-
Die vorliegende Erfindung betrifft ein Kältegerät, insbesondere ein Haushaltskältegerät, mit einem Wärmetauscher und wenigstens einem Lüfter zum Antreiben eines Luftstroms durch den Wärmetauscher.
-
Haushaltskältegeräte, bei denen die Effektivität eines Wärmetauschers durch einen Lüfter gesteigert ist, sind zahlreich bekannt. So zeichnen sich insbesondere so genannte NoFrost-Geräte dadurch aus, dass sie als zwangsbelüfteten Wärmetauscher einen Verdampfer aufweisen, der in einer von einer Lagerkammer für Kühlgut getrennten Kammer untergebracht ist und die Lagerkammer durch Luftaustausch kühlt. Aber auch Verflüssiger können zwangsbelüftet sein, insbesondere kompakte Verflüssiger, die nicht an einer Rückwand des Kältegerätegehäuses montiert sind, sondern in einer Maschinenraumnische des Gehäuses untergebracht sind.
-
Die vorliegende Erfindung betrifft in erster Linie Kältegeräte mit zwangsbelüftetem Verflüssiger, ist aber grundsätzlich auch auf beliebige zwangsbelüftete Wärmetauscher anwendbar.
-
Um effizient zu sein, müssen Wärmetauscher eine große Oberfläche auf kleinem Volumen unterbringen. Staubpartikel, die in der über die Oberfläche streichenden Luft mitgeführt werden, lagern sich im Laufe der Zeit darauf ab, so dass sich nach längerem Gebrauch auf dem Wärmetauscher eine Staubschicht ausbildet, die den Wärmeaustausch erheblich behindert. Um einen guten Wirkungsgrad des Kältegeräts sicherzustellen, müsste diese Staubschicht an sich regelmäßig entfernt werden. Dies zu tun sind die Anwender von Haushaltskältegeräten jedoch nicht gewohnt, und selbst wenn sie dazu bereit wären, sind die Wärmetauscher in einem Kältegerät meist schlecht zugänglich, so dass eine Reinigung von Hand, wenn sie denn überhaupt möglich ist, äußerst beschwerlich ist.
-
Aufgabe der vorliegenden Erfindung ist, ein Kältegerät anzugeben, das über lange Zeit einen Betrieb mit ausgezeichnetem Wirkungsgrad ermöglicht, ohne dass dafür ein Benutzer den Wärmetauscher reinigen muss.
-
Die Aufgabe wird gelöst, in dem bei einem Kältegerät mit einem Wärmetauscher und wenigstens einem Lüfter zum Antreiben eines Luftstroms durch den Wärmetauscher die Durchströmungsrichtung des Wärmetauschers umkehrbar ist.
-
Die Wirksamkeit der Umkehrung der Durchströmungsrichtung basiert darauf, dass Verunreinigungen sich vorzugsweise an einer stromaufwärtigen Seite des Wärmetauschers ablagern, weil sie an makro- oder mikroskopischen Oberflächenunebenheiten hängen bleiben. Diese Unebenheiten verhindern zwar ein Hindurchwandern der Verunreinigungen durch den Wärmetauscher, halten diese jedoch allenfalls schwach zurück, wenn sich die Durchströmungsrichtung des Wärmetauschers. umkehrt. Infolgedessen kann durch eine Umkehr der Durchströmungsrichtung ein beträchtlicher Teil der Verunreinigungen, die sich am Wärmetauscher ablagern, aus diesem wieder ausgestoßen werden, und ein effizienter Wärmeübergang vom Wärmetauscher auf den hindurch streichenden Luftstrom kann dauerhaft aufrecht erhalten werden.
-
Um die Durchströmungsrichtung des Wärmetauschers umkehren zu können, können zwei Lüfter vorgesehen sein, die jeweils angeordnet sind, um Luftströme in entgegengesetzter Richtung durch den Wärmetauscher anzutreiben. Einfacher und preiswerter ist die Verwendung eines einzelnen Lüfters, der zwischen einer dem Wärmetauscher anblasenden Betriebsart und einer vom Wärmetauscher absaugenden Betriebsart umschaltbar ist.
-
Um die Betriebsart umzuschalten, kann eine Klappe vorgesehen sein, die es erlaubt, den Wärmetauscher jeweils in unterschiedlichen Richtungen mit einem von dem Lüfter angetriebenen Luftstrom zu beaufschlagen. Eine solche Klappe und zwischen ihr und dem Wärmetauscher verlaufende Leitungen beanspruchen erheblichen Platz. Der Platzbedarf lässt sich reduzieren, wenn zum Umschalten zwischen den Betriebsarten die Laufrichtung eines Rotors des Lüfters veränderbar ist. In einem solchen Fall wird die Klappe nicht benötigt.
-
Es ist möglich, dass das Kältegerät beide Durchströmungsrichtungen des Wärmetauschers im gleichen Umfang nutzt, zum Beispiel indem die Durchströmungsrichtung in regelmäßigen Zeitabständen oder bei jedem Stillstand des Verdichters umgekehrt wird. In diesem Fall ist es zum Erzielen einer guten Reinigungswirkung zweckmäßig, nach jeder Umkehrung der Durchströmungsrichtung den Lüfter zunächst mit hoher Geschwindigkeit zu betreiben, um den Schmutz vom Wärmetauscher zu lösen, und ihn anschließend, während des normalen Kühlbetriebs, mit niedrigerer Geschwindigkeit zu betreiben.
-
Eine Optimierung der Strömungswege der Luft im Kältegerät im Hinblick auf z. B. geringen Strömungswiderstand und/oder schwaches Strömungsgeräusch ist jedoch einfacher, wenn sie nur für eine Durchströmungsrichtung vorgenommen werden muss oder wenn die Anforderungen für eine selten gebrauchte Durchströmungsrichtung großzügiger sein dürfen als für eine überwiegend gebrauchte. Daher ist es bevorzugt, dass der Wärmetauscher im Kühlbetrieb nur in einer einzigen ersten Richtung durchströmt ist, und eine Durchströmung in der zweiten Richtung nur für jeweils kurze Zeitspannen zum Reinigen des Wärmetauschers stattfindet.
-
Die Betriebsart, in der der Lüfter überwiegend, während des Kühlbetriebs, arbeitet, ist vorzugsweise absaugend. Dies hat den Vorteil, dass der Schmutz sich während des Kühlbetriebs überwiegend an der strömungstechnisch vom Lüfter abgewandten Seite des Verdampfers sammelt und durch Blasen wieder beseitigt werden kann. Der Schmutz braucht daher nicht, um wirksam entfernt werden zu können, den Lüfter zu passieren.
-
Ein Kanal, auf dem von dem Lüfter angetriebene Luft durch das Kältegerät geführt ist, kann zweckmäßigerweise an einer vom Lüfter abgewandten Seite des Wärmetauschers einen Abschnitt aufweisen, in dem die Geschwindigkeit eines vom Lüfter angetriebenen Luftstroms niedriger ist als in dem Wärmetauscher selbst. In einem solchen Abschnitt kann bei einem Reinigungsvorgang vom Lüfter gelöster Schmutz sich absetzen und dauerhaft liegenbleiben, wenn der Kühlbetrieb wieder aufgenommen wird.
-
Falls die Reinigung des Wärmetauschers im Saugbetrieb vonstatten geht, ist ein solcher Abschnitt mit geringerer Strömungsgeschwindigkeit zweckmäßigerweise an einer vom Lüfter abgewandten Seite des Wärmetauschers vorgesehen.
-
Anderenfalls ist ein solcher Abschnitt mit verringerter Strömungsgeschwindigkeit zweckmäßigerweise an einer vom Wärmetauscher abgewandten Seite des Lüfters vorgesehen.
-
Im einen wie im anderen Falle ist es zweckmäßig, wenn dieser Abschnitt eine von einer Hauptdurchgangsrichtung des Kanals abzweigende Tasche umfasst, in der der Schmutz gegen die Luftströmung im Kanal abgeschirmt dauerhaft verbleiben kann.
-
Vorteilhaft ist auch, wenn eine Wand des Kanals Vorsprünge trägt, insbesondere in Form von Haken, Nadeln oder Borsten, die einem entlang der Wand zum Wärmetauscher verlaufenden Luftstrom entgegen gerichtet sind. Derartige Vorsprünge behindern kaum den Transport von grobflockigem, vom Wärmetauscher abgelöstem Schmutz vom Wärmetauscher fort. Wenn jedoch nach dem Reinigungsvorgang die Richtung der Luftströmung wieder zum Wärmetauscher hin verläuft, können die Vorsprünge eine Rückkehr des Schmutzes zum Wärmetauscher behindern und ihn ggf. zur Wand hin ablenken und dort binden.
-
Die erfindungsgemäß vorgesehene Möglichkeit der Umkehr der Durchströmungsrichtung macht auch die Verwendung eines Luftfilters im Kanal sinnvoll. Während bei einem herkömmlichen Kältegerät ohne Strömungsrichtungsumkehr die Gefahr groß ist, dass, wenn ein solcher Filter durch Schmutz verstopft ist, die Strömung durch den Wärmetauscher stark reduziert ist und die Wirkung des Wärmetauschers noch stärker eingeschränkt ist als durch eine darauf abgelagerte Schmutzschicht, kann durch die Richtungsumkehr eine solche Schmutzablagerung auch von dem Filter beseitigt werden, so dass die Ablagerung des Schmutzes auf dem Wärmetauscher selbst von vorneherein verhindert werden kann.
-
Damit der vom Lüfter angetriebene Luftstrom vollständig den Wärmetauscher passiert, sind beide zweckmäßigerweise durch einen Rohrabschnitt verbunden.
-
Vorteilhaft ist auch, wenn der Wärmetauscher, der Lüfter und der Rohrabschnitt zu einer Baueinheit zusammengefasst sind, die als Einheit in dem Kältegerät montiert ist.
-
Um den abgelagerten Schmutz wirksam zu beseitigen, ist der Durchsatz des Lüfters in seiner für die Reinigung verwendeten Betriebsart zweckmäßigerweise höher als in der für den normalen Kühlbetrieb genutzten. Eine eventuell mit dem höheren Durchsatz verbundene Geräuschentwicklung kann in den kurzen Zeitspannen, die die Reinigung in Anspruch nimmt, hingenommen werden.
-
Zweckmäßigerweise kann eine Betriebszustandsanzeige vorgesehen sein, an der die jeweils gewählte Durchströmungsrichtung erkennbar ist. Wenn mit der Änderung der Durchströmungsrichtung oder gegebenenfalls der damit verknüpften Änderung des Durchsatzes eine auffällige Veränderung des Betriebsgeräusches verknüpft ist, kann ein Benutzer, der diese Änderung wahrnimmt, sich anhand der Betriebszustandsanzeige Klarheit über die Ursache verschaffen.
-
Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen unter Bezugnahme auf die beigefügten Figuren. Es zeigen:
-
1 eine perspektivische Ansicht eines erfindungsgemäßen Kältegeräts von hinten;
-
2 eine perspektivische Ansicht des Kältegeräts von vorne;
-
3 einen Längsschnitt einer einen Verflüssiger, einen Lüfter und einen Rohrabschnitt umfassenden Baugruppe gemäß einer ersten Ausgestaltung;
-
4 einen zu 2 analogen Schnitt gemäß einer zweiten Ausgestaltung;
-
5 einen Schnitt durch den Maschinenraum eines Kältegeräts, in dem die Verflüssiger-Lüfter-Baugruppe der 3 eingebaut ist;
-
6 einen Schnitt durch den Maschinenraum eines Kältegeräts mit einer Verflüssiger-Lüfter-Baugruppe gemäß einer dritten Ausgestaltung; und
-
7 einen Schnitt durch den Maschinenraum und die Verflüssiger-Lüfter-Baugruppe gemäß einer Weiterbildung der dritten Ausgestaltung entlang der Ebene VII-VII aus 6.
-
1 zeigt in einer perspektivischen Ansicht von hinten einen erfindungsgemäßen Haushaltskühlschrank in Tischbauweise. Am Fuße einer Rückwand des Korpus 1 des Kühlschranks ist eine Maschinenraumnische 2 ausgespart. Sie erstreckt sich im Wesentlichen in die gesamte Breite und in etwa über die halbe Tiefe des Korpus 1 und enthält unter anderem einen Verdichter 3 und eine Verflüssiger-Lüfter-Baugruppe 4. Die Verflüssiger-Lüfter-Baugruppe 4 hat ein im Wesentlichen quaderförmiges, an zwei entgegengesetzten Seiten offenes Gehäuse 5. Eine der offenen Seiten ist dem Verdichter 3 zugewandt. An dieser offenen Seite ist ein Axiallüfter 6 montiert, d. h. ein Lüfter, dessen rotierendes Schaufelrad einen zu seiner Drehachse parallelen Luftstrom antreibt. Ein solcher Lüfter ist im Rahmen der vorliegenden Erfindung bevorzugt, da sein Wirkungsgrad, anders als etwa bei einem Radiallüfter, allenfalls geringfügig von seiner Laufrichtung abhängt. Die zweite offene Seite des Gehäuses 5 liegt einer Seitenwand der Maschinenraumnische mit Abstand gegenüber.
-
Wenn der Verdichter 3 im Betrieb ist, um eine Lagerkammer 7 (siehe 2) im Inneren des Korpus 1 zu kühlen, dann ist die Laufrichtung des Lüfters 6 so gewählt, dass dieser gleichzeitig Luft aus dem Gehäuse 5 ansaugt und gegen den Verdichter 3 bläst. Diese Luft tritt über einen Zwischenraum 8 zwischen der Baugruppe 4 und der Seitenwand der Maschinenraumnische und die vom Lüfter 6 abgewandte offene Seite in das Gehäuse 5 ein und durchströmt den darin untergebrachten Verflüssiger. Der Verflüssiger 9 kann, wie in 3 gezeigt, ein Lamellenverdampfer mit parallel zur Durchströmungsrichtung angeordneten Lamellen 10 und einem in Mäandern die Lamellen 10 kreuzenden Kältemittelrohr 11 sein. Alternativ könnte der Verflüssiger 9 auch als Drahtrohrverflüssiger oder reiner Rohrverflüssiger ausgebildet sein; generell ist jede Bauform geeignet, die kompakt genug ist, um in dem Gehäuse 5 untergebracht zu werden.
-
Der Lüfter 6 ist durch eine nicht dargestellte elektronische Steuereinheit wie etwa einen Mikrocontroller gesteuert. Vorzugsweise ist diese Steuereinheit dieselbe, die auch in allgemein üblicher Weise den Betrieb des Verdichters 3 anhand einer in der Lagerkammer 7 gemessenen Temperatur steuert. Im Rahmen der Erfindung kommen mehrere Verfahren in Betracht, nach denen die Steuereinheit den Lüfter 6 steuern kann: Einem ersten Verfahren zufolge startet die Steuereinheit, wenn sie Kühlbedarf in der Lagerkammer 7 feststellt, im Wesentlichen zeitgleich mit dem Verdichter 3 auch den Lüfter 6 so, dass dieser Luft durch den Verflüssiger 9 hindurch saugt und gegen den Verdichter 3 bläst. Dabei sammelt sich Staub in einem vom Lüfter 6 abgewandtem Bereich 12 des Verflüssigers 9. Die Steuereinheit zählt die Betriebsstunden, die der Lüfter 6 in diesem Betriebszustand verbringt, und wenn ein Grenzwert erreicht ist, schaltet sich die Laufrichtung des Lüfters 6 um, so dass dieser für einige Minuten Luft durch den Verflüssiger 6 hindurch bläst und dabei den im Bereich 12 abgeschiedenen Staub aus dem Verflüssiger 9 wieder hinaus bläst. Um eine effektive Beseitigung des Staubs in kurzer Zeit zu ermöglichen, kann die Drehzahl des Verflüssigers 9 zu dieser Zeit höher sein als der des normalen Kühlbetriebs. Der Betriebsstundenzähler wird zurückgesetzt und beginnt von Neuem zu zählen, so dass sich das Abblasen des Staubs periodisch wiederholt.
-
Die Umkehr der Blasrichtung des Lüfters 6 und/oder die Erhöhung seiner Drehzahl kann dazu führen, dass sich das Betriebsgeräusche des Kältegeräts während des Reinigens des Verflüssigers 9 deutlich von dem Betriebsgeräusch im normalen Kühlbetrieb unterscheidet. Um zu verhindern, dass ein Benutzer hier eine technische Störung vermutet, kann an einer Betriebszustandsanzeige 14 an der Vorderseite des Korpus 1 ein Feld vorgesehen sein, an dessen Zustand ein Benutzer erkennen kann, ob gerade eine Reinigung des Verflüssigers 9 im Gange ist oder nicht.
-
Eine Alternative zur Verwendung eines Betriebsstundenzählers ist, dass die Steuereinheit den Lüfter 6 in jeder Betriebsphase des Verdichters 3 einmal für kurze Zeit gegen den Verflüssiger 9 blasen lässt. Ein solches Blasen kann zum Beispiel zu Beginn jeder Betriebsphase des Verdichters stattfinden, wenn diese das Kältemittel umzuwälzen beginnt, die Umsetzung aber noch nicht zu einer merklichen Erwärmung des Verflüssigers 9 geführt hat.
-
In Betracht kommt auch, den Lüfter 6 jedes Mal im Anschluss an eine Betriebsphase des Verdichters 3 gegen den Verflüssiger 9 blasen zu lassen, um so den in der vorhergehenden Betriebsphase im Bereich 12 abgesetzten Schmutz sofort wieder zu beseitigen, bevor sich dieser am Verflüssiger 9 fest anlagern kann.
-
Eine andere Möglichkeit der Steuerung des Lüfters 6 ist, dessen Laufrichtung in regelmäßigen Zeitabständen, insbesondere nach einer vorgegebenen Zahl von Betriebsstunden des Verdichters 3, umzukehren, oder die Laufrichtung des Lüfters 6 jeweils von einer Betriebsphase des Verdichters 3 zur nächsten umzukehren. So wird Schmutz, der sich während einer Betriebsphase im Bereich 12 des Verflüssigers abgesetzt hat, in der darauf folgenden Betriebsphase, bei umgekehrter Durchströmungsrichtung, allmählich wieder beseitigt, während sich gleichzeitig Schmutz an der dem Lüfter 6 zugewandten Seite 13 des Verflüssigers 9 absetzen kann. Dieser wird wiederum in der übernächsten Betriebsphase des Verdichters wieder beseitigt, in der der Verflüssiger wiederum in derselben Richtung durchströmt ist wie in der ersten Phase.
-
Auch hier kann es zweckmäßig sein, die Reinigungswirkung zu verstärken, indem der Lüfter 6 jeweils zu Beginn einer Einschaltphase für kurze Zeit mit erhöhter Geschwindigkeit betrieben wird.
-
Denkbar ist auch, die Laufrichtung des Lüfters 6 nicht zwischen zwei Betriebsphasen, sondern kurz vor Ende jeder einzelnen Betriebsphase umzukehren, um den im Laufe dieser Betriebsphase abgelagerten Staub wieder auszustoßen. Auch hier kann die Laufgeschwindigkeit des Lüfters beim Ausblasen des Staubes höher gewählt sein als während des vorhergehenden normalen Kühlbetriebs.
-
4 zeigt einen zu 3 analogen Schnitt durch eine Verflüssiger-Lüfter-Baugruppe 4 gemäß einer zweiten Ausgestaltung. Diese Baugruppe 4 ist vorgesehen, um mit einer nach dem ersten oben beschriebenen Verfahren arbeitenden Steuereinheit zusammen zu arbeiten, mit anderen Worten sie ist vorgesehen für eine Betriebsweise, bei der im Kühlbetrieb der Lüfter 6 Luft durch den Verflüssiger 9 hindurch saugt und im Reinigungsbetrieb Luft gegen den Verflüssiger 9 bläst. Ein an der vom Lüfter abgewandten Öffnung des Gehäuses 5 angeordneter Filter 15, der z. B. die Form eines Drahtgeflechts oder eines Stücks Streckmetall haben kann, hält angesaugte grobe Flusen vom Verflüssiger 9 fern. So setzt sich im Laufe des Betriebs eine Schmutzschicht auf dem Filter 15 ab, die, genauso wie der Verflüssiger 9 bei der Verflüssiger-Lüfter-Baugruppe 4 der 3, durch Anblasen wieder gereinigt werden kann.
-
5 zeigt einen Schnitt durch die Maschinenraumnische 2 eines Kältegeräts gemäß einer weitergebildeten Ausgestaltung der Erfindung. Die Schnittebene verläuft vertikal in Breitenrichtung des Korpus 1. Die Figur zeigt eine Verflüssiger-Lüfter-Baugruppe 4 vom mit Bezug auf 2 beschriebenen Typ; genauso gut könnte auch eine vom Typ der 3 Verwendung finden.
-
Öffnungen 16, über die Frischluft in die Maschinenraumnische 2 gelangt, sind in einer Rückwand 17 der Maschinenraumnische 2 oder in einer Seitenwand 18, direkt der Einlassöffnung des Gehäuses 5 gegenüberliegend, gebildet. Die gegenüberliegende Öffnung des Gehäuses 5 ist in eine Trennwand 19 eingefügt, die die Maschinenraumnische 2 in zwei Kammern 20, 21 gliedert. Die Verflüssiger-Lüfter-Baugruppe 4 befindet sich im Wesentlichen in der Kammer 20; der Verdichter 3 ist in der Kammer 21 untergebracht. Die Verflüssiger-Lüfter-Baugruppe 4 ist in der Kammer 20 mit Abstand vom Boden montiert. Wenn der Lüfter 6 im Reinigungsbetrieb läuft, kann Schmutz, der sich vom Verflüssiger 9 löst und nicht unmittelbar durch die Öffnungen 16 ins Freie ausgetragen wird, auf einen Boden 23 der Kammer 20 fallen. Wenn der Lüfter 6 später wieder im Kühlbetrieb arbeitet, ist die Strömungsgeschwindigkeit der Luft am Boden 23 der Kammer 20 gering, so dass der dort liegende Schmutz nicht wieder in den Verflüssiger 9 hinein gesogen wird. Allenfalls kann die im oberen Bereich der Kammer 19 von den Öffnungen zum Verflüssiger 9 hin zirkulierende Luftströmung dazu führen, dass der Schmutz am Boden 23 in Richtung der Trennwand 19 mitgespült wird und so schließlich in einem Zwischenraum 22 zwischen dem Gehäuse 5 der Baugruppe 4 und dem Boden 23 geschoben wird, in dem er sicher gefangen bleibt. Indem auf diese Weise der vom Verflüssiger 9 abgelöste Schmutz im Gerät gefangen bleibt, wird eine Behelligung des Benutzers durch ausgeworfenen Schmutz vermieden oder zumindest begrenzt.
-
6 zeigt einen horizontalen Schnitt durch die Maschinenraumnische 2 eines Kältegeräts gemäß einer weiteren Ausgestaltung der Erfindung. Der Verflüssiger 9 ist hier im Wesentlichen rohrförmig ausgebildet, wobei die Wandung des Rohrs durch Kältemittelleitungen 24 und diese verbindende, sich jeweils in radialer Richtung bezogen auf die Achse des Rohrs erstreckende Lamellen 25 gebildet ist. Das Rohr ist an einer dem Lüfter 6 gegenüberliegenden Seite verschlossen, sei es wie gezeigt durch eine einen Teil der Verflüssiger-Lüfter-Baugruppe 4 bildende Platte 26 oder durch eine Platzierung des vom Lüfter abgewandten Endes des Verflüssigers 9 in unmittelbarem Kontakt mit der Seitenwand 18. Diese Anordnung hat die Folge, dass, wenn im Kühlbetrieb der Lüfter 6 Luft durch den Verflüssiger 9 hindurch saugt, deren Strömungsgeschwindigkeit um so größer wird, je näher sie der Längsachse des Verflüssigers 9 kommt. Umgekehrt nimmt, wenn im Reinigungsbetrieb die Luft durch den Verflüssiger 9 geblasen wird, deren Geschwindigkeit mit zunehmender Entfernung von der Achse ab. Eine Luftströmung, die während des Durchgangs zwischen den Lamellen 25 noch schnell genug ist, um dort abgelagerten Staub mitzureißen, verliert daher beträchtlich an Geschwindigkeit, wenn sie sich den Wänden der Maschinenraumnische 2 nähert. Dadurch kann sich der gelöste Staub am Boden 23 der Maschinenraumnische absetzen.
-
Bei der in 6 gezeigten Ausgestaltung ist die Rückseite der Maschinenraumnische 2 weitgehend offen, um einen freien Zu- und Abfluss von Luft zu ermöglichen. Während dies bei einem Kältegerät in Tischbauweise eine taugliche Lösung ist, kann sie bei einem Einbaugerät zu einem strömungstechnischen Kurzschluss und zu einem Wärmestau führen. Um hier sicherzustellen, dass an Verflüssiger 9 und Verdichter 3 erwärmte Luft nicht sofort wieder angesaugt wird, und ausreichend kühle Frischluft zuführen zu können, müssen Ein- und Auslassöffnungen eines Kanals, auf dem die Luft durch das Gerät geführt ist, von einander weit beabstandet sein, und es kann nötig sein, eine Einlassöffnung des Kanals an der Vorderseite des Geräts zu platzieren. 7 zeigt eine Weiterbildung der Ausgestaltung von 6, bei der ein sich unter der Lagerkammer 7 her erstreckender Ansaugkanal 27 die Kammer 20 der Maschinenraumnische 2 mit einer vorderseitigen Einlassöffnung verbindet. Der Ansaugkanal 27 mündet in die Kammer 20 oberhalb von deren Bodenplatte 23, um zu verhindern, dass auf der Bodenplatte bereits abgelagerter grober Schmutz in einer Reinigungsphase des Verflüssigers von der an der Einmündung des Ansaugkanals 27 in die Kammer 20 relativ starken Luftströmung erfasst und ins Freie befördert wird, wo er einem Benutzer störend auffallen könnte. Feiner Staub, der sich in der Kammer nicht schnell genug am Boden 23 absetzt, gelangt in den Ansaugkanal 23 und zum größten Teil über diesen ins Freie. Um sicherzustellen, dass Staub, der sich am Ende einer Reinigungsphase noch im Ansaugkanal 27 befindet, nicht sofort wieder in den Verflüssiger gesaugt wird, können an einer Wand des Ansaugkanals 27 der Ansaugströmung entgegengesetzt orientierte Borsten 28 angebracht sein.
-
Wenn im Kühlbetrieb Frischluft durch den Ansaugkanal 5 zuströmt, ist sie in der Nähe des Bodens 23 noch zu langsam, um den dort liegenden Staub aufzuwirbeln und zum Verflüssiger 9 mitzureißen. Ihre Stärke kann aber ausreichen, um den Staub am Boden 23 zu verschieben. Dies wird ausgenutzt, in dem ein von der Rückwand 17 der Nische 2 abstehender Steg 28 eine Tasche 29 abteilt, in der sich der Staub sammeln kann.