DE102014208753A1 - Ermittlung von Parameterwerten für einen Kraftstoffinjektor - Google Patents

Ermittlung von Parameterwerten für einen Kraftstoffinjektor Download PDF

Info

Publication number
DE102014208753A1
DE102014208753A1 DE102014208753.8A DE102014208753A DE102014208753A1 DE 102014208753 A1 DE102014208753 A1 DE 102014208753A1 DE 102014208753 A DE102014208753 A DE 102014208753A DE 102014208753 A1 DE102014208753 A1 DE 102014208753A1
Authority
DE
Germany
Prior art keywords
fuel injector
current
measurement
determining
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE102014208753.8A
Other languages
English (en)
Other versions
DE102014208753B4 (de
Inventor
Frank Denk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vitesco Technologies GmbH
Original Assignee
Continental Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive GmbH filed Critical Continental Automotive GmbH
Priority to DE102014208753.8A priority Critical patent/DE102014208753B4/de
Priority to CN201580024340.0A priority patent/CN106414969B/zh
Priority to KR1020167034381A priority patent/KR101836031B1/ko
Priority to US15/309,853 priority patent/US9957909B2/en
Priority to PCT/EP2015/056402 priority patent/WO2015169501A1/de
Publication of DE102014208753A1 publication Critical patent/DE102014208753A1/de
Application granted granted Critical
Publication of DE102014208753B4 publication Critical patent/DE102014208753B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • F02D41/247Behaviour for small quantities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2477Methods of calibrating or learning characterised by the method used for learning
    • F02D41/248Methods of calibrating or learning characterised by the method used for learning using a plurality of learned values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2003Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening
    • F02D2041/2013Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening by using a boost voltage source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2055Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit with means for determining actual opening or closing time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2058Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using information of the actual current value

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Es wird ein Verfahren zur Ermittlung von Parameterwerten für einen Kraftstoffinjektor für einen Verbrennungsmotor eines Kraftfahrzeuges, welcher Kraftstoffinjektor einen Spulenantrieb zum Bewegen eines Schließelements aufweist, beschrieben. Das Verfahren weist folgendes auf: (a) Durchführen einer Mehrzahl von Messungen, wobei jede Messung (a1) ein Festlegen eines messungsspezifischen Maximalstromwertes, (a2) ein Beaufschlagen des Spulenantriebs des Kraftstoffinjektors mit einem Spannungspuls, (a3) ein Erfassen eines zeitlichen Verlaufs der Stromstärke (112, 114) eines durch den Spulenantrieb fließenden Stromes, (a4) ein Beenden des Spannungspulses, wenn die erfasste Stromstärke den Maximalstromwert erreicht, und (a5) ein Speichern des zeitlichen Verlaufs der erfassten Stromstärke aufweist, (b) Bestimmen einer Mehrzahl von Differenzverläufen (122, 124), wobei jeder Differenzverlauf auf den gespeicherten zeitlichen Verläufen der erfassten Stromstärke für zwei aufeinanderfolgende Messungen basiert, und (c) Bestimmen eines Parameterwertes für den Kraftstoffinjektor basierend auf der Mehrzahl von Differenzverläufen. Es wird ferner eine Vorrichtung, eine Motorsteuerung und ein Computerprogramm beschrieben.

Description

  • Die vorliegende Erfindung betrifft das technische Gebiet der Ansteuerung von Kraftstoffinjektoren. Die vorliegende Erfindung betrifft insbesondere ein Verfahren zur Ermittlung von Parameterwerten für einen Kraftstoffinjektor für einen Verbrennungsmotor eines Kraftfahrzeuges, welcher Kraftstoffinjektor einen Spulenantrieb zum Bewegen eines Schließelements aufweist. Die vorliegende Erfindung betrifft ferner eine entsprechende Vorrichtung, eine Motorsteuerung sowie ein Computerprogramm.
  • Bei Betrieb von Kraftstoffinjektoren mit Spulenantrieb kommt es aufgrund von elektrischen, magnetischen, mechanischen und hydraulischen Toleranzen zu unterschiedlichen zeitlichen Öffnungs-/ und Schließungsverhalten der einzelnen Injektoren und somit zu Variationen in der jeweiligen Einspritzmenge.
  • Die relativen Einspritzmengenunterschiede von Injektor zu Injektor vergrößern sich bei kürzer werdenden Einspritzzeiten. Bisher waren diese relativen Mengenunterschiede klein und ohne praktische Bedeutung. Die Entwicklung in Richtung kleinere Einspritzmengen und -zeiten führt aber dazu, dass der Einfluss von den relativen Mengenunterschieden nicht mehr außer Betracht gelassen werden kann.
  • Daher ist es von großer Bedeutung, die charakteristischen Eigenschaften eines gegebenen Kraftstoffinjektors individuell und präzise zu kennen, so dass diese bei der Ansteuerung des Kraftstoffinjektors in Betracht gezogen werden können.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, relevante Parameterwerte für einen Kraftstoffinjektor zu ermitteln, so dass dieser präzise angesteuert werden kann.
  • Diese Aufgabe wird gelöst durch die Gegenstände der unabhängigen Patentansprüche. Vorteilhafte Ausführungsformen der vorliegenden Erfindung sind in den abhängigen Ansprüchen beschrieben.
  • Gemäß einem ersten Aspekt der Erfindung wird ein Verfahren zur Ermittlung von Parameterwerten für einen Kraftstoffinjektor für einen Verbrennungsmotor eines Kraftfahrzeuges beschrieben, welcher Kraftstoffinjektor einen Spulenantrieb zum Bewegen eines Schließelements aufweist. Das beschriebene Verfahren weist folgendes auf: (a) Durchführen einer Mehrzahl von Messungen, wobei jede Messung (a1) ein Festlegen eines messungsspezifischen Maximalstromwertes, (a2) ein Beaufschlagen des Spulenantriebs des Kraftstoffinjektors mit einem Spannungspuls, (a3) ein Erfassen eines zeitlichen Verlaufs der Stromstärke eines durch den Spulenantrieb fließenden Stromes, (a4) ein Beenden des Spannungspulses, wenn die erfasste Stromstärke den Maximalstromwert erreicht, und (a5) ein Speichern des zeitlichen Verlaufs der erfassten Stromstärke aufweist, (b) Bestimmen einer Mehrzahl von Differenzverläufen, wobei jeder Differenzverlauf auf den gespeicherten zeitlichen Verläufen der erfassten Stromstärke für zwei aufeinanderfolgende Messungen basiert, und (c) Bestimmen eines Parameterwertes für den Kraftstoffinjektor basierend auf der Mehrzahl von Differenzverläufen.
  • Dem beschriebenen Verfahren liegt die Erkenntnis zugrunde, dass der zeitliche Verlauf der Stromstärke während eines Öffnungsvorgangs eines Kraftstoffinjektors (in dem der Spulenantrieb mit einem Spannungspuls (Boostspannung) beaufschlagt wird) abhängig von der Induktivität des Spulenantriebs ist. Zusätzlich zur sich ändernden Eigeninduktivität des Spulenantriebs (aufgrund des nicht linearen ferromagnetischen Magnetmaterials) kommt ein Anteil Bewegungsinduktivität aufgrund der Ankerbewegung. Der Anteil der Bewegungsinduktivität beginnt mit Beginn der Öffnungsphase (Anker-/Nadelbewegung beginnt) und endet am Ende der Öffnungsphase (Anker-/Nadelbewegung endet). Wenn nun dieser Injektor mit unterschiedlichen Stromprofilen betrieben wird, die sich in ihren Strömen zeitlich ähnlich verhalten, werden sich bei Variationen in der Höhe des Betrages des Stroms der induktive Einfluss und dessen Veränderung charakteristisch Verändern. Mit dem beschriebenen Verfahren können verschiedene Informationen, insbesondere Parameterwerte, die für eine Charakterisierung des vorliegenden Kraftstoffinjektors genutzt werden können, sowohl automatisch als auch manuell durch Inspektion ermittelt werden.
  • In diesem Dokument bezeichnet „Spannungspuls“ insbesondere einen sogenannten Boostspannungspuls, der dazu geeignet ist, den Kraftstoffinjektor innerhalb kurzer Zeit zu öffnen.
  • In diesem Dokument bezeichnet „Schließelement“ insbesondere ein bewegliches Element des Kraftstoffinjektors, das von dem Spulenantrieb bewegt werden kann, um den Kraftstoffinjektor zu öffnen und zu schließen.
  • Nach dem Beaufschlagen mit dem jeweiligen Spannungspuls wird der Injektor vorzugsweise während einer Einspritzphase eine Zeitlang offen gehalten.
  • Das Erfassen des zeitlichen Verlaufs der Stromstärke wird vorzugsweise sowie während des Beaufschlagens mit dem jeweiligen Spannungspuls (das heißt während der Boostphase) als auch danach (das heißt während der Einspritzphase und/oder Schließphase) durchgeführt.
  • Charakteristisch für jede Messung ist es, dass der Spannungspuls zu dem Zeitpunkt abgeschaltet wird, wo die Stromstärke einen festgelegten messungsspezifischen Maximalstromwert (Peakstrom) erreicht. Mit anderen Worten wird für jede Messung ein eindeutiger Maximalstromwert verwendet.
  • Die Abschaltung des Spannungspulses führt dazu, dass der Kraftstoffinjektor in eine Freilaufphase übergeht, indem dem Spulenantrieb eine niedrigere Spannung (zum Beispiel Masse, Bordnetzspannung oder eine andere festgelegte Spannung) auferlegt wird.
  • Durch Bestimmen einer Mehrzahl von Differenzverläufen, wobei jeder Differenzverlauf auf den gespeicherten zeitlichen Verläufen der erfassten Stromstärke für zwei aufeinanderfolgende Messungen basiert, kann erkannt werden, ob der entsprechende Unterschied im Maximalstromwert (Peakstrom) einen großen oder eher geringeren Einfluss auf dem zeitlichen Verlauf der Stromstärke hat. Mit anderen Worten kann erkannt werden, inwiefern eine Änderung des Peakstromwertes beim Ansteuern des Kraftstoffinjektors eine wesentliche Auswirkung auf dem zeitlichen Verlauf der Stromstärke haben wird (im ganzen oder in einem Teil des Zeitintervalls).
  • Durch Auswertung und Analyse der Differenzverläufe können verschiedene Informationen ermittelt werden, die für eine Charakterisierung des Kraftstoffinjektors genutzt werden können. Spezifischer können Information in Bezug auf Wirbelstromausprägung, in Bezug auf das Magnetisierungsverhalten bis zur Sättigung und auf das Verhalten darüber hinaus bei Übererregung erkannt werden.
  • Die somit bestimmten Informationen und/oder Parameterwerte ermöglicht nun eine präzise Anpassung der Ansteuerungsparameter, so dass der Kraftstoffinjektor wie gewünscht operiert.
  • Gemäß einem Ausführungsbeispiel der Erfindung weist jede Messung der Mehrzahl von Messungen ferner (a) ein Erfassen eines zeitlichen Verlaufs der Bewegung des Schließelements und (b) ein Speichern des zeitlichen Verlaufs der erfassten Bewegung auf, wobei das Bestimmen des Parameterwertes für den Kraftstoffinjektor ferner auf den zeitlichen Verläufen der erfassten Bewegung basiert.
  • Die Bewegung des Schließelements kann zum Beispiel mittels eines Beschleunigungssensors erfasst werden.
  • Durch Analyse der zeitlichen Verläufe der Bewegung des Schließelements für die verschiedenen Maximalstromwerte (oder Peakstromwerte) kann zum Beispiel erkannt werden, ob ein charakteristischer Zustand des Kraftstoffinjektors (zum Beispiel Ende der Öffnungsphase) vor oder nach dem Beenden des Spannungspulses erreicht wird. Somit kann zum Beispiel ein optimaler Peakstromwert für die Ansteuerung des Kraftstoffinjektors festgelegt werden.
  • Gemäß einem weiteren Ausführungsbeispiel der Erfindung weist das Bestimmen des Parameterwertes für den Kraftstoffinjektor ein Bestimmen eines Sättigungsstromwertes auf, bei welchem der Kraftstoffinjektor sich in Sättigung befindet.
  • In diesem Dokument bezeichnet „Sättigung“ insbesondere einen Zustand, in welchem ein weiteres Erhöhen des Spulenstroms nicht eine entsprechende weitere Bewegung des Bewegungselements des Kraftstoffinjektors mit sich führt.
  • Der Sättigungsstromwert kann durch Analyse der Differenzverläufe, insbesondere durch Vergleichen der Differenzverläufe erfolgen. Wenn zwei oder mehr aufeinanderfolgenden Differenzverläufe sehr ähnlich verlaufen, ist dies eine Indikation dafür, dass der Kraftstoffinjektor sich bei den entsprechenden Peakstromwerten in Sättigung befindet.
  • Gemäß einem weiteren Ausführungsbeispiel der Erfindung erfolgt das Festlegen eines messungsspezifischen Maximalstromwertes derart, dass der messungsspezifische Maximalstromwert für eine nachfolgende Messung in Vergleich mit dem messungsspezifischen Maximalstromwert der unmittelbar vorhergehenden Messung mit einem vorbestimmten Wert erhöht wird.
  • Mit anderen Worten wird der messungsspezifische Maximalstromwert für jede Messung schrittweise erhöht.
  • Der vorbestimmte Wert, mit welchem der messungsspezifische Maximalstrom schrittweise erhöht wird, beträgt zum Beispiel 0,1A bis 1A, wie zum Beispiel 0,25A bis 0,75A, wie zum Beispiel etwa 0,5A. Der messungsspezifische Maximalstromwert mag für die erste Messung zum Beispiel 5A und für die letzte Messung zum Beispiel 15A sein.
  • Gemäß einem weiteren Ausführungsbeispiel der Erfindung weist das Verfahren ferner ein Erzeugen einer grafischen Darstellung der zeitlichen Verläufe der erfassten Stromstärken, der zeitlichen Verläufe der erfassten Bewegungen und der Mehrzahl von Differenzverläufen auf, wobei die grafische Darstellung so gestaltet ist, dass der Zeitpunkt in jeder Messung, zu welchem der Spannungspuls beendet wurde, einen Referenzpunkt darstellt.
  • Anders ausgedrückt, es werden die zeitlichen Verläufe der Stromstärken und Bewegungen sowie die Differenzverläufe als Funktionen der Zeit so dargestellt, dass die Werte, die dem Zeitpunkt entsprechen, zu welchem der Spannungspuls in den jeweiligen Messungen beendet wurde, übereinander (das heißt für einen bestimmten Wert (zum Beispiel t = 0) auf der Zeit-Achse) dargestellt.
  • Die einzelnen Kurven können zum Beispiel farbig gekennzeichnet werden, so dass die Zuordnung der verschiedenen Kurven zu den verschiedenen Werten des Peakstromes erleichtert wird.
  • Diese Darstellung erlaubt einen Fachmann viele Informationen in Bezug auf die Eigenschaften des Kraftstoffinjektors wahrzunehmen. Neben der oben erläuterten Sättigung des Kraftstoffinjektors, kann der Fachmann unter anderem die Wirbelstromausprägung und das Verhalten des Kraftstoffinjektors bei Übererregung erkennen. Ferner kann der Fachmann Aussagen über das verwendete Magnetmaterial hinsichtlich Leitfähigkeit und Hysteresekurve machen, und charakteristische Stellen der Ankerpositionen erkennen.
  • Damit ist eine Abstimmung hinsichtlich dem optimalen Stromprofil und dem hydraulischen Verhalten möglich. Die Eventzeitpunkte (Anfang/Ende des Öffnungs-/Schließvorgangs) können druckabhängig in zur Detektion notwendige/nutzbare Strombereiche gestellt werden. Diese Abstimmung liegt somit auch einen hardware-/ und kostenoptimierten Stromregler fest.
  • Durch Kenntnis der Eventzeitpunkte kann durch Anpassung der Bestromungsdauer die Einspritzmenge genauer eingestellt werden.
  • Wird zum Beispiel festgestellt, dass der Anfang des Öffnungsvorgangs zeitlich verschoben ist, kann die Anfangszeit des Spannungspulses, mit welchem der Spulenantrieb beaufschlagt wird, entsprechend verschoben werden.
  • Wird zum Beispiel festgestellt, dass das Ende des Öffnungsvorgangs zeitlich verschoben ist, kann die Einspritzdauer angepasst werden, um sicherzustellen, dass die vorgesehene Kraftstoffmenge eingespritzt wird.
  • Mit anderen Worten kann die Zeitdauer des Spannungspulses im Falle eines verzögerten Öffnens des Kraftstoffinjektors verlängert werden, um zu vermeiden, dass zu wenig Kraftstoff eingespritzt wird. In ähnlicher Weise kann die Zeitdauer des Spannungspulses im Falle eines frühzeitigen Öffnens des Kraftstoffinjektors verkürzt werden, um zu vermeiden, dass zu viel Kraftstoff eingespritzt wird.
  • Die oben erwähnten Korrekturen können vorteilhafterweise pulsindividuell durchgeführt werden, das heißt für jeden einzelnen Öffnungsvorgang.
  • Die Korrekturen bzw. Zeitverschiebungen können des Weiteren physikalische Systemparameter, wie zum Beispiel Kraftstofftemperatur, Abstand zum vorherigen Einspritzvorgang usw., berücksichtigen. Dies kann zum Beispiel durch Verwendung entsprechender Vorsteuerkennlinien bzw. -Felder oder eines Modells erfolgen.
  • Gemäß einem zweiten Aspekt der Erfindung wird eine Vorrichtung zum Ermitteln von Parameterwerten für einen Kraftstoffinjektor für einen Verbrennungsmotor eines Kraftfahrzeuges, welcher Kraftstoffinjektor einen Spulenantrieb zum Bewegen eines Schließelements aufweist, beschrieben. Die beschriebene Vorrichtung weist folgendes auf: (a) eine Beaufschlagungseinheit zum Beaufschlagen des Spulenantriebs des Kraftstoffinjektors mit einem Spannungspuls, (b) eine Erfassungseinheit zum Erfassen eines zeitlichen Verlaufs der Stromstärke eines durch den Spulenantrieb fließenden Stromes und/oder eines zeitlichen Verlaufs der Bewegung des Schließelements, (c) eine Speichereinheit zum Speichern der erfassten zeitlichen Verläufe, (d) eine Bestimmungseinheit zum Bestimmen einer Mehrzahl von Differenzverläufen basierend auf gespeicherten zeitlichen Verläufen der erfassten Stromstärke, und (e) eine Steuereinheit, die zum Durchführen des Verfahrens gemäß dem ersten Aspekt oder einem der oben beschriebenen Ausführungsforme konfiguriert ist.
  • Der beschriebenen Vorrichtung liegt im Wesentlichen die gleiche Idee zu Grunde, die oben in Verbindung mit dem ersten Aspekt beschrieben wurde.
  • Die beschriebene Vorrichtung stellt somit eine Hardware-Implementierung des Verfahrens gemäß dem ersten Aspekt dar.
  • Die Beaufschlagungseinheit und Erfassungseinheit können somit mit üblichen aus dem Gebiet der Motorsteuerung bekannten Spannungsgeneratoren und Strommessgeräten realisiert werden. In ähnlicher Weise können die Speichereinheit, Bestimmungseinheit und Steuereinheit mit üblichen Speicher- und Verarbeitungseinheiten (Mikroprozessor) einer Motorsteuerung realisiert sein.
  • Die Vorrichtung ermöglicht eine einfache, präzise und kostengünstige Ermittlung von charakteristischen Parameterwerten für einen Kraftstoffinjektor, insbesondere die Ermittlung eines geeigneten Stromprofils zum Ansteuern des Kraftstoffinjektors.
  • Gemäß einem dritten Aspekt der Erfindung wird eine Motorsteuerung für ein Fahrzeug beschrieben. Die beschriebene Motorsteuerung ist zum Durchführen der Verfahren gemäß dem ersten Aspekt oder einem der obigen Ausführungsbeispiele eingerichtet.
  • Diese Motorsteuerung ermöglicht es mit einfachen und kostengünstigen Mitteln charakteristischen Parameter der einzelnen Kraftstoffinjektoren zu ermitteln und zu berücksichtigen.
  • Gemäß einem vierten Aspekt der Erfindung wird ein Computerprogramm zum Ermitteln von Parameterwerten für einen Kraftstoffinjektor für einen Verbrennungsmotor eines Kraftfahrzeuges, welcher Kraftstoffinjektor einen Spulenantrieb zum Bewegen eines Schließelements aufweist. Das beschriebene Computerprogramm ist zum Durchführen der Verfahren gemäß dem ersten Aspekt oder einem der obigen Ausführungsbeispiele eingerichtet, wenn es von einem Prozessor oder µ-Controller ausgeführt wird.
  • Im Sinne dieses Dokuments ist die Nennung eines solchen Computerprogramms gleichbedeutend mit dem Begriff eines Programm-Elements, eines Computerprogrammprodukts und/oder eines computerlesbaren Mediums, das Anweisungen zum Steuern eines Computersystems enthält, um die Arbeitsweise eines Systems bzw. eines Verfahrens in geeigneter Weise zu koordinieren, um die mit dem erfindungsgemäßen Verfahren verknüpften Wirkungen zu erreichen.
  • Das Computerprogramm kann als computerlesbarer Anweisungscode in jeder geeigneten Programmiersprache wie beispielsweise in Assembler, JAVA, C++ etc. implementiert sein. Das Computerprogramm kann auf einem computerlesbaren Speichermedium (CD-Rom, DVD, Blu-ray Disk, Wechsellaufwerk, flüchtiger oder nicht-flüchtiger Speicher, eingebauter Speicher/Prozessor etc.) abgespeichert sein. Der Anweisungscode kann einen Computer oder andere programmierbare Geräte wie insbesondere ein Steuergerät für einen Motor eines Kraftfahrzeugs derart programmieren, dass die gewünschten Funktionen ausgeführt werden. Ferner kann das Computerprogramm in einem Netzwerk wie beispielsweise dem Internet bereitgestellt werden, von dem es bei Bedarf von einem Nutzer heruntergeladen werden kann.
  • Die Erfindung kann sowohl mittels eines Computerprogramms, d.h. einer Software, als auch mittels einer oder mehrerer spezieller elektrischer Schaltungen, d.h. in Hardware oder in beliebig hybrider Form, d.h. mittels Software-Komponenten und Hardware-Komponenten, realisiert werden.
  • Es wird darauf hingewiesen, dass Ausführungsformen der Erfindung mit Bezug auf unterschiedliche Erfindungsgegenstände beschrieben wurden. Insbesondere sind einige Ausführungsformen der Erfindung mit Verfahrensansprüchen und andere Ausführungsformen der Erfindung mit Vorrichtungsansprüchen beschrieben. Dem Fachmann wird jedoch bei der Lektüre dieser Anmeldung sofort klar werden, dass, sofern nicht explizit anders angegeben, zusätzlich zu einer Kombination von Merkmalen, die zu einem Typ von Erfindungsgegenstand gehören, auch eine beliebige Kombination von Merkmalen möglich ist, die zu unterschiedlichen Typen von Erfindungsgegenständen gehören.
  • Weitere Vorteile der vorliegenden Erfindung ergeben sich aus der folgenden beispielhaften Beschreibung einer bevorzugten Ausführungsform.
  • Es wird darauf hingewiesen, dass die nachfolgend beschriebene Ausführungsform lediglich eine beschränkte Auswahl an möglichen Ausführungsvarianten der Erfindung darstellt.
  • Die einzige Figur zeigt eine erfindungsgemäß erzeugte grafische Darstellung von entsprechenden Stromverläufen, Bewegungsverläufen und Stromdifferenzverläufen für einen Kraftstoffinjektor als Funktionen der Zeit in Verbindung mit einem Ausführungsbeispiel der vorliegenden Erfindung.
  • Die Figur zeigt eine Reihe 110 von Stromverläufen, eine Reihe 120 von Stromdifferenzverläufen und eine Reihe 130 von Bewegungsverläufen für einen Kraftstoffinjektor als Funktionen der Zeit gemäß einem Ausführungsbeispiel.
  • Jede Kurve in der Reihe 110 von Stromverläufen zeigt den Stromverlauf beim Beaufschlagen eines Kraftstoffinjektors mit einem Spannungspuls von 65V (Boostspannung) bis zum Erreichen einer bestimmten (messungsspezifische) Stromstärke (Maximalstromwert) zwischen etwa 6A und etwa 15A. Mit anderen Worten entspricht jede Kurve in der Reihe 110 von Stromverläufen genau einer aus einer Mehrzahl von Messungen. Als Referenzpunkt für die Kurven wird der Zeitpunkt des Erreichens des messungsspezifischen Maximalstromwertes verwendet. Dieser Zeitpunkt ist als t = 0 gezeigt. Somit zeigt die untere Kurve 112 den Stromverlauf für eine erste Messung, bei welcher der messungsspezifische Maximalstromwert etwa 6A beträgt. Die Kurve gerade über der unteren Kurve 112 zeigt den Stromverlauf für eine zweite Messung, bei welcher der messungsspezifische Maximalstromwert um 0,5A höher ist usw. Die obere Kurve 114 zeigt den Stromverlauf für die letzte Messung, bei welcher der messungsspezifische Maximalstromwert etwa 15A beträgt.
  • Jede Kurve in der Reihe 120 von Stromdifferenzverläufen zeigt eine berechnete Differenz zwischen zwei benachbarten Stromverläufen in der Reihe 110 von Stromverläufen. Mit anderen Worten zeigt jede Kurve in der Reihe 120 die Differenz zwischen den erfassten Stromverläufen in zwei aufeinanderfolgenden Messungen, wobei die Stromverläufe (wie oben erwähnt) mit Ausgangspunkt in dem Zeitpunkt, zu welchem der jeweilige messungsspezifische Maximalstromwert erreicht wurde, synchronisiert sind. Die Kurve 122 zeigt zum Beispiel die Differenz zwischen den beiden untersten Kurven in der Reihe 110 von Stromverläufen, das heißt zwischen der zweiten Kurve von unten und der unteren Kurve 112. In ähnlicher Weise zeigt die Kurve 124 die Differenz zwischen den beiden obersten Kurven in der Reihe 110 von Stromverläufen, das heißt zwischen der oberen Kurve 114 und der gerade unter dieser verlaufenden Kurve.
  • Jede Kurve in der Reihe 130 von Bewegungsverläufen zeigt den zeitlichen Verlauf der Ausgangsspannung eines Beschleunigungssensors in Verbindung mit einer der Messungen. Der Beschleunigungssensor ist in dem Kraftstoffinjektor so angebracht, dass er die Bewegung eines relevanten Teils, wie zum Beispiel eines Spulenankers oder einer Injektornadel, erfassen kann. Jede Kurve in der Reihe 130 entspricht somit einem Spulenstromverlauf der Reihe 110. Die Bewegungskurve 132 entspricht somit der ersten Messung, das heißt dem Spulenstromverlauf 112, und die Bewegungskurve 134 entspricht der letzten Messung, das heißt dem Spulenstromverlauf 114.
  • Die in der Figur gezeigten Reihen 110, 120, 130 von Kurven können sowohl automatisiert als auch manuell ausgewertet werden.
  • Insbesondere kann eine automatisierte Auswertung mittels eines Prozessors dazu verwendet werden, einen geeigneten Peakstrom (Maximalstromwert) für das Antreiben des Kraftstoffinjektors zu ermitteln. Dies kann zum einen durch Analyse der Kurvenreihe 120 und zum anderen durch Analyse der Kurvenreihe 130 erfolgen. Zum Beispiel kann ein Vergleichen benachbarter Differenzkurven in der Kurvenreihe 120 eine Aussage darüber geben, ob der Kraftstoffinjektor in Sättigung getrieben wird. Verlaufen die Differenzkurven relativ konstant und einander überlagernd, kann davon ausgegangen werden, dass der Kraftstoffinjektor sich in Sättigung befindet. Da dies mit einer Verschwendung von sowohl Zeit als auch Energie verbunden ist, soll ein Peakstrom gewählt werden, bei welchem dies nicht der Fall ist. Des Weiteren kann zum Beispiel festgestellt werden, ob das Öffnen des Kraftstoffinjektors relativ zu dem Stromprofil zweckmäßig stattfindet. Wie durch Pfeil 135 angezeigt, weist die Bewegungskurve 134 einen Maximalwert vor t = 0 auf, was eine weitere Indikation dafür ist, dass die Stromkurve 114 den Kraftstoffinjektor in Sättigung treibt. Der Prozessor sucht diejenige Kurve von der Kurvenreihe 130, die ihren Maximalwert so nahe wie möglich an t = 0 aufweist, um einen geeigneten Peakstrom für das Betreiben des Kraftstoffinjektors zu identifizieren. Die Präzision kann eventuell durch Interpolation noch erhöht werden.
  • Eine manuelle Auswertung durch Benutzer kann durch Studium der drei Kurvenreihen 110, 120, 130 auf einem Bildschirm erfolgen. Die grafische Darstellung kann vorteilhafterweise farbig erfolgen, zum Beispiel dadurch, dass Kurven in den drei Kurvenreihen 110, 120, 130, die bestimmte Maximalstromwerte entsprechen, auch die gleiche Farbe aufweisen. Diese Darstellung erlaubt einen Benutzer mit Fachkenntnissen, viele Informationen in Bezug auf die Eigenschaften des Kraftstoffinjektors wahrzunehmen. Neben der oben erläuterten Sättigung des Kraftstoffinjektors, kann der Benutzer unter anderem die Wirbelstromausprägung und das Verhalten des Kraftstoffinjektors bei Übererregung erkennen. Ferner kann der Benutzer Aussagen über das verwendete Magnetmaterial hinsichtlich Leitfähigkeit und Hysteresekurve machen, und charakteristische Stellen der Ankerpositionen erkennen. Damit ist eine Abstimmung hinsichtlich dem optimalen Stromprofil und dem hydraulischen Verhalten möglich. Die Eventzeitpunkte (Anfang/Ende des Öffnungs-/Schließvorgangs) können druckabhängig in zur Detektion notwendige/nutzbare Strombereiche gestellt werden. Diese Abstimmung liegt somit auch einen hardware-/ und kostenoptimierten Stromregler fest. Endlich kann mit Kenntnis der Eventzeitpunkte durch Anpassung der Bestromungsdauer die Einspritzmenge genauer eingestellt werden.
  • Bezugszeichenliste
  • 110
    Stromverläufe
    112
    Stromverlauf
    114
    Stromverlauf
    120
    Stromdifferenzverläufe
    122
    Stromdifferenzverlauf
    124
    Stromdifferenzverlauf
    130
    Bewegungsverläufe
    132
    Bewegungsverlauf
    134
    Bewegungsverlauf
    135
    Pfeil

Claims (8)

  1. Verfahren zur Ermittlung von Parameterwerten für einen Kraftstoffinjektor für einen Verbrennungsmotor eines Kraftfahrzeuges, welcher Kraftstoffinjektor einen Spulenantrieb zum Bewegen eines Schließelements aufweist, das Verfahren aufweisend Durchführen einer Mehrzahl von Messungen, wobei jede Messung ein Festlegen eines messungsspezifischen Maximalstromwertes, ein Beaufschlagen des Spulenantriebs des Kraftstoffinjektors mit einem Spannungspuls, ein Erfassen eines zeitlichen Verlaufs der Stromstärke (112, 114) eines durch den Spulenantrieb fließenden Stromes, ein Beenden des Spannungspulses, wenn die erfasste Stromstärke den Maximalstromwert erreicht, und ein Speichern des zeitlichen Verlaufs der erfassten Stromstärke aufweist, Bestimmen einer Mehrzahl von Differenzverläufen (122, 124), wobei jeder Differenzverlauf auf den gespeicherten zeitlichen Verläufen der erfassten Stromstärke für zwei aufeinanderfolgende Messungen basiert, und Bestimmen eines Parameterwertes für den Kraftstoffinjektor basierend auf der Mehrzahl von Differenzverläufen.
  2. Verfahren gemäß dem vorhergehenden Anspruch, wobei jede Messung der Mehrzahl von Messungen ferner ein Erfassen eines zeitlichen Verlaufs der Bewegung (132, 134) des Schließelements und ein Speichern des zeitlichen Verlaufs der erfassten Bewegung aufweist, wobei das Bestimmen des Parameterwertes für den Kraftstoffinjektor ferner auf den zeitlichen Verläufen der Bewegung basiert.
  3. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei das Bestimmen des Parameterwertes für den Kraftstoffinjektor ein Bestimmen eines Sättigungsstromwertes aufweist, bei welchem der Kraftstoffinjektor sich in Sättigung befindet.
  4. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei das Festlegen eines messungsspezifischen Maximalstromwertes derart erfolgt, dass der messungsspezifische Maximalstromwert für eine nachfolgende Messung in Vergleich mit dem messungsspezifischen Maximalstromwert der unmittelbar vorhergehenden Messung mit einem vorbestimmten Wert erhöht wird.
  5. Verfahren gemäß einem der vorhergehenden Ansprüche, ferner aufweisend Erzeugen einer grafischen Darstellung der zeitlichen Verläufe der erfassten Stromstärken, der zeitlichen Verläufe der erfassten Bewegungen und der Mehrzahl von Differenzverläufen, wobei die grafische Darstellung so gestaltet ist, dass der Zeitpunkt in jeder Messung, zu welchem der Spannungspuls beendet wurde, ein Referenzpunkt darstellt.
  6. Vorrichtung zum Ermitteln von Parameterwerten für einen Kraftstoffinjektor für einen Verbrennungsmotor eines Kraftfahrzeuges, welcher Kraftstoffinjektor einen Spulenantrieb zum Bewegen eines Schließelements aufweist, die Vorrichtung aufweisend eine Beaufschlagungseinheit zum Beaufschlagen des Spulenantriebs des Kraftstoffinjektors mit einem Spannungspuls, eine Erfassungseinheit zum Erfassen eines zeitlichen Verlaufs der Stromstärke eines durch den Spulenantrieb fließenden Stromes und/oder eines zeitlichen Verlaufs der Bewegung des Schließelements, eine Speichereinheit zum Speichern der erfassten zeitlichen Verläufe, eine Bestimmungseinheit zum Bestimmen einer Mehrzahl von Differenzverläufen basierend auf gespeicherten zeitlichen Verläufen der erfassten Stromstärke, und eine Steuereinheit, die zum Durchführen des Verfahrens gemäß einem der vorhergehenden Ansprüche konfiguriert ist.
  7. Motorsteuerung für einen Verbrennungsmotor eines Kraftfahrzeuges, wobei die Motorsteuerung zum Durchführen des Verfahrens gemäß einem der Ansprüche 1 bis 5 eingerichtet ist.
  8. Computerprogramm zum Ermitteln von Parameterwerten für einen Kraftstoffinjektor für einen Verbrennungsmotor eines Kraftfahrzeuges, welcher Kraftstoffinjektor einen Spulenantrieb zum Bewegen eines Schließelements aufweist, wobei das Computerprogramm, wenn es von einem Prozessor ausgeführt wird, zum Durchführen des Verfahrens gemäß einem der Ansprüche 1 bis 5 eingerichtet ist.
DE102014208753.8A 2014-05-09 2014-05-09 Ermittlung von Parameterwerten für einen Kraftstoffinjektor Active DE102014208753B4 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE102014208753.8A DE102014208753B4 (de) 2014-05-09 2014-05-09 Ermittlung von Parameterwerten für einen Kraftstoffinjektor
CN201580024340.0A CN106414969B (zh) 2014-05-09 2015-03-25 用于控制喷射阀的装置和方法
KR1020167034381A KR101836031B1 (ko) 2014-05-09 2015-03-25 분사 밸브를 제어하기 위한 디바이스 및 방법
US15/309,853 US9957909B2 (en) 2014-05-09 2015-03-25 Device and method for controlling an injection valve
PCT/EP2015/056402 WO2015169501A1 (de) 2014-05-09 2015-03-25 Vorrichtung und verfahren zum steuern eines einspritzventils

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102014208753.8A DE102014208753B4 (de) 2014-05-09 2014-05-09 Ermittlung von Parameterwerten für einen Kraftstoffinjektor

Publications (2)

Publication Number Publication Date
DE102014208753A1 true DE102014208753A1 (de) 2015-11-12
DE102014208753B4 DE102014208753B4 (de) 2016-03-31

Family

ID=52774221

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102014208753.8A Active DE102014208753B4 (de) 2014-05-09 2014-05-09 Ermittlung von Parameterwerten für einen Kraftstoffinjektor

Country Status (5)

Country Link
US (1) US9957909B2 (de)
KR (1) KR101836031B1 (de)
CN (1) CN106414969B (de)
DE (1) DE102014208753B4 (de)
WO (1) WO2015169501A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018160556A1 (en) * 2017-03-03 2018-09-07 Woodward, Inc. Fingerprinting of fluid injection devices

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014208753B4 (de) 2014-05-09 2016-03-31 Continental Automotive Gmbh Ermittlung von Parameterwerten für einen Kraftstoffinjektor
DE102015219383B3 (de) * 2015-10-07 2017-02-09 Continental Automotive Gmbh Bestimmung eines Zeitpunktes, zu welchem sich ein Kraftstoffinjektor in einem vorbestimmten Zustand befindet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10150199A1 (de) * 2001-10-12 2003-04-24 Wolfgang E Schultz Verfahren und Schaltung zur Erkennung der Ankerlage eines Elektromagneten
DE102004020937A1 (de) * 2004-04-28 2005-11-24 Volkswagen Mechatronic Gmbh & Co. Kg Verfahren zum Bestimmen einer Schließzeit eines Schließgliedes und Schaltungsanordnung
DE10356858B4 (de) * 2003-12-05 2007-04-12 Siemens Ag Betriebsverfahren für einen Aktor eines Einspritzventils und zugehörige Vorrichtung
DE102013207842A1 (de) * 2013-04-29 2014-10-30 Continental Automotive Gmbh Verfahren und Vorrichtung zur Ermittlung eines Referenz-Stromverlaufs für einen Kraftstoffinjektor zur Ermittlung des Zeitpunkts eines vorbestimmten Öffnungszustandes des Kraftstoffinjektors

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11148439A (ja) * 1997-06-26 1999-06-02 Hitachi Ltd 電磁式燃料噴射弁及びその燃料噴射方法
JP2002004922A (ja) * 2000-06-27 2002-01-09 Mitsubishi Electric Corp インジェクタ駆動装置
DE102004023545A1 (de) 2004-05-13 2005-12-08 Daimlerchrysler Ag Verfahren zur Ermittlung der Position eines beweglichen Verschlusselementes eines Einspritzventils
KR20110066475A (ko) 2009-12-11 2011-06-17 콘티넨탈 오토모티브 시스템 주식회사 자동차의 인젝션 제어 시스템 및 방법
DE102010042467B4 (de) 2010-10-14 2019-12-05 Continental Automotive Gmbh Ermittlung des Öffnungszeitpunkts eines Steuerventils eines indirekt angetriebenen Kraftstoffinjektors
CN102297065B (zh) * 2011-08-30 2013-04-17 潍柴动力股份有限公司 具有关闭时间偏差补偿的喷油器
DE102012213883B4 (de) 2012-08-06 2015-03-26 Continental Automotive Gmbh Gleichstellung des Stromverlaufs durch einen Kraftstoffinjektor für verschiedene Teileinspritzvorgänge einer Mehrfacheinspritzung
DE102012217121B4 (de) 2012-09-24 2022-02-03 Vitesco Technologies GmbH Elektrische Ansteuerung eines Ventils basierend auf Kenntnis des Schließzeitpunkts bzw. Öffnungszeitpunktes des Ventils
DE102014208753B4 (de) 2014-05-09 2016-03-31 Continental Automotive Gmbh Ermittlung von Parameterwerten für einen Kraftstoffinjektor
KR101806354B1 (ko) * 2015-12-07 2018-01-10 현대오트론 주식회사 오프닝 듀레이션을 이용한 인젝터 제어 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10150199A1 (de) * 2001-10-12 2003-04-24 Wolfgang E Schultz Verfahren und Schaltung zur Erkennung der Ankerlage eines Elektromagneten
DE10356858B4 (de) * 2003-12-05 2007-04-12 Siemens Ag Betriebsverfahren für einen Aktor eines Einspritzventils und zugehörige Vorrichtung
DE102004020937A1 (de) * 2004-04-28 2005-11-24 Volkswagen Mechatronic Gmbh & Co. Kg Verfahren zum Bestimmen einer Schließzeit eines Schließgliedes und Schaltungsanordnung
DE102013207842A1 (de) * 2013-04-29 2014-10-30 Continental Automotive Gmbh Verfahren und Vorrichtung zur Ermittlung eines Referenz-Stromverlaufs für einen Kraftstoffinjektor zur Ermittlung des Zeitpunkts eines vorbestimmten Öffnungszustandes des Kraftstoffinjektors

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018160556A1 (en) * 2017-03-03 2018-09-07 Woodward, Inc. Fingerprinting of fluid injection devices
US10401398B2 (en) 2017-03-03 2019-09-03 Woodward, Inc. Fingerprinting of fluid injection devices
JP2020509316A (ja) * 2017-03-03 2020-03-26 ウッドワード, インコーポレーテッドWoodward, Inc. 流体噴射装置のフィンガプリント
US10712373B2 (en) 2017-03-03 2020-07-14 Woodward, Inc. Fingerprinting of fluid injection devices
JP7175909B2 (ja) 2017-03-03 2022-11-21 ウッドワード,インコーポレーテッド 流体噴射装置のフィンガプリント

Also Published As

Publication number Publication date
CN106414969B (zh) 2019-10-11
WO2015169501A1 (de) 2015-11-12
KR20160149303A (ko) 2016-12-27
KR101836031B1 (ko) 2018-03-07
US9957909B2 (en) 2018-05-01
CN106414969A (zh) 2017-02-15
US20170145942A1 (en) 2017-05-25
DE102014208753B4 (de) 2016-03-31

Similar Documents

Publication Publication Date Title
DE102013207842B4 (de) Verfahren und Vorrichtung zur Ermittlung eines Referenz-Stromverlaufs für einen Kraftstoffinjektor zur Ermittlung des Zeitpunkts eines vorbestimmten Öffnungszustandes des Kraftstoffinjektors
DE102009032521B4 (de) Bestimmung des Schließzeitpunkts eines Kraftstoffeinspritzventils basierend auf einer Auswertung der Ansteuerspannung
DE102015210794B3 (de) Verfahren zum Ermitteln eines Referenzstromwertes zur Ansteuerung eines Kraftstoffinjektors
DE102013214412B4 (de) Ermittlung des Zeitpunkts eines vorbestimmten Öffnungszustandes eines Kraftstoffinjektors
DE102012205573B4 (de) Bestimmen des zeitlichen Bewegungsverhaltens eines Kraftstoffinjektors basierend auf einer Auswertung des zeitlichen Verlaufs von verschiedenen elektrischen Messgrößen
DE102013205518B4 (de) Ermittlung des Zeitpunkts eines vorbestimmten Öffnungszustandes eines Kraftstoffinjektors
WO2012159877A2 (de) Bestimmung des standardserien-öffnungsverhaltens eines kraftstoffinjektors basierend auf einem test-öffnungsverhalten unter dem einfluss eines testpulses mit konstanter spannung
DE102015209566B3 (de) Ansteuerung von Kraftstoffinjektoren bei Mehrfacheinspritzungen
DE102011076113B4 (de) Bestimmung des Bewegungsverhaltens eines Kraftstoffinjektors basierend auf dem zeitlichen Abstand zwischen den ersten beiden Spannungspulsen in einer Haltephase
WO2012038543A1 (de) Bestimmung des schliesszeitpunkts eines steuerventils eines indirekt angetriebenen kraftstoffinjektors
WO2017063824A1 (de) Erkennen eines vorbestimmten öffnungszustandes eines einen magnetspulenantrieb aufweisenden kraftstoffinjektors
DE102010014825A1 (de) Verfahren zum Betrieb eines Einspritzsystems und ein Einspritzsystem, welches ein Einspritzventil und eine Steuervorrichtung aufweist
DE102011087418A1 (de) Bestimmung des Öffnungsverhaltens eines Kraftstoffinjektors mittels einer elektrischen Test-Erregung ohne eine magnetische Sättigung
DE102016203136B3 (de) Bestimmung einer elektrischen Ansteuerzeit für einen Kraftstoffinjektor mit Magnetspulenantrieb
DE102014208753B4 (de) Ermittlung von Parameterwerten für einen Kraftstoffinjektor
DE102016204054B3 (de) Ermitteln der Remanenz eines Kraftstoffinjektors
EP2470769B1 (de) Verfahren und steuergerät zum betreiben eines elektromagnetischen aktors
DE102015212739A1 (de) Vereinfachte Ansteuerung eines Kraftstoffinjektors
DE102012218327B4 (de) Verfahren und Vorrichtung zum Bestimmen der Wicklungstemperatur eines Injektors
DE102016209770B3 (de) Verfahren und Vorrichtung zum Anpassen des Öffnungsverhaltens eines Kraftstoffinjektors
DE102012200275B4 (de) Ermitteln eines Bewegungsverhaltens eines Kraftstoffinjektors basierend auf dem Bewegungsverhalten in einem eine Mehrfacheinspritzung aufweisenden modifizierten Betriebszustand
DE102012222864B4 (de) Verfahren und Vorrichtung zum Ansteuern eines einen Spulenantrieb aufweisenden Kraftstoffinjektors für eine Brennkraftmaschine
DE102015207954B3 (de) Ermittlung eines Zeitpunkts eines vorbestimmten Öffnungszustandes eines Kraftstoffinjektors
DE102017204477B4 (de) Verfahren und Motorsteuerung zum Gleichstellen des zeitlichen Öffnungsverhaltens von Kraftstoffinjektoren
DE102016208492B3 (de) Verfahren zum Betreiben eines Kraftstoffinjektors mit Leerhub

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final
R081 Change of applicant/patentee

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: CONTINENTAL AUTOMOTIVE GMBH, 30165 HANNOVER, DE

R081 Change of applicant/patentee

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: VITESCO TECHNOLOGIES GMBH, 30165 HANNOVER, DE