-
ERFINDUNGSGEBIET
-
Die Erfindung betrifft einen nichtlinearen adaptiven Beobachteransatz zur Schätzung des Batterieladezustands (SOC – State of Charge).
-
ALLGEMEINER STAND DER TECHNIK
-
Hybridfahrzeuge gibt es in verschiedenen Formen, sie können verschiedene Energiespeichereinrichtungen verwenden und verschiedenen Kundenbedürfnissen dienen. Existierende Hybridfahrzeuge beinhalten hybridelektrische Fahrzeuge (HEV – Hybrid Electric Vehicles), die Batterien als das Energiespeichersystem verwenden. Das hybridelektrische Plug-In-Fahrzeug (PHEV – Plug-in Hybrid Electric Vehicle) ist eine Erweiterung der existierenden Technologie der hybridelektrischen Fahrzeuge (HEV). Ein PHEV nutzt ein Batteriepaket mit größerer Kapazität als ein Standardhybridfahrzeug und besitzt die zusätzliche Fähigkeit zum Wiederaufladen der Batterie von einer Standardstromsteckdose, um den Kraftstoffverbrauch zu reduzieren und die Kraftstoffökonomie in einem elektrischen Fahrmodus oder in einem Mischfahrmodus weiter zu verbessern. Es gibt auch Batteriefahrzeuganwendungen (BEV – Batterie Electric Vehicle), bei denen eine elektrische Maschine den Verbrennungsmotor vollständig ersetzt. Der Batterieladezustand (SOC) wird definiert als ein Prozentsatz der verfügbaren Ladung im Vergleich zu der maximalen Ladekapazität. Für eine Batterie mit der Kapazität Q, der Lade-Entlade-Effizienz η und einen Strom I gilt: dSOC / dt = ηIQ (1)
-
Nach Konvention ist ein Strom positiv, wenn er herausströmt (Entladung). Beispielsweise ist beim Ladebetrieb der Strom negativ (Einströmen), und der SOC-Wert würde auf der Basis von Gleichung (1) ansteigen.
-
Ein existierendes Verfahren des Berechnens des SOC besteht in einer Amperestundenintegration. Aufgrund der Natur des Verfahrens kann der SOC, wie berechnet, von dem realen SOC abweichen. Hintergrundinformationen finden sich in
WO06057468A1 ,
EP1873542B1 ,
US6534954 B1 , und
US20080054850A1 .
-
Der Artikel „II-Song Kim: ”Nonlinear State of Charge Estimator for Hybrid Electric Vehicle Battery”, IEEE Transactions an Power Electronics, Vol. 23, No. 4, Page 2027–2034, July 2008” offenbart einen nicht-linearen Schätzer zum Bestimmen des Ladezustands einer Batterie, beispielsweise eines Hybridfahrzeugs.
-
Die
AT 508 307 A2 offenbart ein Verfahren zur Bestimmung eines Zustands von Zellen einer Energiespeichervorrichtung, insbesondere einer elektrochemischen Batterie oder einer Brennstoffzelle, wobei das Verfahren eine erste und eine zweite Stufe umfasst.
-
Die
US 2008/0054850 A1 offenbart ein Batterie-Management-System, welches einen Sensor beinhaltet. Der Sensor misst Spannung und Strom der Batterie.
-
Es ist es eine Aufgabe der vorliegenden Erfindung ein Verfahren anzugeben, welches eine möglichst genaue Berechnung des Ladezustandes einer Batterie ermöglicht.
-
KURZE DARSTELLUNG DER ERFINDUNG
-
Bei einer Ausführungsform wird ein Verfahren zum Steuern eines Elektrofahrzeugs, das einen Verbrennungsmotor, eine Batterie mit einem Ladezustand (SOC) und einer Leerlaufspannung (OCV – Open Circuit Voltage) aufweist, bereitgestellt. Das Verfahren umfasst das Etablieren eines Systems zum Schätzen des Batterie-SOC, mit einem OCV-Schätzungsteilsystem mit einem adaptiven Beobachter zum Schätzen der Batterie-OCV. Die geschätzte Batterie-OCV steht durch eine nichtlineare Abbildung zu dem geschätzten Batterie-SOC in Beziehung. Eine Ausgabe auf der Basis der geschätzten Batterie-SOC wird generiert.
-
Es versteht sich, dass Ausführungsformen der Erfindung ein oder mehrere zusätzliche Merkmale, individuelle oder in verschiedenen Kombinationen, enthalten können. Außerdem können Ausführungsformen der Erfindung in Elektrofahrzeugen verwendet werden, einschließlich beispielsweise hybridelektrischen Fahrzeugen (HEVs), hybridelektrischen Plug-In-Fahrzeugen (PHEVs), Batteriefahrzeugen (BEVs) oder anderen Elektrofahrzeuganwendungen.
-
Bei einem Merkmal ist die Batterie-OCV eine monoton ansteigende eineindeutige Funktion des Batterie-SOC. Bei einem weiteren Merkmal ist die Batterie-VOC bezüglich dem Batterie-SOC differenzierbar. Bei einem weiteren Merkmal schätzt der adaptive Beobachter die Batterie-OCV teilweise auf der Basis von dVOC/dSOC, wobei VOC die Leerlaufspannung (OCV) der Batterie ist. Bei einem Aspekt der Erfindung is dVOC/dSOC eine nichtlineare Funktion von VOC. Bei einem weiteren Aspekt ist dVOC/dSOC eine stückweise lineare Funktion von VOC. Der adaptive Beobachter kann die Batterie-OCV teilweise auf der Basis einer vorausgegangenen Schätzung der Batterie-OCV schätzen. Der adaptive Beobachter kann ferner teilweise auf der Basis identifizierter Batterieparameter die Batterie-OCV schätzen.
-
Bei einer weiteren Ausführungsform wird ein Elektrofahrzeug, enthaltend einen Verbrennungsmotor, eine Batterie mit einem Ladezustand (SOC) und einer Leerlaufspannung (OCV), bereitgestellt. Das Fahrzeug umfasst weiterhin einen Controller zum Schätzen des Batterie-SOC, enthaltend ein OCV-Schätzungsteilsystem mit einem adaptiven Beobachter zum Schätzen der Batterie-OCV. Die geschätzte Batterie-OCV steht durch eine nichtlineare Abbildung zu dem geschätzten Batterie-SOC in Beziehung. Der Controller ist konfiguriert, auf der Basis des geschätzten Batterie-SOC eine Ausgabe zu generieren. Bei einer weiteren Ausführungsform umfasst ein Elektrofahrzeug einen Controller, der konfiguriert ist zum Schätzen des Batterieladezustands (SOC) und Generieren einer Ausgabe auf der Basis des geschätzten Batterie-SOC. Der geschätzte Batterie-SOC ist gemäß einem adaptiven Beobachter zum Schätzen der Batterieleerlaufspannung (OCV). Die geschätzte Batterie-OCV steht durch eine nichtlineare Abbildung zu dem geschätzten Batterie-SOC in Beziehung.
-
KURZE BESCHREIBUNG DER ZEICHNUNGEN
-
1 zeigt die SOC-OCV-Beziehungskurven in einer Ausführungsform der Erfindung;
-
2 zeigt ein äquivalentes Batteriekreismodell in einer Ausführungsform der Erfindung;
-
3 ist ein Blockdiagramm, das eine Bestimmung des Steuerkreis-versus-Regelkreisbetriebs in einer Ausführungsform der Erfindung zeigt;
-
4 zeigt eine generische Beobachterarchitektur in einer Ausführungsform der Erfindung;
-
5 ist ein Blockdiagramm, das die Verstärkungsfaktorplanung auf der Basis von Betriebsmodi in einer Ausführungsform der Erfindung zeigt;
-
6 zeigt eine Simulation einer Ausführungsform der Erfindung und
-
7 ist eine schematische Darstellung des Antriebsstrangs eines hybridelektrischen Fahrzeugs, der die Erfindung verkörpern kann.
-
AUSFÜHRLICHE BESCHREIBUNG
-
Wie erforderlich, werden hierin ausführliche Ausführungsformen der vorliegenden Erfindung offenbart; es versteht sich jedoch, dass die offenbarten Ausführungsformen für die Erfindung, die in verschiedenen und alternativen Formen verkörpert werden kann, lediglich beispielhaft sind. Die Figuren sind nicht notwendigerweise maßstabsgetreu; einige Merkmale können übertrieben oder minimiert sein, um Details bestimmter Komponenten zu zeigen. Deshalb sind spezifische, hierin offenbarte strukturelle und funktionelle Details nicht als beschränkend anzusehen, sondern lediglich als eine repräsentative Basis, um einem Fachmann zu lehren, wie er die vorliegende Erfindung unterschiedlich einsetzen kann. Die 1–6 zeigen ein Ausführungsbeispiel der Erfindung. Alle unten beschriebenen Merkmale können je nach der Anwendung in anderen Ausführungsformen der Erfindung variieren. Bei dem Ausführungsbeispiel der Erfindung wird das Ladezustandsschätzungsproblem für Batterien betrachtet, die den folgenden Eigenschaften genügen: Lade- und Entladeeffizienzen sind bekannt; die Leerlaufspannung (OCV) ist eine monoton steigende, eineindeutige differenzierbare Funktion erster Ordnung von SOC; die SOC-OCV-Kurve kann von der Temperatur und der Batterielebensdauer abhängen; die SOC-OCV-Beziehung kann durch eine Kurvenschar (temperaturabhängig, Batteriealterung) dargestellt werden. Für das Ausführungsbeispiel wird angenommen, dass das vollständige Wissen über die SOC-OCV-Beziehung, die Lade-/Entladeeffizienzen und die Batteriekapazität bekannt ist oder in Echtzeit adäquat in Erfahrung gebracht werden kann. 1 zeigt die SOC-OCV-Beziehungskurven, die für die Familie von Batterien in der Ausführungsform repräsentativ sind. Die Beziehungskurven sind allgemein bei 10 angegeben. Der Ladezustand und die Leerlaufspannung können durch eine monoton steigende, eineindeutige differenzierbare Funktion erster Ordnung in Beziehung stehen: VOC = f(SOC) (3)
-
2 zeigt ein äquivalentes Batteriekreismodell in einer Ausführungsform der Erfindung. Das Kreismodell ist allgemein bei 20 angegeben. Ausführungsformen der Erfindung sind nicht auf irgendwelche bestimmte Kreismodelle beschränkt.
-
Die Zustandsraumgleichung für das äquivalente Batteriekreismodell in der gezeigten Ausführungsform kann wie folgt entwickelt werden. Die Ableitungen von V
OC nach der Zeit können wie unten gezeigt zu denen der SOC versus Zeit in Beziehung stehen:
-
Es sei
-
-
Gemäß dem äquivalenten Batteriekreismodell in
2:
-
Auf der Basis von Gleichung (3) unter der angenommenen Eigenschaft, dass die Funktion f differenzierbar erster Ordnung ist:
-
Durch Verknüpfen von Gleichungen (6) und (7):
-
Unter Bezugnahme auf Gleichung (5):
-
Auf der Basis von Gleichung (6) besteht eine Aufgabe in dem Identifizieren der Modellparameter und Schätzen des Ladezustands (über die Leerlaufspannung) zur gleichen Zeit:
Bei einer Ausführungsform der Erfindung kann ein Beobachter auf der Basis der Gleichungen (10) und (11) ausgelegt sein:
-
Bei der dargestellten Ausführungsform wird der oben beschriebene Beobachter genutzt, um ein Problem der indirekten adaptiven Beobachtung zu lösen. Es versteht sich, dass Details des Beobachters je nach der Anwendung variieren können. Bei der beschriebenen Ausführungsform gibt es eine Anzahl von Merkmalen, die je nach der Anwendung individuell oder in entsprechenden Kombinationen implementiert werden können. Zu beispielhaften technischen Merkmalen zählen der Steuerkreis- und Regelkreisbetrieb, die Verstärkungsfaktorplanung, modulare Architektur. Bei der gezeigten Ausführungsform wird der folgende Ansatz für die Parameteridentifikation verwendet. Aus Gleichungen (6) und (7):
-
Durch Erhalten einer Beziehung zwischen den Parametern und Systemvariablen und dann Diskretisieren der Beziehung:
-
-
Ein Verfahren, dass breite Anwendung findet, ist der Kalman-Filteransatz zum langsamen Variieren der Parameteridentifikation. Es ist Teil der Familie der Verfahren zur rekursiven Parameterschätzung. Zuerst wird Gleichung (16) umgeschrieben zu: Y(k) = ΦT(k)·Θ(k) (17)
-
Dann kann das auf dem Kalman-Filter basierende Verfahren der rekursiven Parameterschätzung ausgedrückt werden als:
-
Wobei
Θ ^(k + 1) der geschätzte Parametervektor ist, K, Q, P verwandte Zwischenvariablen (Matrizen) sind und R
1 und R
2 Konstante sind (kalibrierbare Variablen). Es versteht sich, dass der Kalman-Filter-Ansatz zur Parameteridentifikation ein möglicher Ansatz ist, der verwendet werden kann. Alternativ kann jedes Verfahren zur rekursiven Schätzung verwendet werden, mit variierender Robustheit und Genauigkeit, wie der Durchschnittsfachmann versteht. Nun unter Bezugnahme auf die SOC-Schätzung schätzt ein nichtlinearer Beobachter die Zustände (V
OC, V
C), nachdem ein Algorithmus zur rekursiven Schätzung gewählt ist und die Schaltungsparameter gut erfahren worden sind. In der dargestellten Ausführungsform kann unter der Annahme, dass die verwandten Parameter aus Gleichung (16) identifiziert worden sind, der Beobachter unter Verwendung der identifizierten Parameter realisiert werden:
-
-
Unter der Annahme einer präzisen Schätzung von Schaltungsparametern ist der oben gezeigte Beobachter insofern stabil, als durch entsprechendes Wählen des Verstärkungsfaktors L das Beobachtersystem stabil gemacht werden kann, wie der Durchschnittsfachmann versteht. Schließlich würde für diesen Beobachter ein fester Verstärkungsfaktor (L-Matrix) für die ganze, durch die Gleichungen (10) und (11) dargestellte Familie von Li-Ionen-Batterien funktionieren. Schließlich kann der Beobachterverstärkungsfaktor L derart gewählt werden, dass L
1 > 0, L
2 = 0, so dass die Fehlerdynamik für die ganze Familie der Batterie unter beliebigen Betriebsbedingungen immer stabil ist. In einem Aspekt der Erfindung wird der nichtlineare Term dV
OC/dSOC als eine stückweise lineare Funktion ausgedrückt:
-
Es versteht sich, dass der nichlineare Term dVOC/dSOC durch eine nichtlineare Abbildung aus VOC bestimmt wird. Die stückweise lineare Abbildung ist eine Möglichkeit, andere Abbildungen sind möglich. Es versteht sich, dass der beschriebene Beobachter nur ein Beispiel ist und dass in anderen Ausführungsformen der Erfindung andere Beobachter verwendet werden können.
-
Um Gleichung (16) verwenden zu können, muss der Wert VOC bekannt sein, der nicht direkt verfügbar ist, wenn ein Regelkreisidentifikationsverfahren verwendet wird. Vielmehr muss VOC durch den Beobachter erhalten werden. Der Beobachter hängt jedoch von geschätzten Parametern ab. Zur Behandlung dieser Situation kann für die betrachtete Batterie in dem Ausführungsbeispiel, wenn das Schlüssel-Ein nach der Batterie für eine ausreichend lange Zeit geruht hat, die Messung der Anschlussspannung als die Leerlaufspannung angesehen werden. Dies wiederum ergibt einen Anfangsmesswert von SOC. Zudem funktioniert eine Amperestundenintegration adäquat, wenn der Zeithorizont relativ kurz ist. Während des Steuerkreisbetriebs sollten die Parameter und die geschätzten Zustandsvariablen jeweils auf eine kleine Nachbarschaft der wahren Werte konvergieren. Gemäß einem Aspekt der Erfindung wird ein kombinierter Steuerkreis-/Regelkreisbetrieb durchgeführt. 3 zeigt bei 60 die Bestimmung des Steuerkreisbetriebs gegenüber dem Regelkreisbetrieb. Bei der dargestellten Ausführungsform beginnt der Fluss bei Block 62 (Zeit = 0). Die Zeit wird durch Tsample bei jedem Abtastintervall bei Block 64 inkrementiert. Bei dieser Ausführungsform arbeitet das System beim Entscheidungsblock 66 für eine Anfangszeitdauer T_calibration in einem Steuerkreismodus. Danach arbeitet das System im Regelkreismodus. Der Steuerkreismodussystembetrieb ist bei Block 68 angegeben. Der Regelkreismodussystembetrieb ist bei Block 70 angezeigt. In den Steuerkreismodus wird bei Block 68 ein auf der Amperestundenintegration basierender SOC zum Bestimmen der Leerlaufspannung (OCV) VOC zur Parameteridentifikation verwendet; die identifizierten Parameter werden zum Ansteuern des Beobachters verwendet und der auf der Amperestundenintegration basierende SOC wird als die Batteriesteuerausgabe für das System verwendet. Der ausgegebene SOC-Wert wird von einem Fahrzeugsystemcontroller zum Steuern des Fahrzeugs verwendet, wie der Durchschnittsfachmann versteht. Ausführungsformen der Erfindung sind auf keine bestimmte SOC-basierte Steuerung des Fahrzeugs beschränkt; vielmehr betreffen Ausführungsformen der Erfindung Verfahren zum Schätzen des SOC für die Verwendung durch solche Steuerungen. In dem Regelkreismodus wird bei Block 70 der zuletzt geschätzte VOC-Wert für die Parameteridentifikation verwendet. Die identifizierten Parameter werden zum Ansteuern des Beobachters verwendet; der gegenwärtig geschätzte SOC wird als die Batteriesteuerausgabe verwendet. Es versteht sich, dass die Bestimmung der Länge des Steuerkreisbetriebs auf anderen Weisen erfolgen kann. Beispielsweise kann die Bestimmung der Länge eines Steuerkreisbetriebs entweder auf einem Zeitgeber basieren oder Ober eine Eingabestrombeurteilung dahingehend, wie reich die Eingabe war und wie lang. Beispielsweise kann das System |dI/dt| überwachen und die Umschaltung auf die Regelkreissteuerung verhindern, bis |dI/dt| > Schwellwert für eine gewisse vorbestimmte Zeitdauer T_threshold. 4 zeigt eine generische Beobachterarchitektur, einschließlich Parameteridentifikationsblock 82, OCV-Schätzungsblock 84, Eingaben 90, SOC-Berechnungsblock 92 und verschiedene Verzögerungsblocks 94. Während des Regelkreisbetriebs schätzt der OCV-Schätzungsblock 84 die OCV (Vor, Schaltung 20, 2). Der Batterieladezustand (SOC) wird beim SOC-Berechnungsblock 92 aus der nichtlinearen Abbildung von VOC auf SOC bestimmt (1). Der Beobachter im OCV-Schätzungsblock 84 wird mit durch den Parameteridentifikationsblock 82 identifizierten Parametern angesteuert. Der zuletzt geschätzte OCV-Wert wird für die Parameteridentifikation verwendet. Zusätzlich zu dem Empfangen des zuletzt geschätzten OCV-Werts empfängt der Parameteridentifikationsblock 82 Eingaben 90, als Spannung, Strom und Temperatur dargestellt. Um die Robustheit und Stabilität des Regelkreissystems weiter zu verbessern, können Identifiziererverstärkungsfaktor und Beobachterverstärkungsfaktor beide eingestellt werden, so dass der Regelkreissystemgesamtverstärkungsfaktor im Vergleich zu dem Gegenstück im Steuerkreis reduziert ist. Dies ist in 6 gezeigt. Der Fluss beginnt bei Block 100. Der Arbeitsmodus wird beim Entscheidungsblock 102 bestimmt. Der Steuerkreismodusbetrieb ist bei 104 angegeben. Der Regelkreisbetrieb ist bei Block 106 angegeben. Bei Block 104 werden im Steuerkreisbetrieb aggressivere Verstärkungsfaktorwerte für den Identifizierer und den Beobachter verwendet. Bei Block 106 werden im Regelkreisbetrieb weniger aggressive Verstärkungsfaktorwerte für den Identifizierer und den Beobachter verwendet. Zusammengefasst beinhaltet der beschriebene Gesamtansatz in der dargestellten Ausführungsform mehrere Schritte. Beim Schlüssel-Ein sollte eine SOC-OCV-Nachschlagetabelle nach einer ausreichend langen Ruhezeit der Batterie eine ausreichend präzise SOC-Schätzung liefern. Die auf der Amperestundenintegration basierende SOC-Schätzung (und SOC-OCV-Abbildung) kann für die Parameteridentifikation verwendet werden (Steuerkreismodus). Gleichzeitig führt der Zustandsbeobachter (Schätzer) unter Verwendung identifizierter Parameter eine OCV-Schätzung durch. Mit Verstreichen der Zeit divergiert die Amperestundenintegration im Allgemeinen von dem realen SOC-Wert (somit OCV-Wert). Schließlich schaltet das System in den Regelkreismodus. Nachdem es sich im Regelkreismodus befindet, werden die identifizierten Parameter dem OCV-Schätzer zugeführt. Der OCV-Schätzer wiederum erzeugt einen OCV-Wert, der (nach einer einstufigen Verzögerung) dem Parameteridentifizierer zugeführt wird. Der geschätzte OCV-Wert wird auf der Basis einer bekannten SOC-OCV-Kurve in einen SOC-Wert umgesetzt. Beim Betrieb im Steuerkreis wird der hinsichtlich der Amperestunden integrierte SOC-Wert als die Batteriesteuerausgabe verwendet. Ausführungsformen der Erfindung können viele Vorteile besitzen. Beispielsweise nutzt ein kombiniertes Steuerkreis-/Regelkreisverfahren mit Parameterschätzungs- und OCV-Schätzungsteilsystemen, besser die intrinsischen Eigenschaften von betrachteten Batterien. Die modulare Natur der Architektur gestattet die Verwendung von verschiedenen Identifizierern und Beobachtern. Beispielsweise können je nach den Arbeitsmodi verschiedene Identifizierer/Beobachter verwendet werden. Die beschriebene Ausführungsform zieht auch einen Verstärkungsplanungsansatz in Betracht, der verwendet wird, um sowohl ein schnelles Lernen in einem Steuerkreis und eine stabile Adaptation in einem Regelkreis zu erzielen. 6 zeigt eine Simulation einer Ausführungsform der Erfindung. Ein VOC-Fehler ist bei 110 angegeben. Ein VOC-Schätzwert ist bei 112 angegeben. Ein Widerstandswert ist bei 114 angegeben. Ein Widerstandsschätzfehler ist bei 116 angegeben. Eine Stromeingabe ist bei 118 angegeben. Der Regelkreisschalter, bei 120 angegeben, wechselt von 0 zu 1, wenn das System vom Regelkreisarbeitsmodus zum Steuerkreisarbeitsmodus umschaltet. Ausführungsformen der Erfindung sind nicht auf jene hierin beschriebenen beschränkt. Innerhalb des Schutzbereichs der Erfindung sind verschiedene andere Ausführungsformen möglich. Beispielsweise können Ausführungsformen der Erfindung auf ein beliebiges äquivalentes Kreismodell höherer Ordnung erweitert werden, wo eine Spannungsquelle (OCV), ein Widerstand und eine Anzahl von Reihen-RC-Netzwerken, die in Reihe geschaltet sind, zum Modellieren der Batterie verwendet werden. 7 ist eine schematische Darstellung eines Antriebsstrangs eines hybridelektrischen Fahrzeugs, der zum Verkörpern der Erfindung in der Lage ist. Das hybridelektrische Fahrzeug (HEV) mit Leistungsverzweigung ist ein parallelhybridelektrisches Fahrzeug. 7 zeigt die HEV-Antriebsstrangkonfiguration mit Leistungsverzweigung und das Steuersystem. Bei dieser Antriebsstrangkonfiguration gibt es zwei Leistungsquellen, die mit dem Triebstrang verbunden sind: 1) eine Kombination aus Verbrennungsmotor- und Generatorteilsystemen unter Verwendung eines Planetenradsatzes zum Verbinden miteinander und 2) das Elektroantriebssystem (Motor-, Generator- und Batterieteilsysteme). Das Batterieteilsystem ist ein Energiespeichersystem für den Generator und den Elektromotor. Bei der ersten Leistungsquelle kann die Verbindungsmotorausgabeleistung in zwei Wege aufgeteilt werden, indem ein generatormechanischer Weg trωr (von dem Verbrennungsmotor zu dem Träger zum Außenrad zur Vorgelegewelle) und ein elektrischer Weg τgωg zu τmωm (von dem Verbrennungsmotor zu dem Generator zu dem Elektromotor zu der Vorgelegewelle) gesteuert wird. Der Weg zum Verteilen der Verbrennungsmotorleistung besteht darin, die Verbrennungsmotordrehzahl auf einen Sollwert zu steuern, was zu einer bestimmten Generatordrehzahl für eine gegebene Außenraddrehzahl (oder Fahrzeuggeschwindigkeit) führt, und zwar wegen der kinematischen Eigenschaft eines Planetenradsatzes. Die Generatordrehzahl ändert sich gemäß der Fahrzeuggeschwindigkeit für eine bestimmte Verbrennungsmotorsolldrehzahl, und die Verbrennungsmotordrehzahl kann von der Fahrzeuggeschwindigkeit entkoppelt werden. Die sich ändernde Generatordrehzahl variiert die Verbrennungsmotorausgabeleistungsverteilung zwischen einem elektrischen Weg und einem mechanischen Weg. Zusätzlich führt die Steuerung der Verbrennungsmotordrehzahl zu einem Generatordrehmoment zum Reagieren gegen das Verbrennungsmotorausgabedrehmoment. Es ist dieses Generatorreaktionsdrehmoment, das das Verbrennungsmotorausgabedrehmoment auf das Außenrad des Plantenradsatzes und schließlich auf die Räder überträgt. Dieser Arbeitsmodus wird als ”positive Verteilung” bezeichnet. Es wird angemerkt, dass wegen der erwähnten kinematischen Eigenschaft des Planetenradsatzes der Generator sich möglicherweise in der gleichen Richtung seines Drehmoments drehen kann, das gegen das Verbrennungsmotorausgabedrehmoment reagiert. In diesem Betrieb gibt der Generator Leistung (wie der Verbrennungsmotor) zu dem Planetenradsatz ein, um das Fahrzeug anzutreiben. Dieser Arbeitsmodus wird als ”negative Verteilung” bezeichnet. Wie in dem Fall des positiven Verteilungsmodus reagiert das aus der Generatordrehzahlsteuerung während einer negativen Verteilung resultierende Generatordrehmoment auf das Verbrennungsmotorausgabedrehmoment und überträgt das Verbrennungsmotorausgabedrehmoment auf die Räder. Diese Kombination aus Generator, Elektromotor und Planetenradsatz ist analog zu einem elektromechanischen CVT-Getriebe. Wenn die in 7 gezeigte Generatorbremse betätigt wird (Parallelmodusbetrieb) wird das Sonnenrad verriegelt, damit es sich nicht dreht, und das Generatorbremsdrehmoment liefert das Reaktionsdrehmoment auf das Verbrennungsmotorausgabedrehmoment. In diesem Arbeitsmodus wird alle Verbrennungsmotorausgabeleistung mit einem festen Untersetzungsverhältnis durch den mechanischen Weg zu dem Triebstrang übertragen. Bei einem Antriebsstrangsystem mit Leistungsverzweigung erfordert der Verbrennungsmotor im Gegensatz zu herkömmlichen Fahrzeugen, dass das aus der Verbrennungsmotordrehzahlsteuerung resultierende Generatordrehmoment oder das Generatorbremsdrehmoment seine Ausgangsleistung sowohl durch den elektrischen als auch den mechanischen Weg (Verzweigungsmodus) oder durch den vollmechanischen Weg (Parallelmodus) zu dem Triebstrang zur Vorwärtsbewegung überträgt. Bei der zweiten Leistungsquelle zieht der Elektromotor Strom von der Batterie und liefert den Antrieb unabhängig von dem Verbrennungsmotor an das Fahrzeug zur Vorwärts- und Rückwärtsbewegung. Dieser Arbeitsmodus wird als ”Elektroantrieb” bezeichnet. Außerdem kann der Generator Strom von der Batterie ziehen und gegen eine Einwegkupplung antreiben, die an die Verbrennungsmotorausgabewelle koppelt, um das Fahrzeug nach vorne anzutreiben. Wenn erforderlich, kann der Generator das Fahrzeug alleine nach vorwärts antreiben. Dieser Betrieb wird als der Generatorantriebsmodus bezeichnet. Die Operation dieses Antriebsstrangsystems mit Leistungsverzweigung integriert im Gegensatz zu herkömmlichen Antriebsstrangsystemen die beiden Leistungsquellen, so dass sie nahtlos zusammenarbeiten, um die Anforderung des Fahrers zu erfüllen, ohne die Systemgrenzen (wie etwa Batteriegrenzen) zu übersteigen, während die Antriebsstrangsystemeffizienz und -leistung insgesamt optimiert werden. Eine Koordinationssteuerung zwischen den beiden Leistungsquellen wird benötigt. Wie in 1 gezeigt, gibt es einen hierarchischen Fahrzeugsystemcontroller (VSC – Vehicle System Controller), der in diesem Antriebsstrangsystem mit Leistungsverzweigung die Koordinationssteuerung durchführt. Unter normalen Antriebsstrangbedingungen (keine Teilsysteme/Komponenten fehlerhaft) interpretiert der VSC die Anfragen des Fahrers (z. B. PRND und Beschleunigungs- oder Verlangsamungsbefehl) und bestimmt dann den Raddrehmomentbefehl auf der Basis der Fahrernachfrage und der Antriebsstranggrenzen. Außerdem bestimmt der VSC, wann jede Leistungsquelle wie viel Drehmoment liefern muss, um die Drehmomentanfrage des Fahrers zu erfüllen und den Arbeitspunkt (Drehmoment und Drehzahl) des Verbrennungsmotors zu erreichen. Unter weiterer Bezugnahme auf 7 werden ein Fahrzeugsystemcontroller (VSC) 250, ein Batterie- und Batterieenergiesteuermodul (BCM – Batterie Energy Control Module) 252 und ein Getriebe 254 gezeigt. Ein Verbrennungsmotor 256 verteilt das Drehmoment an das Getriebe 254. Das Getriebe 254 enthält eine Planetenradeinheit 260, die ein Außenrad 262, ein Sonnenrad 264 und eine Planetenträgerbaugruppe 266 umfasst. Das Außenrad 262 verteilt Drehmoment zu Stufenverhältniszahnrädern, die kämmende Zahnradelemente 268, 270, 272, 274 und 276 umfassen. Eine Drehmomentabgabewelle 278 für das Getriebe 254 ist über einen Differenzial- und Achsenmechanismus 282 antreibbar mit Fahrzeugtraktionsrädern 280 verbunden. Zahnräder 270, 272 und 274 sind auf einer Vorgelegewelle montiert, wobei das Zahnrad 272 ein vom Elektromotor angetriebenes Zahnrad 284 in Eingriff nimmt. Der Elektromotor 286 treibt das Zahnrad 284 an, das als eine Drehmomenteingabe für die Vorgelegewelleverzahnung dient.
-
Die Batterie liefert elektrischen Strom an den Elektromotor. Der Generator 290 ist auf bekannte Weise elektrisch mit der Batterie und dem Elektromotor 286 verbunden. Ebenfalls in 1 sind ein Getriebesteuergerät (TCM – Transmission Control Module) 300 und ein Bremssystemsteuergerät (BSCM – Brake System Control Module) 302 gezeigt. Das TCM 300 liefert die Generatorbremssteuerung an die Generatorbremse 304, liefert die Generatorsteuerung an den Generator 290 und liefert die Elektromotorsteuerung an den Elektromotor 286. Das BSCM 302 liefert einen Befehl zum regenerativen Bremsen an das VSC 250. Das VSC 250 erhält auch eine Fahrpedalpositionssensoreingabe (APPS – Acceleration Pedal Position Sensor) und eine PRND-Eingabe (Park-Reverse-Neutral-Drive). Der VSC 250 liefert auch Ausgaben für: Verbrennungsmotorsolldrehmoment an Verbrennungsmotor/Steuerung 256; Radsolldrehmoment, Verbrennungsmotorsolldrehzahl und Generatorbremsbefehl an das TCM 300 und eine Schaltschützsteuerung an die Batterie/BCM 252. Die Betankung wird auf der Basis von Fahrer- und anderen Eingaben geplant. Der Verbrennungsmotor 256 liefert Leistung an die Planetenradeinheit 260. Die verfügbare Verbrennungsmotorbremsleistung wird durch Höchstlasten reduziert. Leistung wird von dem Planetenaußenrad an die Vorgelegezahnräder 270, 272, 274 geliefert. Von dem Getriebe ausgegebene Leistung treibt die Räder an. Ebenfalls in 1 gezeigt, empfängt die Batterie 252 periodisch elektrische Wechselstromenergie von dem Netz über einen an das Netz angeschlossenen Ladeport 306. Ein Bordladegerät 308 empfängt die elektrische Wechselstromenergie vom Ladeport 306. Das Ladegerät 308 ist ein Wechselstrom-Gleichstrom-Wandler, der die empfangene elektrische Wechselstromenergie in für das Laden der Batterie 252 geeignete elektrische Gleichstromenergie umwandelt. Das Ladegerät 308 wiederum liefert die elektrische Gleichstromenergie an die Batterie 252, um die Batterie 252 während der Wiederaufladeoperation zu laden. Ausführungsformen der Erfindung sind nicht auf jene hierin beschriebenen beschränkt. Innerhalb des Schutzbereichs der Erfindung sind verschiedene andere Ausführungsformen möglich. Wenngleich oben Ausführungsbeispiele beschrieben werden, ist nicht beabsichtigt, dass diese Ausführungsformen alle möglichen Formen der Erfindung beschreiben. Vielmehr sind die in der Patentschrift verwendeten Wörter Wörter der Beschreibung statt der Beschränkung, und es versteht sich, dass verschiedene Änderungen vorgenommen werden können, ohne von dem Gedanken und Schutzbereich der Erfindung abzuweichen. Außerdem können die Merkmale verschiedener implementierender Ausführungsformen kombiniert werden, um weitere Ausführungsformen der Erfindung auszubilden.
-
Zeichenerklärung
-
Fig. 1
-
-
Fig. 3
-
- 1 Zeit=0
- 64 – Zeit = Zeit + Tsample
- 66 – Zeit > T_calibration
- 68 – System im Steuerkreisbetrieb:
1. Verwenden des auf der Amperestundenintegration basierenden SOC – OCV zur Parameteridentifikation;
2. Verwenden der identifizierten Parameter zum Ansteuern des Beobachters;
3. Verwenden des auf der Amperestundenintegration basierenden SOC als Batteriesteuerausgabe.
- 70 – System im Regelkreisbetrieb:
1. Verwenden der zuletzt geschätzten OCV zur Parameteridentifikation;
2. Verwenden identifizierter Parameter zum Ansteuern des Beobachters;
3. Verwenden des gegenwärtig geschätzten SOC als Batteriesteuerausgabe.
-
Fig. 4
-
- 84 – OCV-Schätzblock
- 82 – Parameteridentifikationsblock
- 90 – Eingang bzw. Eingabe
-
Fig. 5
-
- 102 ArbModus=Regelkreis?
- 104 Verstärkungsfaktoreinstellung GAIN_Open für Identifzierer und Beobachter verwenden
- 106 Verstärkungsfaktoreinstellung GAIN_Closed für Identifzierer und Beobachter verwenden
-
Fig. 6
-
- 110 Voc-Fehler
- 112 Voc geschätzt
- 114 Widerstandswert
- 116 Widerstandsschätzfehler
- 118 Stromeingabe
- 120 Regelkreisschalter
-
Fig. 7
-
- (1):
APPS – Fahrpedalpositionssensor
- BPPS – Bremspedalpositionssensor
- VSC – Fahrzeugsystemcontroller
- TCM – Getriebesteuergerät
- BCM – Batteriesteuergerät
- BSCM – Bremssystemsteuergerät
- O.W.C. – Einwegkupplung
- 256 – Motor/Steuerung
- 252 – Batterie/BCM
- 286 – Elektromotor
- 262 – Außenzahnrad
- 264 – Sonnenzahnrad
- 308 – Bordladegerät
- 306 – Ladeport
- (2):
Verbrennungsmotor-Solldrehmoment
- (3):
Rad-Solldrehmoment
Verbrennungsmotor-Solldrehzahl
Generatorbremsbefehl
- (4):
Schaltschutzsteuerung
- (5):
Regenerativer Bremsbefehl
- (6):
Achsgetriebe
- (7):
Planetengetriebe
- (8):
Generatorbremssteuerung
- (9):
Generatorsteuerung
- (10):
Elektromotorsteuerung
- (11):
Hochspannungsbus
- (12):
Bremse
- (13):
Wechselstromleistung