DE102011116654B4 - Vorrichtung zum Stanznieten oder Durchsetzfügen unter beengten Platzverhältnissen - Google Patents

Vorrichtung zum Stanznieten oder Durchsetzfügen unter beengten Platzverhältnissen Download PDF

Info

Publication number
DE102011116654B4
DE102011116654B4 DE102011116654.1A DE102011116654A DE102011116654B4 DE 102011116654 B4 DE102011116654 B4 DE 102011116654B4 DE 102011116654 A DE102011116654 A DE 102011116654A DE 102011116654 B4 DE102011116654 B4 DE 102011116654B4
Authority
DE
Germany
Prior art keywords
die
cam
axis
punch
die holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE102011116654.1A
Other languages
English (en)
Other versions
DE102011116654A1 (de
Inventor
Patentinhaber gleich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE102011116654.1A priority Critical patent/DE102011116654B4/de
Publication of DE102011116654A1 publication Critical patent/DE102011116654A1/de
Application granted granted Critical
Publication of DE102011116654B4 publication Critical patent/DE102011116654B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J15/00Riveting
    • B21J15/10Riveting machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J15/00Riveting
    • B21J15/02Riveting procedures
    • B21J15/025Setting self-piercing rivets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J15/00Riveting
    • B21J15/10Riveting machines
    • B21J15/36Rivet sets, i.e. tools for forming heads; Mandrels for expanding parts of hollow rivets

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Press Drives And Press Lines (AREA)

Abstract

Handelsübliche Werkzeuge verhindern wegen ihrer Baugröße oft den Zugang zu Fügepunkten an engen Stellen und erschweren kürzere Taktzeiten Die Erfindung schlägt vor, nicht den Stempel der Vorrichtung, sondern die gegenüberliegende Matrize mit Hilfe einer Kurvenscheibe mit unterschiedlicher Steigung zu verfahren, wobei die Kurvenscheibe unmittelbar auf eine Kurvenrolle wirkt, die mit dem Matrizenträger verbunden ist. Die Achsen von Kurvenrolle und Kurvenscheibe sind seitlich versetzt zur Matrizenachse angeordnet. Dadurch sind eine kompakte Bauweise, eine günstige Massenverteilung und ein optimierter Bewegungsablauf zu realisieren. Anwendungsgebiete sind Verbindungen von Stahl- und Aluminiumblechen; besonders geeignet sind die vorgeschlagenen Lösungen für robotergeführte Werkzeuge, z. B. im Karosseriebau.

Description

  • Gegenstand der Erfindung sind Vorrichtungen zum Stanznieten oder Durchsetzfügen. Bei beiden Verfahren werden zwei oder mehr dünnwandige Werkstücke miteinander verbunden, meist Bleche aus Stahl oder Aluminium.
  • Beim Stanznieten wird ein Niet, in der Regel als „Halbhohlniet” ausgebildet, ohne vorhergehende Lochung mittels eines Stempels in die Werkstücke eingepresst; beim Durchsetzfügen – gelegentlich auch „Clinchen” oder „Toxen” genannt – bildet der Stempel allein durch lokale Umformung eine reib- und formschlüssige Verbindung zwischen den Blechteilen.
  • Bei beiden Verfahren ist erforderlich, dass auf der dem Stempel gegenüberliegenden Werkstückseite eine Matrize vorhanden ist, d. h. ein Gegenhalter, der die vom Stempel aufgebrachten Kräfte abstützt und die örtliche Verformung der Werkstücke beeinflusst.
  • Weiterhin sind bei bekannten Vorrichtungen dieser Art vorhanden:
    • – ein Antrieb, der den Stempel verfährt und die erforderliche Kraft erzeugt (Elektromotor oder Hydraulikzylinder, z. T. auch Pneumatikzylinder)
    • – ggf. ein Getriebe, das die Drehung eines Motors in eine Linearbewegung des Stempels umformt und das Drehmoment ggf. verstärkt,
    • – eine Führung für den Stempel, die eine axiale Verschiebung zulässt und Querkräfte aufnimmt,
    • – ein Niederhalter, der die Werkstücke während des Fügevorgangs gegeneinander und gegen die Matrize presst,
    • – ein Federpaket, ggf. auch ein druckbeaufschlagter Kolben, um die Anpresskräfte des Niederhalters aufzubringen,
    • – ggf. eine Führung, um eine koaxiale Verschiebung des Niederhalters gegenüber dem Stempel zu ermöglichen,
    • – ein Maschinengestell, meist als C-förmiger Rahmen ausgebildet, das die oben genannten Bauteile miteinander verbindet und die auftretenden Kräfte und Momente aufnehmen kann,
    • – und – bei Stanzniet-Werkzeugen – eine Nietzuführung.
  • Bei allen aus industriellen Anwendungen bekannten Vorrichtungen sind Stempel-Führung, Stempel-Antrieb, Niederhalter, Federpaket, Niederhalter-Führung und ggf. die Nietzuführung in unmittelbarer Nähe zur Stempel – Längsachse angeordnet; dadurch weisen derartige Werkzeuge auf der Seite des Stempels eine große Bauhöhe auf, die bei beengten Raumverhältnissen hinderlich ist und Verbindungen durch Stanznieten oder Durchsetzfügen oft unmöglich macht. Zum Beispiel lässt sich eine Stanznietverbindung bei einer Werkstück-Form entsprechend 2 mit handelsüblichen Geräten nicht herstellen, weil die Nietposition wegen der großen Bauhöhe nicht zugänglich ist. Ein weiterer Nachteil ist, dass die große Bauhöhe mit einer ungünstigen Massenverteilung verbunden ist; das bedeutet, bei schnellen Dreh- und Nickbewegungen muss bei robotergeführten Werkzeugen mit größeren Massenträgheitsmomenten gerechnet werden.
  • Es sind verschiedene Vorschläge für Nietvorrichtungen oder ähnliche Maschinen bekannt, bei denen die Bewegung des Stempels durch ein Kurvengetriebe gesteuert wird, insbesondere durch die Drehung einer Kurvenscheibe. Damit ist es möglich, den unterschiedlichen Kraftbedarf bei Zustell- und Arbeitshub durch eine variable Übersetzung auszugleichen. Jedoch sind die bisher bekannten Ausführungen nicht oder nur mit Einschränkungen geeignet, die Vorrichtungen auch kompakter, vor allem mit geringerer Bauhöhe zu gestalten.
  • In der Offenlegungsschrift DE 10 2009 049 745 A1 ist eine Schweißzange beschrieben, bei der durch die Drehung einer Scheibe mit spiralförmiger Nut ein kompakt bauender Antrieb und dadurch ein geringer Platzbedarf realisiert werden soll. Im Hauptanspruch dieser Erfindung ist auch die Anwendung für Clinchen und Stanznieten erwähnt, tatsächlich aber sind in den Ausführungsbeispielen nur Punktschweißgeräte beschrieben, bei denen die Spiralnut lediglich die Ausgleichsbewegung zwischen den beiden Elektroden bewirkt, während für den eigentlichen Arbeitshub beim Schweißen ein weiterer Antrieb vorgesehen ist. Die entsprechenden Darstellungen in 3 und 4 der genannten Offenlegungsschrift lassen nicht erkennen, dass die Geräte wegen des dort beschriebenen Antriebs besonders kompakt bauen.
  • In der Patentschrift DE 103 19 411 B4 ist ein C-förmiger Werkzeugrahmen aus zwei gegeneinander zu verfahrenden Rahmenteilen beschrieben; diese Anordnung ermöglicht zwar eine niedrige Bauhöhe, hat aber den Nachteil, dass die erforderliche Führungseinrichtung der beiden Rahmenteile eine hohe Momentenbelastung aufnehmen muss, insbesondere bei großer Auskragung, die bei größeren Abständen der Fügepunkte vom Werkstückrand erforderlich ist. Die für die Festigkeit erforderliche Bauhöhe der beiden Schenkel des C-Rahmens verhält sich in etwa proportional zur Quadratwurzel aus der Kragweite (näherungsweise ein Rechteck-Querschnitt vorausgesetzt); die Führungslänge aber, z. B. der Abstand der oberen und unteren Führungsrollen, muss – gleiche Belastbarkeit vorausgesetzt- linear zur Kragweite steigen. Damit muss die Bauhöhe bei größerer Kragweite stärker steigen, als aus Festigkeitsgründen für den Rahmen erforderlich wäre. Weiterhin wird in der Druckschrift DE 103 19 411 B4 ein Antrieb mittels Kurvengetriebe vorgeschlagen, das für die verschiedenen Phasen der Stempelbewegung durch Anpassung der Kurvensteigungen unterschiedliche Kraft-Übersetzungen bietet. Auch dieser Vorschlag lässt eine niedrige Bauhöhe zu; nachteilig ist jedoch die lineare Anordnung, die zu einer großen Baulänge quer zur Stempelachse führt und bei Antrieb durch Elektromotor einen größeren mechanischen Aufwand erfordert.
  • Die Offenlegungsschrift DE 195 16 345 A1 und die Anmeldung WO 96/34541 A1 zeigen Antriebe mit Kurvengetriebe, die allerdings keine kompakte Bauweise zulassen und offensichtlich auch nur für stationäre Nietmaschinen vorgesehen sind.
  • Die deutsche Patentschrift Nr. DE 938 162 B beschreibt eine Nietmaschine mit mehreren Kurvenscheiben, die für die hier beschriebene Anwendung nicht infrage kommen.
  • Die DDR-Patentschrift DD 142668 B1 zeigt eine ”Öseneinsetzmaschine” mit Kurvenscheiben-Antrieb, der ebenfalls keine kompakte Bauweise erkennen lässt.
  • In der Offenlegungsschrift DE 102 49 109 A1 ist eine handgeführte Vorrichtung zum ”... Fügen, Stanznieten oder Clinchen ...” dargestellt, die lt. Zielsetzung handlich und konstruktiv einfach aufgebaut sein soll. Die tatsächliche Ausführung zeigt allerdings erhebliche technische oder wirtschaftliche Nachteile oder ist auf Anwendungsgebiete mit geringen Anforderungen an Kraft und Arbeitsbereich beschränkt:
    • – Durch die Bauart der Kraftübertragung ist der Stempel-Hub begrenzt.
    • – Im Verhältnis zum möglichen Stempel-Hub sind Bauhöhe und Breite des Werkzeugs relativ groß.
    • – Die Bauart erfordert eine komplizierte dreidimensional geformte Kurvenscheiben-Nut.
    • – Verschiedene Bauteile zwischen Kurvenscheibe und Stempel haben reibungsbehaftete und verschleißanfällige Kontaktflächen für die Kraftübertragung.
  • Das Ziel der vorliegenden Erfindung ist es, solche Vorrichtungen zum Stanznieten oder Durchsetzfügen zu schaffen, die gegenüber bisher bekannten Geräten eine deutlich verringerte Baugröße sowohl auf der Matrizenseite als auch auf der Stempelseite aufweisen und so auch an schwer zugänglichen Positionen Blechverbindungen ermöglichen.
  • Das bedeutet konkret: Niedrige Werte für die Maße h, h(s), h(m), d und f (siehe dazu 1).
  • Ein weiteres Ziel besteht darin, kürzere Zykluszeiten insbesondere bei robotergeführten Werkzeugen zu erreichen.
  • Weiterhin sollen die Mängel und Nachteile, die im oben beschriebenen Stand der Technik erwähnt sind, vermieden werden, insbesondere Reibung und Verschleiß bei den Komponenten der Kraftübertragung.
  • Diese Aufgabe wird erfindungsgemäß durch eine Vorrichtung mit den Merkmalen des Hauptanspruchs erfüllt sowie durch die Merkmale aus den Patentansprüchen 2 bis 6.
  • Daraus ergeben sich mehrere Möglichkeiten einer kompakten Bauweise für die Führung der Matrize und den Antrieb der Kurvenscheibe.
  • Die vorgeschlagenen Lösungen haben den Vorteil, dass die Bauhöhe h(s) auf der Stempelseite gegenüber den handelsüblichen Geräten sehr niedrig gehalten werden kann, weil hier nicht mehr Führung und Antriebsmechanismus für den Stempel untergebracht werden müssen, und dass auf der Matrizenseite ebenfalls eine niedrige Bauhöhe h(m) realisierbar ist.
  • Weiterhin ist vorteilhaft,
    • – dass die Bauhöhe auf Stempel- und Matrizenseite bei größerer Auskragung des C-Rahmens lediglich durch die Anforderungen an Dauerfestigkeit und Steifigkeit bestimmt wird und nicht durch den Platzbedarf der verschiedenen Werkzeug-Komponenten,s
    • – dass die kompakte Bauweise zu geringeren Massenträgheitsmomenten beiträgt,
    • – dass die mehrstufige Übersetzung eine Optimierung des Bewegungsablaufs der Matrize und damit kürzere Zykluszeiten ermöglicht,
    • – dass alle Bauteile zwischen Matrize und Antrieb durch Wälzlagerungen eine reibungs- und verschleißarme Kraftübertragung ermöglichen,
    • – dass in gewissen Grenzen unterschiedliche Blechstärken möglich sind, ohne dass Werkzeuge verstellt oder ausgetauscht werden müssen,
    • – und dass wegen der hohen Übersetzung im Arbeitshub ein kleinerer Antrieb eingesetzt werden kann.
  • In 1 bis 8 ist die Erfindung in verschiedenen Varianten dargestellt, wobei als Maschinengestell jeweils ein C-Rahmen angenommen wird. Die platzsparenden Merkmale der Erfindung sind aber auch für Maschinengestelle anderer Bauart zu nutzen.
  • 1 zeigt das Funktionsprinzip der Erfindung sowie die wichtigsten Maße, die den Platzbedarf der Vorrichtung kennzeichnen;
  • 2 bis 4 zeigen verschiedene Ausführungsbeispiele für die Kinematik der Matrizen-Führung sowie für die Anordnung der Kurvenscheibe;
  • 5 bis 8 zeigen verschiedene Vorschläge, wie die Drehung der Kurvenscheibe unter platzsparenden Gesichtspunkten durch elektrische, pneumatische oder hydraulische Antriebe zu realisieren ist;
  • In 1 steht das Werkzeug bereit, um an der Position 19 die beiden Werkstücke 6 und 7 mit einer Stanznietung zu verbinden (wie sie bereits in Position 18 vorhanden ist). Der Stempel 2 ist fest mit dem oberen Schenkel 23 des C-Rahmens 8 verbunden. Im Niederhalter 3, der sich gegen die Vorspannkraft des Federpaketes 4 koaxial zum Stempel verschieben lässt, ist ein Niet 1 fixiert, der zuvor über die Nietzuführung 5 in diese Position gebracht wurde. Die Nietzuführung ist hier nur schematisch angedeutet; aus der Patentliteratur und von handelsüblichen Geräten sind dazu verschiedene Lösungen bekannt.
  • Bei einem Werkzeug zum Durchsetzfügen entfallen Niet und Nietzuführung, ansonsten ist der prinzipielle Aufbau ähnlich.
  • Auf der anderen Seite der Werkstücke ist gegenüber dem Stempel 2 im unteren Schenkel 24 des C-Rahmens 8 eine Matrize 9 verschiebbar gelagert. Sie wird getragen von einem Matrizenhalter 10, der koaxial zum Stempel 2 zu bewegen ist und dabei linear oder zumindest annähernd linear geführt wird. Als Führung 11 ist hier schematisch ein Gleitlager angedeutet; in den Ausführungsbeispielen 2 bis 4 sind weitere konstruktive Lösungen für die Führung des Matrizenhalters dargestellt. Mit dem Matrizenhalter 10 steht eine Kurvenrolle 13 in Verbindung, die mittels der Kurvenscheibe 14 zu verschieben ist. Die Kurvenscheibe 14 hat mindestens zwei Bereiche mit unterschiedlicher Steigung. Am Anfang des Arbeitszyklus steht die Kurvenrolle in Kontakt mit dem Kurvenbereich 15, der eine große Steigung aufweist und daher bei einem kleinen Drehwinkel der Kurvenscheibe einen großen Hub der Matrize bewirkt. Dazu ist nur eine geringe Kraft erforderlich, insbesondere um die Rückstellfeder 12 zu überwinden. Wenn die Kurvenrolle 13 am Anfang des Kurvenbereiches 16 angelangt ist, liegen Matrize und Niederhalter an beiden Seiten der Werkstücke 6 und 7 an.
  • Für den anschließenden Einpress- bzw. Verformungsvorgang wird eine große Kraft benötigt, die durch eine geringe Steigung bei großem Drehwinkel des Kurvenbereichs 16 realisiert wird und so nur ein niedriges Drehmoment zum Antrieb der Kurvenscheibe 14 erfordert.
  • Während die Matrize verfahren wird, ist zeitgleich oder zeitversetzt eine gegenläufige Bewegung des C-Rahmens 8 oder – je nach Aufhängung – ein Anheben der Werkstücke 6 und 7 erforderlich. Für diese Ausgleichsbewegungen sind verschiedene Lösungen bekannt, die teilweise bei 2 beschrieben sind.
  • Die Drehachsen von Kurvenrolle 13 und Kurvenscheibe 14 liegen parallel zueinander und stehen senkrecht zu der Ebene, die durch die Matrizenachse 22 und den C-Rahmen 8 gebildet wird.
  • Es ist vorteilhaft, wenn die Achse der Kurvenrolle 13 um ein Maß „e” gegenüber der Drehachse 17 der Kurvenscheibe 14 versetzt ist; dadurch lässt sich eine niedrige Bauweise sowie eine Doppel-Anordnung von Kurvenscheibe und Kurvenrolle ermöglichen, wodurch die Belastungen auf Lager, Kurvenrollen und Kurvenscheiben jeweils halbiert werden.
  • Die Gesamt-Bauhöhe h setzt sich zusammen aus dem stempelseitigen Maß h(s), dem matrizenseitigen Maß h(m) und der Öffnungsweite w, die vor allem benötigt wird, um die Werkstück-Konturen 20 und 21 zu umfahren. Die Kragweite k ist durch die Geometrie der Werkstücke vorgegeben. Bei gegebener Einpresskraft ist die Kragweite k maßgebend für die Mindest-Bauhöhen von h(s) und h(m), die erforderlich sind, um Dauerfestigkeit und Steifigkeit des C-Rahmens zu gewährleisten.
  • Zur Verbesserung der Zugänglichkeit bei beengten Platzverhältnissen ist es weiterhin vorteilhaft, wenn die Maße d und f (zwischen Matrizen- bzw. Stempelachse und der äußeren Störkontur) möglichst gering gehalten werden.
  • 2a bis 2d zeigen das Ausführungsbeispiel eines Stanznietwerkzeuges mit einer wälzgelagerten Matrizenführung; sinngemäß gilt die nachfolgende Beschreibung ebenfalls auch für das Durchsetzfügen.
  • In 2a bis 2c ist das Werkzeug in drei verschiedenen Situationen des Bewegungsablaufs dargestellt. In 2a steht das Werkzeug bereit, um die beiden Werkstücke 6a und 7a (hier z. B. Hohlprofile) an der Position 19 zu verbinden. Die Einzelkomponenten Niet 1, Stempel 2, Niederhalter 3, Federpaket 4 und Nietzuführung 5 sind, wie bereits bei 1 beschrieben, im stempelseitigen Teil des C-Rahmens 8 installiert.
  • Der Matrizenhalter 10a ist verschiebbar gelagert in einem offenen Linearwälzlager (11a) mit Segment-Ausschnitt. Die Kraft-Komponente quer zur Vorschubrichtung wird dadurch reibungsarm und verschleißfrei abgestützt.
  • Die Kurvenrolle 13 ist über die Konsole 26, die durch den Segment-Ausschnitt des Linearwälzlagers hindurchgreift, mit dem Matrizenhalter 10a verbunden und wird im Abstand ”g” parallel zur Matrizenachse 22 geführt. Somit ist die Kurvenrolle seitlich versetzt zur Matrizenachse angeordnet und erlaubt eine große Führungslänge, ohne die Bauhöhe – wie in 1 das Maß ”h(m)” – zu vergrößern. Die Achsen von Kurvenrolle und Kurvenscheibe sind parallel angeordnet und um das Maß ”e” (gemessen quer zur Matrizenachse) zueinander versetzt. Beide Achsen stehen außerdem senkrecht zur Ebene des Maschinengestells 8; dadurch wird die Werkzeug-Breite nicht vom Außendurchmesser der Kurvenrolle beeinflusst.
  • Statt des beispielhaft dargestellten Linearwälzlagers 11a können auch andere Systeme, z. B. Linear-Rollenlager, Kugelumlauf- oder Laufrollenführungen eingesetzt werden.
  • Die Kurvenrolle 13 wird, wie bereits bei 1 beschrieben, über Kurvenbereiche mit unterschiedlicher Steigung (15 und 16) verschoben.
  • Durch eine kurze Drehung der Kurvenscheibe 14 (hier z. B. um ca. 90°) wird die Matrize, wie in 2b dargestellt, um den Weg s1 verschoben, hier z. B. um 40 mm. Dabei ist außer Gewicht und Reibung nur die Kraft der (hier nicht dargestellten) Rückzugsfeder 12 zu überwinden. Gleichzeitig mit dem Matrizenhub (ggf. auch unmittelbar vorher) wird der C-Rahmen 8 durch eine Ausgleichsbewegung um den Betrag s2 abgesenkt (oder die Werkstücke angehoben). Die Ausgleichsbewegung kann bei robotergeführten Anlagen durch einen Vertikalhub des Roboters erfolgen, oder bei handgeführten Werkzeugen durch ein Gewichtsausgleichssystem.
  • Im anschließenden Arbeitshub dreht sich die Kurvenscheibe weiter um einen Winkel von etwa 270°. Dadurch fährt die Matrize um die Strecke s4 (z. B. 6 mm beim Stanznieten oder 3 mm beim Durchsetzfügen), in die Endposition s3, während der C-Rahmen gleichzeitig um die Strecke s4 abgesenkt wird. In der Strecke s4 ist der Einpressweg des Niets (bzw. Eindringtiefe des Stempels) sowie das Aufweiten des C-Rahmens berücksichtigt.
  • Durch Rückwärtsdrehung fährt die Kurvenscheibe wieder in ihre Grundstellung lt. 2a zurück. Der Matrizenhalter wird dabei mittels Federkraft zurückgezogen. Denkbar wäre auch eine formschlüssige Rückstellung, indem die Kurvenrolle in einer Nut zwangsgeführt wird; jedoch wird dadurch die Bauhöhe h(m) wesentlich erhöht.
  • Dass die Grundstellung von Kurvenscheibe und Matrizenhalter nach dem Arbeitshub durch eine Rückwärtsdrehung angefahren wird, und nicht, wie sonst bei Kurvenscheiben-Antrieben üblich, durch Weiterdrehen über 360° hinaus, hat den Vorteil, dass die Blechstärke in bestimmten Grenzen unterschiedlich sein kann, ohne dass Werkzeuge verstellt oder ausgewechselt werden müssen. Die richtige Einpresstiefe des Stanznietes bzw. des Fügestempels wird z. B. bei dickeren Blechen schon nach einem kleineren Drehwinkel der Kurvenscheibe erreicht; aus dieser Stellung kann der Antrieb dann wieder in die Grundstellung zurückfahren, ohne den maximalen Hub fahren zu müssen. Die passende Einpresstiefe kann dabei durch eine Drehmoment-Begrenzung oder eine Kraftmessung definiert werden. Es ist zweckmäßig, den Kurvenbereich 16 länger zu machen, als für den normalen Krafthub erforderlich wäre.
  • 2d zeigt einen Schnitt entlang der Linie A-A aus 2a. In diesem Beispiel ist dargestellt, wie die Fügekraft auf zwei Kurvenrollen und zwei Kurvenscheiben verteilt wird. Das erforderliche Drehmoment wird übertragen durch die (hier nur angedeuteten) Antriebsräder 25, die eine gemeinsame Achse 17 mit den Kurvenscheiben 14 haben und mit einem Ketten- oder Zahnriementrieb oder einem Stirnradgetriebe in Verbindung stehen. Der zugehörige Antrieb kann im Bereich 27 des C-Rahmens montiert werden (siehe dazu 58).
  • 3a und 3b zeigen ein Ausführungsbeispiel, bei dem der Matrizenhalter 10b die Form eines Hebels hat, der um einen möglichst weit entfernten Drehpunkt 28 schwenken kann. Vorzugsweise besteht die Kurvenrolle 13 aus einer mittig gelagerten Welle, die an beiden Seiten des Matrizenhalters 10b symmetrisch mit zwei Kurvenscheiben 14 in Kontakt steht. In 3a ist die Grundstellung des Werkzeugs dargestellt. 3b zeigt die Position des Werkzeugs am Ende des Einpressvorgangs. Die Lage des Hebel-Drehpunkts 28 am Gestell 8 ist so gewählt, dass in dieser Position Stempelachse 30 und Matrizenachse 22 in einer Flucht liegen; Matrizen-Oberseite und Werkstück-Unterseite sind dann parallel; d. h. das Lot 29 vom Drehpunkt 28 auf die Matrizenachse liegt in der Ebene, die durch die Kontaktfläche Matrize/Werkstücke gebildet wird. Die Abweichung von einer idealen Linearführung ist dann in diesem Arbeitspunkt am kleinsten und kann praktisch vernachlässigt werden. Die geringe Schrägstellung der Matrizen gegenüber der Werkstück-Unterseite während des Einpressvorgangs kann ggf. durch eine leichte Wölbung der Matrizen-Oberseite kompensiert werden.
  • Der in 3a und 3b dargestellte Vorschlag hat den Vorteil, dass keine durch Querkräfte belastete Linearführung (wie in 2) benötigt wird.
  • In 4 bildet der Matrizenhalter 10c das Koppelglied eines Viergelenk-Getriebes mit den Drehpunkten 28a, 28b, 32a, 32b und den beiden parallelen Kurbeln 31a und 31b. Die Lage der Kurbel-Drehpunkte 28a und 28b am C-Rahmen 8 (der hier das Gestell des Viergelenk-Getriebes bildet) ist so gewählt, dass das Lot 33 vom Drehpunkt 28a auf die Matrizenachse 22 den Anlenkpunkt 32a dann schneidet, wenn der halbe Einpress-Hub (bzw. Verformungshub) zurückgelegt ist. Bei dieser Anordnung ist die Abweichung von einer Linearbewegung vernachlässigbar klein, z. B. beträgt der maximale Abstand zwischen Matrizenachse 22 und Stempelachse 30 am Beginn und Ende des Einpressvorgangs bei den tatsächlichen Größenverhältnissen des Beispiels ca. 0,02 mm.
  • 5, 6 und 7 zeigen Vorschläge für elektromotorische, hydraulische oder pneumatische Antriebe der Matrize mit Hilfe von Kettentrieben, wobei die nachfolgenden Beschreibungen sinngemäß auch für Zahnriemenantriebe gelten können, die alternativ einzusetzen wären. Vorzugsweise werden alle Komponenten von Kurvenscheibengetriebe und Kettentrieb spiegelbildlich angeordnet, um die auftretenden Kräfte und Drehmomente zu halbieren.
  • In 5 ist das Kettenrad 37 koaxial mit der Kurvenscheibe 14 verbunden und steht über die Kette 36 in formschlüssiger Verbindung zum Kettenrad 38, das von einem Drehantrieb 42, vorzugsweise ein Elektromotor mit Positionier-Steuerung, über die Kegelräder 40 und 41 und die gemeinsame Welle 39 angetrieben wird.
  • Innerhalb des C-Rahmens 8 ist ein Bereich 27 vorgesehen, der als Zwischenraum oder Hohlraum ausgebildet ist und die Komponenten des Antriebs aufnimmt.
  • Für Montage und Wartung ist eine demontierbare Abdeckplatte 43 vorhanden, die gleichzeitig auch als Befestigungsflansch für Roboterachsen oder handgeführte Werkzeugaufhängungen dient.
  • In 6 wird der Kettenstrang 36 über mehrere Umlenkräder 44 geführt und direkt durch einen elektrischen Linearantrieb 45 verfahren, alternativ auch durch einen kolbenstangenlosen Pneumatik-Zylinder. Auch normale pneumatisch oder hydraulisch betätigte Zylinder sind dazu geeignet, allerdings mit dem Nachteil eines größeren Platzbedarfs.
  • 7 zeigt ein Ausführungsbeispiel mit Antrieb durch Schneckengetriebemotor (42, 46, 47), in Verbindung mit einem als schwenkbaren Hebel ausgebildeten Matrizenträger 10b, der unter 3a und 3b beschrieben ist.
  • In 8 wird die Kurvenscheibe 14 über mehrere miteinander in Eingriff stehende Zahnräder 48, 49, 50 angetrieben, beispielsweise in Verbindung mit einem Schnecken- oder Schraubengetriebe 46 und 47.
  • Bezugszeichenliste
  • 1
    Niet
    2
    Stempel
    3
    Niederhalter
    4
    Federpaket
    5
    Nietzuführung
    6; 6a
    Werkstücke (oben)
    7; 7a
    Werkstücke (unten)
    8
    Maschinengestell bzw. C-Rahmen
    9
    Matrize
    10; 10a
    Matrizenhalter
    10b
    Hebel als Matrizenhalter
    10c
    Koppelglied als Matrizenhalter
    11
    Linearführung (allgemein)
    11a
    Linearwälzlager mit Segment-Ausschnitt
    12
    Rückstellfeder für Matrizenhalter
    13
    Kurvenrolle
    14
    Kurvenscheibe
    15
    Kurvenbereich mit großer Steigung
    16
    Kurvenbereich mit flacher Steigung
    17
    Drehachse der Kurvenscheibe
    18
    vorhandene Stanznietverbindung
    19
    Position für neue Stanznietung
    20; 20a
    Werkstück-Kontur (oben)
    21; 21a
    Werkstück-Kontur (unten)
    22
    Matrizenachse
    23
    Stempelseitiger Schenkel des C-Rahmens
    24
    Matrizenseitiger Schenkel des C-Rahmens
    25
    Antriebsräder der Kurvenscheibe(allgem.)
    26
    Konsole für Kurvenrolle
    27
    Bereich im C-Rahmen für Antriebe usw.
    28
    Drehpunkt für Hebel 10b
    28a; 28b
    Kurbel-Drehpunkt am Viergelenk-Getriebe
    29
    Lot von 28 auf Matrizenachse 22
    30
    Stempelachse
    31a
    Kurbel am Viergelenk-Getriebe
    31b
    wie 31a
    32a
    Anlenkpunkte der Koppel
    32b
    wie 32a
    33
    Lot von 28a auf die Matrizenachse 22
    36
    Kettenstrang (alternativ: Zahnriemen)
    37
    Kettenrad (an der Kurvenscheibe)
    38
    Kettenrad(am Getriebeausgang)
    39
    Getriebe-Welle
    40
    Kegelrad(abtriebsseitig)
    41
    Kegelrad (eingangsseitig)
    42
    Elektromotor
    43
    Abdeckplatte/Roboterflansch
    44
    Umlenkrad (für Kette oder Zahnriemen)
    45
    Linearantrieb
    46
    Schneckenrad
    47
    Schnecke
    48
    Zahnrad (an der Kurvenscheibe)
    49
    Zahnrad (Zwischenposition)
    50
    Zahnrad (Getriebeausgang)
    d
    Abstand Stempel zur Außenkontur
    e
    Achsabstand Kurvenrolle/Kurvenscheibe
    f
    Abstand Matrize zur Außenkontur
    g
    Achsabstand Kurvenrolle/Matrize
    h
    Gesamt-Bauhöhe
    h(s)
    Bauhöhe stempelseitig
    h(m)
    Bauhöhe matrizenseitig
    k
    Kragweite des C-Rahmens
    w
    Öffnungsweite des C-Rahmens

Claims (6)

  1. Vorrichtung zum Stanznieten oder Durchsetzfügen unter beengten Raumverhältnissen 1.1 mit einem Stempel (2), der fest mit einem Maschinengestell (8) verbunden ist, 1.2 mit einer koaxial zum Stempel (2) auf der gegenüberliegenden Seite der Werkstücke angeordneten Matrize (9), 1.3 mit einem Maschinengestell (8), das die Stempel- und Matrizenseite der Vorrichtung verbindet, und 1.4 mit einem elektromotorischen, hydraulischen oder pneumatischen Antrieb, der die Matrize (9) in Relation zum Maschinengestell (8) durch die Drehung einer Kurvenscheibe (14) bewegt, die mindestens zwei Bereiche (15; 16) mit unterschiedlicher Steigung aufweist, dadurch gekennzeichnet, 1.5 dass die Kurvenscheibe (14) unmittelbar auf eine Kurvenrolle (13) wirkt, die mit einem die Matrize (9) tragenden Matrizenhalter (10; 10a; 10b; 10c) fest verbunden ist, und 1.6 dass die Drehachse (17) der Kurvenscheibe (14) seitlich versetzt zur Matrizenachse (22) und zur Achse der Kurvenrolle (13) angeordnet ist.
  2. Vorrichtung nach Anspruch 1 dadurch gekennzeichnet, dass die Achse der Kurvenrolle (13) seitlich um das Maß ”g” gegenüber der Matrizenachse (22) versetzt am Matrizenhalter (10a) befestigt ist.
  3. Vorrichtung mit den Merkmalen 1.1 bis 1.4 aus Anspruch 1 dadurch gekennzeichnet, dass eine Linearbewegung der Matrize (9) näherungsweise realisiert wird mittels eines Matrizenhalters (10b), der in einem weit entfernten Drehpunkt (28) schwenkbar am Maschinengestell (8) gelagert ist.
  4. Vorrichtung nach Anspruch 1 und 2, dadurch gekennzeichnet, dass der Matrizenhalter (10, 10a, 10b oder 10c) aus verschiedenen Endstellungen des Arbeitshubes durch Drehrichtungsumkehr der Kurvenscheibe (14) in die Ausgangslage zurückgeführt wird.
  5. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Matrizenhalter (10) durch das Koppelglied (10c) eines 4-Gelenk-Getriebes gebildet wird.
  6. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Matrizenhalter (10a) in einem Linearwälzlager mit Segmentausschnitt (11a) geführt wird und dass eine Konsole (26), die Matrizenhalter (10a) und Kurvenrolle (13) verbindet, innerhalb des Segment-Ausschnitts axial zu verschieben ist.
DE102011116654.1A 2011-10-21 2011-10-21 Vorrichtung zum Stanznieten oder Durchsetzfügen unter beengten Platzverhältnissen Active DE102011116654B4 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102011116654.1A DE102011116654B4 (de) 2011-10-21 2011-10-21 Vorrichtung zum Stanznieten oder Durchsetzfügen unter beengten Platzverhältnissen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011116654.1A DE102011116654B4 (de) 2011-10-21 2011-10-21 Vorrichtung zum Stanznieten oder Durchsetzfügen unter beengten Platzverhältnissen

Publications (2)

Publication Number Publication Date
DE102011116654A1 DE102011116654A1 (de) 2013-04-25
DE102011116654B4 true DE102011116654B4 (de) 2015-03-05

Family

ID=48051291

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102011116654.1A Active DE102011116654B4 (de) 2011-10-21 2011-10-21 Vorrichtung zum Stanznieten oder Durchsetzfügen unter beengten Platzverhältnissen

Country Status (1)

Country Link
DE (1) DE102011116654B4 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016215450A1 (de) * 2016-08-18 2018-02-22 Audi Ag Fügezange
CN109277513A (zh) * 2018-10-31 2019-01-29 安徽科信矿山机械制造有限公司 一种矿山用压铆机旋转装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014002684A1 (de) * 2014-02-28 2015-09-03 Tox Pressotechnik Gmbh & Co. Kg Vorrichtung und Verfahren zum Setzen von Füge- oder Funktionselementen
DE102015007295B3 (de) * 2015-06-10 2016-09-08 Audi Ag Setzvorrichtung
DE102015111227A1 (de) * 2015-07-10 2017-01-12 Heiko Schmidt Bearbeitungszange
DE102018205775A1 (de) * 2018-04-17 2019-10-17 Robert Bosch Gmbh Stanznietvorrichtung und Fertigungseinrichtung
CN108580728B (zh) * 2018-05-23 2019-03-15 佛山市至佳餐具有限公司 一种自动化餐具
CN114798927A (zh) * 2022-04-24 2022-07-29 东莞市宇成自动化科技有限公司 一种铆压设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE938162C (de) * 1951-12-02 1956-01-26 Ernst Heinkel Motorenbau Ges M Automatische Nietmaschine
DD142668A1 (de) * 1979-04-04 1980-07-09 Karl Guenschel Vorrichtung zum lochen des materials in einer oeseneinsetzmaschine
WO1996034541A1 (de) * 1995-05-04 1996-11-07 William Prym Gmbh & Co. Kg Vorrichtung bzw. steuerung für eine vorrichtung zum ansetzen von nieten
DE10249109A1 (de) * 2002-10-21 2004-05-06 Eckold Gmbh & Co Kg Werkzeug zum mechanischen Bearbeiten von Werkstücken
DE10319411B4 (de) * 2003-04-29 2008-03-13 Reuschenbach, Hermann, Dr.-Ing. Vorrichtung zum Stanznieten
DE102009049745A1 (de) * 2009-10-17 2011-04-21 Robert Bosch Gmbh Werkzeughalter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE938162C (de) * 1951-12-02 1956-01-26 Ernst Heinkel Motorenbau Ges M Automatische Nietmaschine
DD142668A1 (de) * 1979-04-04 1980-07-09 Karl Guenschel Vorrichtung zum lochen des materials in einer oeseneinsetzmaschine
WO1996034541A1 (de) * 1995-05-04 1996-11-07 William Prym Gmbh & Co. Kg Vorrichtung bzw. steuerung für eine vorrichtung zum ansetzen von nieten
DE19516345A1 (de) * 1995-05-04 1996-11-07 Prym William Gmbh & Co Kg Vorrichtung bzw. Steuerung für eine Vorrichtung zum Ansetzen von Nieten
DE10249109A1 (de) * 2002-10-21 2004-05-06 Eckold Gmbh & Co Kg Werkzeug zum mechanischen Bearbeiten von Werkstücken
DE10319411B4 (de) * 2003-04-29 2008-03-13 Reuschenbach, Hermann, Dr.-Ing. Vorrichtung zum Stanznieten
DE102009049745A1 (de) * 2009-10-17 2011-04-21 Robert Bosch Gmbh Werkzeughalter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016215450A1 (de) * 2016-08-18 2018-02-22 Audi Ag Fügezange
DE102016215450B4 (de) 2016-08-18 2024-02-15 Audi Ag Fügezange
CN109277513A (zh) * 2018-10-31 2019-01-29 安徽科信矿山机械制造有限公司 一种矿山用压铆机旋转装置

Also Published As

Publication number Publication date
DE102011116654A1 (de) 2013-04-25

Similar Documents

Publication Publication Date Title
DE102011116654B4 (de) Vorrichtung zum Stanznieten oder Durchsetzfügen unter beengten Platzverhältnissen
EP2321119B1 (de) Antriebssystem einer umformpresse
EP3377312B1 (de) Weggebundene presse mit kulissenstein
AT507809B1 (de) Biegepresse mit einem mehrteiligen pressenbalken
EP2694230B1 (de) Radialpresse
DE102005026818B4 (de) Ziehkissenvorrichtung mit NC-Antrieben
EP2887513B1 (de) Linearmotoranordnung und Werkzeugmaschine mit einer Linearmotoranordnung
EP1758696B1 (de) Ziehkissen-vorrichtung mit hybrid-antrieb
DE10223821A1 (de) Schweisszange
DE102011054063B4 (de) Antriebsvorrichtung für ein Stützteil zum Abstützen eines Werkstücks
DE102018111496B4 (de) Verfahren zum Rührreibschweißen
DE102009055739B4 (de) Umformmaschine, insbesondere Servopresse
WO2018055186A1 (de) Werkzeug und werkzeugmaschine sowie verfahren zum bearbeiten von plattenförmigen werkstücken
WO2018006113A1 (de) Streckbiegemaschine und verfahren zum verformen eines werkstückes
WO2014191284A1 (de) Presse und verfahren zum betreiben der presse
DE10217026C1 (de) Schneideinrichtung
EP3448594B1 (de) Transferpresse mit einem c-förmigen stössel
DE19851746A1 (de) Modularer Transfer mit Schwenk- und Linearantrieben
DE102008045302A1 (de) Gewinde- und Profilwalzmaschine
DE102008038265B4 (de) Transfereinrichtung
DE19611611A1 (de) Presse
DE2159461C3 (de) Schmiedemaschine
DE102014226330B4 (de) Stoppereinrichtung und Arbeitsstation mit einer solchen
DE4324963A1 (de) Blechhalter für einfachwirkende Pressen, insbesondere für mechanische Pressen und Transferpressen
DE202012001836U1 (de) Antriebseinrichtung für eine Bearbeitungsmaschine

Legal Events

Date Code Title Description
R086 Non-binding declaration of licensing interest
R012 Request for examination validly filed
R016 Response to examination communication
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final