DE102015103494B4 - Verfahren zur Herstellung eines Reflektorelements und Reflektorelement - Google Patents

Verfahren zur Herstellung eines Reflektorelements und Reflektorelement Download PDF

Info

Publication number
DE102015103494B4
DE102015103494B4 DE102015103494.8A DE102015103494A DE102015103494B4 DE 102015103494 B4 DE102015103494 B4 DE 102015103494B4 DE 102015103494 A DE102015103494 A DE 102015103494A DE 102015103494 B4 DE102015103494 B4 DE 102015103494B4
Authority
DE
Germany
Prior art keywords
layer
multilayer system
substrate
reactive
reactive multilayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE102015103494.8A
Other languages
English (en)
Other versions
DE102015103494A1 (de
Inventor
Mark Schürmann
Stefan Schwinde
Robert Müller
Norbert Kaiser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Friedrich Schiller Universtaet Jena FSU
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Friedrich Schiller Universtaet Jena FSU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV, Friedrich Schiller Universtaet Jena FSU filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority to DE102015103494.8A priority Critical patent/DE102015103494B4/de
Priority to US15/557,441 priority patent/US10618840B2/en
Priority to PCT/EP2016/055036 priority patent/WO2016142428A1/de
Publication of DE102015103494A1 publication Critical patent/DE102015103494A1/de
Application granted granted Critical
Publication of DE102015103494B4 publication Critical patent/DE102015103494B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3657Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
    • C03C17/3663Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties specially adapted for use as mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/007After-treatment
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3488Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a boride or phosphide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3621Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one layer at least containing a fluoride
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3639Multilayers containing at least two functional metal layers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3644Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the metal being silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3649Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer made of metals other than silver
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B45/00Compositions or products which are defined by structure or arrangement of component of product
    • C06B45/12Compositions or products which are defined by structure or arrangement of component of product having contiguous layers or zones
    • C06B45/14Compositions or products which are defined by structure or arrangement of component of product having contiguous layers or zones a layer or zone containing an inorganic explosive or an inorganic explosive or an inorganic thermic component
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0808Mirrors having a single reflecting layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0816Multilayer mirrors, i.e. having two or more reflecting layers
    • G02B5/0825Multilayer mirrors, i.e. having two or more reflecting layers the reflecting layers comprising dielectric materials only
    • G02B5/0833Multilayer mirrors, i.e. having two or more reflecting layers the reflecting layers comprising dielectric materials only comprising inorganic materials only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0816Multilayer mirrors, i.e. having two or more reflecting layers
    • G02B5/085Multilayer mirrors, i.e. having two or more reflecting layers at least one of the reflecting layers comprising metal
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0816Multilayer mirrors, i.e. having two or more reflecting layers
    • G02B5/085Multilayer mirrors, i.e. having two or more reflecting layers at least one of the reflecting layers comprising metal
    • G02B5/0858Multilayer mirrors, i.e. having two or more reflecting layers at least one of the reflecting layers comprising metal the reflecting layers comprising a single metallic layer with one or more dielectric layers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/214Al2O3
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/228Other specific oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/25Metals
    • C03C2217/251Al, Cu, Mg or noble metals
    • C03C2217/252Al
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/25Metals
    • C03C2217/251Al, Cu, Mg or noble metals
    • C03C2217/254Noble metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/25Metals
    • C03C2217/251Al, Cu, Mg or noble metals
    • C03C2217/254Noble metals
    • C03C2217/255Au
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/25Metals
    • C03C2217/251Al, Cu, Mg or noble metals
    • C03C2217/254Noble metals
    • C03C2217/256Ag
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/25Metals
    • C03C2217/257Refractory metals
    • C03C2217/258Ti, Zr, Hf
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/25Metals
    • C03C2217/257Refractory metals
    • C03C2217/26Cr, Mo, W
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/28Other inorganic materials
    • C03C2217/284Halides
    • C03C2217/285Fluorides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/78Coatings specially designed to be durable, e.g. scratch-resistant
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/154Deposition methods from the vapour phase by sputtering
    • C03C2218/156Deposition methods from the vapour phase by sputtering by magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/17Deposition methods from a solid phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment

Abstract

Verfahren zur Herstellung eines Reflektorelements, umfassend die Schritte:- Abscheiden einer Schichtenfolge auf die Oberfläche eines Substrats (1) oder auf die Oberfläche einer auf ein Substrat (1) aufgebrachten Schicht, wobei die Schichtenfolge mindestens eine Spiegelschicht (5, 9) und mindestens ein reaktives Multischichtsystem (3) umfasst, wobei das reaktive Multischichtsystem (3) zwischen dem Substrat (1) und der Spiegelschicht (5) angeordnet ist oder die Spiegelschicht (5) zwischen dem Substrat (1) und dem reaktiven Multischichtsystem (3) angeordnet ist, und- Zünden des reaktiven Multischichtsystems (3), um einen Wärmeeintrag in die Schichtenfolge zu bewirken.

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung eines Reflektorelements und ein Reflektorelement.
  • Zahlreiche Anwendungen präzisionsoptischer Komponenten verlangen Reflektorelemente mit einer Spiegelschicht, die in einem breiten Spektralbereich hochreflektierend ist, zum Beispiel für Anwendungen in der Astronomie oder in Weltraumoptiken (z.B. zur Erdbeobachtung). Metalle weisen eine hohe Reflexion in einem breiten Spektralbereich auf. Für Reflektoren werden je nach Spektralbereich in der Regel Gold, Aluminium oder Silber genutzt.
  • Gold besitzt eine sehr gute chemische Beständigkeit und eine hohe Reflexion im IR-Bereich. Aluminium weist eine hohe Reflexion bis in den UV-Bereich auf. Silber weist von allen Metallen die höchste Reflexion vom VIS- bis in den IR-Bereich auf. Wie die elektrische Leitfähigkeit ist auch die Reflexion von der Anzahl der Fehlstellen in dem jeweiligen Metall abhängig (Drude-Theorie). Um eine hohe gerichtete Reflexion zu erreichen, ist eine möglichst fehlstellenarme und glatte Metallschicht notwendig. Es sind auch Lösungen für Reflektoren bekannt, in denen Metalle kombiniert werden. Für spezielle Anwendungen kann gezielt ein gewünschtes Verhältnis zwischen transmittierter und reflektierter Strahlung eingestellt werden (Strahlteiler). Hierfür können dünne Metallschichten genutzt werden.
  • Bei Reflektoren, bei denen eine maximale Reflexion über eine begrenzte spektrale Bandbreite und Einfallswinkelbereich benötigt wird, können auch rein dielektrische Schichten (ohne reflektierende Metallschicht) für das Einstellen der Reflexion genutzt werden. Bei diesen Reflektoren wird der Interferenzeffekt genutzt. Es werden mehrere Schichten dielektrischer Materialien mit unterschiedlichen Brechungsindizes kombiniert.
  • Sowohl bei Reflektoren mit einem dielektrischen Schichtsystem als auch bei Reflektoren, die auf der Reflexion von Metallen beruhen, können Alterungserscheinungen und Defekte eintreten. Besonders bei Metallen besteht die Gefahr der Korrosion. Um diese zu vermeiden oder zu verringern, werden die Metallschichten häufig mit einer Schutzschicht versehen. Während für Aluminium und Gold auch Anwendungen ohne aufgebrachte Schutzschichten existieren, werden Silberreflektoren praktisch immer mit einer Schutzschicht versehen. Besonders anspruchsvoll ist die Herstellung von geschützten Reflektoren bei Vorderseitenspiegeln, die in einem breiten Spektralbereich maximale Reflektivität aufweisen sollen, da die Schutzschichten die optische Funktion der Schichten beeinflussen. Es können nur bestimmte dielektrische Materialien für die Schutzschicht eingesetzt werden, um die negative Beeinflussung der optischen Performance so gering wie möglich zu halten. Durch Nutzung des Interferenzeffektes kann durch eine Kombination von unterschiedlichen dielektrischen Materialien als Schutzschicht eine gezielte Reflexionserhöhung in bestimmten spektralen Bereichen erreicht werden.
  • Zum Schutz und zur Reflexionserhöhung von metallischen Reflektoren werden zum Beispiel Schutzschichten mittels PVD, CVD oder ALD auf das reflektierende Metall abgeschieden. Mit diesen Verfahren lassen sich die in Frage kommenden dielektrischen Materialien mit genau definierten Schichtdicken auf den Reflektoren abscheiden. Es werden Abscheideparameter mit geringen Prozesstemperaturen (im Allgemeinen T < 150°C) gewählt. Auch von nachträglichen Wärmebehandlungen bei T > 150°C wird in der Regel abgesehen. Hohe Temperaturen werden vermieden, um einen Verzug der Reflektoren zu vermeiden. Beispielsweise können unterschiedliche Wärmeausdehnungskoeffizienten von Schicht und Substrat in Kombination mit großen Temperaturschwankungen zum Verzug führen.
  • Um eine präzise Strahlführung in einem optischen Instrument realisieren zu können, darf kein Verzug zugelassen werden, bzw. muss eine hohe Formgenauigkeit der Reflektoren eingehalten werden. Zudem sind viele Substrate temperaturempfindlich. Hohe Temperaturen oder schnelle Temperaturänderungen würden diese Substrate schädigen.
  • Unter anderen Gesichtspunkten könnten hohe Temperaturen jedoch zu einer Verbesserung der Reflektoren führen. Zum Beispiel führt die Abscheidung bei möglichst geringen Temperaturen dazu, dass die dielektrischen Schichten porös sein können. In diesem Zustand bilden einige Materialien Schichten, die nicht dicht sind (Feuchte kann durch die Schicht an die zu schützende Metallschicht gelangen) oder sie sind leicht löslich (in feuchter Umgebung wird die Schicht gelöst und so über die Zeit zersetzt). Eine Umwandlung in einen stabileren Zustand wäre mittels thermischer Behandlung z.B. in einem Ofen möglich. Zudem könnte eine solche thermische Behandlung oder eine Abscheidung bei hohen Temperaturen die Absorption transparenter Schichten verringern oder die Reflexion von Metallschichten verbessern. Dies ist durch den dabei entstehenden Temperatureinfluss auf die Substrate und teilweise auch auf die zu schützende Metallschicht allerdings nicht oder nur sehr begrenzt möglich.
  • Die Druckschrift DE 10 2013 001 417 A1 beschreibt ein plattenförmiges reflektierendes Element, das bei der Herstellung durch Zünden eines reaktiven Multischichtsystems mit einem Grundkörper verbunden wird, wobei eine Lotschicht aufgeschmolzen wird.
  • Die Druckschrift DE 10 2012 202 047 A1 beschreibt das Verbinden eines Grundkörpers mit einem optischen Funktionskörper, wobei ein zwischen dem Grundkörper und dem optischen Funktionskörper angeordnetes reaktives Multischichtsystem gezündet wird.
  • Der Erfindung liegt die Aufgabe zugrunde, ein verbessertes Reflektorelement und ein Verfahren zu dessen Herstellung anzugeben. Das Reflektorelement soll sich insbesondere durch eine verbesserte Reflexion und/oder eine verbesserte Beständigkeit auszeichnen.
  • Gemäß einer Ausführungsform des Verfahrens zur Herstellung eines Reflektorelements wird eine Schichtenfolge auf die Oberfläche eines Substrats oder auf die Oberfläche einer auf ein Substrat aufgebrachten Schicht abgeschieden, wobei die Schichtenfolge mindestens eine Spiegelschicht und mindestens ein reaktives Multischichtsystem umfasst. Das reaktive Multischichtsystem ist zwischen dem Substrat und der Spiegelschicht angeordnet, oder die Spiegelschicht ist zwischen dem Substrat und dem reaktiven Multischichtsystem angeordnet. Die Schichtenfolge kann zum Beispiel auf die Oberfläche eines Substrats oder auf die Oberfläche einer auf ein Substrat aufgebrachten, vorzugsweise polierten Schicht, abgeschieden werden. Das Substrat und/oder die darauf aufgebrachte Schicht können eben oder gekrümmt sein. Das Reflektorelement kann zum Beispiel für Anwendungen in der Präzisionsoptik vorgesehen sein. Das Reflektorelement kann insbesondere für Anwendungen in der Astronomie und/oder für Anwendungen im Weltraum, zum Beispiel zur Erdbeobachtung, vorgesehen sein.
  • Die Spiegelschicht in der Schichtenfolge des Reflektorelements kann eine reflektierende Einzelschicht, insbesondere eine Metallschicht, oder ein reflektierendes Schichtsystem, insbesondere ein dielektrisches Interferenzschichtsystem, umfassen.
  • Das reaktive Multischichtsystem enthält vorteilhaft eine Vielzahl von abwechselnden Schichten. Die abwechselnden Schichten weisen bevorzugt eine periodische Anordnung auf. Das reaktive Multischichtsystem enthält insbesondere eine Vielzahl von Schichtpaaren, die jeweils eine erste Schicht aus einem ersten Material und eine zweite Schicht aus einem zweiten Material aufweisen. Das erste Material und das zweite Material sind so gewählt, dass sie in einer exothermen Reaktion eine Verbindung bilden können.
  • Es ist möglich, dass die ersten Schichten und zweiten Schichten der Schichtpaare jeweils durch eine Diffusionsbarriere aus einem dritten Material voneinander getrennt sind. Hierdurch kann eine vorzeitige Reaktion der Materialien, zum Beispiel während des Beschichtungsprozesses, verhindert werden. Die Reaktion wird vorteilhaft erst bei einem definierten Mindestenergieeintrag, die vom Material der Diffusionsbarriere abhängt, gestartet. Die Diffusionsbarriere kann zum Beispiel Kohlenstoff aufweisen oder daraus bestehen.
  • Bei dem Verfahren zur Herstellung des Reflektorelements wird das reaktive Multischichtsystem gezündet, um einen Wärmeeintrag in die Schichtenfolge zu bewirken. Das Zünden des reaktiven Multischichtsystems erfolgt durch einen Energieeintrag, zum Beispiel durch einen Laser oder durch das Anlegen einer elektrischen Spannung. Auf diese Weise wird die exotherme Reaktion zwischen den Materialien der abwechselnden Schichten des reaktiven Multischichtsystems ausgelöst. Bei diesem Vorgang findet eine Senkung der Bindungsenthalpie bei der Bildung einer Mischphase/Legierung statt. Es erfolgt eine sich selbst ausbreitende, exotherme Reaktion, wobei die entstehende Reaktionswärme an die Umgebung abgegeben wird. Das Zünden des reaktiven Multischichtsystems ermöglicht vorteilhaft eine einmalige, explosionsartige Freisetzung von Wärme verbunden mit einer anschließenden Ausbreitung. Die explosionsartige Freisetzung kann von Raumtemperatur ausgehen.
  • Die Wärmeabgabe durch das gezündete reaktive Multischichtsystem erfolgt vorteilhaft nur lokal in der Nähe des reaktiven Multischichtsystems. Aufgrund der geringen Wärmekapizität des reaktiven Multischichtsystems kann im Vergleich zur ganzheitlichen Aufheizung des Reflektorelements, wie beim Tempern in einem Ofen, beim Zünden des reaktiven Multischichtsystems eine negative thermische Beeinflussung des gesamten Reflektorelements vorteilhaft vermieden werden. Insbesondere kann eine unerwünschte Verformung des Substrats durch den lokalen kurzzeitigen Wärmeeintrag in die Schichtenfolge vermieden werden. Hohe Temperaturen entstehen nur für Bruchteile von Sekunden im Bereich des reaktiven Multischichtsystems und seiner unmittelbaren Umgebung.
  • Auf diese Weise kann insbesondere ein Wärmeeintrag in eine dem reaktiven Multischichtsystem benachbarte Schicht, insbesondere in die Spiegelschicht oder in eine zum Schutz der Spiegelschicht vorgesehene Schutzschicht, erfolgen. Durch den Wärmeeintrag können die Schichteigenschaften vorteilhaft modifiziert werden. Auf diese Weise kann insbesondere eine Erhöhung der Reflexion und/oder eine Verbesserung der Umweltbeständigkeit der Schichtenfolge erzielt werden. Aufgrund der sehr lokalen Wärmezufuhr kann eine Spiegelschicht oder Schutzschicht mit verbesserter Stabilität und/oder erhöhter Reflexion auf einem Substrat erzeugt werden, ohne dass dieses verformt oder geschädigt wird.
  • Durch die Wahl der Materialien des reaktiven Multischichtsystems, die Anzahl von Grenzflächen und der Schichtdicken kann eingestellt werden, welche Temperatur, Wärmemenge und Ausbreitungsgeschwindigkeit bei der Reaktion erreicht wird. Durch Einstellung dieser Parameter und Einstellung des reflektierenden Schichtsystems (Materialkombinationen und Dicke der Schichten) kann der Wärmeeintrag über einen weiten Bereich eingestellt werden. Aufgrund der Reaktionswärme ist eine adiabatische Temperatur von bis zu 3000 °C an der Grenzfläche möglich, beispielsweise durch die Verwendung der Materialpaarung Hf und C.
  • Bevorzugte Materialkombinationen für das reaktive Multischichtsystem sind: Ti und B (reagiert zu TiB2), Zr und B (reagiert zu ZrB2), Hf und B (reagiert zu HfB2), V und B (reagiert zu VB2), Nb und B (reagiert zu NbB2), Ta und B (reagiert zu TaB2) , Ti und C (reagiert zu TiC), Zr und C (reagiert zu ZrC), Hf und C (reagiert zu HfC), V und C (reagiert zu VC), Nb und C (reagiert zu NbC), Ta und C (reagiert zu TaC), Ti und Si (reagiert zu Ti5Si3), Zr und Si (reagiert zu Zr5Si3), Hf und Si (reagiert zu Hf5Si3) ,V und Si (reagiert zu V5Si3), Nb und Si (reagiert zu Nb5Si3), Ta und Si (reagiert zu Ta5Si3), Ti und Al (reagiert zu TiAl), Zr und Al (reagiert zu ZrAl), Hf und Al (reagiert zu HfAl), Ni und Al (reagiert zu NiAl), Pd und Al (reagiert zu PdAl), Pt und Al (reagiert zu PtAl), Sc und Au (reagiert zu ScAu), Sc und Cu (reagiert zu ScCu), Sc und Ag (reagiert zu ScAg), Y und Au (reagiert zu YAu), Y und Cu (reagiert zu YCu), Y und Ag (reagiert zu YAg), Ru und Al (reagiert zu RuAl).
  • Das reaktive Multischichtsystem wird beispielsweise durch ein PVD-Verfahren (z.B. thermische Verdampfung, Elektronenstrahlverdampfung, plasmagestützte Bedampfung, Magnetronsputtern, Ionenstrahlsputtern), ein CVD-Verfahren oder ALD (Atomic Layer Deposition) abgeschieden.
  • Das reaktive Multischichtsystem enthält vorzugsweise mindestens 20 Schichten, insbesondere zwischen 20 und 1000 Schichten. Vorteilhaft enthält das reaktive Multischichtsystem mindestens 10 Schichtpaare aus jeweils einer ersten Schicht aus einem ersten Material und einer zweiten Schicht aus einem zweiten Material. Die Dicken der Schichten des reaktiven Multischichtsystems betragen bevorzugt zwischen 5 nm und 500 nm. Die Gesamtdicke des reaktiven Multischichtsystems beträgt vorteilhaft zwischen 0,1 µm und 200 µm, bevorzugt zwischen 0,5 µm und 5 µm. Ein solches reaktives Multischichtsystem ist vorteilhaft, um eine zur Modifizierung der Schichteigenschaften mindestens einer Schicht der Schichtenfolge geeignete Temperatur zu erzeugen.
  • Bei einer bevorzugten Ausführungsform des Reflektorelements ist die Spiegelschicht eine Metallschicht. Die Metallschicht kann insbesondere Gold, Aluminium, Silber, Kupfer, Rhodium, Platin oder Iridium aufweisen. Wie die elektrische Leitfähigkeit hängt die Reflexion einer Metallschicht stark von der Mikrostruktur der Metallschicht ab. Störstellen wie Korngrenzen führen zur Reduzierung der Reflexion. Eine raue Oberfläche führt zu einer ungerichteten Reflexion (Streuung). Die beste Reflexion ist daher mit einer glatten Schicht und möglichst wenig Störstellen zu erreichen. Durch den Wärmeeintrag beim Zünden des reaktiven Multischichtsystems kann die Metallschicht vorteilhaft dahingehend modifiziert werden, ohne dabei das Substrat und die Formtreue negativ zu beeinflussen. Der Wärmeeintrag beim Zünden des reaktiven Multischichtsystems kann ein kurzzeitiges lokales Aufschmelzen der Metallschicht bewirken. Dabei entstehen größere Körner, die eine bessere Leitfähigkeit und Reflexion der Metallschicht zur Folge haben. Zugleich bleibt die Rauheit der Metallschicht aber gering oder nimmt sogar ab, so dass es nicht zu erhöhten Streuverlusten kommt.
  • Bevorzugt wird bei der Spiegelschicht ein Teilbereich ausgespart, um lokal einen direkten Zugang zu dem reaktiven Multischichtsystem zu ermöglichen. Dieser kann für die Zündung der Reaktion notwendig sein.
  • Bei einer bevorzugten Ausgestaltung folgt der Spiegelschicht eine Schutzschicht nach, welche insbesondere zum Schutz der Spiegelschicht vor Umgebungseinflüssen dient. Dies ist insbesondere dann vorteilhaft, wenn die Spiegelschicht eine Metallschicht wie zum Beispiel eine Silberschicht ist. Die Schutzschicht kann eine Einzelschicht sein oder umfasst bevorzugt mehrere Teilschichten. Insbesondere kann die Schutzschicht eine oder mehrere dielektrische Schichten enthalten. Um eine hohe Reflexionen oder eine gleichmäßige und wellenlängenunabhängige optische Performance zu erreichen, werden für die Teilschichten der Schutzschicht bevorzugt ausschließlich dielektrische Schichtmaterialien verwendet, die im Spektralbereich, in denen das Reflektorelement angewendet werden soll, transparent sind. Insbesondere können dies Oxide oder Nitride wie SiO2, Si3N4, Al2O3, AlN, ZrO2, ZrN, HfO2, HfN, TiO2, TiN, Ta2O5, TaN, Nb2O5, NbN, Y2O3, YN, MgO, Fluoride wie MgF2, LiF, AlF3, LaF3, GdF3, Halbleiter wie Si oder SiC, leitfähige transparente Materialien wie ITO oder AZO, oder Mischungen aus diesen Materialien sein. Bevorzugt wird bei der Schutzschicht wie bei der Spiegelschicht ein Teilbereich ausgespart, um lokal einen direkten Zugang zu dem reaktiven Multischichtsystem zu ermöglichen. Dieser kann für die Zündung der Reaktion notwendig sein.
  • Die Schichtmaterialien der Schutzschicht sind in dem jeweiligen Anwendungsbereich möglichst transparent. Aufgrund der geringen Abscheidetemperatur liegen die Schichtmaterialien (je nach Material) in amorphem oder polykristallinem Zustand vor und weisen viele - teils offene - Poren auf. Durch den Wärmeeintrag durch das reaktive Multischichtsystem kann die Schutzschicht in einen stabileren Zustand umgewandelt werden, ohne dass das Substrat und die Formtreue negativ beeinflusst werden. So kann aufgrund des Wärmeeintrags die Dichte der Schicht erhöht und die Porosität verringert werden, und/oder die Schicht wird in eine stabilere (polykristalline) Phase überführt. Dadurch kann eine wesentlich höhere Beständigkeit erreicht werden.
  • Die Schichtenfolge enthält vorteilhaft mindestens eine Haftschicht. Die Haftschicht kann bei der Herstellung der Schichtenfolge zum Beispiel durch ein PVD-Verfahren wie beispielsweise thermische Verdampfung, Elektronenstrahlverdampfung, plasmagestützte Verdampfung, Magnetronsputtern oder Ionenstrahlsputtern aufgebracht werden. Alternativ kann zum Aufbringen der Haftschicht ein CVD (Chemical Vapour Deposition)-Verfahren oder ein ALD (Atomic Layer Deposition)-Verfahren eingesetzt werden. Die Haftschicht hat insbesondere die Funktion, die Haftung einer darüber angeordneten Schicht, beispielsweise des reaktiven Multischichtsystems, der Spiegelschicht oder der Schutzschicht, zu verbessern. Die mindestens eine Haftschicht kann zum Beispiel zwischen dem Substrat und dem reaktiven Multischichtsystem, zwischen dem reaktiven Multischichtsystem und der Spiegelschicht und/oder zwischen der Spiegelschicht und der Schutzschicht angeordnet sein. Weiterhin kann die Haftschicht gleichzeitig die Funktion einer Diffusionsbarriereschicht aufweisen. In ihrer Eigenschaft als Diffusionsbarriereschicht kann die Haftschicht insbesondere die Diffusion zwischen Bestandteilen eines Substrats des Reflektorelements und den darüber angeordneten Schichten vermindern.
  • Die Haftschicht kann eine Einzelschicht oder eine Folge von mehreren Schichten sein. Geeignete Materialien für die Haftschicht sind beispielsweise Cr, Ti, Cu, Ru, Mo, W, leicht schmelzende Metalle wie Lötmaterial, Halbleiter wie Si oder SiC oder dielektrische Schichten wie SiO2, Si3N4, A1203, AlN, ZrO2, ZrN, HfO2, HfN, Ta205, TaN, Nb205, NbN, Y203, YN, oder Mischungen dieser Materialien. Die Haftschicht weist vorzugsweise eine Dicke zwischen 5 nm und 2000 nm auf.
  • Alternativ oder zusätzlich zu einer Metallschicht kann die Spiegelschicht ein dielektrisches Interferenzschichtsystem aufweisen. Das dielektrische Interferenzschichtsystem kann als alleinige Spiegelschicht fungieren oder zur Verstärkung der Reflexion auf eine Metallschicht aufgebracht werden. Das dielektrische Interferenzschichtsystem weist vorteilhaft abwechselnde niedrigbrechende dielektrische Schichten mit einem Brechungsindex n1 und hochbrechende dielektrische Schichten mit einem Brechungsindex n2 > n1 auf. Die Begriffe „niedrigbrechend“ und „hochbrechend“ sind jeweils relativ zum Brechungsindex des anderen Schichttyps der abwechselnden Schichten zu verstehen. Unter niedrigbrechenden Schichten werden insbesondere solche Schichten verstanden, die einen Brechungsindex n1 ≤ 1,6 aufweisen. Unter hochbrechenden Schichten werden insbesondere solche Schichten verstanden, die einen Brechungsindex n2 > 1,6, vorzugsweise n2 > 2,0, aufweisen. Das dielektrische Interferenzschichtsystem umfasst beispielsweise mindestens fünf, bevorzugt mindestens zehn abwechselnde hochbrechende und niedrigbrechende Schichten.
  • Das dielektrische Interferenzschichtsystem kann insbesondere Oxide oder Nitride wie SiO2, Si3N4, Al2O3, AlN, ZrO2, ZrN, HfO2, HfN, TiO2, TiN, Ta2O5, TaN, Nb2O5, NbN, Y2O3, YN, MgO, Fluoride wie MgF2, LiF, AlF3, LaF3, GdF3, Halbleiter wie Si oder SiC, oder leitfähige transparente Materialien wie ITO oder AZO, oder Mischungen aus diesen Materialien enthalten. Der Wärmeeintrag in das dielektrische Interferenzschichtsystem beim Zünden des reaktiven Multischichtsystems hat die Vorteile, die zuvor im Zusammenhang mit der Schutzschicht erläutert wurden. Insbesondere kann aufgrund des Wärmeeintrags die Dichte der Schichten erhöht und die Porosität verringert werden, und/oder die Schichten werden in eine stabilere (polykristalline) Phase überführt. Dadurch kann eine wesentlich höhere Beständigkeit erreicht werden.
  • Der bei dem Verfahren bewirkte Wärmeeintrag des reaktiven Multischichtsystems in die Schichtenfolge des Reflektorelements hat weiterhin den Vorteil, dass eine gute Haftung auf dem Substrat und zwischen den Schichten eingestellt werden und/oder die Schichtspannung reduziert werden kann, ohne dass das Substrat und die Formtreue negativ beeinflusst werden. Der Wärmeeintrag bewirkt eine bessere Haftung, da aufgrund der erhöhten Mobilität der Schichtteilchen eine bessere Benetzung und eine bessere Verbindung an den Grenzflächen ermöglicht werden. Die reduzierte Schichtspannung ist Folge eines Relaxationsprozesses, der durch den Wärmeeintrag ermöglicht wird und durch den intrinsische Schichtspannungen abgebaut werden können.
  • Die Reduzierung von Spannungen ist besonders bei Schichtenfolgen mit vergleichsweise dicken und vielen dielektrischen Schichten von Bedeutung. Hierzu zählen insbesondere Schichtenfolgen, die als Spiegelschicht ein dielektrisches Interferenzschichtsystem oder eine Metallschicht, auf der zusätzlich ein dielektrisches Interferenzschichtsystem zur Reflexionserhöhung abgeschieden wird, aufweisen. Die bessere Haftung auf dem Substrat oder zwischen den Schichten erhöht die Stabilität insbesondere von Reflektorelementen, die als Spiegelschicht eine Edelmetallschicht enthalten, oder die großen thermomechanischen Belastungen ausgesetzt werden.
  • Das mit dem hierin beschriebenen Verfahren herstellbare Reflektorelement weist eine auf ein Substrat aufgebrachte Schichtenfolge auf, wobei die Schichtenfolge mindestens eine Spiegelschicht und mindestens eine durch Zündung eines reaktiven Multischichtsystems hergestellte Schicht aufweist. Die durch Zündung des reaktiven Multischichtsystems hergestellte Schicht ist zwischen dem Substrat und der Spiegelschicht angeordnet, oder die Spiegelschicht ist zwischen dem Substrat und der durch Zündung des reaktiven Multischichtsystems hergestellten Schicht angeordnet. Die Schichtenfolge kann außerdem eine oder mehrere weitere der zuvor beschriebenen Schichten enthalten, insbesondere eine oder mehrere Haftschichten und/oder eine oder mehrere Schutzschichten.
  • Das Reflektorelement weist insbesondere eine Schicht auf, die durch Zündung eines reaktiven Multischichtsystems hergestellt ist. Insbesondere kann das Reflektorelement eine Schicht enthalten, die eine Verbindung aus mindestens einem der folgenden Materialpaare aufweist: Ti und B, Zr und B, Hf und B, V und B, Nb und B, Ta und B, Ti und C, Zr und C, Hf und C, V und C, Nb und C, Ta und C, Ti und Si, Zr und Si, Hf und Si, V und Si, Nb und Si, Ta und Si, Ti und Al, Zr und Al, Hf und Al, Ni und Al, Pd und Al, Pt und Al, Sc und Au, Sc und Cu, Sc und Ag, Y und Au, Y und Cu, Y und Ag, Ru und Al. Die Verbindung entsteht vorteilhaft bei der exothermen Reaktion zwischen den verschiedenen Materialien des reaktiven Multischichtsystems. Die entstehende Verbindung kann zumindest bereichsweise eine stöchiometrische Zusammensetzung aufweisen. Die durch Zündung des reaktiven Multischichtsystems herstellbare Schicht kann insbesondere mindestens eine der folgenden Verbindungen aufweisen: TiB2, ZrB2, HfB2, VB2, NbB2, TaB2, TiC, ZrC, HfC, VC, NbC, TaC, Ti5Si3, Zr5Si3, Hf5Si3, V5Si3, Nb5Si3, Ta5Si3, TiAl, ZrAl, HfAl, NiAl, PdAl, PtAl, ScAu, ScCu, ScAg, YAu, YCu, YAg, RuAl. Es ist auch möglich, dass die durch Zündung des reaktiven Multischichtsystems entstehende Verbindung ganz oder bereichsweise eine nicht-stöchiometrische Zusammensetzung aufweist.
  • Weitere vorteilhafte Ausgestaltungen des Reflektorelements ergeben sich aus der vorherigen Beschreibung des Verfahrens und umgekehrt.
  • Die Erfindung wird im Folgenden anhand von Ausführungsbeispielen im Zusammenhang mit den 1 bis 4 näher erläutert.
  • Es zeigen:
    • 1A bis 1G eine schematische Darstellung eines Ausführungsbeispiels des Verfahrens zur Herstellung des Reflektorelements anhand von Zwischenschritten,
    • 2 eine schematische Darstellung eines Querschnitts durch ein Reflektorelement gemäß einem ersten Ausführungsbeispiel,
    • 3 eine schematische Darstellung eines Querschnitts durch ein Reflektorelement gemäß einem zweiten Ausführungsbeispiel, und
    • 4 eine schematische Darstellung eines Querschnitts durch ein Reflektorelement gemäß einem dritten Ausführungsbeispiel.
  • Gleiche oder gleich wirkende Bestandteile sind in den Figuren jeweils mit den gleichen Bezugszeichen versehen. Die dargestellten Bestandteile sowie die Größenverhältnisse der Bestandteile untereinander sind nicht als maßstabsgerecht anzusehen.
  • Bei dem Ausführungsbeispiel des Verfahrens wird bei dem in 1A dargestellten ersten Schritt eine Haftschicht 2 auf ein Substrat 1 aufgebracht. Das Substrat 1 kann ein ebenes oder ein gekrümmtes Substrat sein und beispielsweise Glas, Kunststoff, Metall oder eine Keramik aufweisen. Das Substrat 1 weist vorzugsweise eine Oberfläche mit geringer Rauheit auf. Es ist auch möglich, dass auf dem Substrat 1 eine vorzugsweise polierte technologische Schicht aufgebracht ist (nicht dargestellt). Die Haftschicht 2 kann wie die im Folgenden beschriebenen nachfolgenden Schichten zum Beispiel durch ein PVD-Verfahren (z.B. thermische Verdampfung, Elektronenstrahlverdampfung, plasmagestützte Bedampfung, Magnetronsputtern, Ionenstrahlsputtern), ein CVD-Verfahren oder ein ALD-Verfahren aufgebracht werden.
  • Die Haftschicht 2 dient insbesondere zur Verbesserung der Haftung der nachfolgenden Schichten auf dem Substrat 1. Die Haftschicht 2 kann zugleich als Diffusionsbarriere dienen. Außerdem kann durch die Haftschicht 2 der Wärmeeintrag, der durch die Reaktion des reaktiven Multischichtsystems frei wird und auch auf das Substrat 1 einwirken könnte, reguliert werden. Die Haftschicht 2 kann eine Einzelschicht oder eine Kombination mehrerer dünner Schichten sein. Als Schichtmaterialien kommen alle Materialien in Frage, die eine gute Adhäsion des reaktiven Multischichtsystems auf dem Substrat gewährleisten. Insbesondere können dies Metalle wie Cr, Ti, Cu, Ru, Mo, W, leicht schmelzende Metalle wie Lötmaterial, Halbleiter wie Si oder SiC, oder dielektrische Schichten wie SiO2, Si3N4, Al2O3, AlN, ZrO2, ZrN, HfO2, HfN, Ta2O5, TaN, Nb2O5, NbN, Y2O3, YN oder Mischungen dieser Materialien sein. Die Dicke der Haftschicht 2 beträgt zwischen 5 nm und 2000 nm, bevorzugt zwischen 10 nm und 100 nm.
  • Auf die Haftschicht 2 wird in dem in 1B dargestellten zweiten Schritt mindestens ein reaktives Multischichtsystem 3 aufgebracht. Das reaktive Multischichtsystem 3 enthält einen vorzugsweise periodischen Schichtstapel aus abwechselnden Schichten, deren Materialien in einer exothermen Reaktion eine Verbindung bilden können. Geeignete Materialkombinationen für das reaktive Multischichtsystem 3 sind insbesondere: Ti und B (reagiert zu TiB2), Zr und B (reagiert zu ZrB2), Hf und B (reagiert zu HfB2), V und B (reagiert zu VB2), Nb und B (reagiert zu NbB2), Ta und B (reagiert zu TaB2) , Ti und C (reagiert zu TiC), Zr und C (reagiert zu ZrC), Hf und C (reagiert zu HfC), V und C (reagiert zu VC), Nb und C (reagiert zu NbC), Ta und C (reagiert zu TaC), Ti und Si (reagiert zu Ti5Si3), Zr und Si (reagiert zu Zr5Si3), Hf und Si (reagiert zu Hf5Si3) ,V und Si (reagiert zu V5Si3), Nb und Si (reagiert zu Nb5Si3), Ta und Si (reagiert zu Ta5Si3), Ti und Al (reagiert zu TiAl), Zr und Al (reagiert zu ZrAl), Hf und Al (reagiert zu HfAl), Ni und Al (reagiert zu NiAl), Pd und Al (reagiert zu PdAl), Pt und Al (reagiert zu PtAl) Sc und Au (reagiert zu ScAu), Sc und Cu (reagiert zu ScCu), Sc und Ag (reagiert zu ScAg), Y und Au (reagiert zu YAu), Y und Cu (reagiert zu YCu), Y und Ag (reagiert zu YAg), Ru und Al (reagiert zu RuAl).
  • Die Dicke des reaktiven Multischichtsystems 3 beträgt zwischen 0,1 µm und 200 µm, bevorzugt zwischen 0,5 µm und 5 µm.
  • In einem optionalen dritten Schritt, der in 1C dargestellt ist, kann auf das reaktive Multischichtsystem 3 eine zweite Haftschicht 4 aufgebracht werden, die zugleich als Diffusionsbarriere dienen kann, die die Diffusion zwischen dem reaktiven Multischichtsystem 3 und der im folgenden Verfahrensschritt aufgebrachten Metallschicht unterbindet. Vorteilhafte Ausgestaltungen der zweiten Haftschicht 4 entsprechen der zuvor beschriebenen Haftschicht 2. Bevorzugt wird bei der zweiten Haftschicht 4 wie bei allen nachfolgenden Schichten mindestens ein Teilbereich ausgespart, um lokal einen direkten Zugang zu dem reaktiven Multischichtsystem 3 zu ermöglichen. Dieser kann für die Zündung der Reaktion notwendig sein.
  • Auf die zweite Haftschicht 4 wird in einem in 1D dargestellten vierten Schritt eine breitbandig reflektierende Metallschicht 5 als Spiegelschicht aufgebracht. Die Metallschicht 5 weist vorzugsweise ein hochreflektierendes Metall wie Au, Al, Ag, Cu, Rh, Pt oder Ir oder eine Legierung dieser Metalle auf. Die Dicke der Metallschicht 5 wird vorzugsweise an die freiwerdende Energie des reaktiven Multischichtsystems 3 angepasst und kann zum Beispiel zwischen 10 nm und 5000 nm betragen. Bevorzugt wird bei der Metallschicht 5 wie bei allen folgenden Schichten ein Teilbereich ausgespart, um lokal einen direkten Zugang zu dem reaktiven Multischichtsystem 3 zu ermöglichen. Dieser kann für die Zündung der Reaktion notwendig sein.
  • In einem optionalen in 1E dargestellten fünften Schritt kann auf die reflektierende Metallschicht 5 eine dritte Haftschicht 6 aufgebracht werden, die zugleich als Diffusionsbarriere dienen kann, die die Diffusion zwischen der Metallschicht 5 und einer nachfolgenden Schutzschicht unterbindet. Die dritte Haftschicht 6 kann sowohl eine Einzelschicht als auch eine Kombination mehrerer dünner Schichten sein. Als Schichtmaterialien kommen alle Materialien in Frage, die eine gute Adhäsion der Schutzschicht auf der Metallschicht 5 gewährleisten. Zugleich darf die dritte Haftschicht 6 die Reflexion der darunterliegenden hochreflektierenden Metallschicht 5 nur möglichst geringfügig beeinflussen. Die dritte Haftschicht 6 ist deshalb bevorzugt möglichst dünn und/oder aus einem Material mit geeigneten optischen Eigenschaften gebildet. Geeignet sind Metalle wie Cr, Ti, Cu, Ru, Mo, W, Halbleiter wie Si oder SiC, dielektrische Schichten wie SiO2, Si3N4, Al2O3, AlN, ZrO2, ZrN, HfO2, HfN, Ta2O5, TaN, Nb2O5, NbN, Y2O3, YN, Fluoride wie MgF2, AlF3, LiF, LaF3, GdF3, oder Mischungen dieser Materialien. Die Dicke der dritten Haftschicht 6 liegt zwischen 0,5 nm und 100 nm, bevorzugt zwischen 1 nm und 30 nm. Bevorzugt wird bei der dritten Haftschicht 6 wie bei allen folgenden Schichten ein Teilbereich ausgespart, um lokal einen direkten Zugang zu dem reaktiven Multischichtsystem 3 zu ermöglichen. Dieser kann für die Zündung der Reaktion notwendig sein.
  • In einem sechsten Schritt, der in 1F dargestellt ist, wird auf die Metallschicht 5 oder auf die dritte Haftschicht 6 eine Schutzschicht 7 abgeschieden. Die Schutzschicht 7 kann aus einer oder mehreren dielektrischen Schichten aufgebaut sein. Um eine hohe Reflexion oder eine gleichmäßige und wellenlängenunabhängige optische Performance zu erreichen, weist die Schutzschicht 7 ein oder mehrere dielektrische Schichtmaterialen auf, die im Spektralbereich, in dem das Reflektorelement angewendet werden soll, transparent sind. Insbesondere kann die Schutzschicht 7 Oxide oder Nitride wie SiO2, Si3N4, A1203, AlN, ZrO2, ZrN, HfO2, HfN, TiO2, TiN, Ta205, TaN, Nb205, NbN, Y2O3, YN, MgO, Fluoride wie MgF2, LiF, AlF3, LaF3, GdF3, Halbleiter wie Si oder SiC, leitfähige transparente Materialien wie ITO oder AZO, oder Mischungen aus diesen Materialien enthalten. Bevorzugt wird bei der Schutzschicht 7 ein Teilbereich ausgespart, um lokal einen direkten Zugang zu dem reaktiven Multischichtsystem 3 zu ermöglichen. Dieser kann für die Zündung der Reaktion notwendig sein.
  • In einem in 1G dargestellten siebten Schritt wird die Reaktion des reaktiven Multischichtsystems 3 durch einen Energieeintrag, zum Beispiel mittels eines Lasers 10 oder Anlegen einer elektrischen Spannung, gezündet. Durch die dann ablaufende, sich selbst ausbreitende, exotherme Reaktion wird eine Wärmemenge freigesetzt. Die freigesetzte Wärmemenge wirkt in den Schichten, die das reaktive Multischichtsystem 3 umgeben, wodurch diese modifiziert werden. Da es sich um einen lokalen Wärmeeintrag handelt, ist die Wärmebelastung für das Substrat 1 so gering, dass kein Verzug und damit keine Formabweichungen entstehen.
  • Das auf diese Weise hergestellte Reflektorelement ist in 2 dargestellt. Das Reflektorelement enthält eine durch Zündung des reaktiven Multischichtsystems hergestellte Schicht 8, die eine Verbindung der zuvor in dem reaktiven Multischichtsystem enthaltenen Schichtmaterialien aufweist. Die durch Zündung des reaktiven Multischichtsystems hergestellte Schicht 8 kann insbesondere mindestens eine der folgenden Verbindungen aufweisen: TiB2, ZrB2, HfB2, VB2, NbB2, TaB2, TiC, ZrC, HfC, VC, NbC, TaC, Ti5Si3, Zr5Si3, Hf5Si3,V5Si3, Nb5Si3, Ta5Si3, TiAl, ZrAl, HfAl, NiAl, PdAl, PtAl, ScAu, ScCu, ScAg, YAu, YCu, YAg, RuAl.
  • Bei dem Ausführungsbeispiel der 2 ist das Reflektorelement ein so genannter Vorderseiten-Reflektor, bei dem ein einfallender Lichtstrahl 11 vor dem Auftreffen auf das Substrat 1 an der Spiegelschicht 5 reflektiert wird. Die dritte Haftschicht 6 und die Schutzschicht 7 sind vorteilhaft transparent, so dass der einfallende Lichtstrahl 11 erst an der Spiegelschicht 5 reflektiert wird. Bei der Ausgestaltung des Reflektorelements als Vorderseitenreflektor sind das reaktive Multischichtsystem 3 bzw. die durch Zündung des reaktiven Multischichtsystems 3 hergestellte Schicht 8 zwischen dem Substrat 1 und der Spiegelschicht 5 angeordnet.
  • Im Folgenden werden drei Beispiele A, B, C zur Herstellung eines Reflektorelements gemäß den 1A bis 1G und 2 beschrieben.
  • Beispiel A: Reflektorelement mit einer Silberbeschichtung und einer Al2O3-Schutzschicht
  • Auf ein Substrat 1 für präzisionsoptische Anwendungen, das eine polierte technologische Schicht aus NiP aufweist, wird in einem ersten Schritt eine Haftschicht 2 aus Cr aufgebracht. In einem zweiten Schritt wird ein reaktives Multischichtsystem 3 aus Pd und Al aufgebracht. Das reaktive Pd-Al-Multischichtsystem 3 besteht aus einem Schichtstapel mit 20 Perioden und einer Periodendicke 200 nm. Auf das reaktive Multischichtsystem 3 wird eine 10 nm dicke Cr-Schicht als zweite Haftschicht 4 und auf diese eine 150 nm dicke Ag-Schicht als Spiegelschicht 5 abgeschieden. Auf die Ag-Schicht 5 wird eine ca. 100 nm dicke Al2O3-Schicht als Schutzschicht 7 abgeschieden. Nach dem Abscheiden dieser Schichten wird das reaktive Multischichtsystem 3 gezündet. Durch Zündung des reaktiven Multischichtsystems 3 stellt sich kurzzeitig eine adiabatische Temperatur von bis zu 2380 °C ein. Diese Temperatur ist ausreichend, um die auf dem reaktiven Multischichtsystem 3 aufgebrachte Silberschicht 5 aufzuschmelzen (Schmelzpunkt: 962°C). Auch die auf der Silberschicht 5 aufgebrachte amorphe Al2O3-Schutzschicht 7 wird durch die Wärmeinwirkung modifiziert. Die amorphe Al2O3-Schutzschicht 7 wird in die stabilere α-Al2O3-Phase überführt (Phasenübergang 750°C-800°C bei PVD-Schichten). Durch das Aufschmelzen der Ag-Schicht 5 kann bei der Erstarrung an der Schutzschicht 7 (Al2O3) eine sehr glatte Grenzfläche eingestellt werden, was für eine hohe und gerichtete Reflexion vorteilhaft ist. Die Umwandlung der amorphen Al2O3-Schutzschicht 7 in die stabilere α-Al2O3-Phase führt zu einer wesentlich besseren Beständigkeit. Die α-Al2O3-Phase weist eine wesentlich geringere Wasserlöslichkeit als amorphes Al2O3 auf. Der Reflektor weist damit im Vergleich zu herkömmlichen Reflektoren eine verbesserte Stabilität insbesondere in feuchten Umgebungen auf.
  • Beispiel B: Reflektorelement mit einer Aluminiumbeschichtung und einer fluoridischen Schutzschicht
  • Auf ein poliertes Substrat 1 aus z.B. Silizium, Quarzglas oder CaF2 wird in einem ersten Schritt eine Ti-Haftschicht 2 von 10 nm Dicke aufgebracht. Auf die Ti-Haftschicht 2 wird in einem weiteren Schritt ein reaktives Multischichtsystem 3 abgeschieden. Das reaktive Multischichtsystem 3 besteht aus einem Schichtstapel aus abwechselnden Ti-Schichten und Al-Schichten mit 20 Perioden der Periodendicke 100 nm. Auf das reaktive Multischichtsystem 3 wird mittels Verdampfen eine 50 nm bis 200 nm dicke Al-Schicht als Spiegelschicht 5 aufgebracht. Auf die Spiegelschicht 5 wird eine fluoridische Schutzschicht 7, z.B. eine MgF2-Schicht oder eine Kombination von fluoridischen Schichten, von denen eine Schicht eine MgF2-Schicht ist, bei geringer Prozesstemperatur (< 150°C) aufgedampft. MgF2 ist bis weit in den tiefen UV-Bereich transparent. Es ist bekannt, dass durch Aufdampfen bei hohen Prozesstemperaturen eine deutlich geringere Absorption der Schicht und eine erhöhte Umweltstabilität erreichbar sind. Die geringere Absorption und erhöhte Umweltstabilität von MgF2 könnten auch durch ein nachträgliches Tempern erreicht werden. Aufgrund temperaturempfindlicher Substrate oder entstehender hoher thermischer Schichtspannungen ist das allerdings häufig nicht möglich. Durch Zündung des reaktiven Multischichtsystems 3 stellt sich lokal eine adiabatische Temperatur von 1227°C ein, wodurch die mindestens eine Fluoridschicht in einen stabilen Zustand überführt wird und zugleich die Absorption der Fluoridschicht im tiefen UV-Bereich verringert wird. Der Reflektor weist damit im Vergleich zu herkömmlichen Reflektoren eine verbesserte Stabilität insbesondere in feuchten Umgebungen auf.
  • Beispiel C: Reflektorelement mit einer Goldschicht
  • Auf ein Substrat 1 für präzisionsoptische Anwendungen, das eine polierte technologische Schicht aus NiP aufweist, wird in einem ersten Schritt mittels Magnetronsputtern eine Haftschicht 2 aus Cr oder Ti aufgebracht. In einem zweiten Schritt wird ein reaktives Multischichtsystem 3 aufgebracht, das einen Schichtstapel aus abwechselnden Pd-Schichten und Al-Schichten mit 15 Perioden der Periodendicke 80 nm aufweist. Auf das reaktive Multischichtsystem 3 wird eine dünne Cr- oder Ti-Schicht als Haftschicht 4 und auf diese eine 350 nm dicke Au-Schicht als Spiegelschicht 5 mit einer nachfolgenden ca. 400 nm dicken Y2O3-Schutzschicht 7 abgeschieden. Nach dem Abscheiden dieser Schichten wird das reaktive Multischichtsystem 3 gezündet. Durch Zündung des reaktiven Multischichtsystems 3 stellt sich lokal eine adiabatische Temperatur von bis zu 2380°C ein. Die Temperatur ist ausreichend, um das Gold, welches im direkten Kontakt mit dem reaktiven Multischichtsystem 3 steht, kurzzeitig aufzuschmelzen. Auch die auf der Spiegelschicht 5 aufgebrachte amorphe Y2O3-Schutzschicht 7 wird durch die Wärmeinwirkung modifiziert. Dadurch kann eine gute Haftung der Spiegelschicht 5 auf dem Substrat und der Y2O3-Schutzschicht 7 auf der Spiegelschicht 5 aus Gold erreicht werden.
  • In 3 ist eine alternative Ausgestaltung des Reflektorelements dargestellt, bei dem die Spiegelschicht als dielektrisches Interferenzschichtsystem 9 ausgestaltet ist. Die Herstellung kann im Wesentlichen analog zu dem zuvor beschriebenen Verfahren erfolgen, wobei nach dem in 1C dargestellten Verfahrensschritt das dielektrische Interferenzschichtsystem 9 unmittelbar auf das reaktive Multischichtsystem 3 aufgebracht werden kann. Auf die zweite Haftschicht 4, dritte Haftschicht 6 sowie die Schutzschicht 7 kann bei dieser Ausgestaltung verzichtet werden. In dem fertig gestellten Reflektorelement kann das als Spiegelschicht fungierende dielektrische Interferenzschichtsystem 9 beispielsweise unmittelbar auf der durch Zündung des reaktiven Multischichtsystems hergestellten Schicht 8 angeordnet sein. Wie bei dem vorherigen Ausführungsbeispiel handelt es sich bei dem Ausführungsbeispiel der 3 um einen Vorderseitenreflektor, bei dem ein einfallender Lichtstrahl 11 vor dem Auftreffen auf das Substrat 1 an der Spiegelschicht in Form des dielektrischen Interferenzschichtsystems 9 reflektiert wird.
  • In 4 ist eine weitere mögliche Ausgestaltung des Reflektorelements dargestellt. Bei diesem Ausführungsbeispiel ist das Reflektorelement ein so genannter Rückseitenreflektor, bei dem ein einfallender Lichtstrahl 11 das Substrat 1 durchquert, bevor er an der Spiegelschicht 5 reflektiert wird. Der Rückseitenreflektor unterscheidet sich von dem in 2 dargestellten Vorderseitenreflektor durch eine veränderte Schichtanordnung. Beispielsweise ist auf dem Substrat 1 eine Schichtenfolge aus der vorteilhaft transparenten ersten Haftschicht 2, der Metallschicht 5 als Spiegelschicht, der zweiten Haftschicht 4, der durch Zündung des reaktiven Multischichtsystems hergestellten Schicht 8, der dritten Haftschicht 6 und der Schutzschicht 7 angeordnet. Bei dieser Ausgestaltung ist die Spiegelschicht 5 vorteilhaft zwischen dem Substrat 1 und der durch Zündung des reaktiven Multischichtsystems hergestellten Schicht 8 angeordnet. Die Herstellung des Rückseitenreflektors kann analog zu den im Zusammenhang mit der 1 beschriebenen Verfahrensschritten, abgesehen von der unterschiedlichen Reihenfolge der Schichten, erfolgen.

Claims (15)

  1. Verfahren zur Herstellung eines Reflektorelements, umfassend die Schritte: - Abscheiden einer Schichtenfolge auf die Oberfläche eines Substrats (1) oder auf die Oberfläche einer auf ein Substrat (1) aufgebrachten Schicht, wobei die Schichtenfolge mindestens eine Spiegelschicht (5, 9) und mindestens ein reaktives Multischichtsystem (3) umfasst, wobei das reaktive Multischichtsystem (3) zwischen dem Substrat (1) und der Spiegelschicht (5) angeordnet ist oder die Spiegelschicht (5) zwischen dem Substrat (1) und dem reaktiven Multischichtsystem (3) angeordnet ist, und - Zünden des reaktiven Multischichtsystems (3), um einen Wärmeeintrag in die Schichtenfolge zu bewirken.
  2. Verfahren nach Anspruch 1, wobei das reaktive Multischichtsystem (3) eine Vielzahl von abwechselnden Schichten eines der folgenden Materialpaare aufweist: Ti und B, Zr und B, Hf und B, V und B, Nb und B, Ta und B, Ti und C, Zr und C, Hf und C, V und C, Nb und C, Ta und C, Ti und Si, Zr und Si, Hf und Si, V und Si, Nb und Si, Ta und Si, Ti und Al, Zr und Al, Hf und Al, Ni und Al, Pd und Al, Pt und Al, Sc und Au, Sc und Cu, Sc und Ag, Y und Au, Y und Cu, Y und Ag, Ru und Al.
  3. Verfahren nach einem der vorhergehenden Ansprüche, wobei das reaktive Multischichtsystem (3) mindestens 20 Schichten enthält.
  4. Verfahren nach einem der vorhergehenden Ansprüche, wobei das reaktive Multischichtsystem (3) Schichten mit Dicken zwischen 5 nm und 500 nm aufweist.
  5. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Spiegelschicht eine Metallschicht (5) aufweist.
  6. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Schichtenfolge eine über der Spiegelschicht (5) angeordnete Schutzschicht (7) aufweist, und wobei die Schutzschicht (7) durch den Wärmeeintrag modifiziert wird.
  7. Verfahren nach Anspruch 6, wobei die Schutzschicht (7) MgF2, Y2O3 oder AL2O3 aufweist.
  8. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Schichtenfolge mindestens eine Haftschicht (2, 4, 6) aufweist.
  9. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Spiegelschicht ein dielektrisches Interferenzschichtsystem (9) aufweist.
  10. Verfahren nach einem der vorhergehenden Ansprüche, wobei ein Teilbereich der Spiegelschicht (5, 9) ausgespart wird, um einen direkten Zugang zu dem reaktiven Multischichtsystem (3) zu ermöglichen.
  11. Verfahren nach einem der vorhergehenden Ansprüche, wobei das reaktive Multischichtsystem (3) abwechselnde Schichten aus einem ersten Material und einem zweiten Material aufweist, die durch Diffusionsbarrieren aus einem dritten Material voneinander getrennt sind.
  12. Verfahren nach Anspruch 11, wobei das dritte Material Kohlenstoff ist.
  13. Reflektorelement, umfassend eine auf ein Substrat (1) aufgebrachte Schichtenfolge, wobei die Schichtenfolge mindestens eine Spiegelschicht (5, 9) und mindestens eine durch Zündung eines reaktiven Multischichtsystems (3) hergestellte Schicht (8) aufweist, wobei die durch Zündung des reaktiven Multischichtsystems hergestellte Schicht (8) zwischen dem Substrat (1) und der Spiegelschicht (5) angeordnet ist oder die Spiegelschicht (5) zwischen dem Substrat (1) und der durch Zündung des reaktiven Multischichtsystems hergestellten Schicht (8) angeordnet ist.
  14. Reflektorelement nach Anspruch 13, wobei die durch Zündung eines reaktiven Multischichtsystems (3) hergestellte Schicht (8) mindestens eine Verbindung aus einem der folgenden Materialpaare aufweist: Ti und B, Zr und B, Hf und B, V und B, Nb und B, Ta und B, Ti und C, Zr und C, Hf und C, V und C, Nb und C, Ta und C, Ti und Si, Zr und Si, Hf und Si, V und Si, Nb und Si, Ta und Si, Ti und Al, Zr und Al, Hf und Al, Ni und Al, Pd und Al, Pt und Al, Sc und Au, Sc und Cu, Sc und Ag, Y und Au, Y und Cu, Y und Ag, Ru und Al.
  15. Reflektorelement nach Anspruch 13 oder 14, wobei die durch Zündung eines reaktiven Multischichtsystems (3) hergestellte Schicht (8) mindestens eine der folgenden Verbindungen aufweist: TiB2, ZrB2, HfB2, VB2, NbB2, TaB2, TiC, ZrC, HfC, VC, NbC, TaC, Ti5Si3, Zr5Si3, Hf5Si3, V5Si3, Nb5Si3, Ta5Si3, TiAl, ZrAl, HfAl, NiAl, PdAl, PtAl, ScAu, ScCu, ScAg, YAu, YCu, YAg, RuAl.
DE102015103494.8A 2015-03-10 2015-03-10 Verfahren zur Herstellung eines Reflektorelements und Reflektorelement Active DE102015103494B4 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE102015103494.8A DE102015103494B4 (de) 2015-03-10 2015-03-10 Verfahren zur Herstellung eines Reflektorelements und Reflektorelement
US15/557,441 US10618840B2 (en) 2015-03-10 2016-03-09 Method for producing a reflector element and reflector element
PCT/EP2016/055036 WO2016142428A1 (de) 2015-03-10 2016-03-09 Verfahren zur herstellung eines reflektorelements und reflektorelement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015103494.8A DE102015103494B4 (de) 2015-03-10 2015-03-10 Verfahren zur Herstellung eines Reflektorelements und Reflektorelement

Publications (2)

Publication Number Publication Date
DE102015103494A1 DE102015103494A1 (de) 2016-09-15
DE102015103494B4 true DE102015103494B4 (de) 2020-07-16

Family

ID=55524324

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102015103494.8A Active DE102015103494B4 (de) 2015-03-10 2015-03-10 Verfahren zur Herstellung eines Reflektorelements und Reflektorelement

Country Status (3)

Country Link
US (1) US10618840B2 (de)
DE (1) DE102015103494B4 (de)
WO (1) WO2016142428A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10287673B2 (en) 2017-03-07 2019-05-14 Guardian Glass, LLC Coated article having low-E coating with IR reflecting layer(S) and yttrium inclusive high index nitrided dielectric layer
US11143800B2 (en) 2017-06-16 2021-10-12 Corning Incorporated Extending the reflection bandwith of silver coating stacks for highly reflective mirrors
DE102018101700A1 (de) * 2018-01-25 2019-07-25 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauelement und Verfahren zur Herstellung eines optoelektronischen Halbleiterbauelements
DE102020205788A1 (de) * 2020-05-07 2021-11-11 Carl Zeiss Smt Gmbh Verfahren zum Herstellen von reflektiven optischen Elementen für den EUV-Wellenlängenbereich sowie reflektive optische Elemente für den EUV-Wellenlängenbereich
DE102021200748A1 (de) 2021-01-28 2022-07-28 Carl Zeiss Smt Gmbh Reflektives optisches Element und Verfahren zur Reparatur und/oder Aufbereitung eines reflektiven optischen Elements
RU209445U1 (ru) * 2021-08-19 2022-03-16 Акционерное общество "Научно-производственное объединение "Государственный институт прикладной оптики" (АО "НПО ГИПО") Оптическое зеркало
CN115319260A (zh) * 2022-08-22 2022-11-11 中国航发北京航空材料研究院 用于TiAl合金/钢连接的Ti/Al+X复合中间层及扩散焊方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012202047A1 (de) 2012-02-10 2013-01-17 Carl Zeiss Smt Gmbh Zerstörungsfreies stoffschlüssiges Verbinden von Komponenten zur Herstellung von optischen Elementen
DE102013001417A1 (de) 2013-01-24 2014-07-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Reflektierendes optisches Element für eine dynamische Auslenkung eines Laserstrahls sowie ein Verfahren zu seiner Herstellung

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1278631B1 (de) 2000-05-02 2008-10-15 Johns Hopkins University Verfahren zur herstellung einer reaktiven mehrschichtfolie sowie daraus resultierendes produkt
US6736942B2 (en) * 2000-05-02 2004-05-18 Johns Hopkins University Freestanding reactive multilayer foils
DE102010060937A1 (de) * 2010-12-01 2012-06-06 Universität des Saarlandes Reaktive metallische Multischichten und Verfahren zum Herstellen von reaktiven metallischen Multischichten
DE102013009835A1 (de) * 2013-06-07 2014-12-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Zusammenstellung für die Ausbildung eines reaktiven Schichtsystems oder Multischichtsystems sowie deren Verwendung

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012202047A1 (de) 2012-02-10 2013-01-17 Carl Zeiss Smt Gmbh Zerstörungsfreies stoffschlüssiges Verbinden von Komponenten zur Herstellung von optischen Elementen
DE102013001417A1 (de) 2013-01-24 2014-07-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Reflektierendes optisches Element für eine dynamische Auslenkung eines Laserstrahls sowie ein Verfahren zu seiner Herstellung

Also Published As

Publication number Publication date
US20180029931A1 (en) 2018-02-01
US10618840B2 (en) 2020-04-14
DE102015103494A1 (de) 2016-09-15
WO2016142428A1 (de) 2016-09-15

Similar Documents

Publication Publication Date Title
DE102015103494B4 (de) Verfahren zur Herstellung eines Reflektorelements und Reflektorelement
EP3134756B1 (de) Temperatur- und korrosionsstabiler oberflächenreflektor
DE102014104799B4 (de) Substrat mit einer Beschichtung zur Erhöhung der Kratzfestigkeit, Verfahren zu dessen Herstellung und dessen Verwendung
EP2470683B1 (de) Substrat aus einer aluminium-silizium-legierung oder kristallinem silizium, metallspiegel, verfahren zu dessen herstellung sowie dessen verwendung
DE102014104798B4 (de) Harte anti-Reflex-Beschichtungen sowie deren Herstellung und Verwendung
DE69915350T2 (de) Verfahren und vorrichtung zur herstellung von beschichtungen auf basis von silber mit niedrigem strahlungsvermögen ohne metallprimer
DE102004062289B4 (de) Thermisch stabiler Multilayer-Spiegel für den EUV-Spektralbereich
EP0564709B1 (de) Beschichtetes transparentes Substrat, Verwendung hiervon, Verfahren und Anlage zur Herstellung der Schichten, und Hafnium-Oxinitrid (HfOxNy) mit 1,5 x/y 3 und 2,6 n 2,8
EP3158370B1 (de) Optisches element mit einer reflektierenden beschichtung
DE102007009786B4 (de) Beschichtetes vorgespanntes Glas, Verfahren zu dessen Herstellung und dessen Verwendung
DE102014114330B4 (de) Solar-Control-Schichtsystem mit neutraler schichtseitiger Reflexionsfarbe und Glaseinheit
WO2012123038A1 (de) Reflexionsschichtsystem für solartechnische anwendungen und verfahren zu seiner herstellung
DE19620645C2 (de) Verfahren zur Herstellung selektiver Absorber
DE10126364B9 (de) Aluminium-Reflexionsspiegel und Verfahren zu dessen Herstellung
EP1749222B1 (de) Hochreflektierender dielektrischer spiegel und verfahren zu dessen herstellung
WO2006026975A2 (de) Verfahren zur herstellung eines strahlungsabsorbierenden optischen elements und strahlungsabsorbierendes optisches element
DE112018006975T5 (de) Optischer Dünnfilm, optisches Element und optisches System
WO2005051855A2 (de) Wärmebehandelbares sonnen- und wärmeschutzschichtsystem und verfahren zu dessen herstellung
DE102006011973B4 (de) Spiegel mit einer Silberschicht
DE10250564B4 (de) Verfahren zur Beschichtung einer Oberfläche, Erzeugnis und Verwendung des Erzeugnisses
DE102012215059B4 (de) Schutzschicht für ein IR-reflektierendes Schichtsystem, IR-reflektierendes Schichtsystem und Verfahren zu deren Herstellung
DE102005056110A1 (de) Temperaturstabiles Schichtsystem
DE102006030094A1 (de) Hochreflektierendes Schichtsystem und Verfahren zur Herstellung des Schichtsystems
EP3779526A1 (de) Verfahren zur herstellung einer aluminiumschicht und optisches element
DE102005035673A1 (de) Photokatalytisches Schichtsystem mit hohem Schalthub

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R016 Response to examination communication
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final
R082 Change of representative