl von konvergenten Lichtflüssen sind, und so, dass ein Abstand zwischen jedem der konvergenten Lichtflüsse mit einem Abstand, mit dem sie sich von den reflektierenden Oberflächen ausbreiten, abnimmt, jede der reflektierenden Oberflächen eine von der Vielzahl von konkaven Spiegeln ist, jeder der konkaven Spiegel ein Teil einer anderen einer Vielzahl von konkaven Oberflächen ist und jede der konkaven Oberflächen eine von den anderen verschiedene Form hat, die konkaven Spiegel einen ersten konkaven Spiegel und einen zweiten konkaven Spiegel enthalten, wobei der zweite konkave Spiegel an einer Position bereitgestellt ist, die weiter von der Linseneinheit entfernt ist als der erste konkave Spiegel, und eine Brennweite des zweiten konkaven Spiegels länger als eine Brennweite des ersten konkaven Spiegels ist.
  2. Optische Einheit nach Anspruch 1, wobei jede der konkaven Oberflächen eine paraboloide Oberfläche ist.
  3. Optische Einheit nach Anspruch 1, wobei zumindest eine der reflektierenden Oberflächen so konfiguriert ist, dass ein Lichtfluss von der reflektierenden Oberfläche sich in eine Richtung ausbreitet, die verschieden von der aus den Lichtquellen ist.
  4. Optische Vorrichtung mit: einer optischen Einheit; einer Linseneinheit; und einer Spiegeleinheit, die konfiguriert ist, Lichtflüsse aus der optischen Einheit zu der Linseneinheit zu leiten, wobei die optische Einheit eine Vielzahl von reflektierenden Oberflächen enthält, die konfiguriert sind, Lichtflüsse aus einer Vielzahl von Lichtquellen zu reflektieren und die Lichtflüsse zu der Linseneinheit zu leiten, und wobei die reflektierenden Oberflächen so konfiguriert sind, dass die auf den reflektierenden Oberflächen reflektierten Lichtflüsse eine Vielzahl von konvergenten Lichtflüssen sind, und so, dass ein Abstand zwischen jedem der konvergenten Lichtflüsse mit einem Abstand, mit dem er sich aus den reflektierenden Oberflächen ausbreitet, abnimmt, jede der reflektierenden Oberflächen eine einer Vielzahl von konkaven Spiegeln ist, jede der konkaven Spiegel ein Teil einer anderen einer Vielzahl von konkaven Oberflächen ist und jede der konkaven Oberflächen eine voneinander verschiedene Form hat, die konkaven Spiegel einen ersten konkaven Spiegel und einen zweiten konkaven Spiegel enthalten, wobei der zweite konkave Spiegel an einer Position bereitgestellt ist, die von der Linseneinheit weiter entfernt ist als der erste konkave Spiegel, und eine Brennweite des zweiten konkaven Spiegels länger als eine Brennweite des ersten konkaven Spiegels ist, und die Linseneinheit konfiguriert ist, die konvergenten Lichtflüsse aus der Spiegeleinheit in eine Vielzahl von zueinander parallelen Lichtflüssen umzuwandeln.
  5. Optische Vorrichtung nach Anspruch 4, wobei die Linseneinheit eine Meniskuslinse enthält, die eine negative Brechkraft hat, und bei der eine Einfallsseite, auf der die Lichtflüsse von den Lichtquellen eintreten, konvex ist.
  6. Optische Vorrichtung nach Anspruch 4, wobei in einem Fall, in dem ein erster Querschnitt eine Oberfläche ist, die eine optische Achse der Linseneinheit enthält und parallel zu einer langen Seite der Spiegeleinheit ist, und ein zweiter Querschnitt eine Oberfläche ist, die senkrecht zu dem ersten Querschnitt ist und die optische Achse der Spiegeleinheit enthält, reflektierende Oberflächen aus den reflektierenden Oberflächen, die symmetrisch mit Bezug auf den ersten Querschnitt oder den zweiten Querschnitt bereitgestellt sind, einen Teil einer gleichen paraboloiden Form darstellen.
  7. Lichtquellenvorrichtung mit: einer Vielzahl von Lichtquellen; einer Vielzahl von positiven Linsen, auf die eine Vielzahl von Lichtflüssen aus den Lichtquellen einfallen; einer optischen Vorrichtung; einer Wellenlängenumwandlungseinrichtung, die konfiguriert ist, einen Teil von Lichtflüssen aus der optischen Vorrichtung in konvertiertes Licht umzuwandeln, das eine Wellenlänge hat, die verschieden von einer Wellenlänge der Lichtflüsse aus der optischen Vorrichtung ist, und das konvertierte Licht und nicht-konvertiertes Licht mit einer Wellenlänge, die dieselbe wie die Wellenlänge der Lichtflüsse aus der optischen Vorrichtung ist, zu emittieren; und einen dichroitischen Spiegel, wobei die optische Vorrichtung enthält: eine optische Einheit; eine Linseneinheit; und eine Spiegeleinheit, die konfiguriert ist, Lichtflüsse aus der optischen Einheit zu der Linseneinheit zu leiten, wobei die optische Einheit eine Vielzahl von reflektierenden Oberflächen enthält, die konfiguriert sind, Lichtflüsse aus den Lichtquellen zu reflektieren und die Lichtflüsse zu der Linseneinheit zu leiten, und wobei die reflektierenden Oberflächen so konfiguriert sind, dass die auf den reflektierenden Oberflächen reflektierten Lichtflüsse eine Vielzahl von konvergenten Lichtflüssen sind, und so, dass ein Abstand zwischen jedem der konvergenten Lichtflüsse mit einem Abstand, mit dem sie sich aus den reflektierenden Oberflächen ausbreiten, abnimmt, jede der reflektierenden Oberflächen jeweils eine aus einer Vielzahl von konkaven Spiegeln ist, jeder der konkaven Spiegel ein Teil einer verschiedenen einer Vielzahl von konkaven Oberflächen ist, und jede der konkaven Oberflächen eine voneinander verschiedene Form hat, die konkaven Spiegel einen ersten konkaven Spiegel und einen zweiten konkaven Spiegel enthalten, wobei der zweite konkave Spiegel an einer Position bereitgestellt ist, die von der Linseneinheit weiter entfernt als der erste konkave Spiegel ist, eine Brennweite des zweiten konkaven Spiegels länger als eine Brennweite des ersten konkaven Spiegel ist, die Linseneinheit konfiguriert ist, die konvergenten Lichtflüsse, die aus der Spiegeleinheit kommen, in eine Vielzahl von zueinander parallelen Lichtflüssen umzuwandeln, und der dichroitische Spiegel so konfiguriert ist, dass die Lichtflüsse aus der optischen Vorrichtung auf die Wellenlängenumwandlungseinrichtung mittels des dichroitischen Spiegels einfallen.
  8. Lichtquellenvorrichtung nach Anspruch 7, wobei die Vielzahl von Lichtquellen so konfiguriert ist, dass eine Polarisationsrichtung der Lichtflüsse aus den Lichtquellen senkrecht zu einem Querschnitt ist, der parallel zu den optischen Achsen der positiven Linsen und der Senkrechten der Spiegeleinheit ist.
  9. Projektionsanzeigevorrichtung mit: einer Lichtquellenvorrichtung; einer Lichtmodulationseinrichtung; einem Farbtrenn-Kombinationssystem, das konfiguriert ist, einen Lichtfluss aus der Lichtquellenvorrichtung in eine Vielzahl von Lichtflüssen zu teilen, die Lichtflüsse zu Lichtmodulationseinrichtungen zu leiten, und die Lichtflüsse aus der Lichtmodulationseinrichtung zu kombinieren; und einem optischen Beleuchtungssystem, das konfiguriert ist, die Lichtflüsse aus der Lichtquellenvorrichtung zu dem Farbtrenn-Kombinationssystem zu leiten, wobei die Lichtquellenvorrichtung enthält: eine Vielzahl von Lichtquellen; eine Vielzahl von positiven Linsen, auf die eine Vielzahl von Lichtflüssen aus den Lichtquellen einfallen; eine optische Vorrichtung; eine Wellenlängenumwandlungseinrichtung, die konfiguriert ist, einen Teil von Lichtflüssen aus der optischen Vorrichtung in konvertiertes Licht umzuwandeln, das eine Wellenlänge hat, die verschieden von einer Wellenlänge der Lichtflüsse aus der optischen Vorrichtung ist, und das konvertierte Licht und nicht-konvertiertes Licht, das eine Wellenlänge hat, die die gleiche wie die Wellenlänge der Lichtflüsse aus der optischen Vorrichtung ist, zu emittieren; und einen dichroitischen Spiegel, wobei die optische Vorrichtung enthält: eine optische Einheit; eine Linseneinheit; und eine Spiegeleinheit, die konfiguriert ist, Lichtflüsse aus der optischen Einheit zu der Linseneinheit zu leiten, wobei die optische Einheit eine Vielzahl von reflektierenden Oberflächen enthält, die konfiguriert sind, Lichtflüsse aus den Lichtquellen zu reflektieren und die Lichtflüsse zu der Linseneinheit zu leiten, wobei die reflektierenden Oberflächen so konfiguriert sind, dass die auf den reflektierenden Oberflächen reflektierten Lichtflüsse eine Vielzahl von konvergenten Lichtflüssen sind, und so, dass ein Abstand zwischen jedem der konvergenten Lichtflüsse mit einem Abstand, mit dem sie sich aus den reflektierenden Oberflächen ausgebreitet haben, abnimmt, jede der reflektierenden Oberflächen jeweils eine einer Vielzahl von konkaven Spiegeln ist, jeder der konkaven Spiegel ein Teil einer verschiedenen einer Vielzahl von konkaven Oberflächen ist und jede der konkaven Oberflächen eine voneinander verschiedene Form hat, die konkaven Spiegel einen ersten konkaven Spiegel und einen zweiten konkaven Spiegel enthalten, der zweite konkave Spiegel an einer Position von der Linseneinheit bereitgestellt ist, die weiter entfernt von der Linseneinheit ist als der erste konkave Spiegel, eine Brennweite des zweiten konkaven Spiegels länger als eine Brennweite des ersten konkaven Spiegels ist, die Linseneinheit konfiguriert ist, die konvergenten Lichtflüsse aus der Spiegeleinheit in zueinander parallele Lichtflüsse umzuwandeln, und der dichroitische Spiegel so konfiguriert ist, dass Lichtflüsse aus der optischen Vorrichtung auf die Wellenlängenumwandlungseinrichtung mittels des dichroitischen Spiegel einfallen.
DE102015116447.7A 2014-09-30 2015-09-29 Optische Einheit, optische Vorrichtung, die dieselbe verwendet, Lichtquellenvorrichtung und Projektionsanzeigevorrichtung Active DE102015116447B4 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014201811 2014-09-30
JP2014-201811 2014-09-30
JP2015176821A JP6072177B2 (ja) 2014-09-30 2015-09-08 光学ユニット、光学装置およびこれを用いた光源装置、投射型表示装置
JP2015-176821 2015-09-08

Publications (2)

Publication Number Publication Date
DE102015116447A1 true DE102015116447A1 (de) 2016-03-31
DE102015116447B4 DE102015116447B4 (de) 2022-11-24

Family

ID=54544343

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102015116447.7A Active DE102015116447B4 (de) 2014-09-30 2015-09-29 Optische Einheit, optische Vorrichtung, die dieselbe verwendet, Lichtquellenvorrichtung und Projektionsanzeigevorrichtung

Country Status (4)

Country Link
US (1) US9864263B2 (de)
CN (1) CN105467736B (de)
DE (1) DE102015116447B4 (de)
GB (1) GB2531920B (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017173717A (ja) * 2016-03-25 2017-09-28 パナソニックIpマネジメント株式会社 プロジェクタ
CA2925796C (en) * 2016-03-31 2018-03-13 Cae Inc Seam for visually suppressing a gap between two adjacent reflective surfaces
JP6783545B2 (ja) * 2016-04-19 2020-11-11 キヤノン株式会社 照明装置及びこれを用いた投射型表示装置
CN106292145A (zh) * 2016-09-07 2017-01-04 广景视睿科技(深圳)有限公司 一种激光阵列装置及其投影机照明光路
US11152758B2 (en) 2018-09-06 2021-10-19 Nichia Corporation Light emitting device
CN208780976U (zh) 2018-09-25 2019-04-23 中强光电股份有限公司 光源装置及投影设备
CN111487841B (zh) * 2019-01-29 2021-11-16 中强光电股份有限公司 光源装置及投影设备
DE102019210041B4 (de) * 2019-07-08 2021-02-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Optische Vorrichtung für eine mehrkanalige optomechanische Adressiereinheit
TWI732287B (zh) * 2019-09-03 2021-07-01 美商晶典有限公司 激光投影光學光源架構
CN112445052B (zh) * 2019-09-03 2022-04-29 美商晶典有限公司 激光投影光学光源架构
CN111221141B (zh) * 2020-01-17 2022-02-22 中国科学院长春光学精密机械与物理研究所 一种基于分波前原理的空间光分束阵列
CN113900338A (zh) * 2020-06-22 2022-01-07 青岛海信激光显示股份有限公司 光源组件和投影设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011065770A (ja) 2009-09-15 2011-03-31 Casio Computer Co Ltd 光源ユニット及びプロジェクタ

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6179439B1 (en) 1998-06-10 2001-01-30 Optical Gaging Products, Inc. High-incidence programmable surface illuminator for video inspection systems
JP2001356404A (ja) 2000-06-09 2001-12-26 Mitsubishi Electric Corp 画像表示装置
JP2004012620A (ja) 2002-06-04 2004-01-15 Nec Viewtechnology Ltd 光源装置及び投写型表示装置
US7070301B2 (en) 2003-11-04 2006-07-04 3M Innovative Properties Company Side reflector for illumination using light emitting diode
US7212347B2 (en) 2003-12-08 2007-05-01 Jds Uniphase Corporation Reflective illumination system
US7222968B2 (en) 2004-05-14 2007-05-29 3M Innovative Properties Company Illumination system with separate optical paths for different color channels
US7922340B2 (en) 2007-02-14 2011-04-12 Konica Minolta Opto, Inc. Projection optical system with enlargement at a varying magnification
JP4711155B2 (ja) 2009-06-30 2011-06-29 カシオ計算機株式会社 光源装置及びプロジェクタ
JP5491888B2 (ja) 2010-02-05 2014-05-14 日立コンシューマエレクトロニクス株式会社 投写型表示装置
JP5659741B2 (ja) 2010-12-01 2015-01-28 セイコーエプソン株式会社 光源装置及びプロジェクター
JP5842167B2 (ja) 2011-02-28 2016-01-13 パナソニックIpマネジメント株式会社 光源装置及び投写型映像表示装置
JP2013080578A (ja) 2011-10-03 2013-05-02 Seiko Epson Corp 光源装置及びプロジェクター
CN103365051B (zh) 2012-04-01 2016-08-03 欧司朗股份有限公司 照明装置及投影仪
CN103454844A (zh) 2012-05-29 2013-12-18 中强光电股份有限公司 照明系统与投影装置
JP5966843B2 (ja) 2012-10-18 2016-08-10 ソニー株式会社 光源装置及び画像表示装置
JP6295960B2 (ja) 2012-11-06 2018-03-20 ソニー株式会社 光源ユニット、光源装置、及び画像表示装置
DE102012220570B4 (de) 2012-11-12 2022-07-14 Osram Gmbh Projektionsanordnung
JP6186752B2 (ja) * 2013-03-01 2017-08-30 カシオ計算機株式会社 光源装置及び投影装置
JP2016018594A (ja) 2014-07-04 2016-02-01 三菱電機株式会社 光源装置および電気機器

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011065770A (ja) 2009-09-15 2011-03-31 Casio Computer Co Ltd 光源ユニット及びプロジェクタ

Also Published As

Publication number Publication date
CN105467736B (zh) 2017-07-28
US20160091785A1 (en) 2016-03-31
GB201517286D0 (en) 2015-11-11
US9864263B2 (en) 2018-01-09
DE102015116447B4 (de) 2022-11-24
GB2531920B (en) 2016-12-14
GB2531920A (en) 2016-05-04
CN105467736A (zh) 2016-04-06

Similar Documents

Publication Publication Date Title
DE102015116447B4 (de) Optische Einheit, optische Vorrichtung, die dieselbe verwendet, Lichtquellenvorrichtung und Projektionsanzeigevorrichtung
DE112013004405B4 (de) Lichtquellenvorrichtung
DE112014000523B4 (de) Projektionsgerät
DE60102310T2 (de) Flüssigkristall-Projektor mit Polarisations-Wandler
DE69433318T2 (de) Anzeigevorrichtung vom projektionstyp
DE60314306T2 (de) Kompaktes Beleuchtungssystem und damit versehene Projektionsanzeigevorrichtung
DE60309400T2 (de) Beleuchtungsvorrichtung und Bildprojektionsgerät mit dieser Vorrichtung
DE69922906T2 (de) Beleuchtungseinrichtung und Projektions-Anzeigegerät
DE69119880T2 (de) Polarisierte Beleuchtungsvorrichtung und Projektor
DE69725957T2 (de) Optisches Element und seine Verwendung
DE112015001042T5 (de) Lichtquellenvorrichtung
DE69838060T2 (de) Optisches beleuchtungssystem und projektionsartige anzeige
DE112012005021B4 (de) Projektionstyp-Bildanzeigevorrichtung
DE102011009949A1 (de) Beleuchtungseinrichtung und Bildanzeigeeinrichtung vom Projektionstyp
DE112013000548T5 (de) Lichtquellen-Vorrichtung und Projektionstypanzeige-Apparat
DE102018214868B4 (de) Hintergrundbeleuchtungseinheit und Head-up-Anzeigevorrichtung
DE10327551B4 (de) Bildanzeigevorrichtung des Projektionstyps
DE102013002355A1 (de) Optisches beleuchtungssystem und bildprojektionsvorrichtung
DE102018007521A1 (de) Polarisationsstrahlteiler und diesen verwendende Bildprojektionsvorrichtung
DE69738440T2 (de) Projektionsvorrichtung und optisches Beleuchtungssystem dafür
DE60036581T2 (de) Optisches Beleuchtungssystem und Projektor, bei dem dieses verwendet wird
DE69024545T2 (de) Lichtquellen-Apparat zur Aufteilung von weissem Licht in Licht mit mehreren Farbkomponenten
DE10029861B4 (de) Polarisationskonverter und ein mit diesem ausgerüstetes Projektionsanzeigegerät
DE60304273T2 (de) Gerät und Verfahren zur Beleuchtung mit Farben und Bildprojektionsgerät und dieses benutzendes Verfahren
DE112022000267T5 (de) Optoelektronische lichtquelle und datenbrille

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final