DE102013226418B3 - Ultraschallmotor - Google Patents

Ultraschallmotor Download PDF

Info

Publication number
DE102013226418B3
DE102013226418B3 DE201310226418 DE102013226418A DE102013226418B3 DE 102013226418 B3 DE102013226418 B3 DE 102013226418B3 DE 201310226418 DE201310226418 DE 201310226418 DE 102013226418 A DE102013226418 A DE 102013226418A DE 102013226418 B3 DE102013226418 B3 DE 102013226418B3
Authority
DE
Germany
Prior art keywords
ultrasonic actuator
ultrasonic
friction elements
electrode
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE201310226418
Other languages
English (en)
Inventor
Alexej Wischnewski
Wladimir Wischnewskiy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Physik Instrumente PI GmbH and Co KG
Original Assignee
Physik Instrumente PI GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Physik Instrumente PI GmbH and Co KG filed Critical Physik Instrumente PI GmbH and Co KG
Priority to DE201310226418 priority Critical patent/DE102013226418B3/de
Priority to EP14838779.8A priority patent/EP3084852B1/de
Priority to US15/104,349 priority patent/US10236797B2/en
Priority to CN201480068864.5A priority patent/CN105830329B/zh
Priority to PCT/DE2014/200676 priority patent/WO2015090312A1/de
Priority to JP2016541042A priority patent/JP6326501B2/ja
Application granted granted Critical
Publication of DE102013226418B3 publication Critical patent/DE102013226418B3/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/04Constructional details
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0095Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing combined linear and rotary motion, e.g. multi-direction positioners
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/001Driving devices, e.g. vibrators
    • H02N2/002Driving devices, e.g. vibrators using only longitudinal or radial modes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/028Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors along multiple or arbitrary translation directions, e.g. XYZ stages
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/12Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/206Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using only longitudinal or thickness displacement, e.g. d33 or d31 type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • H10N30/503Piezoelectric or electrostrictive devices having a stacked or multilayer structure having a non-rectangular cross-section in a plane orthogonal to the stacking direction, e.g. polygonal or circular in top view
    • H10N30/505Piezoelectric or electrostrictive devices having a stacked or multilayer structure having a non-rectangular cross-section in a plane orthogonal to the stacking direction, e.g. polygonal or circular in top view the cross-section being annular

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

Die Erfindung betrifft einen Ultraschallmotor, umfassend einen piezoelektrischen Ultraschallaktor mit vier daran angeordneten Friktionselementen, eine Friktionsfläche, die mit den Friktionselementen in Friktionskontakt ist, und eine elektrische Erregervorrichtung, wobei der Ultraschallaktor die Form eines Rings oder Hohlzylinders mit einer inneren Umfangsfläche, einer äußeren Umfangsfläche und zwei die innere und die äußere Umfangsfläche verbindende ebene Stirnflächen aufweist, wobei die vier Friktionselemente auf einer der Stirnflächen des Ultraschallaktors in bezüglich der Umfangsrichtung äquidistantem Abstand angeordnet sind, so dass sich jeweils zwei der Friktionselemente diametral gegenüber liegen, und der Ultraschallaktor zwölf gleiche Umfangsabschnitte umfasst, wovon jeder einen Generator für eine in dem Ultraschallaktor auszubildende akustische Stehwelle aufweist und die durch die Stehwelle hervorgerufenen Deformationen des Ultraschallaktors zu Auslenkungen der Friktionselemente auf einer zur Stirnfläche geneigten Bewegungsbahn und/oder einer zur Stirnfläche im Wesentlichen senkrechten Bewegungsbahn führen, und jeder Generator wenigstens eine Erregerelektrode, wenigstens eine allgemeine Elektrode oder einen Abschnitt einer allgemeinen Elektrode und eine zwischen der Erregerelektrode und der allgemeinen Elektrode oder dem Abschnitt der allgemeinen Elektrode angeordnete Schicht aus Piezokeramik aufweist.

Description

  • Die Erfindung betrifft einen Ultraschallmotor nach den Ansprüchen 1 bis 5.
  • Aus der US 6,765,335 B2 ist ein Ultraschallmotor bekannt, mit dem mittels eines Ultraschallaktors eine lineare Einkoordinatenbewegung des anzutreibenden Elements realisierbar ist. Zur Realisierung einer Zwei- oder Dreikoordinatenbewegung benötigen entsprechende Ultraschallmotoren zwei oder drei voneinander unabhängige Ultraschallaktoren (siehe hierzu beispielsweise die EP 2 258 004 B1 oder die US 7,635,940 B2 ).
  • Aus der DE 10 2012 201 863 B3 ist mit der dortigen 4 ein hohlzylindrischer Ultraschallmotor bekannt, der das anzutreibende Element in eine Rotationsbewegung versetzt.
  • Aus der DE 195 22 072 C1 ist mit der dortigen 18 ein hohlzylindrischer Ultraschallaktor für einen entsprechenden Ultraschallmotor bekannt, der das anzutreibende Element ebenso in eine Rotationsbewegung versetzt.
  • Die DE 10 2008 023 478 A1 zeigt mit den dortigen 8 und 9 einen hohlzylindrischen Ultraschallaktor für einen entsprechenden Ultraschallmotor, der einen Linearantrieb darstellt.
  • Aufgabe der Erfindung ist es, einen Ultraschallmotor bereitzustellen, der mittels nur eines Ultraschallaktors in der Lage ist, eine Zwei- oder Dreikoordinatenbewegung des durch ihn anzutreibenden Elements zu erzeugen.
  • Die Lösung der Aufgabe erfolgt durch einen Ultraschallmotor gemäß Anspruch 1, wobei die sich daran anschließenden Unteransprüche mindestens zweckmäßige Ausgestaltungen und Weiterbildungen umfassen.
  • Demnach wird von einem Ultraschallmotor mit einem piezoelektrischen Ultraschallaktor in Form eines Rings oder Hohlzylinders mit einer inneren Umfangsfläche, einer äußeren Umfangsfläche und zwei die innere und die äußere Umfangsfläche miteinander verbindenden ebenen Stirnflächen, wobei an einer der ebenen Stirnflächen vier Friktionselemente angeordnet sind, ausgegangen. Die Friktionselemente sind über den Umfang des Ultraschallaktors bzw. der Stirnfläche verteilt in jeweils gleichen Abständen zueinander (d. h. äquidistant) angeordnet. Mit anderen Worten liegt zwischen zwei benachbarten Friktionselementen ein Umfangswinkel von 90°, so dass sich jeweils zwei der vier Friktionselemente diametral gegenüber liegen (d. h. mit einem Umfangswinkelabstand von 180°). Die Friktionselemente stehen in Friktions- oder Wirkkontakt mit einer Friktionsfläche eines Elements, beispielsweise eines Friktionstisches, an welche sie elastisch angepresst sind.
  • Außerdem umfasst der erfindungsgemäße Ultraschallmotor eine elektrische Erregervorrichtung. Diese ist vorgesehen zur elektrischen Verbindung mit Erregerelektroden und allgemeinen Elektroden bzw. mit einer allgemeinen Elektrode des Ultraschallaktors, wobei die Erregerelektroden zusammen mit den allgemeinen Elektroden bzw. mit der allgemeinen Elektrode und einer zwischen der Erregerelektrode und der allgemeinen Elektrode angeordneten Schicht piezoelektrischen Materials einen Generator für eine in dem Ultraschallaktor auszubildende akustische Stehwelle bilden. Insgesamt besitzt der Ultraschallaktor zwölf gleiche und über den Umfang des Ultraschallaktors verteilte Generatoren. Jeder Generator ist Teil eines Umfangsabschnitts des Hohlzylinders bzw. Rings, wobei jeder Umfangsabschnitt einen Teilhohlzylinder bildet.
  • Durch entsprechende elektrische Anregung der Generatoren über die elektrische Erregervorrichtung bildet sich in dem Ultraschallaktor, der einen Wellenresonator darstellt, eine akustische Steh- bzw. Deformationswelle aus, und die durch die Stehwelle hervorgerufenen Deformationen des Ultraschallaktors führen zu entsprechenden Auslenkungen der Friktionselemente auf oder entlang einer zur Stirnfläche geneigten Bewegungsbahn und/oder einer zur Stirnfläche im Wesentlichen senkrechten Richtung (Querbewegungsbahn), wobei die geneigte Bewegungsbahn eine Längs- oder Tangentialkomponente und eine Quer- oder Axialkomponenten aufweist, und die Längs- oder Tangentialkomponente im Wesentlichen parallel zur Friktionsfläche verläuft. Hierbei kann durch die Auslenkung der Friktionselemente in der zur Stirnfläche im Wesentlichen senkrechten Richtung (d. h. auf der Querbewegungsbahn) eine Bewegung senkrecht zur Friktionsfläche (z-Richtung) generiert werden, während aufgrund der Auslenkung der Friktionselemente auf oder entlang der zur Stirnfläche geneigten Bewegungsbahn eine Bewegung entlang der Friktionsfläche (x-y-Ebene) generiert werden kann.
  • Damit kann der erfindungsgemäße Ultraschallmotor mit nur einem Ultraschallaktor sowohl eine Zweikoordinatenbewegung in einer Ebene (der x-y-Ebene) erzeugen, als auch eine Dreikoordinatenbewegung, bei der zusätzlich eine Bewegung senkrecht zur x-y-Ebene und damit in z-Richtung erfolgt. Hierbei ist einerseits eine Bewegung des Ultraschallaktors relativ zu der Friktionsfläche möglich; andererseits ist auch denkbar, dass der Ultraschallaktor feststeht und eine Relativbewegung des Elements, das die Friktionsfläche bildet, bewirkt.
  • Es kann von Vorteil sein, dass die Erregerelektroden auf der äußeren Umfangsfläche des Ultraschallaktors und die allgemeine Elektrode oder die allgemeinen Elektroden auf der inneren Umfangsfläche des Ultraschallaktors angeordnet sind.
  • Ebenso kann es von Vorteil sein, dass die Erregerelektroden, die allgemeinen Elektroden und die jeweils zwischen diesen angeordneten Schichten aus Piezokeramik im Wesentlichen parallel zu den Stirnflächen des Ultraschallaktors angeordnet sind.
  • Weiterhin kann es von Vorteil sein, dass die elektrische Erregervorrichtung eine elektrische Wechselspannung mit einer Frequenz bereitstellt, bei der im Ultraschallaktor die sechste Mode der akustischen Stehwelle erzeugt wird.
  • Hierbei hinaus kann es von Vorteil sein, dass der Ultraschallmotor einen Umschalter für die Elektroden enthält, der diese so mit der elektrischen Erregervorrichtung verbindet, dass bei Erzeugung der sechsten Mode der akustischen Stehwelle in dem Ultraschallaktor bei einem Paar der sich diametral gegenüberliegenden Friktionselemente die maximale Auslenkung auf oder entlang der geneigten Bewegungsbahn auftritt und bei dem anderen Paar der sich diametral gegenüberliegenden Friktionselemente die minimale Auslenkung auf oder entlang der geneigten Bewegungsbahn auftritt.
  • Kurze Beschreibung der Zeichnungen:
  • 1: Erfindungsgemäßer Ultraschallmotor (ohne Darstellung der elektrischen Erregervorrichtung)
  • 2: Darstellung 8: Ultraschallaktor des Ultraschallmotors gemäß 1 in perspektivischer Ansicht; Darstellung 9: Ultraschallaktor des Ultraschallmotors gemäß 1 in Draufsicht (Blickrichtung von oben)
  • 3: Ausführungsform eines Ultraschallaktors eines erfindungsgemäßen Ultraschallmotors (ohne Darstellung der Friktionselemente)
  • 4: Blockschaltbild betreffend die Verbindung des Ultrachallaktors eines erfindungsgemäßen Ultraschallmotors mit der elektrischen Erregervorrichtung
  • 5: Darstellung 28: FEM-Modell eines Ultraschallaktors eines erfindungsgemäßen Ultraschallmotors im unangeregten Zustand; Darstellungen 27 und 29: FEM-Berechnungen der Phasen maximaler Deformation anhand des Modells gemäß Darstellung 28
  • 6: Darstellungen 33 bis 38: Einfluss der unterschiedlichen elektrischen Ansteuerung eines Ultraschallaktors eines erfindungsgemäßen Ultrachallmotors auf die Auslenkungsrichtung der Friktionselemente
  • 7: Kontakt- bzw. Eingriffssituation zwischen einem Friktionselement eines Ultraschallaktors eines erfindungsgemäßen Ultraschallmotors und einer Friktionsfläche
  • 1 zeigt einen erfindungsgemäßen Ultraschallmotor, aufweisend einen Ultraschallaktor 1, der einen Wellen-Resonator 2 bildet, wobei der Ultraschallaktor als Hohlzylinder 3 aus einem piezoelektrischen Material ausgeführt ist, und auf dessen einer ebenen Stirnfläche 5 vier Friktionselemente 4 angeordnet sind. Der Ultraschallaktor 1 ist durch eine Kraft F mit seinen Friktionselementen 4 elastisch an die Friktionsfläche 6 eines Friktionstisches 7 angepresst. Die Kraft F kann durch die Schwerkraft des Ultraschallaktors hervorgerufen sein, sie kann jedoch ebenso durch ein zusätzliches Element, beispielsweise eine Feder oder ein Magnet, hervorgerufen sein.
  • Darstellung 8 von 2 zeigt den Ultraschallaktor gemäß 1 als Einzelteil. Der Ultraschallaktor weist insgesamt zwölf gleiche Umfangsabschnitte bzw. Umfangssegmente 10 auf. Jeder Umfangsabschnitt 10 umfasst eine Erregerelektrode 11, wobei sich die Erregerelektroden benachbarter Umfangsabschnitte 10 nicht berühren. An der inneren Umfangsfläche 14 des Ultraschallaktors ist eine komplett umlaufende allgemeine Elektrode 13 angeordnet. Jede Erregerelektrode 11 bildet mit dem entsprechend gegenüberliegenden Abschnitt der allgemeinen Elektrode 13 und der zwischen beiden Elektroden angeordneten Schicht piezoelektrischen Materials einen Generator für eine in dem Ultraschallaktor auszubildende akustische Steh- oder Deformationswelle. Auf der ebenen Stirnfläche 5 sind vier Friktionselemente 4 angeordnet, wobei die Friktionselemente jeweils im Bereich der Mitte zwischen zwei benachbarten Erregerelektroden angeordnet sind. Mit anderen Worten: die Symmetrielinie jedes Friktionselements verläuft in der Mitte zwischen zwei benachbarten Erregerelektroden. Zwei benachbarte Friktionselemente 4 schließen einen Umfangswinkel von im Wesentlichen 90° ein, so dass es zwei Paare von Friktionselementen gibt, bei denen die beiden entsprechenden Friktionselemente diametral gegenüberliegend angeordnet sind.
  • Anhand Darstellung 9 von 2, welche den Ultraschallaktor gemäß Darstellung 8 in Draufsicht zeigt, sind die geometrischen Beziehungen zwischen den einzelnen Elementen des Ultraschallaktors besonders gut erkennbar. Durch den Zylinder bzw. den Kreis des Zylinders lassen sich zahlreiche Diametralebenen S legen (strichpunktierte Linien), die entweder jeweils durch die Mitte zwischen zwei benachbarten Erregerelektroden verlaufen, oder aber welche die Symmetrieebenen der Friktionselemente darstellen. Die Diametralebenen S teilen den Hohlzylinder in zwölf gleiche Umfangsabschnitte 10. In Darstellung 8 von 2 sowie in den entsprechenden anderen Figuren sind die Schnittpunkte der Diametralebenen S mit dem Ultraschallaktor 1 durch punktierte Linien gekennzeichnet.
  • Weiterhin ist anhand Darstellung 9 von 2 die Polarisationsrichtung der piezokeramischen Schicht 15 anhand entsprechender Pfeile mit dem Index p gekennzeichnet. Die Polarisationsrichtung ist hierbei normal zu den Elektroden orientiert, so dass eine radial gerichtete Polarisation resultiert. Außerdem zeigt Darstellung 9 von 2 die elektrischen Anschlüsse A1 bis A12 der Erregerelektroden bzw. den elektrischen Anschluss A0 der allgemeinen Elektrode.
  • 3 zeigt eine alternative Ausführungsform für einen Ultraschallaktor eines erfindungsgemäßen Ultraschallmotors. Bei diesem liegen für jeden Generator mehrere Schichten von Erregerelektroden 11 und allgemeinen Elektroden 13 in abwechselnder Anordnung vor, wobei zwischen den Elektrodenschichten Schichten piezokeramischen Materials 15 angeordnet sind (sog. Multilayeranordnung). Die Schichten sind hierbei in axialer Richtung des Ultraschallaktors gestapelt, und die Polarisationsrichtung des piezokeramischen Materials ist normal zu den Elektroden bzw. normal zu den Stirnflächen, d. h. in Axialrichtung, wobei die Polarisationsrichtungen jeweils benachbarter Schichten piezoelektrischen Materials entgegengesetzt sind (antiparallele Polarisationsrichtung). Alle Erregerelektroden 11 des jeweiligen Generators werden durch den jeweiligen Anschluss A1 bis A12 kontaktiert, während alle allgemeinen Elektroden 13 des jeweiligen Generators über den Anschluss A0 kontaktiert sind.
  • 4 zeigt ein Blockschaltbild betreffend die Verbindung des Ultraschallaktors eines erfindungsgemäßen Ultraschallmotors mit der elektrischen Erregervorrichtung 16. Die entsprechende elektrische Schaltung umfasst hierbei einen Umschalter 20, welcher die Ausschalter 21 bis 26 umfasst, mit deren Hilfe eine Verbindung zwischen der elektrischen Erregervorrichtung und den anzusteuernden Erregerelektroden realisierbar ist. Hierbei ist der Ausschalter 21 mit den Anschlüssen A1, A4, A5, A8, A9 und A12 verbunden, der Ausschalter 22 ist mit den Anschlüssen A2, A3, A6, A7, A10 und A11 verbunden usw.
  • Die elektrische Erregervorrichtung 16 stellt an ihren Anschlüssen 17 und 18 die elektrische Wechselspannung U1, und an den Anschlüssen 19 und 18 die elektrische Wechselspannung U2 bereit. Diese Spannungen sind zueinander um den Winkel 180° phasenverschoben. Sie haben die gleiche Frequenz fo, wodurch im Ultraschallaktor 1 die sechste Mode der akustischen Deformations-Stehwelle (sechs Halbwellen mit λ/2) angeregt bzw. erzeugt wird. Jeder der Generatoren erzeugt einen λ/4-Anteil der Stehwelle.
  • 5 zeigt in Darstellung 28 das FEM-Modell eines Ultraschallaktors eines erfindungsgemäßen Ultraschallmotors im unangeregten Zustand, während die Darstellungen 27 und 29 FEM-Berechnungen auf Basis des Modells gemäß Darstellung 28 der Phasen maximaler Deformation aufgrund der im Ultraschallaktor angeregten Stehwelle zeigen. Diese Stehwelle wird durch das Betätigen eines beliebigen Ausschalters 21 bis 26 erzeugt. Die auf den Scheiteln der Stehwelle befindlichen Punkte 30 der Stirnfläche 5 weisen nur eine Quer- bzw. Axialkomponente der Schwingungen auf. Die auf den abfallenden Abschnitten der Stehwelle liegenden Punkte 31 der Stirnfläche 5 besitzen dagegen sowohl eine Quer- bzw. Axialkomponente, als auch eine Längs- bzw. Tangentialkomponente der Schwingungen.
  • Das Betätigen eines beliebigen Ausschalters 21 bis 26 führt zu keiner Änderung der Form der erzeugten Stehwelle. Es ändert sich nur die Lage der Welle in Bezug zu den Friktionselementen 4. Die Verschiebung der Welle beträgt dabei entweder ein halbe Wellenlänge, d. h. λ/2, oder aber ein Viertel der Wellenlänge, d. h. λ/4.
  • Die zuvor beschriebene Veränderung der Wellenlage hat eine Änderung der Bewegungsbahn der Punkte 32 der Friktionselemente 4 zur Folge, wie dies in den Darstellungen 33 bis 38 von 6 gezeigt ist.
  • Darstellung 33 entspricht hierbei der Stellung Ausschalter 21 eingeschaltet.
  • Darstellung 34 entspricht der Stellung Ausschalter 22 eingeschaltet.
  • Darstellung 35 entspricht der Stellung Ausschalter 23 eingeschaltet.
  • Darstellung 36 entspricht der Stellung Ausschalter 24 eingeschaltet.
  • Darstellung 37 entspricht der Stellung Ausschalter 25 eingeschaltet.
  • Darstellung 38 entspricht der Stellung Ausschalter 26 eingeschaltet.
  • In allen Fällen bewegen sich die Punkte 32 auf zwei unterschiedlichen Bewegungsbahnen, nämlich auf der geneigten Bewegungsbahn 40 und der Querbewegungsbahn 41.
  • 7 verdeutlicht die Bewegung der Punkte 32 der Friktionselemente 4 auf der geneigten Bewegungsbahn 40. Die geneigte Bewegungsbahn 40 kann dabei in zwei Komponenten zerlegt werden, nämlich in eine Längs- oder Tangentialkomponente 42 und eine Quer- oder Axialkomponente 43. Die Längskomponente 42 der Bewegungsbahn bewirkt, dass das Friktionselement 5 den Aktor 1 in der mit Pfeil 44 gezeigten Richtung bewegt (Antriebsrichtung).
  • Die sich auf der Querbewegungsbahn 41 bewegenden Punkte 32 besitzen keine Längsbewegungskomponente, weshalb sie auch keinen Einfluss auf die Bewegung des Aktors 1 haben.
  • Das Betätigen der Ausschalter 21 bis 26 führt zu einer Änderung der Bewegungsbahn der Punkte 32, und zwar von einer Querbewegungsbahn 41 zu einer geneigten Bewegungsbahn 40 und zu der in den Darstellungen 33 bis 38 von 6 gezeigten Umkehr der Neigungswinkel der Bewegungsbahn 40. Diese Umkehr des Neigungswinkels der Bewegungsbahn 40 führt zu einer Bewegungsumkehr (siehe hierzu auch die in 1 mit den sechs Pfeilen 44 dargestellte Änderung der Bewegung des Aktors 1 auf dem Friktionstisch 7).
  • Durch das Betätigen der Ausschalter 21 bis 26 ist eine Linearbewegung des Aktors 1 auf der Friktionsfläche 6 möglich, und zwar vorwärts (gemäß Darstellung 33 von 6) rückwärts (gemäß Darstellung 34 von 6), nach rechts (gemäß Darstellung 35 von 6) und nach links (gemäß Darstellung 36 von 6). Weiterhin ist eine Drehbewegung im Uhrzeigersinn (gemäß Darstellung 37 von 6) oder entgegen dem Uhrzeigersinn (gemäß Darstellung 38 von 6) möglich.
  • Die Erfindung ermöglicht eine konstruktive Auslegung des Ultraschallmotors, bei dem der Ultraschallaktor 1 befestigt ist, welcher den in Führungen angeordneten Friktionstisch 7 in Bewegung versetzt, wobei die Führungen die zu den Stirnflächen 5 des Aktors 1 senkrecht verlaufenden Bewegung begrenzen (in den Fig. nicht dargestellt).

Claims (5)

  1. Ultraschallmotor, umfassend einen piezoelektrischen Ultraschallaktor (1) mit vier daran angeordneten Friktionselementen (4), eine Friktionsfläche (6), die mit den Friktionselementen in Friktionskontakt ist, und eine elektrische Erregervorrichtung (16), wobei der Ultraschallaktor die Form eines Rings oder Hohlzylinders mit einer inneren Umfangsfläche (14), einer äußeren Umfangsfläche (12) und zwei die innere und die äußere Umfangsfläche verbindende ebene Stirnflächen (5) aufweist, wobei die vier Friktionselemente auf einer der Stirnflächen des Ultraschallaktors in bezüglich der Umfangsrichtung äquidistantem Abstand angeordnet sind, so dass sich jeweils zwei der Friktionselemente diametral gegenüber liegen, und der Ultraschallaktor zwölf gleiche Umfangsabschnitte (10) umfasst, wovon jeder einen Generator für eine in dem Ultraschallaktor auszubildende akustische Stehwelle aufweist und die durch die Stehwelle hervorgerufenen Deformationen des Ultraschallaktors zu Auslenkungen der Friktionselemente auf einer zur Stirnfläche geneigten Bewegungsbahn und/oder einer zur Stirnfläche im Wesentlichen senkrechten Bewegungsbahn führen, und jeder Generator wenigstens eine Erregerelektrode (11), wenigstens eine allgemeine Elektrode (13) oder einen Abschnitt einer allgemeinen Elektrode und eine zwischen der Erregerelektrode und der allgemeinen Elektrode oder dem Abschnitt der allgemeinen Elektrode angeordnete Schicht aus Piezokeramik (15) aufweist.
  2. Ultraschallmotor nach Anspruch 1, dadurch gekennzeichnet, dass die Erregerelektroden auf der äußeren Umfangsfläche des Ultraschallaktors und die allgemeine Elektrode oder die allgemeinen Elektroden auf der inneren Umfangsfläche des Ultraschallaktors angeordnet sind.
  3. Ultraschallmotor nach Anspruch 1, dadurch gekennzeichnet, dass die Erregerelektroden, die allgemeinen Elektroden und die jeweils zwischen diesen angeordneten Schichten aus Piezokeramik im Wesentlichen parallel zu den Stirnflächen des Ultraschallaktors angeordnet sind.
  4. Ultraschallmotor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die elektrische Erregervorrichtung eine elektrische Wechselspannung mit einer Frequenz bereitstellt, bei der im Ultraschallaktor die sechste Mode der akustischen Stehwelle erzeugt wird.
  5. Ultraschallmotor nach Anspruch 4, dadurch gekennzeichnet, dass dieser einen Umschalter (20) für die Elektroden enthält, der diese so mit der elektrischen Erregervorrichtung verbindet, dass bei Erzeugung der sechsten Mode der akustischen Stehwelle in dem Ultraschallaktor bei einem Paar der sich diametral gegenüberliegenden Friktionselemente die maximale Auslenkung entlang der geneigten Bewegungsbahn auftritt und bei dem anderen Paar der sich diametral gegenüberliegenden Friktionselemente die minimale Auslenkung entlang der geneigten Bewegungsbahn auftritt.
DE201310226418 2013-12-18 2013-12-18 Ultraschallmotor Active DE102013226418B3 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE201310226418 DE102013226418B3 (de) 2013-12-18 2013-12-18 Ultraschallmotor
EP14838779.8A EP3084852B1 (de) 2013-12-18 2014-12-04 Ultraschallmotor
US15/104,349 US10236797B2 (en) 2013-12-18 2014-12-04 Ultrasonic motor
CN201480068864.5A CN105830329B (zh) 2013-12-18 2014-12-04 超声波电动机
PCT/DE2014/200676 WO2015090312A1 (de) 2013-12-18 2014-12-04 Ultraschallmotor
JP2016541042A JP6326501B2 (ja) 2013-12-18 2014-12-04 超音波モータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE201310226418 DE102013226418B3 (de) 2013-12-18 2013-12-18 Ultraschallmotor

Publications (1)

Publication Number Publication Date
DE102013226418B3 true DE102013226418B3 (de) 2015-04-02

Family

ID=52544235

Family Applications (1)

Application Number Title Priority Date Filing Date
DE201310226418 Active DE102013226418B3 (de) 2013-12-18 2013-12-18 Ultraschallmotor

Country Status (6)

Country Link
US (1) US10236797B2 (de)
EP (1) EP3084852B1 (de)
JP (1) JP6326501B2 (de)
CN (1) CN105830329B (de)
DE (1) DE102013226418B3 (de)
WO (1) WO2015090312A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015120282A1 (de) 2015-11-24 2017-05-24 Physik Instrumente (Pi) Gmbh & Co. Kg Ultraschallmotor
CN109417125A (zh) * 2016-07-01 2019-03-01 物理仪器(Pi)两合有限公司 超声致动器

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10704021B2 (en) 2012-03-15 2020-07-07 Flodesign Sonics, Inc. Acoustic perfusion devices
CA2935960C (en) 2014-01-08 2023-01-10 Bart Lipkens Acoustophoresis device with dual acoustophoretic chamber
US11708572B2 (en) 2015-04-29 2023-07-25 Flodesign Sonics, Inc. Acoustic cell separation techniques and processes
US11377651B2 (en) 2016-10-19 2022-07-05 Flodesign Sonics, Inc. Cell therapy processes utilizing acoustophoresis
US11214789B2 (en) 2016-05-03 2022-01-04 Flodesign Sonics, Inc. Concentration and washing of particles with acoustics
FR3068751B1 (fr) * 2017-07-06 2019-08-02 Universite Pierre Et Marie Curie Mecanisme de transmission a rapport de translation variable
SG11202003907WA (en) 2017-12-14 2020-05-28 Flodesign Sonics Inc Acoustic transducer drive and controller
EP3499593A1 (de) * 2017-12-15 2019-06-19 Physik Instrumente (PI) GmbH & Co. Kg Elektromechanischer aktuator
DE102018121179B3 (de) * 2018-08-30 2020-01-02 Physik Instrumente (Pi) Gmbh & Co. Kg Ultraschallaktor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19522072C1 (de) * 1995-06-17 1997-02-06 Pi Ceramic Gmbh Piezoelektrischer Motor
US6765335B2 (en) * 2001-06-12 2004-07-20 Physik-Instrumente (Pi) Gmbh & Co. Kg Piezoelectric adjusting element
DE102008023478A1 (de) * 2007-11-08 2009-05-14 Physik Instrumente (Pi) Gmbh & Co. Kg Ultraschalllinearantrieb mit hohlzylindrischem Oszillator
US7635940B2 (en) * 2006-11-29 2009-12-22 Olympus Corporation Ultrasonic motor and microscope stage
EP2258004B1 (de) * 2008-02-28 2012-01-18 Physik Instrumente (PI) GmbH & Co. KG Hochpräziser ultraschallmotor
DE102012201863B3 (de) * 2012-02-08 2013-05-02 Physik Instrumente (Pi) Gmbh & Co. Kg Ultraschallaktor

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0424139B1 (de) 1989-10-20 1997-04-16 Seiko Epson Corporation Ultraschallmotor
JP2001298969A (ja) * 2000-04-07 2001-10-26 Mitsuba Corp 超音波モータ
DE10314810A1 (de) * 2003-01-08 2004-08-05 Physik Instrumente (Pi) Gmbh & Co. Kg Verfahren zum Betreiben eines piezoelektrischen Motors sowie piezoelektrischer Motor mit einem Stator in Form eines hohlzylindrischen Oszillators
JP4871594B2 (ja) * 2006-01-12 2012-02-08 キヤノン株式会社 振動波駆動装置及び振動波駆動機器
DE102008012992A1 (de) * 2008-03-07 2009-09-10 Physik Instrumente (Pi) Gmbh & Co. Kg Ultraschallmotor
US20100127598A1 (en) * 2008-11-21 2010-05-27 Ceradigm, Corp. Miniature piezoelectric motors for ultra high-precision stepping
DE102009049719A1 (de) * 2009-10-17 2011-04-21 Physik Instrumente (Pi) Gmbh & Co. Kg Aktuator
JP2012039819A (ja) * 2010-08-10 2012-02-23 Olympus Corp 超音波モータ
JP5744670B2 (ja) * 2011-08-05 2015-07-08 キヤノン株式会社 超音波モータ及びそれを有するレンズ装置
CN103051243B (zh) * 2013-01-11 2015-01-28 南京航空航天大学 振动圈内置的中空式超声电机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19522072C1 (de) * 1995-06-17 1997-02-06 Pi Ceramic Gmbh Piezoelektrischer Motor
US6765335B2 (en) * 2001-06-12 2004-07-20 Physik-Instrumente (Pi) Gmbh & Co. Kg Piezoelectric adjusting element
US7635940B2 (en) * 2006-11-29 2009-12-22 Olympus Corporation Ultrasonic motor and microscope stage
DE102008023478A1 (de) * 2007-11-08 2009-05-14 Physik Instrumente (Pi) Gmbh & Co. Kg Ultraschalllinearantrieb mit hohlzylindrischem Oszillator
EP2258004B1 (de) * 2008-02-28 2012-01-18 Physik Instrumente (PI) GmbH & Co. KG Hochpräziser ultraschallmotor
DE102012201863B3 (de) * 2012-02-08 2013-05-02 Physik Instrumente (Pi) Gmbh & Co. Kg Ultraschallaktor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015120282A1 (de) 2015-11-24 2017-05-24 Physik Instrumente (Pi) Gmbh & Co. Kg Ultraschallmotor
DE102015120282B4 (de) * 2015-11-24 2018-01-18 Physik Instrumente (Pi) Gmbh & Co. Kg Ultraschallmotor
CN109417125A (zh) * 2016-07-01 2019-03-01 物理仪器(Pi)两合有限公司 超声致动器
CN109417125B (zh) * 2016-07-01 2022-07-22 物理仪器(Pi)两合有限公司 超声致动器

Also Published As

Publication number Publication date
CN105830329A (zh) 2016-08-03
JP2017502637A (ja) 2017-01-19
JP6326501B2 (ja) 2018-05-16
EP3084852A1 (de) 2016-10-26
CN105830329B (zh) 2019-03-19
US20160336877A1 (en) 2016-11-17
EP3084852B1 (de) 2017-11-22
US10236797B2 (en) 2019-03-19
WO2015090312A1 (de) 2015-06-25

Similar Documents

Publication Publication Date Title
DE102013226418B3 (de) Ultraschallmotor
DE102014205577B4 (de) Ultraschallmotor
DE3415628C3 (de) Vibrationswellenmotor
EP2882091B1 (de) Ultraschallmotor und Verfahren zum Betreiben eines solchen Ultraschallmotors
DE3500607A1 (de) Torsionsschwingungs-ultraschallvibrator sowie einen torsionsschwingungs-piezomotor
EP3172826B1 (de) Ultraschallmotor
DE3635482A1 (de) Ultraschallvibrator
DE69512164T2 (de) Vibrationsangetriebener Motor
DE102014209419B3 (de) Ultraschallaktor
DE102009051395A1 (de) Aktuator
DE102013110356B4 (de) Ultraschallaktor
DE102013107154A1 (de) Antriebsvorrichtung
EP3844866B1 (de) Ultraschallaktor
DE102016110124B4 (de) Ultraschallmotor
DE102015120282B4 (de) Ultraschallmotor
DE3851989T2 (de) Ultraschalltreiberanordnung.
DE3883483T2 (de) Ultraschallmotoranordnung.
DE112007001099T5 (de) Schwingungsaktuator
DE102013101020B4 (de) Ultraschallaktor und Ultraschallmotor mit einem solchen Ultraschallaktor
EP3646459B1 (de) Rotationsultraschallmotor
DE68923687T2 (de) Ultraschallantrieb.
DE102013221414B4 (de) Ultraschallmotor
DE102017107275A1 (de) Ultraschallmotor
EP3526823B1 (de) Ultraschallmotor
DE102006027406A1 (de) Festkörperaktor-Antriebsvorrichtung

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final