DE102012206225A1 - Weichmagnetischer Kern mit ortsabhängiger Permeabilität - Google Patents

Weichmagnetischer Kern mit ortsabhängiger Permeabilität Download PDF

Info

Publication number
DE102012206225A1
DE102012206225A1 DE102012206225A DE102012206225A DE102012206225A1 DE 102012206225 A1 DE102012206225 A1 DE 102012206225A1 DE 102012206225 A DE102012206225 A DE 102012206225A DE 102012206225 A DE102012206225 A DE 102012206225A DE 102012206225 A1 DE102012206225 A1 DE 102012206225A1
Authority
DE
Germany
Prior art keywords
core
permeability
soft magnetic
strip
different
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102012206225A
Other languages
English (en)
Inventor
Jivan Kapoor
Christian Polak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vacuumschmelze GmbH and Co KG
Original Assignee
Vacuumschmelze GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vacuumschmelze GmbH and Co KG filed Critical Vacuumschmelze GmbH and Co KG
Priority to DE102012206225A priority Critical patent/DE102012206225A1/de
Priority to PCT/EP2013/057652 priority patent/WO2013156397A1/de
Priority to KR1020147028328A priority patent/KR101725610B1/ko
Priority to CN201380020486.9A priority patent/CN104620336B/zh
Priority to US14/394,841 priority patent/US9812237B2/en
Priority to JP2015506188A priority patent/JP6517139B2/ja
Publication of DE102012206225A1 publication Critical patent/DE102012206225A1/de
Priority to US15/689,692 priority patent/US9941040B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/06Fixed inductances of the signal type  with magnetic core with core substantially closed in itself, e.g. toroid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/04Cores, Yokes, or armatures made from strips or ribbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/08Cores, Yokes, or armatures made from powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0213Manufacturing of magnetic circuits made from strip(s) or ribbon(s)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F2003/106Magnetic circuits using combinations of different magnetic materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

Weichmagnetischer Kern, bei dem an mindestens zwei unterschiedlichen Stellen des Kerns auftretende Permeabilitäten unterschiedlich sind.

Description

  • Die Erfindung betrifft Kerne aus weichmagnetischem Material beispielsweise zur Herstellung von Induktivitäten.
  • In elektronischen Steuergeräten wie beispielsweise Gleichstrom-Gleichstrom-Wandlern (DC-DC-Wandler) werden häufig Speicherdrosseln, Speicherübertrager oder Filterdrosseln mit niederpermeablem Kernmaterial etwa als induktive Energiespeicher verwendet. In den Kernen solcher induktiven Bauelemente können je nach Bauform stark inhomogene Feldverteilungen auftreten. Das Kernmaterial wird daher im Allgemeinen über den Ort nicht optimal ausgesteuert bzw. ausgenutzt. Selbst bei relativ hochsymmetrischen Ringkerndrosseln ist dies noch merklich der Fall und führt bei größerem Innen-zu-Außendurchmesser-Verhältnis zu weniger optimalen Lösungen, denn bei gegebenem Volumen wird die maximal mögliche Induktivität nicht erreicht bzw. bei gegebener Induktivität die kleinste oder kostengünstigste Lösung nicht erzielt.
  • Oben erwähnte Kernaussteuerungseffekte führen bei den heute üblichen Kernen mit homogener Permeabilitätsverteilung ebenfalls über partielle Sättigungseffekte auf aussteuerungsabhängige effektive Kernpermeabilitäten. Damit gehen merkliche Verschlechterungen der Bauelementeigenschaften wie etwa die Vergrößerung des Messfehlers bei Stromwandlern einher. Diese können derzeit nur durch eine entsprechende Überdimensionierung des Kerns aufgefangen werden, die einen Betrieb im verbreiterten Übergangsbereich in die Sättigung vermeidet, was wiederum die Kosten steigert.
  • Aufgabe der Erfindung ist es, weichmagnetische Kerne bereitzustellen, die gegenüber bekannten Kernen bei gleichem Volumen bessere Eigenschaften bzw. bei gleichen Eigenschaften ein geringeres Volumen aufweisen.
  • Die Aufgabe wird gelöst durch einen weichmagnetischen Kern, bei dem an mindestens zwei unterschiedlichen Stellen des Kerns auftretende Permeabilitäten unterschiedlich sind.
  • Unter dem Begriff „unterschiedliche Permeabilitäten“ ist zu verstehen, dass die Differenz zweier Permeabilitäten größer ist als die durch Produktionstoleranzen und Messungenauigkeiten hervorgerufenen Differenzen. So kann beispielsweise das Verhältnis zwischen auftretender minimaler und maximaler Permeabilität größer als 1:1,1 oder 1:1,2 oder 1:1,5 oder 1:2 oder 1:3 oder 1:5 sein.
  • Die Erfindung wird nachfolgend anhand der in den Figuren der Zeichnung dargestellten Ausführungsbeispiele näher erläutert. Es zeigt:
  • 1 schematisch einen weichmagnetischen Ringkern mit einem durch die Ringkernöffnung geführten Leiter;
  • 2 in einem Diagramm den Verlauf der Feldstärke und der radiallinearen Permeabilitätszunahme über den Kernradius;
  • 3 in einem Diagramm die relative Induktivitätserhöhung bei radiallinearer Permeabilitätszunahme gegenüber einem konstanten Permeabilitätsverlauf;
  • 4 in einem Diagramm die radiale Abhängigkeit des Induktivitätsbeitrags im Kern;
  • 5 in einem Diagramm die Permeabilität über dem eine effektive Feldstärke erzeugendem Strom für ein erstes Fallbeispiel;
  • 6 in einem Diagramm die Permeabilität über dem eine effektive Feldstärke erzeugendem Strom für ein zweites Fallbeispiel;
  • 7 in einem Diagramm die effektive Permeabilität über der effektiven Feldstärke für den in 5 gezeigten Fall;
  • 8 in einem Diagramm den magnetischen Fluss über der effektiven Feldstärke für den in 6 gezeigten Fall;
  • 9 in einem Diagramm beispielhafte Messungen der geometrieabhängigen Verrundung der Fluss-Feldstärke-Schleife für Kerne mit konstanter Permeabilität bei verschiedenen Außen- und Innendurchmessern;
  • 10 in einem Diagramm den Verlauf der Induktivität in Abhängigkeit vom Gleichstrom durch den Leiter bei der in 1 gezeigten Anordnung bei einer ersten Dimensionierung;
  • 11 in einem Diagramm den Verlauf der Induktivität in Abhängigkeit vom Gleichstrom durch den Leiter in der in 1 gezeigten Anordnung für einer zweiten Dimensionierung;
  • 12 in einer Tabelle Parameter der in 1 gezeigten Anordnung für vier unterschiedliche Fälle;
  • 13 in einem Diagramm den Verlauf der Induktivität in Abhängigkeit von dem Gleichstrom durch den Leiter der in 1 gezeigten Anordnung für die im Zusammenhang mit 12 aufgezeigten Fälle;
  • 14 schematisch den Aufbau eines zweiteiligen Kernes mit gestuftem Permeabilitätsverlauf;
  • 15 in einem Diagramm die Induktivität in Abhängigkeit von dem Gleichstrom durch den Leiter der in 1 gezeigten Anordnung bei Verwendung eines zweiteiligen Kerns im Vergleich zu einem einteiligen Kern;
  • 16 in einem Diagramm den Induktivitätsbeitrag über den mittleren Durchmesser für einteilige und zweiteilige Kerne bei verschiedenen Stromstärken;
  • 17 in einem Diagramm die induzierte Anisotropie über der Zugspannung bei unterschiedlichen Wärmebehandlungen;
  • 18 in einem Diagramm die Permeabilität in Abhängigkeit von der Zugspannung für verschiedene Wärmebehandlungen;
  • 19 in einem Blockdiagramm eine Anordnung zur Herstellung eines Kernes mit variabler Kernpermeabilität;
  • 20 den Verlauf der Permeabilität über der Feldstärke für einen mit der Anordnung nach 19 hergestellten Kern;
  • 21 in einem Diagramm den Verlauf der Kernpermeabilität in Abhängigkeit von der Bandposition bei einem Verfahren zur Herstellung eines Bandes mit einer sich über die Bandlänge ändernden Permeabilität;
  • 22 in einem Diagramm die Magnetisierung über der Feldstärke bei verschiedenen Ringbandkernen aus nanokristallinem Material mit zugspannungsinduzierter Anisotropie;
  • 23 schematisch den Aufbau eines einteiligen gewickelten Kerns mit über dem Radius variierender Permeabilität;
  • 24 schematisch den Aufbau eines zweiteiligen Kerns mit gepressten und gewickelten Kernteilen;
  • 25 in einem Diagramm den Verlauf der Kernpermeabilität in Abhängigkeit von der Bandposition bei einem zu dem in 21 gezeigten Verfahren alternativen Verfahren zur Herstellung eines Bandes mit einer sich über die Bandlänge ändernden Permeabilität;
  • 26 in einer schematischen Skizze eine Wickelanordnung zur Anwendung bei dem in 25 gezeigten Verfahren;
  • 27 in einem Diagramm den magnetischen Fluss in Abhängigkeit von der magnetischen Feldstärke für einen beispielhaften Gradientenkern; und
  • 28 in einem Diagramm den Verlauf der Permeabilität und der Kernfeldstärke über der Bandposition.
  • Die vorliegende Erfindung erlaubt es über eine ortsabhängige Permeabilitätsanpassung eines beliebig geformten Magnetkernes für den jeweiligen Anwendungsfall optimierte Lösungen bereitzustellen und so beispielsweise volumenreduzierte bzw. kostengünstigere Kerne zu ermöglichen. Je nach Geometrie der Kerne können so beispielsweise wie bei Ringkernen im Idealfall einige 10% Induktivitätserhöhung bei gleichem Kernvolumen erreicht werden. Damit verbunden ist auch, dass solche Kerne einen deutlich schärferen Übergang von linearem Hysteresebereich in die Sättigung bzw. einen vergrößerten Aussteuerungsbereich mit konstanter bzw. weniger stark variierender Permeabilität aufweisen. Dabei öffnet sich auch die Möglichkeit, gezielt verrundete, effektive Hystereseformen durch entsprechend gesteuerte Abweichungen vom Idealfall einzustellen. Dies wird dadurch erreicht, dass die Ortsabhängigkeit der Kernpermeabilität den aus der geometrischen Form des Bauelements resultierenden inhomogenen Feldverteilungen angepasst wird. Damit werden ungleichmäßig über das Kernvolumen einsitzende Sättigungseffekte minimiert oder sogar vermieden. Je nach verwendetem Kernmaterial und Kernform wird dies auf verschiedene Weise erreicht. Gebräuchliche Kernformen sind beispielsweise Ringform, U-Form, I-Form oder Ähnliches.
  • Bei Ringkernen fällt die magnetische Feldstärke H invers mit dem Radius r ab, so dass H = N∙I/(2πr) ist, wobei N die Windungszahl eines durch die Kernöffnung geführten Leiters und I die Stromstärke des diesen Leiter durchfließenden Stromes ist. Eine solche Anordnung ist in 1 gezeigt, wobei ein Leiter 1 mit der Windungszahl N = 1 durch die Öffnung eines Ringkerns 2 geführt ist. Der Kern 2 hat einen die Öffnung definierenden Innendurchmesser Di, einen Außendurchmesser Da sowie eine Höhe h auf. Der oben erwähnte Feldstärkeabfall führt dazu, dass ein homogenes Magnetkernmaterial nach außen hin immer weniger stark auf seiner materialtypischen feldstärkeabhängigen Flusskurve, auch als B(H)-Kurve (magnetische Flussdichte B, Feldstärke H) bekannt, ausgesteuert wird. Grob vereinfacht können also die Innenbereiche des Kerns bereits nahe oder in der Sättigung, also mit entsprechend reduzierter Wirkung arbeiten, während die Außenbereiche nur schwach ausgesteuert sind. Dieser Effekt ist umso ausgeprägter je größer das Verhältnis von Außendurchmesser zu Innendurchmesser ist. In guter Näherung gilt, z.B. für Höhe h → ∞ bzw. Φ = ∫(1/2πr)∙µ0∙µ(r)∙I)∙h∙dr
    im Falle konstanter Permeabilität: L = Φ/I = (µ0µh)/2π)∙ln(Da/Di) im Falle radial-linearer Permeabilitätszunahme: L = Φ/I = (µ0µih/2π)∙(Da/Di – 1) wobei µ(r) = (µi/Di)∙r.
  • Dabei ist Φ der magnetische Fluss, µ0 ist die magnetische Feldkonstante, µ die Permeabilität, µi die Permeabilität am Innendurchmesser Di und µ(r) für die radial-lineare Permeabilitätszunahme.
  • Dem geschilderten Problem kann begegnet werden, indem die Permeabilität des Kernmaterials nach außen hin zunehmend gestaltet wird. Damit kann die Energiedichte in den radial weiter außen gelegenen Kernschichten und somit ihr Induktivitätsbeitrag deutlich erhöht werden.
  • 2 zeigt hierzu in Abhängigkeit von dem Radius r für einen Kern mit einem Innendurchmesser Di = 30mm und einem Außendurchmesser Da = 60mm zum Einen den Verlauf des Magnetfeldes als Magnetfeldstärke H über dem Radius r (Kurve 3) eine mögliche Anpassung der Permeabilität µ (Kurve 4). Wie die Kurve 3 zeigt sind stark unterschiedliche Feldstärken H in radialer Richtung wirksam. Das Magnetmaterial wird dementsprechend verschieden stark ausgesteuert. Mit einem entsprechend gegengesetzten Verlauf der Permeabilität µ können die in Radialrichtung unterschiedlich wirksamen Feldstärken H kompensiert werden. Bezogen auf die lokal gültige B(H)-Kurve werden nun alle Kernbereiche ähnlich angesteuert und es ergibt sich insgesamt eine optimierte stromabhängige Induktivitätsaussteuerungskurve, wie etwa die L(Idc)-Aussteuerungskurve (Induktivität L in Abhängigkeit von dem sie durchfließenden Gleichstrom IDC) einer Drossel, d.h. mit erhöhten Induktivitätswerten bei kleinen Aussteuerungen und minimierten, häufig gar nicht genutzten Induktivitätswerten bei Aussteuerungen über dem geforderten Betriebsbereich.
  • 3 zeigt hierzu die relative Induktivitätserhöhung bei radial-linearer Permeabilitätszunahme gegenüber einer konstanten Permeabilität in Abhängigkeit vom Verhältnis Außendurchmesser Da zu Innendurchmesser Di. Daraus ist zu ersehen, dass bei kleinen Da/Di-Verhältnissen nur ein moderater Vorteil von bis zu ca. 30% bei typischen Kernen auftritt. Ein beachtliches Potential stellt sich jedoch bei Kernen heraus, bei denen die Verhältnisse größer sind (ab einem Da/Di > 2.
  • 4 zeigt den Zugewinn an Gesamtinduktivität abhängig vom Radius r, d. h. die Differenz zwischen einem Kern mit radial-linear zunehmenden Permeabilität µ(r) und einem Kern mit konstanter Permeabilität µ = µmax(Di). Dem in Zusammenhang mit 4 erläuterten Beispiel wurde ein Kern zugrunde gelegt, bei dem der Außendurchmesser Da = 24mm, der Innendurchmesser Di = 6mm, die Höhe h = 20mm und der Sättigungsfluss BS = 1,2T betragen hat. Wie allein schon qualitativ der 4 zu entnehmen ist, nimmt mit zunehmendem Radius der Zugewinn deutlich zu.
  • Die Auswirkungen der 1/r Feldstärkeaussteuerung für einen Bandkern mit Außendurchmesser Da = 25mm, Innendurchmesser Di = 15mm und einer Höhe h = 10mm ist in den 5 und 6 dargestellt. Hierbei ist jeweils die im Kern wirksame Permeabilität µ als Funktion der Kernaussteuerung IDC prop. HDC,eff aufgelöst nach verschiedenen Kernbereichen bzw. Kernschalen vom Durchmesser D angegeben. Die 5 zeigt hierbei den Fall, bei dem die Permeabilität µ = 1000 ist für eine Feldstärke H kleiner oder gleich einer Sättigungsfeldstärke HSAT und die ansonsten 1 ist. Für verschiedene Durchmesser D der Kernschalen, beispielswese mit Werten zwischen D = 15 und D = 25, zeigt sich eine deutliche Auffächerung des Eintritts der Sättigung über den Kern. 6 zeigt den Fall, bei dem die Permeabilität µ vom Radius r abhängig ist für verschiedene Kernschalendurchmesser D = 15 ... 25 mm. Daraus ist zu ersehen, dass eine optimale radiale Permeabilitätsabhängigkeit zu einem einheitlichen Übergang in die Sättigung führt.
  • Die 7 und 8 zeigen die µeff (HDC)-Verläufe und die L(IDC)-Verläufe, d.h. die effektive Permeabilität µeff und die L(Idc)-Aussteuerungskurve (Induktivität L in Abhängigkeit von dem sie durchfließenden Gleichstrom IDC) für den im Zusammenhang mit den Ausführungsbeispielen nach 5 und 6 verwendeten gewickelten Bandkernen. 7 zeigt dabei wiederum den Fall µ = 1000 für H ≤ HSAT und ansonsten 1, wobei HSAT die Sättigungsfeldstärke ist. 8 betrifft den Fall µ(r) = a∙r, wobei a ein konstanter Proportionalitätsfaktor ist. In 7 ist hierzu die effektive Permeabilität µeff über der effektiven Feldstärke Heff und bei dem in 8 gezeigten Diagramm ist die Flussdichte B über der effektiven Feldstärke Heff aufgetragen ist. Aus den 7 und 8 ist sofort zu erkennen, dass sich ein deutlich verbreiterter Übergang in die Sättigung für einen Kern mit konstanter Permeabilität einstellt. Mit radial-linear zunehmender Permeabilität kann hingegen zum Einen eine gleichbleibende Induktivität für merklich höhere Felder (Drosselströme) bereitgestellt werden und der Bereich mit konstanter Permeabilität kann deutlich vergrößert werden wie dies etwa bei Stromsensoranwendungen von Vorteil ist.
  • In 9 ist in einem Diagramm ein Beispiel für die geometrieabhängige Verrundung der B(H)-Schleife für Kerne mit konstanter Permeabilität µ bei verschiedenen Außen- und Innendurchmessern gezeigt. Wie sich daraus ersehen lässt, bestätigen die experimentellen Beobachtungen, deren zugehörige Messpunkte mit den Symbolen O, ☐ und X für 3 verschiedene Außen- und Innendurchmessverhältnisse dargestellt sind (Kurven 7), mit guter Übereinstimmung die Modellvoraussagen dargestellt durch unterbrochene Linien für die 3 verschiedenen Außen- und Innendurchmesserverhältnisse. Das eingefügte Bild in 9 zeigt als Kurven 8 eine vergrößerte Darstellung der Verhältnisse im Bereich des Abknickens zur magnetischen Sättigung bei den Kurven 7.
  • In den 10 und 11 ist ein weiteres Beispiel für den stromabhängigen Induktivitätsverlauf (L(IDC)-Verlauf) gezeigt wobei von einem Kern mit einem Außendurchmesser Da = 24mm, eine Höhe h = 20mm sowie einen Sättigungsfluss BS = 1,2T bei einer Windungszahl von N = 1 ausgegangen wurde. Ziel ist es dabei, den Induktivitätswert L für Ströme IDC bis ca. 200A konstant zu halten.
  • 10 zeigt dabei den Fall, bei dem der Innendurchmesser Di = 6mm und damit Da/Di = 4 ist. Die Permeabilität µi = µ(Di) beim Innendurchmesser Di beträgt 90 und die Permeabilität µa = µ(Da) am Außendurchmesser Da beträgt 360. Hierbei wird wiederum unterschieden zwischen einem Kern mit konstantem Permeabilitätsverlauf (Kurve 10) und einem Kern mit angepasstem Permeabilitätsverlauf (Kurve 11). Der Innendurchmesser Di beträgt im vorliegenden Fall 6mm.
  • Auch bei dem in 11 gezeigten Diagramm wird zwischen einem Kern mit konstantem Permeabilitätsverlauf (Kurve 11) und einem Kern mit variablem Permeabilitätsverlauf (Kurve 12) unterschieden, wobei hierbei jeweils ein Kerninnendurchmesser von Di = 16mm verwendet wird. Somit ergibt sich hier ein Da/Di-Verhältnis von 1,5 mit einer Permeabilität µi = µ(Di) am Innendurchmesser Di von 240 und einer Permeabilität µa = µ(Da) am Außendurchmesser Da von 360.
  • In der in 12 gezeigten Tabelle sind vier Kerne einander gegenüber gestellt, wobei sämtliche Kerne einen Innendurchmesser von Di = 6mm und eine Höhe h = 25mm aufweisen. Es handelt sich dabei um einen CSC-MF-Kern 13 mit einer über den Radius konstanten Permeabilität µ = µi = 90, einen CSC-HF-Kern 14 mit einer über den Radius r konstanten Permeabilität µ = µi = 160, einen Kern VP mit einer über den Radius r konstanten Permeabilität µ = µi = 66 und einen Kern VP mit variabler Permeabilität µ = µ(r) zwischen 66 und 191. Die Tabelle enthält zu den einzelnen Kernen den jeweiligen Außendurchmesser Da, das jeweilige Kernvoluminen, den jeweils genutzten Permeabilitätsbereich bei maximalem Strom Imax sowie die Sättigungsflussdichte Bs. Die Kerne sollen beispielsweise zur Herstellung von Filterdrosseln mit einer Windung verwendet werden, deren angestrebte Induktivitätswerte bei Gleichstrom 500mH und bei 250A > 350mH sein sollen. Den Verlauf der Induktivität L über den durch die Drossel fließenden (Gleich-) Strom IDC ist in 13 dargestellt. Wie daraus zu ersehen ist, kann trotz niedrigerer Sättigungsmagnetisierung BS die Spezifikation mit niederpermeablem VP mit kleinerem Volumen gut erfüllt werden (vergleiche Kurven zu Kernen 13 bis 16).
  • In 14 ist ein Kern dargestellt, der bereichsweise unterschiedliche Permeabilitäten aufweist. Der dort gezeigte Kern 17 ist zweiteilig ausgeführt derart, dass zwei ringförmige Ringteile 17a und 17b konzentrisch ineinander eingepasst sind. Jedes der beiden Kernteile 17a und 17b hat für sich eine homogene Permeabilitätsverteilung, jedoch sind die Permeabilitäten einander gegenüber unterschiedlich, das heißt der innere Kernteil 17a hat eine geringere Permeabilität als der äußere Kernteil 17b. Im vorliegenden Fall sind beide Kernteile 17a und 17b Pulverkerne, jedoch können die beiden Kerne in beliebiger Weise unterschiedlich hergestellt sein (vergleiche auch 24 und zugehörige Beschreibung).
  • In 15 sind die Induktivitätsverläufe eines wie in 14 gezeigten optimierten, zweiteiligen Kerns (Kurve 18) und eines üblichen einteiligen Kerns (Kurve 19) einander gegenüber gestellt. Die gezeigten Kurven 18 und 19 beruhen dabei auf einem FeSi-Pulverkern mit einem Außendurchmesser Da = 47mm, einem Innendurchmesser Di = 24mm und einer Höhe h = 18mm. Die Permeabilität µia am Innendurchmesser des Kernteils 17a beträgt 60 und die Permeabilität µib am Innendurchmesser des Kernteils 17b beträgt 90. In 16 sind die Induktivitätsbeiträge über den Kerndurchmesser für einteilige und zweiteilige Kerne bei Strömen von 0A, 10A und 20A als Kurven 20 bis 25 dargestellt. Auch hieraus ist die Überlegenheit der Kerne mit radial sich ändernder Permeabilität sofort ersichtlich.
  • Anstelle eines mehrteiligen Magnetkerns mit sich schrittweise ändernder Permeabilität wie in 14 gezeigt kann auch ein Pulverkern mit sich kontinuierlich ändernder Permeabilität hergestellt werden, in dem in eine Form schichtweise Materialien von unterschiedlicher Permeabilität eingebracht wird oder zwei Materialien mit jeweils konstanter, untereinander aber unterschiedlicher Permeabilität (insbesondere eines der Materialien mit µ = 0) mit in radialer Richtung unterschiedlichen Mischungsverhältnissen gemischt werden. Darüber hinaus ist es aber auch möglich, einen Kern mit sich kontinuierlich ändernder Permeabilität durch Wickeln eines Bandes mit sich über der Länge ändernder Permeabilität zu erreichen. Ein Band mit sich über die Länge ändernder Permeabilität kann beispielsweise unter Ausnutzung zugspannungsinduzierter Anisotropie hergestellt werden. Bei gewickelten Bandkernen kann durch Verwendung einer Durchlaufwärmebehandlung des Bandes unter Zugspannung bei den weiten Grenzen variierbares Permeabilitätsprofil µ(l) entlang der Bandlaufrichtung l sehr genau eingestellt werden. Insbesondere kann das Permeabilitätsprofil so gewählt werden, dass sich beim Aufwickeln des Bandes die gewünschte radial zunehmende µ(r)-Funktion am fertigen Kern einstellt. In einer gekoppelten „In-Line“-Kernproduktion kann die Kernaufwicklung direkt der Wärmebehandlung des Bandes (Bandtemperung) unter Zug folgen und somit per Zugregelung aktiv auf die aktuelle, radial abhängige Permeabilitätsanforderung geregelt werden. Alternativ kann auch eine von der Bandherstellung vollständig entkoppelte Kernwicklung aus Bändern mit verschiedenen konstanten Permeabilitäten realisiert werden. Entsprechend automatisierte Wickelmaschinen können aus verschiedenen Magazinen Bänder mit unterschiedlichen Permeabilitäten beziehen und sukzessive verarbeiten. Nach diesen Verfahren können allerdings nur gestufte und keine radialkontinuierlichen Variationen im Kern erzeugt werden.
  • Den Verlauf der induzierten Anisotropie Kµ über der Zugspannung σ ist in 17 dargestellt für unterschiedliche Wärmebehandlungen. Den zugehörigen Permeabilitätsverlauf µ über der Zugspannung σ zeigt 18. Die Permeabilität hängt dabei folgendermaßen von der Vakuumpermeabilität µ0 des Bandes, dessen induzierter Anisotropie Ku sowie der Sättigungsflussdichte BS folgendermaßen ab: µ = 0,5∙BS 2/(µ0Ku).
  • 19 zeigt schematisch eine Vorrichtung 26 zum Herstellen von weichmagnetischem Streifenmaterial. Diese umfasst eine eingangsseitige Materialzuführung 27 zum Bereitstellen von bandförmigem Material 39, eine Wärmebehandlungsvorrichtung 28 zur Wärmebehandlung des ihm zugeführten bandförmigen Materials 39 zur Erzeugung eines wärmebehandelten Bandmaterials 40, eine Spannvorrichtung 30, 31, 32, 33, welche ausgebildet ist, eine Zugkraft in das bandförmige Material 39 einzuleiten und eine Zugspannung in dessen Bandlängsachsenrichtung zumindest im Bereich der Wärmebehandlungsvorrichtung 28 zu erzeugen. Die Spannvorrichtung 30, 31, 32, 33 ist zum Variieren der Zugkraft steuerbar ausgebildet.
  • Die Vorrichtung 26 umfasst außerdem eine Messanordnung 33 zum Bestimmen der Permeabilität des erzeugten weichmagnetischen Streifenmaterials 40 sowie eine Regelungseinheit 34 zum Steuern der Spannvorrichtung 30, 31, 32, wobei die Regelungseinheit 32 derart ausgebildet und mit der Messanordnung 31 gekoppelt ist, dass die Spannvorrichtung 30 die Zugkraft in Reaktion auf die festgestellte Permeabilität µ gegenüber einem vorgegebenen (gewünschten) Referenzwert regelt. Bei der gezeigten Ausgestaltung umfasst die Spannvorrichtung 30, 31, 32 zwei miteinander gekoppelte S-förmige Rollenantriebe 30, 32 sowie eine Tänzerregelung 31. Die Geschwindigkeiten der Rollenantriebe 30 und 32 werden dabei so von der Regelungseinheit 34 gesteuert, d.h. eingestellt, dass sich die gewünschte Zugspannung in Abhängigkeit von der mittels der Messanordnung 33 festgestellten Permeabilität im Bandmaterial 39 (und 40) aufbaut. Die Tänzerregelung 31 dient dazu, kurzzeitige Geschwindigkeitsschwankungen auszugleichen.
  • Zusätzlich kann die Vorrichtung 26 einen Magnetfeldgenerator 29 aufweisen, der mindestens ein Magnetfeld zur Magnetfeldbehandlung des wärmebehandelten Bandmaterials erzeugt wie zum Beispiel ein Magnetfeld senkrecht zur Bandlaufrichtung, auch bekannt als Querfeld. Ebenfalls optional kann eine Wickeleinheit 35 mit mehreren Wickeldornen 36 auf einer drehbaren Revolverplatte 37 zum Aufwickeln jeweils eines definierten Abschnitts des erzeugten Bandmaterials 40. Die Wickeleinheit 35 kann dabei einen zusätzlichen S-förmigen Rollenantrieb 38 aufweisen, der das behandelte Bandmaterial, also das Streifenmaterial 40 dem jeweiligen Wickeldorn 36 zuführt.
  • 20 zeigt den Zusammenhang zwischen einer in das bandförmige Material 39 mittels einer Zugkraft F eingeleiteten Zugspannung und daraus resultierender Anisotropie KU und Permeabilität µ. Eine lokal in dem bandförmigen Material 39 auftretende Zugspannung σ ergibt sich dabei aus der anliegenden Zugkraft F und einer lokalen magnetischen Querschnittsfläche AFe (Materialquerschnitt) zu σ = F/AFe, so dass eine induzierte Anisotropie KU in Querrichtung zu dem längs erstreckten bandförmigen Material 39 in Abhängigkeit von der Zugspannung σ ansteigt. Die Permeabilität µ wird über die erzeugte Zugspannung σ eingestellt und ergibt sich aus der mittleren Steigung der Hystereseschleife bzw. aus der Sättigungsflussdichte BS bzw. der magnetischen Feldstärke H nämlich der Anisotropiefeldstärke HA, sowie der magnetischen Feldkonstanten µ0 in Verbindung mit der Anisotropie KU wie oben in Zusammenhang mit 17 erläutert.
  • Liegt also beispielsweise herstellungsbedingt eine schwankende Dicke des bandförmigen Materials vor, so schwankt entsprechend bei Annahme einer gleichbleibenden Breite die lokale Querschnittsfläche AFe und mit ihr bei konstanter Zugkraft F die anliegende Zugspannung σ. Diese wiederum bewirkt eine entsprechende Änderung der induzierten Anisotropie KU, welche über die genannten Zusammenhänge die Permeabilität µ entsprechend beeinflusst, so dass sich auch diese über die Länge des aus dem bandförmigen Material 39 erzeugten weichmagnetischen Streifenmaterials 40 verändert.
  • Bei einem Bandherstellungsverfahren kann somit beispielsweise vorgesehen werden, dass das Bandmaterial von einem Magazin abgewickelt und durch einen röhrenförmigen Wärmebehandlungsofen gezogen und unter Zugspannung entlang der Bandlängsachse gesetzt wird. Bei Glühtemperaturen über der Kristallisationstemperatur kann das anfänglich amorphe Material in der Wärmebehandlungszone in einen nanokristallinen Zustand übergehen, der in diesem Fall für die hervorragenden weichmagnetischen Eigenschaften des auslaufenden Bandes (Streifenmaterial) verantwortlich ist. Über die anliegende Zugspannung wird eine Queranisotropie im Magnetmaterial induziert, so dass das auslaufende weichmagnetische Band (Streifenmaterial) eine ausgeprägt flache Hystereseschleife mit eng tolerierter Permeabilität µ (im Bereich von 10.000 bis unter 100 bei Messrichtung entlang der Bandachse) aufweist. Dabei ist das erreichbare Niveau der Permeabilität µ bzw. die induzierte Anisotropie KU der angelegten Zugspannung im Band proportional. Diese Zusammenhänge sind in den 17 und 18 für die nanokristalline Legierung VP800 der Vacuumschmelze anschaulich dargestellt.
  • Im Anschluss wird der beispielsweise nun nicht mehr unter Zugspannung stehende Bandstreifen durch die Messanordnung 33 geführt, welche in Echtzeit die Permeabilität μ (und ggf. noch andere Größen wie etwa Bandquerschnitt, Koerzitivfeld, Remanenzverhältnis, Verluste, etc.) misst. Mit der Kenntnis dieser Werte wird am Ende des Prozesses das kontinuierlich laufende Band zu einem Ringbandkern verarbeitet, in dem immer eine bestimmte Länge des Magnetbandes auf einem Wickeldorn abgewickelt wird.
  • Mit der beschriebenen Technologie kann also weichmagnetisches Bandmaterial mit verschiedensten Permeabilitätniveaus mit extrem geringen Abweichungen vom Sollpermeabilitätswert über die gesamte Bandlänge hergestellt werden, wobei die Permeabilität gezielt über gewisse Bandlängenbereiche abfallen oder ansteigen zu lassen, um wie oben erwähnt einen gewünschten radialvariablen Permeabilitätsverlauf entlang des Bandes für jeden Kerntyp praktisch kontinuierlich einzustellen. Mit Hilfe der für den Regelprozess notwendigen Messanordnung kann man auch fortlaufend Informationen über den magnetischen Bandquerschnitt (lokales AFe des Bandes) erhalten. Kombiniert man geregelte Permeabilität und Information über den Bandquerschnitt und setzt an das Ende einen Kernwickelprozess, so erhält man Ringbandkerne mit vorgegebenen Permeabilitätsverlauf und sehr geringen Exemplarstreuungen bezüglich des AFe-Wertes des Kerns.
  • Das in 21 gezeigte Diagramm veranschaulicht beispielhaft, wie die Kernpermeabilität durch Permeabilitätsvariation über die Lauflänge gesteuert werden kann. Ausgegangen wird dabei von einem Kern von 30mm Höhe und 60mm mittlerem Durchmesser. Die Permeabilität beträgt am inneren Umfang 100 und am äußeren Umfang 200, so dass sich eine mittlere Permeabilität µm von 150 ergibt. Dabei ist die jeweilige (angepasste) Permeabilität µ über der Bandlänge angegeben. Die Regelung der Zugspannung erfolgt dabei so, dass die Permeabilität µ über die für einen Kern benötigte Länge von ca. 90m ansteigt. Bei Erreichen der 90 Meter Marke wird die Permeabilität von µ = 200 möglichst rasch zurück auf µ = 100 zurückgefahren, damit der Steuerungsprozess für den nächsten Kern von Neuem beginnen kann.
  • 22 zeigt die Magnetisierung J über der magnetischen Feldstärke A für verschiedene Ringbandkerne aus nanokristallinem Material mit zugspannungsinduzierter Anisotropie für einen Permeabilitätsbereich von µ = 2000 bis 60.
  • In 23 ist in drei Ansichten ein gewickelter Ringkern 38 aus Bandmaterial mit über der Länge ansteigenden Permeabilität gezeigt.
  • Bei einer in 24 gezeigten Weiterbildung wird ein Pulverkernteil 39a mit beispielsweise homogener Permeabilitätsverteilung verwendet, auf das dann Bandmaterial mit über der Länge ansteigendem Permeabilitätswert einen gewickelten Kernteil 39b ergebend aufgewickelt wird.
  • In 25 ist eine zu der in 21 gezeigten Vorgehensweise alternative Art der Steuerung der Permeabilität schematisch dargelegt. Dabei wird nach dem Erreichen des oberen Permeabilitätswertes von 200 nicht möglichst schnell auf den Anfangswert von 100 zurückgefahren, sondern es wird mit der betragsmäßig gleichen Flankensteilheit wie beim Anstieg die Permeabilität von 200 auf 100 zurückgefahren, nachdem der Wert von 100 erreicht ist, wird dann wiederum von 100 auf 200 hochgefahren. Damit werden die Verluste, die beim Zurückfahren vom oberen Permeabilitätswert zum unteren Permeabilitätswert wie bei der Vorgehensweise nach 21 entstehen, vermieden.
  • Allerdings wird dann eine abgeänderte Wickeltechnik notwendig. Die dazu benötigte geänderte Wickeltechnik ist in 26 schematisch erläutert, wobei zwischen der steigenden Flanke und der fallenden Flanke, das heißt zwischen anwachsendem Permeabilitätswert und abfallendem Permeabilitätswert über die Bandlänge unterschieden wird. Jeweils an den Umkehrpunkten der Permeabilität wird mittels einer Weiche 43 daher das Band bei nachfolgend ansteigender Permeabilität auf einem Pfad 1 geleitet und bei nachfolgend abfallender Permeabilität auf einem Pfad 2. In Pfad 1 erfolgt das Aufwickeln wie bei dem in 19 gezeigten Fall direkt, während es beim Pfad 2 über einen Zwischenspeicher beispielsweise ein Rollenmagazin aufgewickelt wird und von dort erst zum eigentlichen Kernwickelplatz, beispielsweise einem weiterem Kernwickelplatz 2 geführt wird.
  • 27 zeigt im Rahmen eines Ausführungsbeispiels Vergleichsmessungen zwischen einem Gradientenkern und einem Kern mit konstanter Permeabilität (µ = 1000) jeweils mit den Abmessungen 13mm × 25mm (Innendurchmesser × Außendurchmesser) und einer Kernhöhe von 6,1 mm. Bei einem solchen Kern mit einem Außen-zu-Innendurchmesserverhältnis von knapp 2 kann der geometrisch bedingte Einmündungseffekt in die magnetischen Sättigung sehr schön beobachtet werden (Kurve 47) Im Einzelnen ist die idealisierte Hysteresekurve 45 am Bandstreifen gezeigt. Die Kurve 47 zeigt die Messung an dem Kern mit konstanter Permeabilität und Kurve 46 zeigt die Messung für den Gradientenkern. Die Kurve 45 nähert sich somit durch die räumliche Anpassung der Permeabilität an die Hysteresekurve am Bandstreifen (Kurve 54) an. In der zur Kurve 47 zugehörigen Teilfigur 27a ist zu erkennen, dass die Permeabilität, über die für den Kern notwendigen 17 Meter Bandmaterial, konstant gehalten wurde. Im Gegensatz dazu zeigt die Teilfigur 27b, dass die Permeabilität von 700 auf ca. 1400 über 14 m Bandmaterial in einer speziellen Form erhöht wurde, um eine räumliche Anpassung der Permeabilität am Kern zu erreichen, die als Resultat die Hysteresekurve 46 ergibt.
  • Zu dem oben im Zusammenhang mit 27 erläuterten Ausführungsbeispiel zeigt 28 in einem Diagramm den tatsächlichen (also gemessenen) Verlauf der Permeabilität (45b, x-Messpunkte) und den vorausberechneten Verlauf (Sollverlauf 46a) der Permeabilität entlang des Bandes welches für einen Kern notwendig ist. Während des Durchlaufglühprozesses wurde die Zugspannung im Bandmaterial anhand des vorausberechneten "Soll"-Verlaufes der Permeabilität so verändert, dass der in 28 gezeigte Anstieg der Permeabilität (Messpunkte 46b) entsteht.
  • Optimierte amorphe und nanokristalline Gradientenbandkerne erschließen bei großem Sättigungsfluss und gleichzeitig sehr genau einstellbarer Permeabilität einen vergleichsweise großen Permeabilitätsbereich. Dies macht sie für verschiedenste Anwendungen einsetzbar. Für Speicherdrosseln werden damit insbesondere auch Permeabilitätswerte deutlich oberhalb von ca. 100 zugänglich, was neue Möglichkeiten erschließt, Drosseln mit vergleichsweise niedrigeren Windungszahlen zu realisieren, um Kupferverluste zu reduzieren. Für hochlineare gleichspannungstolerante Stromwandler ist der Permeabilitätsbereich von mehreren 100 bis zu wenigen 1000 interessant, da die unter Zugspannung wärmebehandelten Bänder aussteuerungsunabhängig einen nahezu konstante Permeabilität bis hin zur Sättigung aufweisen (µ(H) = konstant) und diese Eigenschaft auch für den kompletten Kern erhalten werden kann (vgl. 9).
  • Erstes Anwendungsbeispiel: Ringbandkern-Drossel:
  • Die Bandpermeabilität eines zugspannungsgetemperten, amorphen oder nanokristallinen Bandes verhält sich in guter Näherung stufenförmig über die Aussteuerung, das heißt, es liegt eine praktisch lineare B(H)-Kurve bis hin zur Sättigung vor, entsprechend einer bis zur Sättigung konstanten Permeabilität, die dann extrem stark abfällt (vgl. 6). Ein aus solchem Material mit konstanter Permeabilität gewickelter Kern mit typischen Abmessungen zeigt eine L(IDC)-Charakteristik mit einer breit ausgeschmierten, abfallenden Schulter an der Aussteuerungsgrenze (vgl. 7). Dementsprechend zeigt die effektive B(H)-Kurve des Kerns eine merkliche Verrundung beim Übergang in die Sättigung (vgl. 8). Wählt man dagegen ein radial anwachsendes Permeabilitätsprofil, das heißt µ(r) = a*r (mit a* = konstant) kann man im Grenzfall optimaler Anpassung auch für den kompletten Kern die ursprüngliche Bandcharakteristik beibehalten. Weiterhin bleibt nur der Permeabilitätswert und damit der Induktivitätswert bis hin zur Sättigung auf einheitlichem Maximalwert. Sollte dieser scharfe Übergang nicht erwünscht sein, können auch gezielt vom Optimum abweichende Zwischenzustände eingestellt werden.
  • Zweites Anwendungsbeispiel: Pulverkern-Drossel
  • Die Permeabilität von Pulverkernen verhält sich für verschiedene, typische Initialpermeabilitäten µi (Permeabilitäten am Innendurchmesser) wie die in 15 und 16 gezeigten Verläufe. In 16 wird ein L(IDC)-Verlauf für einen Kern mit typischen Abmessungen und aus typischem Material im Vergleich zu einem aus zwei konzentrischen Ringen aufgebauten Kern gleicher Abmessung und gleichem Material gezeigt. Auch hier kann eine Optimierung bezüglich der L(IDC)-Charakteristik erreicht werden.
  • Die Hauptanwendung für die hier beschriebene Kernoptimierung werden hauptsächlich gewickelte, rotationssymmetrische Ringbandkerne betreffen, da diese eine vergleichsweise einfache räumliche Anpassung der Kernpermeabilität erfordern mit verhältnismäßig moderaten Permeabilitätsveränderungen entlang der Bandlauflänge. Denkbar ist aber auch ein Einsatz des Verfahrens bei U-Kernen, bei I-Kernen und bei Kernen anderer Form, wobei die Permeabilitätsvariation entlang Bandlauflängen dann auf weit kürzeren Distanzen erfolgen muss, um die Feldstärkeinhomogenitäten an den Innenecken zu kompensieren.
  • Die Aussichten, zugspannungsgetempertes Bandmaterial mit niedrigsten Permeabilitäten (Permeabilitätswerte um und unter 50) herzustellen, sind begrenzt. Umgekehrt gibt es oberhalb von µi = 90 bzw. 160 mehr geeigneten Pulverkernwerkstoff. Es könnte daher sinnvoll sein, kombinierte Band- und Pulverringkerne einzusetzen, also mit einem innenliegenden niederpermeablen Pulverkern und einem außenliegenden, höher permeablen unradial permeabilitätsangepassten Bandkern wie etwa in 24 gezeigt. Bandkerne können bei einwindigen Drosseln direkt auf einen stapelförmigen Kupferleiter gewickelt werden und dann beispielsweise durch Ummolden oder einen übergeschobenen und zu vergießenden Trog fixiert werden.
  • Folgende Materialen können für einen solchen Prozess als geeignete Kernwerkstoffe angesehen werden: amorphe Kobalt-, Nickel-, Eisen-Basis-Legierungen die beispielsweise alle Vitrovac, Vitroperm-Legierungen oder auch alle Eisen-Basis-Legierungen mit folgendem Zusammensetzungsbereich: Fe100-a-b-c-d-x-y-zCuaNbbMcTdSixByZz mit: 10 ≤ x < 18 Atom%; 5 ≤ y <11 Atom%; 0 ≤ a < 1,5 Atom%; 0 ≤ b < 4 Atom%
    M steht für die Elemente: Mo, TA oder Zr mit 0 ≤ (b+c) < 4 Atom%
    T steht für die Elemente: V, Mn, Cr, Co oder Ni mit 0 ≤ d < 5 Atom%
    Z steht für die Elemente: C, P oder Ge mit 0 ≤ z < 2 Atom%.

Claims (15)

  1. Weichmagnetischer Kern, bei dem an mindestens zwei unterschiedlichen Stellen des Kerns auftretende Permeabilitäten unterschiedlich sind.
  2. Weichmagnetischer Kern nach Anspruch 1, bei dem der Kern ringförmig ausgebildet ist.
  3. Weichmagnetischer Kern nach Anspruch 2, bei dem der Kern einen radial sich ändernden Permeabilitätsverlauf aufweist.
  4. Weichmagnetischer Kern nach Anspruch 3, bei dem der Kern aus einem weichmagnetischen Band gewickelt ist und das Band einen sich über die Bandlänge ändernde Permeabilität aufweist.
  5. Weichmagnetischer Kern nach Anspruch 1 oder 2, bei dem der Kern mindestens zwei aneinander gefügte weichmagnetische Elemente aufweist.
  6. Weichmagnetischer Kern nach Anspruch 5, bei dem die magnetischen Elemente in sich homogene Permeabilitätsverteilungen, jedoch einander gegenüber unterschiedliche Permeabilitäten aufweisen.
  7. Weichmagnetischer Kern nach Anspruch 5, bei dem von den magnetischen Elementen eines eine in sich inhomogene Permeabilitätsverteilung aufweist und das andere einen radial sich ändernden Permeabilitätsverlauf aufweist.
  8. Weichmagnetischer Kern nach Anspruch 5, 6 oder 7, bei dem zumindest eines der weichmagnetischen Elemente Bänder aufweist.
  9. Weichmagnetischer Kern nach einem der Ansprüche 1 bis 8, bei dem der Kern oder ein Element des Kerns ein einstückiger Pulverkern bzw. ein einstückiges Pulverkernelement ist.
  10. Verfahren zur Herstellung eines weichmagnetischen Kerns, der an mindestens zwei unterschiedlichen Stellen unterschiedliche Permeabilitäten aufweist, wobei der Kern einstückig und mit einer über den Ort variierenden Permeabilität ausgebildet wird oder aus mindestens zwei weichmagnetischen Elementen mit jeweils für sich homogenen, jedoch einander gegenüber unterschiedlichen Permeabilitäten zusammengesetzt wird.
  11. Verfahren nach Anspruch 10, bei dem zur Herstellung eines Ringkerns mittels eines Bandes aus weichmagnetischem Material das Band einer Wärmebehandlung unterzogen wird, das wärmebehandelte Band einer Zugkraft in Längsrichtung des Bandes ausgesetzt wird, um eine Zugspannung in dem bandförmigen Material zu erzeugen, die Permeabilität pro Längenabschnitt des gespannten wärmebehandelten Bandes bestimmt wird, die Zugkraft so angepasst wird, dass die ermittelte Permeabilität für jeden Längenabschnitt dem Wert eines vorgegebenen Permeabilitätsprofils entspricht und das Band zu dem Ringkern aufgewickelt wird.
  12. Verfahren nach Anspruch 10, bei dem zur Herstellung eines Ringkerns mindestens zwei die weichmagnetischen Elemente bildende, konzentrische Teilringe mit unterschiedlichen Permeabilitäten passgenau ineinander geschachtelt werden.
  13. Verfahren nach Anspruch 10, bei dem zur Herstellung eines Pulverkerns Pulver mit unterschiedlicher Magnetpartikeldichte und/oder Permeabilitäten in eine Form gebracht werden und dort verdichtet oder ausgehärtet werden.
  14. Verfahren nach Anspruch 10, bei dem zur Herstellung eines Ringkerns auf ein ringförmiges Pulverkernelement ein weichmagnetisches Band mit über seine Länge sich ändernder Permeabilität aufgewickelt wird.
  15. Verfahren nach einem der vorherigen Ansprüche, bei dem das Verhältnis zwischen minimaler und maximaler Permeabilität größer als 1:1,1 oder 1:1,2 oder 1:1,5 oder 1:2 oder 1:3 oder 1:5 ist.
DE102012206225A 2012-04-16 2012-04-16 Weichmagnetischer Kern mit ortsabhängiger Permeabilität Pending DE102012206225A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE102012206225A DE102012206225A1 (de) 2012-04-16 2012-04-16 Weichmagnetischer Kern mit ortsabhängiger Permeabilität
PCT/EP2013/057652 WO2013156397A1 (de) 2012-04-16 2013-04-12 Weichmagnetischer kern mit ortsabhängiger permeabilität
KR1020147028328A KR101725610B1 (ko) 2012-04-16 2013-04-12 위치-의존성 투자율을 갖는 연자성 코어
CN201380020486.9A CN104620336B (zh) 2012-04-16 2013-04-12 具有位置相关导磁率的软磁芯
US14/394,841 US9812237B2 (en) 2012-04-16 2013-04-12 Soft magnetic core with position-dependent permeability
JP2015506188A JP6517139B2 (ja) 2012-04-16 2013-04-12 位置依存性の透磁率を有する軟磁性コア
US15/689,692 US9941040B2 (en) 2012-04-16 2017-08-29 Soft magnetic core with position-dependent permeability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102012206225A DE102012206225A1 (de) 2012-04-16 2012-04-16 Weichmagnetischer Kern mit ortsabhängiger Permeabilität

Publications (1)

Publication Number Publication Date
DE102012206225A1 true DE102012206225A1 (de) 2013-10-17

Family

ID=48092969

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102012206225A Pending DE102012206225A1 (de) 2012-04-16 2012-04-16 Weichmagnetischer Kern mit ortsabhängiger Permeabilität

Country Status (6)

Country Link
US (2) US9812237B2 (de)
JP (1) JP6517139B2 (de)
KR (1) KR101725610B1 (de)
CN (1) CN104620336B (de)
DE (1) DE102012206225A1 (de)
WO (1) WO2013156397A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3024002A1 (de) * 2014-11-21 2016-05-25 Hamilton Sundstrand Corporation Magnetische komponente mit ausgeglichener flussverteilung
DE102015107294A1 (de) 2015-05-11 2016-11-17 Technische Hochschule Köln Spulenanordnung für Spannungsregler
DE102019209374A1 (de) * 2019-06-27 2020-12-31 Siemens Aktiengesellschaft Stromsensor und Verfahren
DE102022101327A1 (de) 2022-01-20 2023-07-20 SUMIDA Components & Modules GmbH Ferritrohrkern, Entstördrossel mit einem solchen Ferritrohrkern und Verfahren zum Bilden eines Ferritrohrkerns

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012206225A1 (de) 2012-04-16 2013-10-17 Vacuumschmelze Gmbh & Co. Kg Weichmagnetischer Kern mit ortsabhängiger Permeabilität
US11008643B2 (en) * 2013-05-15 2021-05-18 Carnegie Mellon University Tunable anisotropy of co-based nanocomposites for magnetic field sensing and inductor applications
US10168392B2 (en) * 2013-05-15 2019-01-01 Carnegie Mellon University Tunable anisotropy of co-based nanocomposites for magnetic field sensing and inductor applications
DE202015104668U1 (de) 2015-09-03 2015-10-07 Reme-Möbelbeschläge Gmbh Vollauszugsführung für Möbelteile
KR102145921B1 (ko) * 2017-01-03 2020-08-28 엘지이노텍 주식회사 인덕터 및 이를 포함하는 emi 필터
KR102658236B1 (ko) 2017-02-14 2024-04-17 엘지이노텍 주식회사 자성코어, 인덕터 및 이를 포함하는 emi 필터
CN107452494B (zh) * 2017-07-28 2018-11-27 天津大学 实现多磁导率连续变化环形磁芯电感的装置及方法
KR102197085B1 (ko) 2017-12-29 2020-12-31 엘지이노텍 주식회사 자성코어, 인덕터 및 이를 포함하는 emi 필터
US20210156200A1 (en) * 2019-08-14 2021-05-27 Baker Hughes Oilfield Operations Llc Nanocrystalline tapes for wireless transmission of electrical signals and power in downhole drilling systems
JP6860716B1 (ja) * 2020-02-05 2021-04-21 株式会社リケン ノイズ対策用環状磁性体
US12014868B2 (en) * 2020-08-14 2024-06-18 Cyntec Co., Ltd. Electrode structure
GB2614640A (en) 2020-09-09 2023-07-12 Waukesha Bearings Corp Composite structures for reciprocating gas compressor systems
CN112397300B (zh) * 2020-10-26 2022-03-25 南京新康达磁业股份有限公司 一种金属磁粉心粉末的无机绝缘粘接设备及其粘接方法
CN112735801B (zh) * 2020-12-22 2022-05-13 横店集团东磁股份有限公司 一种改性纳米晶带材及其制备方法与应用
US20220276685A1 (en) * 2021-02-26 2022-09-01 Infineon Technologies Austria Ag Inductor devices and stacked power supply topologies
US20240029946A1 (en) * 2022-07-19 2024-01-25 CorePower Magnetics, Inc. Inductor for low and medium voltage application

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1029213B (de) * 1955-04-02 1958-04-30 Hoerder Huettenunion Ag Verfahren und Vorrichtung zum Betreiben stromstarker Glimmentladungen in Entladungsgefaessen, insbesondere zur Behandlung von in das Entladungsgefaess eingebrachten Koerpern
DE975437C (de) * 1952-05-06 1961-11-30 Siemens Ag Entstoerungsdrossel
DE1804835B2 (de) * 1968-10-24 1975-06-19 Vacuumschmelze Gmbh, 6450 Hanau Ringkerndrossel zur Funkentstörung von Halbleiterschaltungen, die nach dem Phasenanschnittsverfahren arbeiten
EP0121839A1 (de) * 1983-04-06 1984-10-17 Westinghouse Electric Corporation Ferromagnetkerne für Transformator mit verschiedenen Sättigungsinduktionen
EP2130936A1 (de) * 2007-03-22 2009-12-09 Hitachi Metals, Ltd. Weichmagnetisches band, magnetkern, magnetisches teil und verfahren zur herstellung eines weichmagnetischen bands

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2982948A (en) * 1957-11-01 1961-05-02 Ibm Multi-material ferrite cores
US3170133A (en) * 1961-01-05 1965-02-16 Westinghouse Electric Corp Electrical inductive apparatus
US3157866A (en) * 1961-10-25 1964-11-17 Western Electric Co Ring-type magnetic memory element
US3315087A (en) * 1963-03-22 1967-04-18 Gen Time Corp Magnetic pulse counter and pulse forming circuit
US3454916A (en) * 1967-10-09 1969-07-08 Granger Associates Transformer core construction
DE2736963C3 (de) * 1977-08-17 1982-09-09 Hartmann, Götz-Udo, 6391 Grävenwiesbach Funkentstördrossel und Verfahren zu ihrer Herstellung
US4205288A (en) * 1978-10-27 1980-05-27 Westinghouse Electric Corp. Transformer with parallel magnetic circuits of unequal mean lengths and loss characteristics
JPS5875813A (ja) * 1981-10-30 1983-05-07 Mitsubishi Electric Corp 静止誘導器用鉄心
US5083101A (en) * 1990-01-03 1992-01-21 Integrated Power Components Integrated electromagnetic interference filter
JP3317045B2 (ja) * 1994-10-14 2002-08-19 株式会社村田製作所 コモンモードチョークコイル
JP4061166B2 (ja) * 2002-10-15 2008-03-12 三菱電機株式会社 荷電粒子加速装置のコア装置
JP2005093962A (ja) * 2003-09-22 2005-04-07 Daido Steel Co Ltd リアクトル
EP1724792A1 (de) * 2005-05-20 2006-11-22 Imphy Alloys Method of manufacturing a tape made from nanocrystalline Material and apparatus for making a wound core from such tape
JP4959170B2 (ja) * 2005-07-08 2012-06-20 株式会社日立産機システム 静止機器用鉄心
TWI260652B (en) * 2005-11-23 2006-08-21 Delta Electronics Inc Inductor and fabricating method thereof
JP4895606B2 (ja) * 2005-12-27 2012-03-14 株式会社日立産機システム 変圧器
DE102012206225A1 (de) 2012-04-16 2013-10-17 Vacuumschmelze Gmbh & Co. Kg Weichmagnetischer Kern mit ortsabhängiger Permeabilität

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE975437C (de) * 1952-05-06 1961-11-30 Siemens Ag Entstoerungsdrossel
DE1029213B (de) * 1955-04-02 1958-04-30 Hoerder Huettenunion Ag Verfahren und Vorrichtung zum Betreiben stromstarker Glimmentladungen in Entladungsgefaessen, insbesondere zur Behandlung von in das Entladungsgefaess eingebrachten Koerpern
DE1804835B2 (de) * 1968-10-24 1975-06-19 Vacuumschmelze Gmbh, 6450 Hanau Ringkerndrossel zur Funkentstörung von Halbleiterschaltungen, die nach dem Phasenanschnittsverfahren arbeiten
EP0121839A1 (de) * 1983-04-06 1984-10-17 Westinghouse Electric Corporation Ferromagnetkerne für Transformator mit verschiedenen Sättigungsinduktionen
EP2130936A1 (de) * 2007-03-22 2009-12-09 Hitachi Metals, Ltd. Weichmagnetisches band, magnetkern, magnetisches teil und verfahren zur herstellung eines weichmagnetischen bands

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3024002A1 (de) * 2014-11-21 2016-05-25 Hamilton Sundstrand Corporation Magnetische komponente mit ausgeglichener flussverteilung
US9633778B2 (en) 2014-11-21 2017-04-25 Hamilton Sundstrand Corporation Magnetic component with balanced flux distribution
DE102015107294A1 (de) 2015-05-11 2016-11-17 Technische Hochschule Köln Spulenanordnung für Spannungsregler
WO2016180406A1 (de) 2015-05-11 2016-11-17 Technische Hochschule Köln Wandlervorrichtung sowie spulenanordnung für spannungsregler
US10068700B2 (en) 2015-05-11 2018-09-04 Technische Hochschule Koeln Converter device and coil arrangement for a voltage regulator
DE102019209374A1 (de) * 2019-06-27 2020-12-31 Siemens Aktiengesellschaft Stromsensor und Verfahren
US11193960B2 (en) 2019-06-27 2021-12-07 Siemens Aktiengesellschaft Current sensor and method
DE102022101327A1 (de) 2022-01-20 2023-07-20 SUMIDA Components & Modules GmbH Ferritrohrkern, Entstördrossel mit einem solchen Ferritrohrkern und Verfahren zum Bilden eines Ferritrohrkerns

Also Published As

Publication number Publication date
KR20140145589A (ko) 2014-12-23
CN104620336B (zh) 2017-07-28
WO2013156397A1 (de) 2013-10-24
US20170365388A1 (en) 2017-12-21
JP2015515143A (ja) 2015-05-21
US20150070124A1 (en) 2015-03-12
US9812237B2 (en) 2017-11-07
CN104620336A (zh) 2015-05-13
KR101725610B1 (ko) 2017-04-10
US9941040B2 (en) 2018-04-10
JP6517139B2 (ja) 2019-05-22

Similar Documents

Publication Publication Date Title
DE102012206225A1 (de) Weichmagnetischer Kern mit ortsabhängiger Permeabilität
DE102012218657A1 (de) Magnetkern, Verfahren und Vorrichtung zu dessen Herstellung und Verwendung eines solchen Magnetkerns
DE10348808B4 (de) Verfahren zur Herstellung von amorphen Metallpulvern auf Fe-Basis sowie Verfahren zur Herstellung eines weichmagnetischen Kerns unter Verwendung solcher Pulver
DE68920324T2 (de) Dünner weichmagnetischer Streifen aus einer Legierung.
DE102012218656A1 (de) Magnetkern, insbesondere für einen Stromtransformator, und Verfahren zu dessen Herstellung
DE60133187T2 (de) Gestanzte massen-komponente aus amorphem magnetischen metall
DE102007004835A1 (de) Amorphe weichmagnetische Legierung und diese verwendendes Induktions-Bauteil
DE112010000836T5 (de) Band aus einer weichmagnetischen Legierung und Herstellungsverfahren dafür sowie magnetische Vorrichtung mit dem Band aus einer weichmagnetischen Legierung
EP2697399B1 (de) Legierung, magnetkern und verfahren zum herstellen eines bandes aus einer legierung
EP1849169B1 (de) Transformatorkern mit magnetischer abschirmung
WO2013156010A1 (de) Verfahren und vorrichtung zum herstellen von weichmagnetischem streifenmaterial für ringbandkerne
DE112014003755T5 (de) Transformator-Magnetkern auf amorpher Fe-Basis, Verfahren zu seiner Herstellung, und Transformator
DE2060171B2 (de) Verfahren zum herstellen einer magnetbandkopie
DE112018001756T5 (de) Verfahren zur Herstellung von magnetischem Verbundkörper, Magnetpulver, magnetischer Verbundkörper und Spulenkomponente
DE10065935A1 (de) Induktionsheizvorrichtung und-verfahren sowie Prozessor
DE69031338T2 (de) Magnetkern
WO1998010449A1 (de) Verfahren und vorrichtung zur herstellung eines induktiven bauelementes
DE19533050A1 (de) Verfahren zur Herstellung eines induktiven Bauelementes mit abgleichbarer Induktivität
DE1616690C3 (de) Schaltungsanordnung zur Verringerung der Eigenverluste von Induktanzen, insbesondere in Einrichtungen von Fernsprech-Vermittlungsanlagen
DE102011083104A1 (de) Fadenverlegevorrichtung und Verfahren zum Herstellen einer mit einem Garn bewickelten Garnspule
AT501640B1 (de) Stromerfassung mit oszillator
EP1688710A1 (de) Verfahren zur Ermittlung eines Verschiebewegs mit einem induktiven Wegaufnehmer sowie der Wegaufnehmer selbst
DE3603473A1 (de) Verfahren und vorrichtung zum herstellen von magnetischen ringkernen
DE2416440C3 (de) Verfahren und Vorrichtung zum Ermitteln und/oder Ausrichten der axialen elektromagnetischen Mittelebenen von mehreren hohlzylindrischen Wicklungen
DE919897C (de) Richtungsempfindlicher Magnetverstaerker mit Rueckkopplung

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R079 Amendment of ipc main class

Free format text: PREVIOUS MAIN CLASS: H01F0003000000

Ipc: H01F0003040000

R016 Response to examination communication