DE102011076676A1 - Verfahren zur Ansteuerung einer mehrphasigen Maschine - Google Patents

Verfahren zur Ansteuerung einer mehrphasigen Maschine Download PDF

Info

Publication number
DE102011076676A1
DE102011076676A1 DE102011076676A DE102011076676A DE102011076676A1 DE 102011076676 A1 DE102011076676 A1 DE 102011076676A1 DE 102011076676 A DE102011076676 A DE 102011076676A DE 102011076676 A DE102011076676 A DE 102011076676A DE 102011076676 A1 DE102011076676 A1 DE 102011076676A1
Authority
DE
Germany
Prior art keywords
phase
switches
current
control unit
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102011076676A
Other languages
English (en)
Inventor
Paul Mehringer
Fabio Magini
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
SEG Automotive Germany GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to DE102011076676A priority Critical patent/DE102011076676A1/de
Priority to PCT/EP2012/058705 priority patent/WO2012163651A1/de
Priority to US14/123,341 priority patent/US9608555B2/en
Priority to CN201280026630.5A priority patent/CN103563233A/zh
Priority to JP2014513100A priority patent/JP5916847B2/ja
Publication of DE102011076676A1 publication Critical patent/DE102011076676A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Ansteuerung einer mehrphasigen Maschine, welche einen mit einem Zwischenkreiskondensator versehenen Zwischenkreis, Phasenwicklungen und pro Phase einen Highside-Schalter und einen Lowside-Schalter aufweist. Din von einer Steuereinheit mit Steuersignalen beaufschlagt. Die Steuereinheit stellt in aufeinanderfolgenden Ansteuerzyklen pulsförmige Steuersignale für die Schalter bereit, deren Pulsbreiten und Pulsanfänge innerhalb eines Ansteuerzyklus jeweils derart variiert sind, dass der Zwischenkreisstrom reduziert ist

Description

  • Die Erfindung betrifft ein Verfahren zur Ansteuerung einer mehrphasigen Maschine.
  • Stand der Technik
  • Elektrische Drehfeldantriebe sind bekannt. Dabei kommen unterschiedliche wie in der DE 10 2008 042 352 A1 angegebene Modulationsarten zum Einsatz wie beispielsweise eine Sinusmodulation oder eine Blockmodulation bzw. Blockkommutierung.
  • Des Weiteren sind sogenannte Start-Stopp-Systeme bekannt. Diese dienen zum Stoppen und Wiederstarten von Verbrennungsmotoren, beispielsweise bei einem Halt an einer Ampel. Derartige Start-Stopp-Systeme werden verwendet, um den Kraftstoffverbrauch und die Abgasemissionen des jeweiligen Fahrzeugs zu reduzieren. Es existieren Start-Stopp-Systeme auf Basis eines konventionellen Starters, wobei der Starter durch ein elektronisches Steuergerät angesteuert wird und mittels eines Ritzels in den Zahnkranz am Schwungrad eingreift. Des Weiteren sind Startergeneratoren mit Riementrieb bekannt, die auf Basis eines Klauenpolgenerators mit einem zusätzlichen elektronischen Steuergerät arbeiten.
  • Um im Bremsfall des Fahrzeugs höhere Energien rekuperieren zu können, sind Systeme mit höheren Leistungen notwendig. Zur Begrenzung der Ströme werden getaktete Verfahren angewendet, die einen Zwischenkreis mit einem Zwischenkreiskondensator großer Kapazität benötigen. Oft ist die Dimensionierung des Zwischenkreises ausschlaggebend für den Platzbedarf der Leistungselektronik.
  • Offenbarung der Erfindung
  • Ein Verfahren mit den im Anspruch 1 angegebenen Merkmalen weist demgegenüber den Vorteil auf, dass die auftretenden Zwischenkreisströme im Vergleich zu bekannten Ansteuerverfahren um bis zu 40% reduziert werden können. Dieser Vorteil wird durch ein Verfahren zur Ansteuerung einer mehrphasigen Maschine erreicht, welche einen mit einem Zwischenkreiskondensator versehenen Zwischenkreis und pro Phase einen Highside-Schalter, einen Lowside-Schalter und eine Phasenwicklung aufweist, wobei die den einzelnen Phasen zugeordneten Schalter von einer Steuereinheit mit Steuersignalen beaufschlagt werden und die Steuereinheit in aufeinanderfolgenden Ansteuerzyklen pulsförmige Steuersignale für die Schalter bereitstellt, deren Pulsbreiten und Pulsanfänge innerhalb eines Ansteuerzyklus jeweils derart variiert sind, dass der Zwischenkreisstrom reduziert ist.
  • Dies geschieht vorzugsweise derart, dass die Steuereinheit die den einzelnen Phasen zugeordneten Schalter nach dem Flattop-Verfahren ansteuert und Steuersignale für die Schalter in aufeinanderfolgenden Flattop-Fenstern relativ zueinander verschiebt. Dies wiederum erfolgt vorzugsweise derart, dass Überlappungen von positiven Phasenströmen reduziert werden und/oder positive und negative Phasenströme sich gegenseitig zumindest teilweise kompensieren. Durch diese Verschiebung der Steuersignale wird ein Ansteuermuster erzeugt, aufgrund dessen die Stromverteilung derart verbreitert wird, dass der Effektivwert des Zwischenkreisstromes und damit die thermische Belastung des Zwischenkreiskondensators reduziert wird.
  • Nachfolgend wird die Erfindung anhand der Zeichnung näher erläutert. Es zeigt
  • 1 eine Skizze zur Erläuterung einer fünfphasigen Maschine in Drudenfußverschaltung mit einer B10-Brücke,
  • 2 Diagramme zur Veranschaulichung eines bekannten Center-Aligned-Ansteuerungsmusters und dabei auftretender Ströme,
  • 3 ein vergrößerter Ausschnitt aus den in der 2 gezeigten Diagrammen,
  • 4 Diagramme zur Veranschaulichung eines fünfphasigen Sinussystems,
  • 5 Diagramme zur Veranschaulichung eines Ansteuermusters gemäß der Erfindung und des dabei auftretenden Zwischenkreisstromes,
  • 6 ein Diagramm zu einer Detailbetrachtung der Spannungshöhen innerhalb einer Flattop-Phase bei dem in der 4 gezeigten fünfphasigen Sinussystem und
  • 7 Diagramme zur Veranschaulichung eines Ansteuermusters gemäß einer Weiterbildung der Erfindung und des dabei auftretenden Zwischenkreisstromes.
  • Die Erfindung betrifft ein Verfahren zur Ansteuerung einer mehrphasigen Maschine, welche einen mit einem Zwischenkreiskondensator versehenen Zwischenkreis und pro Phase einen Highside-Schalter, einen Lowside-Schalter und eine Phasenwicklung aufweist, wobei die den einzelnen Phasen zugeordneten Schalter von einer Steuereinheit mit Steuersignalen beaufschlagt werden. Dieses Verfahren ist nicht an eine bestimmte Phasenzahl der Maschine gebunden, wird aber nachfolgend anhand einer fünfphasigen Maschine näher erläutert.
  • Die 1 zeigt eine Skizze zur Erläuterung einer fünfphasigen Maschine in Drudenfußverschaltung mit einer B10-Brücke. Als Drudenfußverschaltung wird ein Verschaltungstyp verstanden, bei dem die insgesamt fünf Phasenwicklungen der Schaltung elektrisch derart miteinander verbunden sind, dass die Form des Schaltbildes ein Pentagramm ergibt.
  • Die gezeigte Maschine weist insgesamt fünf Phasenanschlüsse A1, A2, A3, A4, A5 und insgesamt fünf Phasenwicklungen 1, 2, 3, 4, 5 auf, wobei jede dieser Phasenwicklungen zwischen zwei der genannten Phasenanschlüsse geschaltet ist. Des Weiteren weist die gezeigte Maschine eine mit den Phasenanschlüssen verbundene Leistungselektronik LE und eine Batterie B auf. Die Batterie B hat einen Pluspol B+ und einen Minuspol B–. Zwischen der Batterie B und der Leistungselektronik LE befindet sich ein Zwischenkreis ZK, der einen Zwischenkreiskondensator C_ZK enthält.
  • Die Leistungselektronik LE enthält fünf Zweige Ph1, Ph2, Ph3, Ph4 und Ph5, von denen jeder eine Reihenschaltung zweier Schalter aufweist, wobei jedem dieser Schalter eine Diode antiparallel geschaltet ist. Diese Anordnung ergibt sich bei der Verwendung von herkömmlichen Feldeffekttransistoren als Schalter, da diese eine Inversdiode beinhalten. Grundsätzlich ist jedoch auch die Verwendung von anderen Schaltelementen, beispielsweise IGBTs, möglich.
  • Der Zweig Ph1 der Leistungselektronik LE, der die Schalter HS1 und LS1 enthält, ist an einem Verbindungspunkt zwischen den beiden Schaltern HS1 und LS1 mit dem Phasenanschluss A1 des Ständers der Maschine verbunden. Der Schalter HS1 des Zweigs Ph1 ist ein Highside-Schalter. Antiparallel zum Schalter HS1 ist eine Diode geschaltet. Der Schalter LS1 des Zweigs Ph1 ist ein Lowside-Schalter. Antiparallel zum Schalter LS1 ist eine Diode geschaltet. Die Schalter HS1 und LS1 werden von einer Steuereinheit S mit Steuersignalen S1 und S2 angesteuert.
  • Der Zweig Ph2 der Leistungselektronik LE, der die Schalter HS2 und LS2 enthält, ist an einem Verbindungspunkt zwischen den beiden Schaltern HS2 und LS2 mit dem Phasenanschluss A2 des Ständers der Maschine verbunden. Der Schalter HS2 des Zweigs Ph2 ist ein Highside-Schalter. Antiparallel zum Schalter HS2 ist eine Diode geschaltet. Der Schalter LS2 des Zweigs Ph2 ist ein Lowside-Schalter. Antiparallel zum Schalter LS2 ist eine Diode geschaltet. Die Schalter HS2 und LS2 werden von der Steuereinheit S mit Steuersignalen S3 und S4 angesteuert.
  • Der Zweig Ph3 der Leistungselektronik LE, der die Schalter HS3 und LS3 enthält, ist an einem Verbindungspunkt zwischen den beiden Schaltern HS3 und LS3 mit dem Phasenanschluss A3 des Ständers der Maschine verbunden. Der Schalter HS3 des Zweigs Ph3 ist ein Highside-Schalter. Antiparallel zum Schalter HS3 ist eine Diode geschaltet. Der Schalter LS3 des Zweigs Ph3 ist ein Lowside-Schalter. Antiparallel zum Schalter LS3 ist eine Diode geschaltet. Die Schalter HS3 und LS3 werden von der Steuereinheit S mit Steuersignalen S5 und S6 angesteuert.
  • Der Zweig Ph4 der Leistungselektronik LE, der die Schalter HS4 und LS4 enthält, ist an einem Verbindungspunkt zwischen den Schaltern HS4 und LS4 mit dem Phasenanschluss A4 des Ständers der Maschine verbunden. Der Schalter HS4 des Zweigs Ph4 ist ein Highside-Schalter. Antiparallel zum Schalter HS4 ist eine Diode geschaltet. Der Schalter LS4 des Zweigs Ph4 ist ein Lowside-Schalter. Antiparallel zum Schalter LS4 ist eine Diode geschaltet. Die Schalter HS4 und LS4 werden von der Steuereinheit S mit Steuersignalen S7 und S8 angesteuert.
  • Der Zweig Ph5 der Leistungselektronik LE, der die Schalter HS5 und LS5 enthält, ist an einem Verbindungspunkt zwischen den beiden Schaltern HS5 und LS5 mit dem Phasenanschluss A5 des Ständers der Maschine verbunden. Der Schalter HS5 des Zweigs Ph5 ist ein Highside-Schalter. Antiparallel zum Schalter HS5 ist eine Diode geschaltet. Der Schalter LS5 des Zweigs Ph5 ist ein Lowside-Schalter. Antiparallel zum Schalter LS5 ist eine Diode geschaltet. Die Schalter HS5 und LS5 werden von der Steuereinheit S mit Steuersignalen S9 und S10 angesteuert.
  • Im Betrieb der in der 1 gezeigten Maschine gilt für jeden beliebigen Zeitpunkt die folgende Beziehung: I_ZK = I_Bat – I_Gen.
  • Dabei ergibt sich der Generatorstrom I_Gen in Abhängigkeit von Stellung der Schalter der Leistungselektronik aus einer Überlagerung der Phasenströme I_1 bis I_5 für diejenigen Phasen, deren Highside-Schalter in dem jeweiligen Zeitpunkt durchgesteuert ist.
  • Es ist bereits eine sogenannte Center-Aligned-Ansteuerung bekannt. Bei dieser ist der Zeitbereich für den Stromfluss auf einen kleinen Zeitbereich konzentriert. Ein Ansteuermuster für eine derartige Center-Aligned-Ansteuerung und dabei auftretender Ströme sind in den in der 2 gezeigten Diagrammen veranschaulicht.
  • Dabei sind in der 2a die Ansteuersignale für die Schalter, in der 2b der Zwischenkreisstrom I_ZK, in der 2c die am Pluspol der Batterie anliegende Spannung V_B+, in der 2d der Batteriestrom I_Bat und in der 2e die Phasenströme I_X bis I_Y dargestellt.
  • Aus der 2a ist insbesondere ersichtlich, dass bei einer Center-Aligned-Ansteuerung die Pulsmitten der Ansteuerimpulse zeitlich übereinstimmen, wie es durch eine senkrecht gestrichelte Linie in der 2a angedeutet ist. Ferner geht aus der 2a hervor, dass die Flanken der Ansteuerimpulse zeitlich voneinander verschieden sind und sich in einem begrenzten zeitlichen Bereich befinden. Mit dem Text „Freilauf LS“ ist angedeutet, dass in diesem Zeitintervall alle Lowside-Schalter durchgesteuert sind. Mit dem Text „Freilauf HS“ ist angedeutet, dass in diesem Zeitintervall alle Highside-Schalter durchgesteuert sind. Mit dem Text „Antrieb“ wird zum Ausdruck gebracht, dass in diesem engen Zeitfenster durch die Schalterstellungen die el. Maschine an die äußere Spannung angeschlossen wird. Dadurch wird eine Stromänderung in den Ständerwicklungen hervorgerufen. Befindet sich ein Ansteuerimpuls auf dem Spannungsniveau 16 V, dann ist der jeweils zugehörige Highside-Schalter durchgesteuert. Befindet sich ein Ansteuerimpuls auf einem Spannungsniveau von 0 V, dann ist der jeweils zugehörige Lowside-Schalter durchgesteuert.
  • Der 2b ist entnehmbar, dass der Zwischenkreisstrom I_ZK im zeitlichen Bereich der Flanken der Ansteuerimpulse starken Veränderungen unterworfen ist, wie noch anhand der 3 näher veranschaulicht wird.
  • Aus der 2c ist ersichtlich, dass auch die Batteriespannung V_B+ im zeitlichen Bereich der Flanken der Ansteuerimpulse starken Veränderung unterworfen ist.
  • Die 2d zeigt den Batteriestrom I_Bat und die 2e die Phasenströme I_X bis I_Y, welche in Abhängigkeit von der Stellung des jeweils zugehörigen Highside-Schalters einen Beitrag zum Zwischenkreisstrom leisten oder nicht.
  • Die 3 zeigt einen vergrößerten Ausschnitt aus den in der 2 gezeigten Diagrammen. Dabei sind in der 3a wiederum die Ansteuersignale für die Schalter, in der 3b der Zwischenkreisstrom I_Zk, in der 3c die am Pluspol der Batterie anliegende Spannung V_B+, in der 3d der Batteriestrom I_Bat und in der 3e die Phasenströme I_X bis I_Y dargestellt.
  • Aus der 3b ist ersichtlich, dass der Zwischenkreisstrom I_ZK durch eine Überlagerung des Batteriestromes I_Bat mit dem bzw. den jeweils aktiven Phasenströmen gebildet wird und dass im Falle einer Durchsteuerung der den Phasenanschlüssen X, U und W zugehörigen Highside-Schalter ein hoher Zwischenkreisstrom fließt, der im vorliegenden Beispiel etwa –420 A beträgt, während der Batteriestrom etwa 80A und der effektive Phasenstrom etwa 200A beträgt.
  • Nach alledem geht aus den 2 und 3 hervor, dass sich bei einer Verwendung der bekannten Center-Aligned-Ansteuerung im Zwischenkreis Stromsprünge einstellen, die mit den einzelnen Schaltereignissen zeitlich korrelieren. Während der Freilaufzeiten, die in der 2 angedeutet sind, d. h. wenn alle Highside- bzw. Lowside-Schalter geschlossen sind, wird I_Gen = 0. Folglich gilt für den Zwischenkreisstrom: I_ZK = I_Bat. In dieser Phase wird der Zwischenkreiskondensator nachgeladen. In der Ansteuerphase summieren sich die Ströme.
  • Für die Verlustleistungsbetrachtung des Zwischenkreiskondensators ist der Effektivstrom ausschlaggebend. Es gilt die folgende Beziehung:
    Figure 00070001
  • Das arithmetische Mittel des Kondensatorstromes liegt im Falle einer Vernachlässigung der Eigenverluste bei 0. Der Effektivwert steigt stark an, wenn die Ströme stark aufaddiert werden, d. h. wenn der Stromverlauf „spitz“ zuläuft. Aufgrund dieses starken Anstiegs des Effektivwertes ist die thermische Belastung des Zwischenkreiskondensators hoch. Eine derartige hohe thermische Belastung, wie sie bei Verwendung einer Center-Aligned-Ansteuerung auftritt, wird bei einem Verfahren gemäß der Erfindung vermieden.
  • Bei dem erfindungsgemäßen Verfahren wird die Stromverteilung durch ein neues Ansteuermuster in die Breite gezogen und damit der Effektivwert des Zwischenkreisstromes und die thermische Belastung des Zwischenkreiskondensators reduziert.
  • Die 4a zeigt ein Diagramm zur Veranschaulichung eines fünfphasigen Sinussystems, wie es bei der vorliegenden Erfindung verwendet wird, wobei in diesem Diagramm die Phasenfolge im Vergleich zu den in den 2 und 3 gezeigten Diagrammen verändert ist. Dabei sind längs der Abszisse der Winkel in π-Einheiten und längs der Ordinate Sollspannungsvorgaben für eine Ansteuerung der Schalter aufgetragen. Die zugehörigen Phasenströme sind mit U, V, W, X und Y bezeichnet. Ein oberer Grenzwert ist mit G_o und ein unterer Grenzwert mit G_u bezeichnet. Diese Grenzwerte sind in der 4a gestrichelt veranschaulicht. Der obere Grenzwert G_o ist geringfügig kleiner als der maximale positive Sollspannungswert. Der andere Grenzwert G_u ist geringfügig größer als der minimale negative Sollspannungswert.
  • Die genannten Grenzwerte werden wie folgt ermittelt: G_o = U_Soll_amplitude·cos(360°/(4·PZ)) G_u = –G_o, wobei PZ die Phasenzahl der Maschine ist.
  • Bei der vorliegenden Erfindung stellt die Steuereinheit in aufeinanderfolgenden Ansteuerzyklen pulsförmige Steuersignale für die Schalter bereit, deren Pulsbreiten und Pulsanfänge innerhalb eines Ansteuerzyklus jeweils derart variiert sind, dass der Zwischenkreisstrom reduziert ist.
  • Dies geschieht beispielsweise nach dem Flattop-Verfahren. Bei diesem Verfahren erfolgt ein aufeinanderfolgendes Durchschalten bestimmter Schalter, wie es nachfolgend erläutert wird.
  • In der 4a sind Winkelintervalle bzw. Flattopfenster α1, ..., α10 markiert, in denen Spannungsvorgaben in dem Sinne existieren, dass entweder der einer Stromphase zugeordnete Sollspannungswert größer ist als der obere Grenzwert G_o oder kleiner ist als der untere Grenzwert G_u. Ist der einer Stromphase zugeordnete Sollspannungswert größer als der obere Grenzwert G_o, dann wird im zugehörigen Winkelintervall der zugehörige Highside-Schalter durchgesteuert. Ist hingegen der einer Stromphase zugeordnete Sollspannungswert kleiner als der untere Grenzwert G_u, dann wird im zugehörigen Winkelintervall der zugehörige Lowside-Schalter durchgesteuert, wie nachfolgend anhand der 4b erläutert wird.
  • Diese veranschaulicht eine Erzeugung von Ansteuermustern für sinuskommutierte elektrische Maschinen durch einen Sinus-Dreiecks-Vergleich. Durch Beaufschlagung der Dreiecks-Funktion mit einem Offset-Faktor, der jeweils zum Zeitpunkt einer Flattop-Fenster-Umschaltung umgeschaltet wird, ergibt sich automatisch eine rotierende Durchsteuerung der 10 beteiligten Schalter. Die sinusförmigen Signale entsprechen den Sollspannungsvorgaben.
  • Aus den 4a und 4b ist ersichtlich, dass
    • – im Winkelintervall α1 der Highside-Schalter der Phase X durchgeschaltet ist,
    • – im Winkelintervall α2 der Lowside-Schalter der Phase V durchgeschaltet ist,
    • – im Winkelintervall α3 der Highside-Schalter der Phase W durchgeschaltet ist,
    • – im Winkelintervall α4 der Lowside-Schalter der Phase U durchgeschaltet ist,
    • – im Winkelintervall α5 der Highside-Schalter der Phase Y durchgeschaltet ist,
    • – im Winkelintervall α6 der Lowside-Schalter der Phase X durchgeschaltet ist,
    • – im Winkelintervall α7 der Highside-Schalter der Phase V durchgeschaltet ist,
    • – im Winkelintervall α8 der Lowside-Schalter der Phase W durchgeschaltet ist,
    • – im Winkelintervall α9 der Highside-Schalter der Phase U durchgeschaltet ist und
    • – im Winkelintervall α10 der Lowside-Schalter der Phase Y durchgeschaltet ist.
  • Bei einer Phasenverschiebung von Strom und Spannung kann es sinnvoll sein, die Winkelintervalle α1–α10 nach rechts oder links zu verschieben, wobei im vorliegenden Fall eine max. Verschiebung um 18°, allgemein um 360°/(4·Phasenzahl), möglich ist.
  • In jedem dieser Winkelintervalle werden abgesehen von dem Phasenstrom, der dem jeweils durchgesteuerten Schalter zugehörig ist, alle weiteren Phasenströme zur Reduzierung des Zwischenkreisstromes verwendet. Dies geschieht dadurch, dass die Steuereinheit durch ein geeignetes Ansteuermuster die genannten weiteren Phasenströme relativ zueinander derart verschiebt, dass der resultierende Zwischenkreisstrom reduziert ist. Dies kann dadurch erreicht werden, dass die Verschiebung der genannten weiteren Phasenströme derart erfolgt, dass Überlappungen von positiven Phasenströmen reduziert werden und/oder dadurch, dass die Verschiebung der genannten weiteren Phasenströme derart erfolgt, dass positive und negative Phasenströme sich zumindest teilweise kompensieren.
  • Die 5 zeigt Diagramme zur Veranschaulichung eines Ansteuermusters gemäß der Erfindung und des dabei auftretenden Zwischenkreisstromes. Dabei ist in der 5a das Ansteuermuster und in der 5b der dabei auftretende Zwischenkreisstrom gezeigt. Aus der 5a ist ersichtlich, dass die den Phasen zugeordneten Ansteuerimpulse für die jeweils zugehörigen Schalter zeitlich voneinander separiert sind, d. h. einander nicht überlagert sind. Aus der 5b ist ersichtlich, dass mit jedem Schaltvorgang gemäß der 5a ein entsprechender Ausgleichsstrom im Zwischenkreis fließt. Die Absolutwerte des Zwischenkreisstromes sind im Vergleich zu dem in der 2b gezeigten Zwischenkreisstrom um ca. 30% und damit deutlich reduziert. Diese Reduktion ist darauf zurückzuführen, dass es nicht mehr aufgrund einer systematischen Überlagerung der Phasenströme zu einer starken Überhöhung des Zwischenkreisstromes kommt.
  • In einem weiteren Optimierungsschritt können darüber hinaus die in positiver Richtung verlaufenden Stromspitzen des in der 5b gezeigten Zwischenkreisstromes eliminiert werden. Dies wird anhand der 6 erläutert, die ein Diagramm zu einer Detailbetrachtung der Spannungshöhen innerhalb einer Flattop-Phase bei dem in der 4 gezeigten fünfphasigen Sinussystem zeigt. In dem in der 6 gezeigten Diagramm ist wiederum längs der Abszisse der Winkel in π und längs der Ordinate Sollwertvorgaben U_Soll für eine Sinusansteuerung aufgetragen. Die Phasenströme sind wiederum mit U, V, W, X und Y bezeichnet. Ein oberer Grenzwert ist mit G_o und ein unterer Grenzwert mit G_u bezeichnet. Diese Grenzwerte sind in der 6 gestrichelt dargestellt. Der in der 6 gezeigte Winkelbereich liegt zwischen 0 und 0,2π und entspricht etwa dem in der 4a gezeigten Winkelbereich α1. In diesem Bereich α1 ist der Highside-Schalter der Phase X durchgeschaltet, so dass die Phase X aufgrund des verwendeten Flattop-Verfahrens von jeglichen Taktungen ausgenommen ist. Die weiteren Phasenströme, d. h. die den Phasen U, V, W und Y zugeordneten Phasenströme, werden in diesem Winkelintervall zu einer Reduzierung des Zwischenkreisstromes verwendet. Zum Zwecke dieser Reduzierung des Zwischenkreisstromes wird versucht, einen Zustand herbeizuführen, in welchem sich der Zwischenkreisstrom stets in der Nähe seiner Nulllinie bewegt. Besonders störend in diesem Zusammenhang sind Stromanteile, die eine Addition des Batteriestromes bewirken.
  • Beispielsweise ist aus der 6 ersichtlich, dass die den Phasen U und V zugehörigen Phasenströme jeweils einen positiven Strombeitrag liefern, der im Falle einer Addition zu einer unerwünschten Erhöhung des Zwischenkreisstromes führen würde.
  • Diese unerwünschte Überlagerung der den Phasen U und V zugehörigen Phasenströme wird dadurch vermieden, dass die zugehörigen Ansteuerimpulse innerhalb einer Ansteuerperiode in geeigneter Weise verschoben werden. Diese Verschiebung kann ohne Einschränkung der Wirkung einer Sinuskommutierung innerhalb einer Ansteuerperiode beliebig erfolgen. Folglich kann der effektive Zwischenkreisstrom nochmals reduziert werden, wenn die Ansteuerung der Phasen, deren beide Schalter im momentanen Flattopfenster nicht durchgeschaltet sind, relativ zueinander derart verschoben werden, dass Überlappungen von positiven oder auch negativen Phasenströmen vermieden werden und/oder dass sich positive und negative Phasenströme gegenseitig zumindest teilweise kompensieren.
  • So ist aus der 6 ersichtlich, dass an der Winkelposition Phi = 0 folgende Augenblickswerte der Stromhöhen vorliegen:
    I_V = 0 A
    I_X = 9,51 A
    I_U = 5,88 A
    I_W = –5,88 A
    I_Y = –9,51 A
  • Aufgrund der gleichzeitigen Ansteuerung der Phasen W und U löschen sich die zugehörigen Phasenströme I_W und I_U gegenseitig aus. Des Weiteren löschen sich an dieser Winkelposition auch die Phasenströme I_X und I_Y aus, so dass der Generatorstrom I_Gen (siehe 1) insgesamt 0 A beträgt und somit nicht zu einer unerwünschten Erhöhung des Zwischenkreisstromes führt.
  • Des Weiteren geht aus der 6 hervor, dass an der Winkelposition Phi = 0,1 folgende Augenblickswerte der Stromhöhen vorliegen:
    I_U = 3,09 A
    I_X = 10 A
    I_V = 3,09 A
    I_W = –8,09 A
    I_Y = –8,09 A.
  • Die 7 zeigt Diagramme zur Veranschaulichung eines Ansteuermusters gemäß der vorstehend beschriebenen Weiterbildung der Erfindung, gemäß welcher eine Überlagerung positiver und negativer Phasenströme derart erfolgt, dass der Zwischenkreisstrom reduziert ist, und des dabei auftretenden Zwischenkreisstromes. Dabei ist in der 7a das Ansteuermuster und in der 7b der dabei auftretende Zwischenkreisstrom gezeigt. Im Vergleich zur 5b ist ersichtlich, dass die positiven Spitzen des Zwischenkreisstromes nicht mehr vorhanden sind. Im Vergleich zur 2b ist ersichtlich, dass die Maximalamplitude des Zwischenkreisstromes reduziert ist und dass die Verteilung des Zwischenkreisstromes verbreitert ist.
  • Die 5 und 7 sind im Hinblick auf die jeweils gezeigten Winkelpositionen unterschiedlich gewählt und deshalb nicht direkt miteinander vergleichbar. Der gewünschte Effekt, die positiven Spitzen des Zwischenkreisstromes, wie sie in der 5b gezeigt sind, zu vermeiden, ist jedoch in der 7 korrekt veranschaulicht.
  • Gemäß der Erfindung wird nach alledem ein Verfahren zur Ansteuerung einer mehrphasigen Maschine bereitgestellt, welches zu einer Reduzierung der effektiven Zwischenkreisströme in einer Größenordnung von bis zu 40% bei fünfphasigen Maschinen führt.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 102008042352 A1 [0002]

Claims (8)

  1. Verfahren zur Ansteuerung einer mehrphasigen Maschine, welche einen mit einem Zwischenkreiskondensator versehenen Zwischenkreis, Phasenwicklungen und pro Phase einen Highside-Schalter und einen Lowside-Schalter aufweist, wobei die den einzelnen Phasen zugeordneten Schalter von einer Steuereinheit mit Steuersignalen beaufschlagt werden, dadurch gekennzeichnet, dass die Steuereinheit (S) in aufeinanderfolgenden Ansteuerzyklen pulsförmige Steuersignale (S1–S10) für die Schalter (HS1–HS5, LS1–LS5) bereitstellt, deren Pulsbreiten und Pulsanfänge innerhalb eines Ansteuerzyklus jeweils derart variiert sind, dass der Zwischenkreisstrom reduziert ist.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Steuereinheit die den einzelnen Phasen zugeordneten Schalter (HS1–HS5, LS1–LS5) nach dem Flattop-Verfahren ansteuert und Steuersignale für die Schalter in aufeinanderfolgenden Flattop-Fenstern relativ zueinander verschiebt.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Steuereinheit (S) die Steuersignale für die Schalter (HS1–HS5, LS1–LS5) derart zueinander verschiebt, dass Überlappungen von positiven oder negativen Phasenströmen im Zwischenkreis vermieden werden.
  4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Steuereinheit (S) die Steuersignale für die Schalter (HS1–HS5, LS1–LS5) derart zueinander verschiebt, dass positive und negative Phasenströme im Zwischenkreis sich gegenseitig zumindest teilweise kompensieren.
  5. Verfahren nach einem der Ansprüche 2–4, dadurch gekennzeichnet, dass die Anzahl der Flattopfenster dem Doppelten der Phasenzahl der Maschine entspricht, dass sich aufeinanderfolgende Flattopfenster jeweils zwischen Highside und Lowside abwechseln und dass sich ein Flattopfenster jeweils im Bereich eines positiven oder negativen Maximalwertes einer jeweils zugehörigen Spannungsvorgabe befindet.
  6. Verfahren nach einem der Ansprüche 2–4, dadurch gekennzeichnet, dass die Anzahl der Flattopfenster der Phasenzahl der Maschine entspricht, dass sich die Flattopfenster nur auf Highside oder Lowside beziehen und dass sich ein Flattopfenster jeweils im Bereich eines positiven oder negativen Maximalwertes einer jeweils zugehörigen Spannungsvorgabe befindet.
  7. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass die Steuereinheit ein aufeinanderfolgendes Durchschalten der einzelnen Stromphasen zugeordneten Highside- und Lowside-Schalter (HS1–HS5, LS1–LS5) vornimmt, wobei ein einer Stromphase zugeordneter Highside-Schalter durchgesteuert wird, wenn der zugehörige Spannungssollwert größer ist als ein oberer Grenzwert (G_o) und ein einer Stromphase zugeordneter Lowside-Schalter durchgesteuert wird, wenn der zugehörige Spannungssollwert kleiner ist als ein unterer Grenzwert (G_u).
  8. Verfahren nach einem der Ansprüche 2–7, dadurch gekennzeichnet, dass die Reduzierung des Zwischenkreisstromes durch ein zeitliches Verschieben der Steuersignale der Phasen vorgenommen wird, die einer momentan nicht durchgeschalteten Phase zugeordnet sind.
DE102011076676A 2011-05-30 2011-05-30 Verfahren zur Ansteuerung einer mehrphasigen Maschine Pending DE102011076676A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE102011076676A DE102011076676A1 (de) 2011-05-30 2011-05-30 Verfahren zur Ansteuerung einer mehrphasigen Maschine
PCT/EP2012/058705 WO2012163651A1 (de) 2011-05-30 2012-05-11 Verfahren zur ansteuerung einer mehrphasigen maschine
US14/123,341 US9608555B2 (en) 2011-05-30 2012-05-11 Method for actuating a polyphase machine
CN201280026630.5A CN103563233A (zh) 2011-05-30 2012-05-11 用于控制多相电机的方法
JP2014513100A JP5916847B2 (ja) 2011-05-30 2012-05-11 多相機械を駆動制御する方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011076676A DE102011076676A1 (de) 2011-05-30 2011-05-30 Verfahren zur Ansteuerung einer mehrphasigen Maschine

Publications (1)

Publication Number Publication Date
DE102011076676A1 true DE102011076676A1 (de) 2012-12-06

Family

ID=46124318

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102011076676A Pending DE102011076676A1 (de) 2011-05-30 2011-05-30 Verfahren zur Ansteuerung einer mehrphasigen Maschine

Country Status (5)

Country Link
US (1) US9608555B2 (de)
JP (1) JP5916847B2 (de)
CN (1) CN103563233A (de)
DE (1) DE102011076676A1 (de)
WO (1) WO2012163651A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012211802A1 (de) 2011-07-08 2013-01-10 Robert Bosch Gmbh Verfahren zur Ansteuerung einer mehrphasigen Maschine

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011076722B4 (de) * 2011-05-30 2019-11-07 Robert Bosch Gmbh Verfahren zur Stromermittlung in einer mehrphasigen Maschine
US9312802B2 (en) 2011-07-08 2016-04-12 Robert Bosch Gmbh Method for controlling a multiphase machine
DE102013208968A1 (de) * 2013-05-15 2014-11-20 Robert Bosch Gmbh Kraftfahrzeugbordnetz mit aktivem Brückengleichrichter und Überspannungsschutz bei Lastabwurf, Gleichrichteranordnung, zugehöriges Betriebsverfahren und Mittel zu dessen Implementierung
DE102015202437A1 (de) * 2015-02-11 2016-08-11 Robert Bosch Gmbh Verfahren zum Betreiben eines an eine elektrische Maschine angeschlossenen aktiven Umrichters und Mittel zu dessen Implementierung
DE102015223387A1 (de) * 2015-11-26 2017-06-01 Robert Bosch Gmbh Verfahren zum Erkennen eines Zustands eines Bordnetzes

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008042352A1 (de) 2008-09-25 2010-04-08 Robert Bosch Gmbh Ansteuerung eines Synchrongleichrichters

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59162794A (ja) * 1983-03-03 1984-09-13 Fanuc Ltd 同期モ−タの制御方式
IE851629L (en) * 1985-06-28 1986-12-28 Kollmorgen Ireland Ltd Electrical drive systems
US5821722A (en) * 1995-06-06 1998-10-13 General Electric Company Multiphase electrical motor, control and method using overlapping conduction periods in the windings
US6529393B1 (en) * 1999-12-01 2003-03-04 Texas Instruments Incorporated Phase current sensor using inverter leg shunt resistor
JP2005051838A (ja) * 2003-07-29 2005-02-24 Toyota Industries Corp インバータ装置及びリップル電流の低減方法
DE10346060A1 (de) * 2003-10-04 2005-05-12 Sensor Technik Wiedemann Gmbh Verfahren zum Betreiben einer Drehfeldmaschine und Wechselrichter dafür
CN100573400C (zh) * 2004-07-20 2009-12-23 皇家飞利浦电子股份有限公司 3-相太阳能变换器电路和方法
US7253574B2 (en) * 2005-07-01 2007-08-07 Ut-Battelle, Llc Effective switching frequency multiplier inverter
US7218071B1 (en) * 2006-03-14 2007-05-15 Gm Global Technology Operations, Inc. Method and apparatus for increasing AC motor torque output at low frequency
US7952308B2 (en) * 2008-04-04 2011-05-31 GM Global Technology Operations LLC Method and apparatus for torque ripple reduction
DE102008018885A1 (de) * 2008-04-14 2009-10-22 Sew-Eurodrive Gmbh & Co. Kg Leiterplatte, Verfahren zur Bestimmung eines Stromraumzeigers, Umrichter, Leiterplatte und Baureihe von Umrichtern
JP2010068653A (ja) * 2008-09-11 2010-03-25 Sanyo Electric Co Ltd インバータ制御装置及びモータ駆動システム
US8115433B2 (en) * 2008-09-23 2012-02-14 GM Global Technology Operations LLC Electrical system for pulse-width modulated control of a power inverter using phase-shifted carrier signals and related operating methods
DE102010017810A1 (de) * 2009-07-09 2011-02-10 Denso Corporation, Kariya-City Leistungswandler für drehende elektrische Maschinen
JP4941686B2 (ja) * 2010-03-10 2012-05-30 株式会社デンソー 電力変換装置
US8233294B2 (en) * 2010-08-23 2012-07-31 Ford Global Technologies, Llc Method and system for controlling a power converter system connected to a DC-bus capacitor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008042352A1 (de) 2008-09-25 2010-04-08 Robert Bosch Gmbh Ansteuerung eines Synchrongleichrichters

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Hobraiche, J.; Vilain, J.-P.; Macret, P.; Patin, N.; A New PWM Strategy to Reduce the Inverter Input Current Ripples IEEE Transactions on Power ElectronicsVolume: 24 , Issue: 1 Publication Year: 2009 , Page(s): 172 - 180 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012211802A1 (de) 2011-07-08 2013-01-10 Robert Bosch Gmbh Verfahren zur Ansteuerung einer mehrphasigen Maschine

Also Published As

Publication number Publication date
WO2012163651A1 (de) 2012-12-06
JP2014515593A (ja) 2014-06-30
JP5916847B2 (ja) 2016-05-11
US20140191698A1 (en) 2014-07-10
US9608555B2 (en) 2017-03-28
CN103563233A (zh) 2014-02-05

Similar Documents

Publication Publication Date Title
EP2730021B1 (de) Verfahren zur ansteuerung einer mehrphasigen maschine
DE112009000549T5 (de) Elektromotor-Ansteuerungsvorrichtung und Verfahren zu deren Steuerung
DE102011076676A1 (de) Verfahren zur Ansteuerung einer mehrphasigen Maschine
DE102014103454A1 (de) System und Verfahren für einen Schaltleistungswandler
WO2012163645A2 (de) Verfahren zur stromermittlung in einer mehrphasigen maschine
DE102011001032A1 (de) Fahrzeuggenerator
DE102019102777A1 (de) Pulsweitenmodulations-Mustergenerator und entsprechende Systeme, Verfahren und Computerprogramme
DE102012110120A1 (de) Steuervorrichtung für einen Motor-Generator
DE112018006822T5 (de) Leistungsumwandlungsvorrichtung, motormodul und elektrische servolenkvorrichtung
DE102011082973A1 (de) Verfahren zum Angleichen der Ladezustände von Batteriezellen einer Batterie und Batterie zur Ausführung des Verfahrens
DE112020006566T5 (de) Stromrichtereinrichtung
DE102017115639A1 (de) Reduzierung des Rippelstroms bei Schaltvorgängen einer Brückenschaltung
WO2020064429A1 (de) Ladeschaltung für einen fahrzeugseitigen elektrischen energiespeicher
DE102006060828A1 (de) Umrichter mit einer Verzögerungsschaltung für PWM-Signale
DE102020007840A1 (de) Aufwärtswandler zum Laden eines elektrischen Energiespeichers eines elektrisch angetriebenen Fahrzeugs, sowie Fahrzeug und Verfahren
EP3285381A1 (de) Verfahren zum betreiben einer elektrischen maschine und elektrische maschine
DE102014000945A1 (de) Verfahren zum Betrieb sowie Vorrichtung zur Ansteuerung einer rotierenden bürstenlosen elektrischen Maschine
DE102019208559A1 (de) Betreiben von Schaltelementen eines Wechselrichters
DE102012211802A1 (de) Verfahren zur Ansteuerung einer mehrphasigen Maschine
DE102011076667A1 (de) Verfahren zur Reduzierung des Anlaufstromes bei einer mit Blockkommutierung betriebenen mehrphasigen Maschine
DE102011076709A1 (de) Verfahren zur Strommessung in einer mehrphasigen Maschine
DE102022201511B4 (de) Verfahren zur Ansteuerung von Leistungshalbleitern eines Inverters, Computerprogramm, Vorrichtung zur Datenverarbeitung, Inverter, Elektroantrieb sowie Fahrzeug
DE102015202767A1 (de) Verfahren zum Erzeugen eines elektrischen Drehfelds in einem Stator einer elekt-rischen Maschine und Mittel zu dessen Implementierung
DE102021212348B3 (de) Verfahren zum Ansteuern von Halbleiterschaltern mindestens einer Halbbrücke und Schaltungsanordnung
EP3285394A1 (de) Verfahren zum betreiben einer elektrischen maschine und elektrische maschine

Legal Events

Date Code Title Description
R163 Identified publications notified
R081 Change of applicant/patentee

Owner name: SEG AUTOMOTIVE GERMANY GMBH, DE

Free format text: FORMER OWNER: ROBERT BOSCH GMBH, 70469 STUTTGART, DE

Owner name: ROBERT BOSCH GMBH, DE

Free format text: FORMER OWNER: ROBERT BOSCH GMBH, 70469 STUTTGART, DE

R012 Request for examination validly filed
R082 Change of representative

Representative=s name: DEHNSGERMANY PARTNERSCHAFT VON PATENTANWAELTEN, DE

Representative=s name: DEHNS GERMANY, DE

R082 Change of representative

Representative=s name: DEHNSGERMANY PARTNERSCHAFT VON PATENTANWAELTEN, DE

Representative=s name: DEHNS GERMANY PARTNERSCHAFT MBB, DE

R016 Response to examination communication