DE102011108000A1 - EFI-Zündmodul - Google Patents

EFI-Zündmodul Download PDF

Info

Publication number
DE102011108000A1
DE102011108000A1 DE102011108000A DE102011108000A DE102011108000A1 DE 102011108000 A1 DE102011108000 A1 DE 102011108000A1 DE 102011108000 A DE102011108000 A DE 102011108000A DE 102011108000 A DE102011108000 A DE 102011108000A DE 102011108000 A1 DE102011108000 A1 DE 102011108000A1
Authority
DE
Germany
Prior art keywords
efi
capacitor
effect transistor
carrier
efi ignition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE102011108000A
Other languages
English (en)
Inventor
Horst Brunner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diehl BGT Defence GmbH and Co KG
Original Assignee
Diehl BGT Defence GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diehl BGT Defence GmbH and Co KG filed Critical Diehl BGT Defence GmbH and Co KG
Priority to DE102011108000A priority Critical patent/DE102011108000A1/de
Priority to EP12004940A priority patent/EP2549220A1/de
Priority to ZA2012/05307A priority patent/ZA201205307B/en
Publication of DE102011108000A1 publication Critical patent/DE102011108000A1/de
Ceased legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B3/00Blasting cartridges, i.e. case and explosive
    • F42B3/10Initiators therefor
    • F42B3/12Bridge initiators
    • F42B3/124Bridge initiators characterised by the configuration or material of the bridge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B3/00Blasting cartridges, i.e. case and explosive
    • F42B3/10Initiators therefor
    • F42B3/12Bridge initiators
    • F42B3/121Initiators with incorporated integrated circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

EFI-Zündmodul, umfassend einen Zündschaltkreis mit einem Kondensator, einem Schaltelement und einem EFI-Zündbauteil, wobei der Kondensator zum Zünden des EFI-Bauteils durch Schließen des Schaltelements entladen wird, wobei das Schaltelement (5) ein SiC-Feldeffekttransistor (6) ist.

Description

  • Die Erfindung betrifft ein EFI-Zündmodul, umfassend einen Zündschaltkreis mit einem Kondensator, einem Schaltelement und einem EFI-Zündbauteil, wobei der Kondensator zum Zünden des EFI-Bauteils durch Schließen des Schaltelements entladen wird.
  • Solche EFI-Zündmodule (EFI = Exploding-Foil-Initiator) werden weltweit als elektrische Zünder in sicherheitsrelevanten Systemen wie insbesondere Waffensystemen eingesetzt. Zentrales Bauteil ist ein EFI-Zündbauteil, umfassend ein leitfähiges Element, das als Zündbrücke ausgeführt ist. Über dieses leitfähige Element wird zum Zünden ein im Zündschaltkreis befindlicher Kondensator entladen, was dazu führt, dass die Brücke, die eine Breite von wenigen Mikrometern, beispielsweise im Bereich von ca. 200 Mikrometern, besitzt, schlagartig verdampft, es kommt zur Plasmabildung. Über der Brücke befindet sich eine Folie, beispielsweise aus Kapton, aus welcher infolge der Brückenverdampfung ein Teil, der sogenannte „Flyer” herausgesprengt wird. Der Flyer wird durch die Umwandlung der elektrischen Energie in kinetische Energie extrem beschleunigt, er bewegt sich mit einer Geschwindigkeit im Bereich von km/s. Das Heraussprengen des Flyers wird durch ein der Folie nachgeschaltetes Barrel, dem Abstandsstück mit einer Bohrung entsprechend dem Flyerdurchmesser, verursacht. Dem Barrel nachgeschaltet befindet sich ein Sprengstoffpressling, der beim Auftreffen des extrem schnellen Flyers durch die Stoßwelle zur Detonation gebracht wird. Der Aufbau und die grundsätzliche Funktionsweise eines solchen EFI-Zündbauteils ist bekannt.
  • Die Betätigung des EFI-Zündbauteils erfolgt wie beschrieben durch Entladung eines im Zündschaltkreis befindlichen Kondensators, wozu im Zündschaltkreis ein Schaltelement vorgesehen ist. Als ein solches wird üblicherweise ein Hochspannungsschalter mit einer triggerbaren Funkenstrecke (Spark-Gap) verwendet. Zum Betätigen des Schalters wird eine Schaltspannung im Bereich einiger kV an die Funkenstrecke gelegt, so dass es zu einem Funkenschlag über die Funkenstrecke und dadurch zu einer Kondensatorentladung kommt. In dem Moment liegt der Entladestrom, der mehrere 100 A, bisweilen weiter über 1000 A beträgt, am EFI-Zündbauteil an, so dass dieses zündet.
  • Neben dem Umstand, dass der verwendete Hochspannungsschalter einen Hochspannungspuls als Schaltsignal benötigt, ist ein weiterer Nachteil in seiner beachtlichen Baugröße gegeben. Übliche triggerbare Hochspannungsschalter, die in ein EFI-Zündmodul integriert werden können, besitzen in üblicher Weise aufgrund der Ausführung einen Durchmesser von ca. 10 mm bei einer Höhe von ca. 10 mm, bauen also beachtlich auf. Aus dieser Baugröße resultiert, dass das gesamte EFI-Zündmodul beachtlich groß ist, was zwangsläufig zu größeren Leitungsstrecken zwischen den einzelnen im Zündschaltkreis verbauten Elementen und damit zu höheren Widerständen im Gesamtsystem führt, die wiederum über den Kondensator, der entsprechend zu dimensionieren ist, auszugleichen sind.
  • Der Erfindung liegt damit das Problem zugrunde, ein EFI-Zündmodul anzugeben, das demgegenüber verbessert ist und insbesondere in seiner Baugröße reduziert werden kann.
  • Zur Lösung dieses Problems ist bei einem EFI-Zündmodul der eingangs genannten Art erfindungsgemäß vorgesehen, dass das Schaltelement ein SiC-Feldeffekttransistor ist.
  • Das erfindungsgemäße EFI-Zündmodul zeichnet sich dadurch aus, dass anstelle eines bisher verwendeten Hochspannungsschalters ein SiC-Feldeffekttransistor verwendet wird. Ein solcher SiC-Feldeffekttransistor ist ein extrem schneller Hochspannungs-Leistungstransistor, der sich durch eine sehr hohe Schaltgeschwindigkeit von mehr als 45 kV/μs auszeichnet. Es handelt sich um ein Halbleiterbauteil, dessen Funktion als Feldeffekttransistor bekannt ist. Zum Zünden ist lediglich eine relativ geringe Steuerspannung an den Gate-Eingang zu legen, um den Schaltvorgang auszulösen. Durch den Einsatz eines solchen extrem schnellen Halbleiterschalters ist es damit vorteilhaft möglich, die gesamte Baugröße des Moduls zu verkleinern, da der Schalter letztlich lediglich aus dem Halbleitermodul und den zugehörigen Anschlüssen besteht, so dass das gesamte EFI-Zündmodul in einer Baugröße deutlich reduziert werden kann. Diese Reduzierung der Baugröße führt dazu, dass zwangsläufig die Leitungslängen verkürzt werden können, womit eine Reduzierung der Leitungswiderstände einhergeht. Eine Reduzierung dieser Leitungswiderstände respektive der grundsätzlich über die Leitungen gegebenen Verluste bewirkt zusätzlich die Möglichkeit, den Kondensator zu verkleinern, so dass auch dieses Bauteil optimiert werden kann. Da der Kondensator wiederum verkleinert respektive optimiert ausgelegt werden kann, besteht grundsätzlich auch die Möglichkeit, die vorgelagerte Spannungserzeugung zum Laden des Kondensators anzupassen und zu optimieren.
  • Insgesamt lässt folglich die Verwendung des SIC-Feldeffekttransistors eine deutliche Verbesserung eines EFI-Zündmoduls insbesondere im Hinblick auf seine Baugröße zu, wie auch die Ansteuerung dieses Schaltelements vereinfacht wird.
  • Ein SiC-Feldeffekttransistor zeichnet sich im Übrigen durch einen sehr breiten Betriebstemperaturbereich aus, was insbesondere im Hinblick auf die Einsatzzwecke der EFI-Zündmodule im Bereich von Waffensystemen, die an sehr kalten und sehr heißen Orten eingesetzt werden, von Vorteil ist. Der verwendete SiC-Feldeffekttransistor wird bevorzugt so gewählt, dass sein Betriebstemperaturbereich von –40°C bis +100°C reicht, bevorzugt von –55°C bis +125°C, gegebenenfalls auch weiter.
  • Weiterhin zeichnet sich ein SiC-Feldeffekttransistor grundsätzlich durch eine sehr kurze Stromanstiegszeit aus, was ihn weiterhin für die erfindungsgemäße Verwendung in einem EFI-Zündmodul eignet. Der verwendete Feldeffekttransistor wird bevorzugt so gewählt, dass seine Stromanstiegszeit im Bereich von 5 ns bis 100 ns liegt, sie sollte bevorzugt möglichst gering sein, mithin also eher im Bereich der unteren Intervallgrenze liegen. So kurze Stromanstiegszeiten ermöglichen einen extrem schnellen Stromanstieg, so dass ein extrem schneller und hoher Entladestrom im Kurzschlussfall fließen kann.
  • Eine besonders zweckmäßige Weiterbildung der Erfindung sieht vor, den Kondensator, den SiC-Feldeffekttransistor und das EFI-Zündbauteil an einem gemeinsamen Träger anzuordnen. Die angestrebte Miniaturisierung, resultierend aus der Verwendung des sehr klein bauenden SiC-Feldeffekttransistors, ermöglicht es mit besonderem Vorteil, alle relevanten Komponenten des Zündschaltkreises auf einem gemeinsamen Träger anzuordnen, so dass dieses kleinbauende EFI-Zündmodul lediglich noch mit der der Kondensatorladung dienenden Spannungsgenerierung zu verbinden ist. Infolge der kompakten Anordnung auf einem gemeinsamen Träger kann eine hochgradige Kompaktierung und Verkürzung der Leiterbahnen mit den bereits eingangs beschriebenen Vorteilen erreicht werden.
  • Dabei ist gemäß einer bevorzugten Weiterbildung der Erfindung vorgesehen, den Kondensator und den SiC-Feldeffekttransistor an der einen Seite des Trägers und das EFI-Zündbauteil an der anderen Seite des Trägers anzuordnen. Hieraus resultiert, dass das EFI-Zündmodul nicht allzu breit ist, da beide Trägerseiten bestückt werden. Das heißt, dass sich infolge des quasi teilweise axialen Aufbaus ein in seiner Breite sehr gering bemessenes Modul ergibt. Dieser beidseitige Aufbau am gemeinsamen Träger ermöglicht es ferner, die Kontaktierung der relevanten Bauteile durch eine einfache Kantenmetallisierung zu realisieren. Das heißt, dass der Kondensator und der SiC-Feldeffekttransistor, die an der einen Seite angeordnet sind und in entsprechender Weise miteinander verschaltet sind, über eine einfache die Trägerkanten übergreifende Metallisierung mit dem auf der anderen Seite befindlichen EFI-Zündbauteil verbunden sind. Hieraus resultieren zum einen sehr kurze Leitungsstrecken, die zum anderen derart dimensioniert werden können, dass sie die im Betrieb zu führenden Ströme ohne weiteres tragen.
  • Als Träger kann keramisches Material oder Kunststoff, beispielsweise ein Leiterplattenmaterial, verwendet werden. Bei der Wahl des Trägermaterials respektive der Trägerauslegung ist lediglich darauf zu achten, dass der Träger eine hinreichende Abstützung für das EFI-Zündbauteil bietet, derart, dass der beim Zünden herausgesprengte Flyer seine gesamte kinetische Energie tatsächlich in die nachgeschaltete Sprengladung einträgt, und diese nicht zum Teil auf den Träger übertragen wird. Insbesondere Träger aus keramischem Material bieten eine hervorragende Abstützung, bei gleichzeitig geringer Dicke.
  • Der Träger selbst ist bevorzugt als runde Scheibe ausgeführt, so dass er in einen entsprechenden rotationssymmetrischen Aufnahmeraum oder dergleichen im Montagefall eingesetzt werden kann.
  • Schließlich ist ferner wenigstens ein Entladewiderstand, ein sogenannter Bleeder-Widerstand vorgesehen, über den der Kondensator entladen wird. Ein solcher Entladewiderstand kann entweder direkt am Kondensator angeordnet sein, das heißt, er wird vom Kondensator getragen, alternativ kann er auch am Träger an derselben Seite, an der auch der Kondensator vorgesehen ist, angeordnet sein.
  • Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus dem im Folgenden beschriebenen Ausführungsbeispiel sowie anhand der Zeichnungen. Dabei zeigen:
  • 1 eine Darstellung des Schaltungsaufbaus des erfindungsgemäßen EFI-Moduls, und
  • 2 eine Prinzipdarstellung eines erfindungsgemäßen EFI-Zündmoduls.
  • 1 zeigt ein erfindungsgemäßes EFI-Zündmodul 1 mit seinem Zündschaltkreis 2. Der Zündschaltkreis 2 umfasst einen Kondensator 3, der als Zündkondensator eine möglichst geringe Induktivität aufweisen sollte, sie sollte im Bereich von 10 bis 50 nH liegen. Seine Kapazität sollte ebenfalls möglichst klein sein, bevorzugt kleiner 0,2 μF bei einer Ladespannung im Bereich um ein kV.
  • Dem Kondensator 3 vorgeschaltet ist im gezeigten Beispiel ein Entladewiderstand 4, auch Bleeder-Widerstand genannt, wobei bei Bedarf auch mehrere Entladewiderstände vorgesehen sein können.
  • Weiterhin umfasst der erfindungsgemäße Zündschaltkreis 2 ein Schaltelement 5 in Form eines SiC-Feldeffekttransistors 6. Dieser SiC-Feldeffekttransistor sollte eine extrem niedrige Stromanstiegszeit aufweisen, bevorzugt im Bereich von 5 ns bis 100 ns, vorzugsweise im Bereich der unteren Intervallgrenze. Ihm nachgeschaltet ist ein EFI-Bauteil 7, das beim Schließen des Schaltelements 5, also beim Ansteuern des SiC-Feldeffekttransistors 6, gezündet wird.
  • Vorgesehen sind ferner die beiden Anschlüsse 8, 9 zum Koppeln des Kondensators 3 mit der Spannungsgenerierungsschaltung, wie auch ein Steueranschluss 16 zum Ansteuern des SiC-Feldeffekttransistors 6. Soll das EFI-Zündbauteil 7 gezündet werden, so wird der SiC-Feldeffekttransistor entsprechend angesteuert, damit der Kondensator 3, der zuvor aufgeladen wurde, über den SiC-Feldeffekttransistor entladen werden kann und das EFI-Zündbauteil in der einleitend beschriebenen Weise zünden kann.
  • 2 zeigt in Form einer Prinzipdarstellung den Aufbau des EFI-Zündmoduls 1. Auf einem Träger 10, beispielsweise einer runden Scheibe aus keramischem Material, ist an der einen Seite der Kondensator 3 und auf diesem der Entladewiderstand 4 sowie der SiC-Feldeffekttransistor 6 angeordnet. An der gegenüberliegenden Seite ist das EFI-Zündbauteil 7 vorgesehen, mit seiner Zündbrücke 11 und der darüber befindlichen Folie 12, aus der im Zündfall der Flyer herausgesprengt wird. Weitere Teile des EFI-Zündbauteils 7 sind, da entbehrlich, hier nicht näher gezeigt.
  • Infolge dieses beidseitigen Aufbaus, bei dem also an den beiden Selten des Trägers 10 entsprechende Bauelemente vorgesehen sind, ist es möglich, die Leiterlängen zum Verbinden der einzelnen Bauelemente sehr kurz auszuführen. Der Kondensator 3 und der SiC-Feldeffekttransistor 6 sind, da unmittelbar benachbart, über eine sehr kurze Leitungsverbindung 13 zu koppeln, Der Entladewiderstand 4 ist unmittelbar zwischen die Anschlüsse 8, 9 geschaltet. Zur Verbindung des Kondensators 3 und des SiC-Feldeffekttransistors 6 mit dem EFI-Zündbauteil 7 sind Kantenmetallisierungen 14, 15 vorgesehen, die um die Trägerkanten gezogen und zum EFI-Zündbauteil 7 geführt sind. Die Breite des Trägers ist so bemessen, dass die Anschlusspunkte des Kondensators 3 und des SiC-Feldeffekttransistors 6 möglichst kantennah sind, so dass letztlich an dieser Seite nur extrem kurze Leitungslängen gegeben sind. Ist der Träger hinreichend dünn, so ist auch die Kantenlänge gering, so dass letztlich lediglich die Strecke, die die Metallisierung an der Seite, an der das EFI-Zündbauteil 7 angeordnet ist, verläuft, quasi längenbestimmend ist. Das heißt, dass insgesamt extrem kurze Leiterstrecken gegeben sind. Dies führt dazu, dass die gesamte Verschaltung sehr niederohmig ist, mithin also der Widerstand hierüber sehr gering ist. Dies wiederum ermöglicht es, den Kondensator 3, über den etwaige aus einem höheren Leitungswiderstand resultierende Verluste aufzufangen sind, optimiert auszulegen, er kann insgesamt aufgrund der Optimierung der Leitungslängen verkleinert werden.
  • Insgesamt ergibt sich ein sehr kompakter, kleinformatiger Aufbau, verbunden mit einem einfachen Ansteuern des Schaltelements 5, hier also des SiC-Feldeffekttransistors 6 über eine relativ geringe Steuerspannung und einer extrem schnellen Stromanstiegszeit, so dass also sehr schnell geschaltet und das EFI-Zündbauteil extrem schnell gezündet werden kann.

Claims (9)

  1. EFI-Zündmodul, umfassend einen Zündschaltkreis mit einem Kondensator, einem Schaltelement und einem EFI-Zündbauteil, wobei der Kondensator zum Zünden des EFI-Bauteils durch Schließen des Schaltelements entladen wird, dadurch gekennzeichnet, dass das Schaltelement (5) ein SiC-Feldeffekttransistor (6) ist.
  2. EFI-Zündmodul nach Anspruch 1, dadurch gekennzeichnet, dass der SiC-Feldeffekttransistor (6) einen Betriebstemperaturbereich von –40°C bis +100°C, vorzugsweise von –55°C bis +125°C aufweist.
  3. EFI-Zündmodul nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der SiC-Feldeffekttransistor (6) eine Stromanstiegszeit im Bereich von 5 ns bis 100 ns aufweist.
  4. EFI-Zündmodul nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Kondensator (3), der SiC-Feldeffekttransistor (6) und das EFI-Zündbauteil (7) an einem gemeinsamen Träger (10) angeordnet sind.
  5. EFI-Zündmodul nach Anspruch 4, dadurch gekennzeichnet, dass der Kondensator (3) und der SiC-Feldeffekttransistor (6) an der einen Seite des Trägers (10) und das EFI-Zündbauteil (7) an der anderen Seite des Trägers (10) angeordnet sind.
  6. EFI-Zündmodul nach Anspruch 5, dadurch gekennzeichnet, dass der Kondensator (3) und der SiC-Feldeffekttransistor (6) mit dem EFI-Zündbauteil (7) über eine die Kanten des Trägers (10) umgreifende Metallisierung (14, 15) verbunden sind.
  7. EFI-Zündmodul nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass der Träger (10) aus einem keramischen Material oder einem Kunststoff, insbesondere einem Leiterplattenmaterial besteht.
  8. EFI-Zündmodul nach einem der Ansprüche 4 bis 7, dadurch gekennzeichnet, dass der Träger (10) als runde oder rechteckige Scheibe ausgeführt ist.
  9. EFI-Zündmodul nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass ferner wenigstens ein Entladewiderstand (4) vorgesehen ist, der entweder direkt am Kondensator (3) oder am Träger (10) an derselben Seite, an der auch der Kondensator (3) vorgesehen ist, angeordnet ist.
DE102011108000A 2011-07-19 2011-07-19 EFI-Zündmodul Ceased DE102011108000A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE102011108000A DE102011108000A1 (de) 2011-07-19 2011-07-19 EFI-Zündmodul
EP12004940A EP2549220A1 (de) 2011-07-19 2012-07-04 EFI-Zündmodul
ZA2012/05307A ZA201205307B (en) 2011-07-19 2012-07-17 Efi firing module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011108000A DE102011108000A1 (de) 2011-07-19 2011-07-19 EFI-Zündmodul

Publications (1)

Publication Number Publication Date
DE102011108000A1 true DE102011108000A1 (de) 2013-01-24

Family

ID=46651308

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102011108000A Ceased DE102011108000A1 (de) 2011-07-19 2011-07-19 EFI-Zündmodul

Country Status (3)

Country Link
EP (1) EP2549220A1 (de)
DE (1) DE102011108000A1 (de)
ZA (1) ZA201205307B (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014010179B3 (de) * 2014-07-09 2015-03-05 TDW Gesellschaft für verteidigungstechnische Wirksysteme mbH Schockresistente EFI-Zündvorrichtung
DE102015009576B3 (de) * 2015-07-23 2016-08-11 TDW Gesellschaft für verteidigungstechnische Wirksysteme mbH Zündvorrichtung

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11927431B1 (en) * 2018-12-11 2024-03-12 Northrop Grumman Systems Corporation Firing switch for compact capacitive discharge unit
DE102022004814A1 (de) 2022-12-20 2024-06-20 Diehl Defence Gmbh & Co. Kg Zündbauteil eines LE-EFI-Zündmoduls

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4192810T (de) * 1990-11-13 1993-04-01
DE69312609T2 (de) * 1992-09-17 1998-01-08 Bickford Davey Programmierbare integrierte Schaltung zur Detonationsverzögerung
US6385031B1 (en) * 1998-09-24 2002-05-07 Schlumberger Technology Corporation Switches for use in tools
US6752083B1 (en) * 1998-09-24 2004-06-22 Schlumberger Technology Corporation Detonators for use with explosive devices
DE69637368T2 (de) * 1995-06-02 2008-12-04 Denso Corp., Kariya-shi Fahrzeugdrehstromgenerator mit versiegelten Gleichrichtern für effektiven Hochtemperaturbetrieb

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8091477B2 (en) * 2001-11-27 2012-01-10 Schlumberger Technology Corporation Integrated detonators for use with explosive devices
US7191706B2 (en) * 2003-09-30 2007-03-20 The Regents Of The University Of California Optically triggered fire set/detonator system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4192810T (de) * 1990-11-13 1993-04-01
DE69312609T2 (de) * 1992-09-17 1998-01-08 Bickford Davey Programmierbare integrierte Schaltung zur Detonationsverzögerung
DE69637368T2 (de) * 1995-06-02 2008-12-04 Denso Corp., Kariya-shi Fahrzeugdrehstromgenerator mit versiegelten Gleichrichtern für effektiven Hochtemperaturbetrieb
US6385031B1 (en) * 1998-09-24 2002-05-07 Schlumberger Technology Corporation Switches for use in tools
US6752083B1 (en) * 1998-09-24 2004-06-22 Schlumberger Technology Corporation Detonators for use with explosive devices

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014010179B3 (de) * 2014-07-09 2015-03-05 TDW Gesellschaft für verteidigungstechnische Wirksysteme mbH Schockresistente EFI-Zündvorrichtung
EP2966399A1 (de) 2014-07-09 2016-01-13 TDW Gesellschaft für verteidigungstechnische Wirksysteme mbH Schockresistente efi-zündvorrichtung
DE102015009576B3 (de) * 2015-07-23 2016-08-11 TDW Gesellschaft für verteidigungstechnische Wirksysteme mbH Zündvorrichtung
EP3121552A1 (de) 2015-07-23 2017-01-25 TDW Gesellschaft für verteidigungstechnische Wirksysteme mbH Zündvorrichtung
US9995560B2 (en) 2015-07-23 2018-06-12 TDW Gesellschaft für verteidigungstechnische Wirksysteme mbH Ignition device

Also Published As

Publication number Publication date
ZA201205307B (en) 2013-03-27
EP2549220A1 (de) 2013-01-23

Similar Documents

Publication Publication Date Title
EP1566868B1 (de) Überspannungsschutzelement und Zündelement für ein Überspannungsschutzelement
DE4218881C2 (de) Verzögerungszünder
CH635673A5 (de) Elektrisches anzuendelement.
DE102011108000A1 (de) EFI-Zündmodul
DE102011102937A1 (de) Anordnung zur Zündung von Funkenstrecken
EP0390780B1 (de) Hochspannungsschalter
DE102005031673A1 (de) Initialsprengstofffreies Zündsystem
DE102007044047A1 (de) Schaltungsanordnung mit einem elektronischen Bauelement und einer ESD-Schutzanordnung
EP2287984A1 (de) Überspannungsableiter
DE10255519A1 (de) Zündeinrichtung, Auslösevorrichtung für eine Zündeinrichtung und Verfahren zum Herstellen einer Zündeinrichtung
DE3812958A1 (de) Elektrisches anzuendmittel
WO2012048763A1 (de) Zündanlage mit zündung durch mehrmalige erzeugung einer oder mehrerer teilentladungen
DE2810159A1 (de) Verfahren und einrichtung zur zuendung brennfaehiger gemische
EP1040311B1 (de) Integrierte schaltungsanordnung zum aufheizen von zündmaterial sowie verwendung einer solchen integrierten schaltungsanordnung
DE10140950B4 (de) Gekapselter Überspannungsableiter auf Funkenstreckenbasis
EP2782244A1 (de) Vorrichtung zur Erzeugung von Mikrowellen
DE102013225835A1 (de) Reihenfunkenstrecke
DE1283708B (de) Zuendvorrichtung
DE2738769C2 (de) Aufschlagzünder
EP3834260B1 (de) Anordnung zur zündung von funkenstrecken
DE2630273A1 (de) Hohlladung
WO2009043364A1 (de) Schutzschaltung zum eingangsseitigen schutz eines im höchstfrequenzbereich arbeitenden elektronischen gerätes
EP1077519B1 (de) Verfahren zum Betreiben einer Überspannungsschutzeinrichtung sowie Überspannungsschutzeinrichtung mit mindestens einem Grobschutz- und einem Feinschutzelement
DE19952004A1 (de) Verfahren zum Betreiben einer Überspannungsschutzeinrichtung sowie Überspannungsschutzeinrichtung mit mindestens einem Grobschutz- und einem Feinschutzelement
DE2259378C3 (de) Schutzschaltung für elektrische Zunder

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R002 Refusal decision in examination/registration proceedings
R003 Refusal decision now final

Effective date: 20130905