DE102010013806A1 - Materialien für organische Elektrolumineszenzvorrichtungen - Google Patents

Materialien für organische Elektrolumineszenzvorrichtungen Download PDF

Info

Publication number
DE102010013806A1
DE102010013806A1 DE102010013806A DE102010013806A DE102010013806A1 DE 102010013806 A1 DE102010013806 A1 DE 102010013806A1 DE 102010013806 A DE102010013806 A DE 102010013806A DE 102010013806 A DE102010013806 A DE 102010013806A DE 102010013806 A1 DE102010013806 A1 DE 102010013806A1
Authority
DE
Germany
Prior art keywords
organic
group
substituted
radicals
compound according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE102010013806A
Other languages
English (en)
Other versions
DE102010013806B4 (de
Inventor
Dr. Büsing Arne
Dr. Heil Holger
Dr. Fernaud Teresa Mujica
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
Merck Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent GmbH filed Critical Merck Patent GmbH
Priority to DE102010013806.1A priority Critical patent/DE102010013806B4/de
Priority to US13/638,975 priority patent/US9796684B2/en
Priority to JP2013503022A priority patent/JP6230908B2/ja
Priority to PCT/EP2011/001143 priority patent/WO2011120626A1/de
Publication of DE102010013806A1 publication Critical patent/DE102010013806A1/de
Priority to JP2015247681A priority patent/JP6141397B2/ja
Application granted granted Critical
Publication of DE102010013806B4 publication Critical patent/DE102010013806B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/26Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

Die vorliegende Erfindung betrifft Pyrimidinderivate sowie organische Elektrolumineszenzvorrichtungen, welche diese Pyrimidinderivate als Elektronentransportmaterial enthalten.

Description

  • Die vorliegende Erfindung betrifft Pyrimidinderivate sowie organische Elektrolumineszenzvorrichtungen, welche diese Pyrimidinderivate als Elektronentransportmaterialien enthalten.
  • Der Aufbau organischer Elektrolumineszenzvorrichtungen (OLEDs), in denen organische Halbleiter als funktionelle Materialien eingesetzt werden, ist beispielsweise in US 4539507 , US 5151629 , EP 0676461 und WO 98/27136 beschrieben. Allerdings sind noch weitere Verbesserungen wünschenswert. So gibt es insbesondere in Bezug auf die Lebensdauer, die Effizienz und die Betriebsspannung organischer Elektrolumineszenzvorrichtungen noch Verbesserungsbedarf. Weiterhin ist es erforderlich, dass die Verbindungen eine hohe thermische Stabilität und eine hohe Glasübergangstemperatur aufweisen und sich unzersetzt sublimieren lassen.
  • Insbesondere auch bei den Elektronentransportmaterialien sind noch Verbesserungen der Eigenschaften wünschenswert, da gerade auch die Eigenschaften des Elektronentransportmaterials einen wesentlichen Einfluss auf die oben genannten Eigenschaften der organischen Elektrolumineszenzvorrichtung ausüben. Insbesondere besteht Verbesserungsbedarf bei Elektronentransportmaterialien, welche gleichzeitig zu guter Effizienz, hoher Lebensdauer und geringer Betriebsspannung führen. Gerade auch die Eigenschaften des Elektronentransportmaterials sind häufig limitierend für die Lebensdauer, die Effizienz und die Betriebsspannung der organischen Elektrolumineszenzvorrichtung.
  • Dabei wäre es wünschenswert, Elektronentransportmaterialien zur Verfügung zu haben, welche zu einer besseren Elektroneninjektion in die emittierende Schicht führen, da eine elektronenreichere Emissionsschicht zu einer besseren Effizienz führt. Außerdem kann durch eine bessere Injektion die Betriebsspannung gesenkt werden. Hierfür sind daher weitere Verbesserungen des Elektronentransportmaterials erforderlich.
  • Weiterhin besteht generell noch Verbesserungsbedarf bei der Prozessierbarkeit der Materialien, da viele Materialien, die gemäß dem Stand der Technik in organischen Elektrolumineszenzvorrichtungen verwendet werden, dazu neigen, an der Aufdampfquelle im Herstellungsprozess der Elektrolumineszenzvorrichtung zu kristallisieren und somit die Aufdampfquelle zu verstopfen. Diese Materialien können daher nur unter erhöhtem technischen Aufwand in der Massenproduktion eingesetzt werden.
  • Elektrolumineszenzvorrichtungen, die AlQ3 als Elektronenleiter verwenden, sind schon lange bekannt und wurden schon 1993 in US 4,539,507 beschrieben. AlQ3 wird seither häufig als Elektronentransportmaterial verwendet, hat allerdings mehrere Nachteile: Es lässt sich nicht rückstandsfrei aufdampfen, da es sich bei der Sublimationstemperatur teilweise zersetzt, was insbesondere für Produktionsanlagen ein großes Problem darstellt. Dies hat zur Folge, dass die Aufdampfquellen immer wieder gereinigt oder gewechselt werden müssen. Des Weiteren gelangen Zersetzungsprodukte von AlQ3 in die OLED, die dort zu einer verringerten Lebensdauer und reduzierten Quanten- und Leistungseffizienz beitragen. AlQ3 hat außerdem eine niedrige Elektronenbeweglichkeit, was zu höheren Spannungen und damit zu einer niedrigeren Leistungseffizienz führt. Um Kurzschlüsse im Display zu vermeiden, würde man gern die Schichtdicke erhöhen; dies ist mit AlQ3 wegen der geringen Ladungsträgerbeweglichkeit und der daraus resultierenden Spannungserhöhung nicht möglich. Die Ladungsträgerbeweglichkeit anderer Elektronenleiter ( US 4,539,507 ) ist ebenfalls zu gering, um dickere Schichten damit aufzubauen, wobei die Lebensdauer der OLED noch schlechter ist als bei Verwendung von AlQ3. Als ungünstig erweist sich auch die Eigenfarbe (im Feststoff gelb) von AlQ3, die gerade bei blauen OLEDs durch Reabsorption und schwache Reemission zu Farbverschiebungen führen kann. Hier sind blaue OLEDs nur mit starken Effizienz- bzw. Farborteinbußen darstellbar.
  • Es besteht also weiterhin Bedarf an Elektronentransportmaterialien, die in organischen Elektrolumineszenzvorrichtungen zu guten Effizienzen und gleichzeitig zu hohen Lebensdauern führen. Es wurde nun überraschend gefunden, dass die im Folgenden aufgeführten Pyrimidinderivate als Elektronentransportmaterialien deutliche Verbesserungen gegenüber den Materialien gemäß dem Stand der Technik aufweisen. Mit diesen Materialien ist es möglich, gleichzeitig hohe Effizienzen und lange Lebensdauern zu erhalten, was mit Materialien gemäß dem Stand der Technik nicht in dem Maße möglich ist. Zudem wurde gefunden, dass zusätzlich die Betriebsspannung deutlich gesenkt werden kann, was zu höheren Leistungseffizienzen führt.
  • Weiterhin wurde gefunden, dass organische Elektrolumineszenzvorrichtungen, die diese Pyrimidinderivate als Elektronentransportmaterial in Kombination mit einer organischen Alkalimetallverbindung enthalten, deutliche Verbesserungen gegenüber dem Stand der Technik aufweisen. Mit dieser Materialkombination werden gleichzeitig hohe Effizienzen und lange Lebensdauern erzielt und die Betriebsspannungen gesenkt.
  • Aus der EP 1582516 und WO 2006/067931 ist die Verwendung von Stickstoff-haltigen Heterocyclen als Elektronentransportmaterial in organischen Elektrolumineszenzvorrichtungen bekannt. Es gibt jedoch auch gegenüben den darin offenbarten Materialien noch weiteren Verbesserungsbedarf, insbesondere im Hinblick auf Betriebsspannung, Lebensdauer und Effzienz.
  • Gegenstand der Erfindung ist somit eine Verbindung gemäß Formel (1),
    Figure 00030001
    Formel (1) wobei für die verwendeten Symbole und Indizes gilt:
    Pym ist eine Gruppe der folgenden Formel (2) oder (3),
    Figure 00040001
    wobei die gestrichelte Bindung die Bindung an das Anthracen andeutet;
    Ar ist eine kondensierte Aryl- oder Heteroarylgruppe mit 10 bis 30 aromatischen Ringatomen, die mit einem oder mehreren Resten R12 substituiert sein kann;
    R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12 ist bei jedem Auftreten gleich oder verschieden H, D, F, Cl, Br, I, CHO, N(R13)2, N(Ar1)2, B(Ar1)2, Si(R13)2, Si(Ar1)2, C(=O)Ar1, P(=O)(Ar1)2, S(=O)Ar1, S(=O)2Ar1, CR13=CR13Ar1, CN, NO2, Si(R13)3, B(OR13)2, B(R13)2, B(N(R13)2)2, OSO2R13, eine geradkettige Alkyl-, Alkenyl-, Alkinyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkenyl-, Alkinyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R13 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CH2-Gruppen durch R13C=CR13, C≡C, Si(R13)2, Ge(R13)2, Sn(R13)2, C=O, C=S, C=Se, C=NR13, P(=O)(R13), SO, SO2, NR13, O, S oder CONR13 ersetzt sein können und wobei ein oder mehrere H-Atome durch D, F, Cl, Br, I, CN oder NO2 ersetzt sein können, oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R13 substituiert sein kann, oder eine Aryloxy- oder Heteroaryloxygruppe mit 5 bis 60 aromatischen Ringatomen, die durch einen oder mehrere Reste R13 substituiert sein kann, oder eine Kombination dieser Systeme; dabei können zwei oder mehrere benachbarte Substituenten R1 bis R12 auch miteinander ein mono- oder polycyclisches, aliphatisches oder aromatisches Ringsystem bilden;
    Ar1 ist bei jedem Auftreten gleich oder verschieden ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 30 aromatischen Ringatomen, das mit einem oder mehreren Resten R13 substituiert sein kann; dabei können auch zwei Reste Ar1, welche an dasselbe Stickstoff-, Phosphor-, Silicium- oder Boratom binden, durch eine Einfachbindung oder eine Brücke, ausgewählt aus B(R13), C(R13)2, Si(R13)2, C=O, C=NR13, C=C(R13)2, O, S, S=O, SO2, N(R13), P(R13) und P(=O)R13, miteinander verknüpft sein;
    R13 ist bei jedem Auftreten gleich oder verschieden H, D oder ein aliphatischer, aromatischer und/oder heteroaromatischer Kohlenwasserstoffrest mit 1 bis 20 C-Atomen, in dem auch H-Atome durch D oder F ersetzt sein können; dabei können zwei oder mehrere benachbarte Substituenten R13 auch miteinander ein mono- oder polycyclisches, aliphatisches oder aromatisches Ringsystem bilden.
  • Unter benachbarten Substituenten R1 bis R12 im Sinne dieser Erfindung werden Substituenten verstanden, die an direkt benachbarte Kohlenstoffatome binden, also an Kohlenstoffatome, die aneinander gebunden sind.
  • Eine Arylgruppe im Sinne dieser Erfindung enthält mindestens 6 C-Atome; eine Heteroarylgruppe im Sinne dieser Erfindung enthält mindestens 2 C-Atome und mindestens 1 Heteroatom, mit der Maßgabe, dass die Summe aus C-Atomen und Heteroatomen mindestens 5 ergibt. Die Heteroatome sind bevorzugt ausgewählt aus N, O und/oder S. Dabei wird unter einer Arylgruppe bzw. Heteroarylgruppe entweder ein einfacher aromatischer Cyclus, also Benzol, bzw. ein einfacher heteroaromatischer Cyclus, beispielsweise Pyridin, Pyrimidin, Thiophen, etc., oder eine kondensierte Aryl- oder Heteroarylgruppe verstanden.
  • Unter einer kondensierten Aryl- oder Heteroarylgruppe im Sinne dieser Erfindung wird eine Aryl- bzw. Heteroarylgruppe verstanden, in der mindestens zwei aromatische oder heteroaromatische Ringe, beispielsweise Benzolringe, miteinander „verschmolzen”, d. h. durch Anellierung einander ankondensiert sind, also mindestens eine gemeinsame Kante und dadurch auch ein gemeinsames aromatisches System aufweisen. So sind beispielsweise Systeme wie Naphthalin, Anthracen, Phenanthren, Benzanthracen, Pyren, etc. als kondensierte Arylgruppen und Chinolin, Acridin, Benzothiophen, Carbazol, etc. als kondensierte Heteroarylgruppen im Sinne dieser Erfindung zu sehen, während beispielsweise Fluoren, Spirobifluoren, etc. keine kondensierten Arylgruppen darstellen, da es sich hierbei um separate aromatische Elektronensysteme handelt.
  • Ein aromatisches Ringsystem im Sinne dieser Erfindung enthält mindestens 6 C-Atome im Ringsystem. Ein heteroaromatisches Ringsystem im Sinne dieser Erfindung enthält mindestens 1 C-Atome und mindestens ein Heteroatom im Ringsystem, mit der Maßgabe, dass die Summe aus C-Atomen und Heteroatomen mindestens 5 ergibt. Die Heteroatome sind bevorzugt ausgewählt aus N, O und/oder S. Unter einem aromatischen oder heteroaromatischen Ringsystem im Sinne dieser Erfindung soll ein System verstanden werden, das nicht notwendigerweise nur Aryl- oder Heteroarylgruppen enthält, sondern in dem auch mehrere Aryl- oder Heteroarylgruppen durch eine kurze, nicht-aromatische Einheit (bevorzugt weniger als 10% der von H verschiedenen Atome), wie z. B. ein sp3-hybridisiertes C-, N- oder O-Atom, unterbrochen sein können. So sollen beispielsweise auch Systeme wie 9,9'-Spirobifluoren, 9,9-Diarylfluoren, Triarylamin, Diarylether, Stilben, Benzophenon, etc. als aromatische Ringsysteme im Sinne dieser Erfindung verstanden werden. Ebenso werden unter einem aromatischen bzw. heteroaromatischen Ringsystem Systeme verstanden, in denen mehrere Aryl- bzw. Heteroarylgruppen durch Einfachbindungen miteinander verknüpft sind, beispielsweise Biphenyl, Terphenyl oder Bipyridin.
  • Im Rahmen der vorliegenden Erfindung werden unter einer C1- bis C40-Alkylgruppe, in der auch einzelne H-Atome oder CH2-Gruppen durch die oben genannten Gruppen substituiert sein können, besonders bevorzugt die Reste Methyl, Ethyl, n-Propyl, i-Propyl, n-Butyl, i-Butyl, s-Butyl, t-Butyl, 2-Methylbutyl, n-Pentyl, s-Pentyl, tert-Pentyl, 2-Pentyl, neo-Pentyl, Cyclopentyl, n-Hexyl, s-Hexyl, tert-Hexyl, 2-Hexyl, 3-Hexyl, neo-Hexyl, Cyclohexyl, 2-Methylpentyl, n-Heptyl, 2-Heptyl, 3-Heptyl, 4-Heptyl, Cycloheptyl, 1-Methylcyclohexyl, n-Octyl, 2-Ethylhexyl, Cyclooctyl, 1-Bicyclo[2,2,2]octyl, 2-Bicyclo[2,2,2]octyl, 2-(2,6-Dimethyl)octyl, 3-(3,7-Dimethyl)octyl, Trifluormethyl, Pentafluorethyl und 2,2,2-Trifluorethyl verstanden. Unter einer Alkenylgruppe werden besonders bevorzugt die Reste Ethenyl, Propenyl, Butenyl, Pentenyl, Cyclopentenyl, Hexenyl, Cyclohexenyl, Heptenyl, Cycloheptenyl, Octenyl und Cyclooctenyl verstanden. Unter einer Alkinylgruppe werden besonders bevorzugt die Reste Ethinyl, Propinyl, Butinyl, Pentinyl, Hexinyl, Heptinyl oder Octinyl verstanden. Unter einer C1- bis C40-Alkoxygruppe werden besonders bevorzugt Methoxy, Trifluormethoxy, Ethoxy, n-Propoxy, i-Propoxy, n-Butoxy, i-Butoxy, s-Butoxy, t-Butoxy oder 2-Methylbutoxy verstanden. Unter einem aromatischen oder heteroaromatischen Ringsystem mit 5–60 aromatischen Ringatomen, welches noch jeweils mit den oben genannten Resten R substituiert sein kann und welches über beliebige Positionen am Aromaten bzw. Heteroaromaten verknüpft sein kann, werden insbesondere Gruppen verstanden, die abgeleitet sind von Benzol, Naphthalin, Anthracen, Phenanthren, Benzanthracen, Pyren, Chrysen, Perylen, Fluoranthen, Benzfluoranthen, Naphthacen, Pentacen, Benzpyren, Biphenyl, Biphenylen, Terphenyl, Terphenylen, Fluoren, Benzofluoren, Dibenzofluoren, Spirobifluoren, Dihydrophenanthren, Dihydropyren, Tetrahydropyren, cis- oder trans-Indenofluoren, cis- oder trans-Monobenzoindenofluoren, cis- oder trans-Dibenzoindenofluoren, Truxen, Isotruxen, Spirotruxen, Spiroisotruxen, Furan, Benzofuran, Isobenzofuran, Dibenzofuran, Thiophen, Benzothiophen, Isobenzothiophen, Dibenzothiophen, Pyrrol, Indol, Isoindol, Carbazol, Pyridin, Chinolin, Isochinolin, Acridin, Phenanthridin, Benzo-5,6-chinolin, Benzo-6,7-chinolin, Benzo-7,8-chinolin, Phenothiazin, Phenoxazin, Pyrazol, Indazol, Imidazol, Benzimidazol, Naphthimidazol, Phenanthrimidazol, Pyridimidazol, Pyrazinimidazol, Chinoxalinimidazol, Oxazol, Benzoxazol, Naphthoxazol, Anthroxazol, Phenanthroxazol, Isoxazol, 1,2-Thiazol, 1,3-Thiazol, Benzothiazol, Pyridazin, Benzopyridazin, Pyrimidin, Benzpyrimidin, Chinoxalin, 1,5-Diazaanthracen, 2,7-Diazapyren, 2,3-Diazapyren, 1,6-Diazapyren, 1,8-Diazapyren, 4,5-Diazapyren, 4,5,9,10-Tetraazaperylen, Pyrazin, Phenazin, Phenoxazin, Phenothiazin, Fluorubin, Naphthyridin, Azacarbazol, Benzocarbolin, Phenanthrolin, 1,2,3-Triazol, 1,2,4-Triazol, Benzotriazol, 1,2,3-Oxadiazol, 1,2,4-Oxadiazol, 1,2,5-Oxadiazol, 1,3,4-Oxadiazol, 1,2,3-Thiadiazol, 1,2,4-Thiadiazol, 1,2,5-Thiadiazol, 1,3,4-Thiadiazol, 1,3,5-Triazin, 1,2,4-Triazin, 1,2,3-Triazin, Tetrazol, 1,2,4,5-Tetrazin, 1,2,3,4-Tetrazin, 1,2,3,5-Tetrazin, Purin, Pteridin, Indolizin und Benzothiadiazol.
  • Bevorzugt weisen die Verbindungen gemäß Formel (1) eine Glasübergangstemperatur TG von größer als 70°C auf, besonders bevorzugt größer als 90°C, ganz besonders bevorzugt größer als 110°C.
  • In einer bevorzugten Ausführungsform der Erfindung ist die Gruppe der Formel (2) ausgewählt aus den Gruppen der Formel (2a), und die Gruppe der Formel (3) ist ausgewählt aus den Gruppen der Formel (3a) und (3b),
    Figure 00080001
    wobei die verwendeten Symbole die oben genannten Bedeutungen aufweisen.
  • Besonders bevorzugt sind also die Verbindungen gemäß den folgenden Formeln (4), (5) und (6),
    Figure 00080002
    Figure 00090001
    Formel (6) wobei die verwendeten Symbole die oben genannten Bedeutungen aufweisen.
  • Besonders bevorzugt sind die Verbindungen der folgenden Formeln (4a), (5a) und (6a),
    Figure 00090002
    wobei die verwendeten Symbole die oben genannten Bedeutungen aufweisen.
  • In einer bevorzugten Ausführungsform der Erfindung steht die Gruppe Ar in den Verbindungen der Formel (1), (4) bis (6) und (4a) bis (6a) für eine kondensierte Aryl- oder Heteroarylgruppe mit 10 bis 20 aromatischen Ringatomen, die jeweils mit einem oder mehreren Resten R12 substituiert sein kann, besonders bevorzugt für eine kondensierte Arylgruppe mit 10 bis 16 C-Atomen, die mit einem oder mehreren Resten R12 substituiert sein kann, ganz besonders bevorzugt für Naphthalin, Anthracen, Phenanthren, Benzanthracen, Chrysen, Benzphenanthren oder Pyren, welches jeweils mit einem oder mehreren Resten R12 substituiert sein kann.
  • Bevorzugte Gruppen Ar sind ausgewählt aus den Strukturen der folgenden Formeln (7) bis (27),
    Figure 00100001
    Figure 00110001
    Figure 00120001
    wobei die verwendeten Symbole die oben genannten Bedeutungen aufweisen und die gestrichelte Bindung jeweils die Position der Verknüpfung an das Anthracen darstellt.
  • Besonders bevorzugt sind unter den oben genannten Gruppen die Gruppen der Formeln (7), (8), (9), (10), (12), (16) und (26).
  • Besonders bevorzugte Gruppen Ar sind die Gruppen der folgenden Formeln (7a), (8a), (9a), (10a), (12a), (16a) und (26a),
    Figure 00120002
    Figure 00130001
    wobei die verwendeten Symbole die oben genannten Bedeutungen aufweisen.
  • In einer bevorzugten Ausführungsform der Erfindung sind die Reste R1 bis R12 bei jedem Auftreten gleich oder verschieden ausgewählt aus der Gruppe bestehend aus H, D, F, N(Ar1)2, C(=O)Ar1, P(=O)(Ar1)2, S(=O)Ar1, S(=O)2Ar1, CN, Si(R13)3, einer geradkettigen Alkylgruppe mit 1 bis 10 C-Atomen oder einer verzweigten oder cyclischen Alkylgruppe mit 3 bis 10 C-Atomen, die jeweils mit einem oder mehreren Resten R13 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CH2-Gruppen durch R13C=CR13 ersetzt sein können und wobei ein oder mehrere H-Atome durch D oder F ersetzt sein können, oder einem aromatischen oder heteroaromatischen Ringsystem mit 5 bis 30 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R13 substituiert sein kann; dabei können zwei oder mehrere benachbarte Substituenten R1 bis R12 auch miteinander ein mono- oder polycyclisches, aliphatisches oder aromatisches Ringsystem bilden.
  • In einer besonders bevorzugten Ausführungsform der Erfindung sind, die Reste R1 bis R12 bei jedem Auftreten gleich oder verschieden ausgewählt aus der Gruppe bestehend aus H, D, F, CN, einer geradkettigen Alkylgruppe mit 1 bis 8 C-Atomen oder einer verzweigten oder cyclischen Alkylgruppe mit 3 bis 8 C-Atomen, die jeweils mit einem oder mehreren Resten R13 substituiert sein kann und wobei ein oder mehrere H-Atome durch D ersetzt sein können, oder einem aromatischen oder heteroaromatischen Ringsystem mit 5 bis 24 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R13 substituiert sein kann.
  • Diese Bevorzugung gilt insbesondere auch für die Reste R2 und R6 in den Strukturen der Formeln (4a) bis (6a).
  • Insbesondere bevorzugt stehen die Reste R9, R10 und R11 gleich oder verschieden für H oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 24 aromatischen Ringatomen, welches jeweils durch einen oder mehrere Reste R13 substituiert sein kann. Wenn die R9, R10 und/oder R11 für ein aromatisches oder heteroaromatisches Ringsystem stehen, dann stehen sich bevorzugt für Phenyl, O-, m- oder p-Biphenyl, O-, m- oder p-Terphenyl, verzweigtes Terphenyl oder lineares oder verzweigtes Quaterphenyl, welches jeweils durch einen oder mehrere Reste R13 substituiert sein kann, bevorzugt aber unsubstituiert ist.
  • Beispiele für bevorzugte erfindungsgemäße Verbindungen sind die im Folgenden abgebildeten Verbindungen 1 bis 70.
  • Figure 00140001
  • Figure 00150001
  • Figure 00160001
  • Figure 00170001
  • Figure 00180001
  • Figure 00190001
  • Figure 00200001
  • Figure 00210001
  • Die erfindungsgemäßen Verbindungen gemäß Formel (1) können nach dem Fachmann allgemein bekannten Syntheseschritten dargestellt werden. Die Synthese einer Verbindung der Formel (1) ist allgemein in den folgenden Schemata 1 und 2 dargestellt. Als Ausgangsverbindung kann das entsprechende 9-Bromanthracen dienen. Dabei zeigen Schema 1 und 2 Synthesen für Verbindungen, die eine Pyrimidingruppe der Formel (2) enthalten. Schema 1:
    Figure 00220001
  • Die Suzuki-Kupplung im ersten und dritten Schritt findet unter Standardbedingungen statt, wie sie dem Fachmann der organischen Chemie bekannt sind, beispielsweise mit Pd(PPh3)4 in Toluol/Wasser unter Zusatz einer Base bei erhöhter Temperatur. Die Bromierung im zweiten Schritt kann beispielsweise mit elementarem Brom oder mit NBS erfolgen. Alternativ können auch die erfindungsgemäßen Verbindungen gemäß Formel (1) nach Schema 2 synthetisiert werden: Schema 2:
    Figure 00220002
  • Statt Lithiierung kann im ersten Schritt auch die Umsetzung mit einem anderen reaktiven Metall, beispielsweise Magnesium, erfolgen.
  • Diese Reaktionen können ganz analog auch mit einem 2-Brom- bzw. 2-Boronsäurepyrimidin-Derivat durchgeführt werden, um so Verbindungen der Formel (1) zu synthetisieren, die eine Pyrimidingruppe der Formel (3) enthalten.
  • Die Verbindungen in Schema 1 und 2 können auch durch einen oder mehrere Reste substituiert sein, wobei diese Reste definiert sind, wie unter Formel (1) beschrieben. Ar stehts in Schema 1 und 2 für eine kondensierte Aryl- oder Heteroarylgruppe, wie unter Formel (1) definiert.
  • Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung einer erfindungsgemäßen Verbindung, umfassend die Reaktion eines Anthracenderivats, welches mit einer reaktiven Abgangsgruppe, insbesondere Chlor, Brom, Iod, Triflat oder Tosylat, substituiert ist, mit einem Pyrimidinderivat, welches mit einer Boronsäuregruppe bzw. einer Boronsäureestergruppe substituiert ist, oder umfassend die Reaktion eines Anthracenderivats, welches mit einer Boronsäuregruppe bzw. einer Boronsäureestergruppe substituiert ist, mit einem Pyrimidinderivat, welches mit einer reaktiven Abgangsgruppe, insbesondere Chlor, Brom, Iod, Triflat oder Tosylat, substituiert ist.
  • Die erfindungsgemäßen Verbindungen eignen sich für die Verwendung in einer elektronischen Vorrichtung. Dabei wird unter einer elektronischen Vorrichtung eine Vorrichtung verstanden, welche mindestens eine Schicht enthält, die mindestens eine organische Verbindung enthält. Das Bauteil kann dabei aber auch anorganische Materialien enthalten oder auch Schichten, welche vollständig aus anorganischen Materialien aufgebaut sind.
  • Ein weiterer Gegenstand der vorliegenden Erfindung ist daher die Verwendung der erfindungsgemäßen Verbindungen in einer elektronischen Vorrichtung, insbesondere in einer organischen Elektrolumineszenzvorrichtung.
  • Unter einer organischen Elektrolumineszenzvorrichtung wird eine Vorrichtung verstanden, welche Anode, Kathode und mindestens eine emittierende Schicht, welche zwischen der Anode und der Kathode angeordnet ist, enthält, wobei mindestens eine Schicht zwischen der Anode und der Kathode mindestens eine organische bzw. metallorganische Verbindung enthält. Eine organische Elektrolumineszenzvorrichtung muss nicht notwendigerweise nur Schichten enthalten, welche aus organischen oder metallorganischen Materialien aufgebaut sind. So ist es auch möglich, dass eine oder mehrere Schichten anorganische Materialien enthalten oder ganz aus anorganischen Materialien aufgebaut sind. Dabei kann die erfindungsgemäße Verbindung in einer oder mehreren Schichten zwischen der Anode und der Kathode vorliegen und/oder sie kann in einer zusätzlichen Schicht auf der Anode oder der Kathode als so genannte „optical out-coupling layer” vorliegen.
  • Nochmals ein weiterer Gegenstand der vorliegenden Erfindung ist eine elektronische Vorrichtung enthaltend mindestens eine erfindungsgemäße Verbindungen. Dabei gelten die oben ausgeführten Bevorzugungen ebenso für die elektronischen Vorrichtungen.
  • Die elektronische Vorrichtung ist bevorzugt ausgewählt aus der Gruppe bestehend aus organischen Elektrolumineszenzvorrichtungen (organischen Leuchtdioden, OLEDs), organischen integrierten Schaltungen (O-ICs), organischen Feld-Effekt-Transistoren (O-FETs), organischen Dünnfilmtransistoren (O-TFTs), organischen lichtemittierenden Transistoren (O-LETs), organischen Solarzellen (O-SCs), farbstoffsensibilisierten organischen Solarzellen (ODSSCs), organischen optischen Detektoren, organischen Photorezeptoren, organischen Feld-Quench-Devices (O-FQDs), lichtemittierenden elektrochemischen Zellen (LECs), organischen Laserdioden (O-Laser) und „organic plasmon emitting devices” (D. M. Koller et al., Nature Photonics 2008, 1–4), bevorzugt aber organischen Elektrolumineszenzvorrichtungen (OLEDs).
  • Die organischen Elektrolumineszenzvorrichtungen und die lichtemittierenden elektrochemischen Zellen können für verschiedene Anwendungen verwendet werden, beispielsweise für einfarbige oder mehrfarbige Displays, für Beleuchtungsanwendungen oder für medizinische Anwendungen, beispielsweise in der Phototherapie.
  • Die organische Elektrolumineszenzvorrichtung enthält Kathode, Anode und mindestens eine emittierende Schicht. Außer diesen Schichten kann sie noch weitere Schichten enthalten, beispielsweise jeweils eine oder mehrere Lochinjektionsschichten, Lochtransportschichten, Lochblockierschichten, Elektronentransportschichten, Elektroneninjektionsschichten, Exzitonenblockierschichten, Elektronenblockierschichten und/oder Ladungserzeugungsschichten (Charge-Generation Lagers). Ebenso können zwischen zwei emittierende Schichten Zwischenschichten (Interlayer) eingebracht sein, welche beispielsweise eine exzitonenblockierende Funktion aufweisen und/oder welche die Ladungsbalance im Device steuern. Weiterhin können die Schichten, insbesondere die Ladungstransportschichten, auch dotiert sein. Die Dotierung der Schichten kann für einen verbesserten Ladungstransport vorteilhaft sein. Es sei aber darauf hingewiesen, dass nicht notwendigerweise jede dieser Schichten vorhanden sein muss und die Wahl der Schichten immer von den verwendeten Verbindungen abhängt.
  • Dabei kann die organische Elektrolumineszenzvorrichtung eine emittierende Schicht enthalten, oder sie kann mehrere emittierende Schichten enthalten. Wenn mehrere Emissionsschichten vorhanden sind, weisen diese bevorzugt insgesamt mehrere Emissionsmaxima zwischen 380 nm und 750 nm auf, so dass insgesamt weiße Emission resultiert, d. h. in den emittierenden Schichten werden verschiedene emittierende Verbindungen verwendet, die fluoreszieren oder phosphoreszieren können. Insbesondere bevorzugt sind Systeme mit drei emittierenden Schichten, wobei die drei Schichten blaue, grüne und orange oder rote Emission zeigen (für den prinzipiellen Aufbau siehe z. B. WO 05/011013 ). Dabei ist es möglich, dass alle emittierenden Schichten fluoreszierend sind oder dass alle emittierenden Schichten phosphoreszierend sind oder dass eine oder mehrere emittierende Schichten fluoreszierend und eine oder mehrere andere Schichten phosphoreszierend sind.
  • Die erfindungsgemäße Verbindung gemäß den oben aufgeführten Ausführungsformen kann dabei in unterschiedlichen Schichten eingesetzt werden, je nach genauer Struktur. Bevorzugt ist eine organische Elektrolumineszenzvorrichtung, enthaltend eine Verbindung gemäß Formel (1) bzw. (4) bis (6) bzw. (4a) bis (6a) in einer Elektronentransportschicht und/oder in einer Lochblockierschicht und/oder als Matrixmaterial für fluoreszierende Emitter. Dabei gelten die oben aufgeführten bevorzugten Ausführungsformen auch für die Verwendung der Materialien in elektronischen Vorrichtungen.
  • Insbesondere bevorzugt wird die erfindungsgemäße Verbindung als Elektronentransportmaterial in einer Elektronentransportschicht bzw. in einer Elektroneninjektionsschicht eingesetzt, insbesondere in einer organischen Elektrolumineszenzvorrichtung.
  • Dabei kann die erfindungsgemäße Verbindung entweder als Reinschicht verwendet werden oder als Mischung mit einem oder mehreren weiteren Materialien.
  • In einer bevorzugten Ausführungsform der Erfindung wird die erfindungsgemäße Verbindung in der Elektronentransportschicht bzw. in der Elektroneninjektionsschicht als Reinmaterial verwendet.
  • In einer weiteren bevorzugten Ausführungsform der Erfindung wird die erfindungsgemäße Verbindung in der Elektronentransportschicht bzw. in der Elektroneninjektionsschicht in Mischung mit einem weiteren Elektronentransport- bzw. Elektroneninjektionsmaterial verwendet. Bevorzugt handelt es sich bei diesem weiteren Material um eine organische Alkalimetallverbindung.
  • Ebenso bevorzugt wird die erfindungsgemäße Verbindung als Reinmaterial in der Elektronentransportschicht verwendet, wobei zwischen der Elektronentransportschicht enthaltend die erfindungsgemäße Verbindung und der Kathode eine weitere Schicht eingebracht ist, welche eine organische oder anorganische Alkalimetallverbindung enthält.
  • Unter einer organischen Alkalimetallverbindung im Sinne dieser Erfindung soll eine Verbindung verstanden werden, welche mindestens ein Alkalimetall, also Lithium, Natrium, Kalium, Rubidium oder Caesium, enthält und welche weiterhin mindestens einen organischen Liganden bzw. ein organisches Gegenion enthält.
  • Unter einer anorganischen Alkalimetaliverbindung soll eine Verbindung verstanden werden, welche mindestens ein Alkalimetall, also Lithium, Natrium, Kalium, Rubidium oder Caesium, enthält und welche weiterhin nur anorganische Gegenionen, wie zum Beispiel ein Halogenid, enthält.
  • Geeignete organische Alkalimetallverbindungen sind beispielsweise die in WO 07/050301 , WO 07/050334 und EP 1144543 offenbarten Verbindungen. Diese sind via Zitat Bestandteil der vorliegenden Anmeldung.
  • Bevorzugte organische Alkalimetallverbindungen sind die Verbindungen der folgenden Formel (28),
    Figure 00270001
    Formel (28) wobei R14 dieselbe Bedeutung hat, wie oben für R1 bis R12 beschrieben, die gebogene Linie zwei oder drei Atome und Bindungen darstellt, welche erforderlich sind, um mit M einen 5- oder 6-Ring zu ergänzen, wobei diese Atome auch durch einen oder mehrere Reste R12 substituiert sein können, und M ein Alkalimetall, ausgewählt aus Lithium, Natrium, Kalium, Rubidium oder Caesium, darstellt.
  • Dabei ist es möglich, dass der Komplex gemäß Formel (28) in monomerer Form vorliegt, wie oben abgebildet, oder dass er in Form von Aggregaten vorliegt, beispielsweise aus zwei Alkalimetallionen und zwei Liganden, vier Alkalimetallionen und vier Liganden, sechs Alkalimetallionen und sechs Liganden oder andere Aggregate.
  • Bevorzugte Verbindungen der Formel (28) sind die Verbindungen der folgenden Formeln (29) und (30),
    Figure 00280001
    wobei die verwendeten Symbole und Indizes die oben genannten Bedeutungen haben.
  • Weitere bevorzugte organische Alkalimetallverbindungen sind die Verbindungen gemäß der folgenden Formel (31),
    Figure 00280002
    Formel (31) wobei die verwendeten Symbole dieselbe Bedeutung haben, wie oben beschrieben.
  • Bevorzugt ist das Alkalimetall gewählt aus Lithium, Natrium und Kalium, besonders bevorzugt Lithium und Natrium, ganz besonders bevorzugt Lithium.
  • Besonders bevorzugt ist eine Verbindung der Formel (29), insbesondere mit M = Lithium. Ganz besonders bevorzugt sind weiterhin die Indizes m = 0. Ganz besonders bevorzugt handelt es sich also um unsubstituiertes Lithiumchinolinat.
  • Beispiele für geeignete organische Alkalimetallverbindungen sind die in der folgenden Tabelle aufgeführten Strukturen.
  • Figure 00290001
  • Figure 00300001
  • Wenn die erfindungsgemäße Verbindung und die organische Alkalimetallverbindung in einer Mischung vorliegen, beträgt das Verhältnis der erfindungsgemäßen Verbindung zur organischen Alkalimetallverbindung bevorzugt 20:80 bis 80:20, besonders bevorzugt 30:70 bis 70:30, ganz besonders bevorzugt 30:70 bis 50:50, insbesondere 30:70 bis 45:55.
  • Wenn die erfindungsgemäße Verbindung und die organische Alkalimetallverbindung in einer Mischung vorliegen beträgt die Schichtdicke dieser Elektronentransportschicht bevorzugt zwischen 3 und 150 nm, besonders bevorzugt zwischen 5 und 100 nm, ganz besonders bevorzugt zwischen 10 und 60 nm, insbesondere zwischen 15 und 40 nm.
  • Wenn die erfindungsgemäße Verbindung und die organische Alkalimetallverbindung in zwei aufeinanderfolgenden Schichten vorliegen, so beträgt die Schichtdicke der Schicht, welche die erfindungsgemäße Verbindung enthält, bevorzugt zwischen 3 und 150 nm, besonders bevorzugt zwischen 5 und 100 nm, ganz besonders bevorzugt zwischen 10 und 60 nm, insbesondere zwischen 15 und 40 nm. Die Schichtdicke der Schicht, welche die organische Alkalimetallverbindung enthält und welche zwischen der Schicht enthaltend die erfindungsgemäße Verbindung und der Kathode angeordnet ist, beträgt bevorzugt zwischen 0.5 und 20 nm, besonders bevorzugt zwischen 1 und 10 nm, ganz besonders bevorzugt zwischen 1 und 5 nm, insbesondere zwischen 1.5 und 3 nm.
  • Dabei kann die emittierende Schicht eine fluoreszierende oder phosphoreszierende Schicht sein. Generell eignen sich alle bekannten emittierenden Materialien und Schichten in Kombination mit der erfindungsgemäßen Elektronentransportschicht und der Fachmann kann ohne erfinderisches Zutun beliebige emittierende Schichten mit der erfindungsgemäßen Elektronentransportschicht kombinieren.
  • Als Kathode der erfindungsgemäßen Elektrolumineszenzvorrichtung sind Metalle mit geringer Austrittsarbeit, Metalllegierungen oder mehrlagige Strukturen aus verschiedenen Metallen bevorzugt, wie beispielsweise Erdalkalimetalle, Alkalimetalle, Hauptgruppenmetalle oder Lanthanoide (z. B. Ca, Ba, Mg, Al, In, Mg, Yb, Sm, etc.). Bei mehrlagigen Strukturen können auch zusätzlich zu den genannten Metallen weitere Metalle verwendet werden, die eine relativ hohe Austrittsarbeit aufweisen, wie z. B. Ag, wobei dann in der Regel Kombinationen der Metalle, wie beispielsweise Mg/Ag, Ca/Ag oder Ba/Ag verwendet werden. Ebenso bevorzugt sind Metalllegierungen, insbesondere Legierungen aus einem Alkalimetall oder Erdalkalimetall und Silber, besonders bevorzugt eine Legierung aus Mg und Ag. Es kann auch bevorzugt sein, zwischen einer metallischen Kathode und dem organischen Halbleiter eine dünne Zwischenschicht eines Materials mit einer hohen Dielektrizitätskonstante einzubringen.
  • Diese Schicht dient als Elektroneninjektionsschicht Hierfür kommen beispielsweise Alkalimetall- oder Erdalkalimetallfluoride, aber auch die entsprechenden Oxide, Carbonate oder andere Salze in Frage, ebenso wie auch andere Metalle (z. B. LiF, Li2O, LiBO2, K2SiO3, CsF, Cs2CO3, BaF2, MgO, NaF, Al2O3, etc.), ebenso wie organische Alkalimetallverbindungen, wie z. B. Lithiumchinolinat. Die Schichtdicke dieser Schicht beträgt bevorzugt zwischen 0.5 und 5 nm.
  • Als Anode der erfindungsgemäßen Elektrolumineszenzvorrichtung sind Materialien mit hoher Austrittsarbeit bevorzugt. Bevorzugt weist die Anode eine Austrittsarbeit größer 4.5 eV vs. Vakuum auf. Hierfür sind einerseits Metalle mit hohem Redoxpotential geeignet, wie beispielsweise Ag, Pt oder Au. Es können andererseits auch Metall/Metalloxid-Elektroden (z. B. Al/Ni/NiOx, Al/PtOx) bevorzugt sein. Dabei muss mindestens eine der Elektroden transparent oder teiltransparent sein, um die Auskopplung von Licht zu ermöglichen. Bevorzugte Anodenmaterialien sind hier leitfähige gemischte Metalloxide. Besonders bevorzugt sind Indium-Zinn-Oxid (ITO) oder Indium-Zink Oxid (IZO). Bevorzugt sind weiterhin leitfähige, dotierte organische Materialien, insbesondere leitfähige dotierte Polymere.
  • Die Vorrichtung wird entsprechend (je nach Anwendung) strukturiert, kontaktiert und schließlich hermetisch versiegelt, da sich die Lebensdauer derartiger Vorrichtungen bei Anwesenheit von Wasser und/oder Luft drastisch verkürzt.
  • Es können generell alle weiteren Materialien, wie sie gemäß dem Stand der Technik in organischen Elektrolumineszenzvorrichtungen eingesetzt werden, auch in Kombination mit der erfindungsgemäßen Elektronentransportschicht eingesetzt werden.
  • Weiterhin bevorzugt ist eine organische Elektrolumineszenzvorrichtung, dadurch gekennzeichnet, dass eine oder mehrere Schichten mit einem Sublimationsverfahren beschichtet werden. Dabei werden die Materialien in Vakuum-Sublimationsanlagen bei einem Anfangsdruck von üblicherweise kleiner 10–5 mbar, bevorzugt kleiner 10–6 mbar aufgedampft. Es sei jedoch angemerkt, dass der Druck auch noch geringer sein kann, beispielsweise kleiner 10–7 mbar.
  • Bevorzugt ist ebenfalls eine organische Elektrolumineszenzvorrichtung, dadurch gekennzeichnet, dass eine oder mehrere Schichten mit dem OVPD (Organic Vapour Phase Deposition) Verfahren oder mit Hilfe einer Trägergassublimation beschichtet werden. Dabei werden die Materialien bei einem Druck zwischen 10–5 mbar und 1 bar aufgebracht. Ein Spezialfall dieses Verfahrens ist das OVJP (Organic Vapour Jet Printing) Verfahren, bei dem die Materialien direkt durch eine Düse aufgebracht und so strukturiert werden (z. B. M. S. Arnold et al., Appl. Phys. Lett. 2008, 92, 053301).
  • Weiterhin bevorzugt ist eine organische Elektrolumineszenzvorrichtung, dadurch gekennzeichnet, dass eine oder mehrere Schichten aus Lösung, wie z. B. durch Spincoating, oder mit einem beliebigen Druckverfahren, wie z. B. Siebdruck, Flexodruck, Offsetdruck, LITI (Light Induced Thermal Imaging, Thermotransferdruck), Ink-Jet Druck (Tintenstrahldruck) oder Nozzle Printing, hergestellt werden. Hierfür sind lösliche Verbindungen nötig. Hohe Löslichkeit lässt sich durch geeignete Substitution der Verbindungen erreichen. Dabei können nicht nur Lösungen aus einzelnen Materialien aufgebracht werden, sondern auch Lösungen, die mehrere Verbindungen enthalten, beispielsweise Matrixmaterialien und Dotanden.
  • Die organische Elektrolumineszenzvorrichtung kann auch als Hybridsystem hergestellt werden, indem eine oder mehrere Schichten aus Lösung aufgebracht werden und eine oder mehrere andere Schichten aufgedampft werden. So ist es beispielsweise möglich, eine emittierende Schicht aus Lösung aufzubringen und darauf eine Elektronentransportschicht enthaltend eine erfindungsgemäße Verbindung, ggf. in Kombination mit einer organischen Alkalimetallverbindung, im Vakuum aufzudampfen.
  • Diese Verfahren sind dem Fachmann generell bekannt und können von ihm ohne Probleme auf organische Elektrolumineszenzvorrichtungen enthaltend die erfindungsgemäßen Verbindungen angewandt werden.
  • Für das Aufbringen aus flüssiger Phase sind Formulierungen der erfindungsgemäßen Verbindungen nötig. Ein weiterer Gegenstand der vorliegenden Erfindung betrifft daher eine Formulierung, vorzugsweise eine Lösung, Dispersion oder Miniemulsion, enthaltend mindestens eine erfindungsgemäße Verbindung und mindestens eine Lösemitte, bevorzugt ein organisches Lösemittel.
  • Ein weiterer Gegenstand der vorliegenden Erfindung sind Mischungen enthaltend mindestens eine erfindungsgemäße Verbindung und mindestens eine organische Alkalimetallverbindung. Die organische Alkalimetallverbindung ist dabei bevorzugt gewählt aus den Verbindungen der oben aufgeführten Formel (28) bis (31).
  • Die erfindungsgemäßen organischen Elektrolumineszenzvorrichtungen weisen folgende überraschende Vorteile gegenüber dem Stand der Technik auf:
    • 1. Die erfindungsgemäßen organischen Elektrolumineszenzvorrichtungen weisen eine sehr hohe Effizienz auf. Die verbesserte Effizienz ist möglicherweise auf eine verbesserte Elektroneninjektion aus der Elektronentransportschicht in die emittierende Schicht zurückzuführen.
    • 2. Die erfindungsgemäßen organischen Elektrolumineszenzvorrichtungen weisen gleichzeitig eine vergleichbare oder verbesserte Lebensdauer auf.
    • 3. Die erfindungsgemäßen organischen Elektrolumineszenzvorrichtungen weisen gleichzeitig eine verringerte Betriebsspannung auf. Die verringerte Betriebsspannung ist möglicherweise auf eine verbesserte Elektroneninjektion aus der Elektronentransportschicht in die emittierende Schicht zurückzuführen.
  • Die Erfindung wird durch die nachfolgenden Beispiele genauer beschrieben, ohne sie dadurch einschränken zu wollen. Der Fachmann kann, ohne erfinderisch tätig zu werden, weitere erfindungsgemäße Verbindungen herstellen und diese in organischen elektronischen Vorrichtungen verwenden.
  • Beispiele
  • Beispiel 1: Synthese von 5-(10-Benzo[a]anthracen-4-yl-anthracen-9-yl)-pyrimidin
  • a) 4-Anthracen-9-yl-benzo[a]anthracen
    Figure 00350001
  • 49,7 g (184 mmol) 9-Bromanthracen, 50 g (184 mmol) 2-Benzo[a]anthracenboronsäure und 88,9 g (386 mmol) K3PO4 werden in 900 mL Toluol, 180 mL 1,4-Dioxan und 1100 mL Wasser suspendiert. Zu dieser Suspension werden 0,42 g (2 mmol) Pd(OAc)2 und 11 mL einer 1 M Tritert-butylphosphin-Lösung gegeben. Die Reaktionsmischung wird 16 h unter Rückfluss erhitzt. Nach Erkalten wird die Reaktionsmischung über Kieselgel filtriert, die organische Phase abgetrennt, dreimal mit 200 mL Wasser gewaschen und anschließend zur Trockene eingeengt. Der Rückstand wird aus Toluol umkristallisiert. Ausbeute 48 g, 65% der Theorie. b) 4-(10-Brom-anthracen-9-yl)-benzo[a]anthracen
    Figure 00350002
  • 30,9 g (76,4 mmol) 4-Anthracen-9-yl-benzo[a]anthracen werden in 500 mL Chloroform vorgelegt und mit 1,2 g (7,6 mmol) Eisen(III)chlorid versetzt. Anschließend tropft man unter Lichtausschluss bei 0°C eine Lösung aus 15,6 g (87,86 mmol) NBS in 20 ml Chloroform hinzu und rührt 2 h weiter bei dieser Temperatur. Anschließend wird die Mischung mit 150 mL Wasser versetzt und mit Essisester extrahiert. Die organische Phase wird über MgSO4 getrocknet und die Lösungsmittel im Vakuum entfernt. Das Produkt wird aus Toluol umkristallisiert. Ausbeute: 20,4 g, 55,2% der Theorie, Reinheit nach HPLC ca. 98%.
  • c) 5-(10-Benzo[a]anthracen-4-yl-anthracen-9-yl)-pyrimidin
    Figure 00360001
  • 5-Pyrimidinboronsäure wird analog zu Org. Biomol. Chem., 2004, 2, 852 dargestellt. 20 g (41,4 mmol) 10-(Brom-anthracen-9-yl)-benzo[a]anthracen und 7,2 g 5-Pyrimidinboronsäure (57,9 mmol) werden 600 ml Ethylenglycoldimethylether und 150 mL EtOH suspendiert. Die Reaktionsmischung wird mit 200 mL einer 0,5 M Na2CO3-Lösung versetzt. Zu dieser Suspension werden 500 mg (0,414 mmol) Pd(PPh3)4 gegeben und 12 h unter Rückfluss erhitzt. Nach Erkalten wird den ausgefallenen Feststoff abgesaugt, mit Wasser und Ethanol gewaschen und getrocknet. Der Rückstand wird mit Toluol heiß extrahiert, aus Toluol umkristallisiert und abschließend im Hochvakuum sublimiert. Reinheit beträgt 99,9%. Ausbeute: 10 g, 50% der Theorie.
  • Beispiel 2: Synthese von 2-(10-Benzo[a]anthracen-4-yl-anthracen-9-yl)-5-phenyl-pyrimidin
  • a) 2-Anthracen-9-yl-5-phenyl-pyrimidin
    Figure 00360002
  • 36,1 g (140,4 mmol) 9-Bromanthracen werden in 600 mL trockenem THF gelöst und auf –78°C gekühlt. Bei dieser Temperatur wird mit 66,4 mL (165,9 mmol/2.5 M in Hexan) n-Butyllithium innerhalb von ca. 20 min. versetzt und anschließend für 2.5 h bei –78°C nachgerührt. Bei dieser Temperatur wird mit 45,1 mL (191,4 mmol) Borsäure-trimethylester möglichst zügig versetzt und die Reaktion langsam auf RT kommen gelassen (ca. 18 h).
  • 30 g (127,6 mmol) 2-Brom-5-phenyl-pyrimidin werden in einem entgasten Gemisch aus 800 mL Toluol und 68 mL Tetraethylammoniumhydroxid gelöst und mit 4,4 g (3,83 mmol) Pd(PPh3)4 versetzt. Die 9-Boronsäureanthracen-Lösung wird dazu getropft. Die Reaktionsmischung wird für 8 h unter Rückfluss erhitzt. Nach dem Abkühlen wird mit Dichlormethan versetzt, die Wasserphase abgetrennt und die organische Phase mit Toluol azeotrop eingeengt. Das Reaktionsprodukt wird aus Toluol umkristallisiert, und man erhält 35 g (82%) des 2-Anthracen-9-yl-5-phenylpyrimidin.
  • b) 2-(10-Brom-anthracen-9-yl)-5-phenyl-pyrimidin
    Figure 00370001
  • 35 g (105,3 mmol) 2-Anthracen-9-yl-5-phenyl-pyrimidin werden in 500 mL Chloroform vorgelegt. Anschließend tropft man unter Lichtausschluss bei 0°C eine Lösung aus 20,7 g (115,8 mmol) NBS in 500 ml Chloroform hinzu und rührt weitere 4 h bei dieser Temperatur. Anschließend wird die Mischung mit 150 mL Wasser versetzt und mit Essisester extrahiert. Die organische Phase wird über MgSO4 getrocknet und die Lösungsmittel im Vakuum entfernt. Das Produkt wird aus Toluol umkristallisiert. Ausbeute: 32,5 g, 75% der Theorie, Reinheit nach HPLC ca. 98%.
  • c) 2-(10-Benzo[a]anthracen-4-yl-anthracen-9-yl)-5-phenyl-pyrimidin
    Figure 00370002
  • 30 g (72,94 mmol) 2-(10-Brom-anthracen-9-yl)-5-phenyl-pyrimidin, 21,8 g (80,24 mmol) 2-Benzo[a]anthracenboronsäure und 32 g (153 mmol) K3PO4 werden in 600 mL Toluol, 150 mL 1,4-Dioxan und 150 mL Wasser suspendiert. Zu dieser Suspension werden 2,1 g (1,82 mmol) Pd(PPh3)4. Die Reaktionsmischung wird 16 h unter Rückfluss erhitzt. Nach Erkalten wird die Reaktionsmischung mit Dichlormethan versetzt, die Wasserphase abgetrennt, die organische Phase mit Toluol azeotrop eingeengt und anschließend zur Trockene eingeengt. Der Rückstand wird aus Toluol umkristallisiert und abschließend im Hochvakuum sublimiert. Reinheit beträgt 99,9%. Ausbeute: 20 g, 50% der Theorie.
  • Beispiel 3: Synthese von 5-(10-Phenanthren-3-yl-anthracen-9-yl)-2-pyridin-2-yl-pyrimidin
  • a) 5-Brom-2-pyridin-2-yl-pyrimidin
    Figure 00380001
  • 14,6 mL (150 mmol) 2-Brompyridin werden in 700 mL trockenem THF gelöst und auf –78°C gekühlt. Bei dieser Temperatur wird mit 66,0 mL (165 mmol/2.5 M in Hexan) n-BuLi innerhalb von ca. 20 min. versetzt und anschließend für 2.5 h bei –78°C nachgerührt. Bei dieser Temperatur wird mit 44,8 mL (165 mmol) Tributyltinzinnchlorid möglichst zügig versetzt und die Reaktion langsam auf Raumtemperatur kommen gelassen (ca. 18 h). Anschließend wird die Reaktionsmischung mit 150 mL NH4Cl-Lösung versetzt und mit Essigester extrahiert. Die organische Phase wird über MgSO4 getrocknet und die Lösungsmittel im Vakuum entfernt. Ausbeute: 44 g von 2-(Tributylzinn)pyridin, 80% der Theorie.
  • 30 g (108,6 mmol) 2-(Tributylzinn)pyridin werden in 600 mL Xylol suspendiert und mit 31 g (108,6 mmol) 2-Iod-5-brompyrimidin versetzt. Zu dieser Suspension werden 3,8 g (5,43 mmol) Pd(PPh3)2Cl2 und 2,85 g (10,86 mmol) Triphenylphosphin zugegeben Die Reaktionsmischung wird 16 h unter Rückfluss erhitzt. Nach Erkalten wird die Reaktionsmischung mit Dichlormethan versetzt, die Wasserphase abgetrennt, die organische Phase mit Toluol azeotrop eingeengt und anschließend zur Trockene eingeengt. Der Rückstand wird aus Toluol umkristallisiert. Ausbeute: 20 g, 78% der Theorie.
  • b) 5-Anthracen-9-yl-2-pyridin-2-yl-pyrimidin
    Figure 00390001
  • 20,6 g (80 mmol) 9-Bromanthracen werden in 400 mL trockenem THF gelöst und auf –78°C gekühlt. Bei dieser Temperatur wird mit 36,8 mL (92 mmol./2.5 M in Hexan) n-BuLi innerhalb von ca. 20 min. versetzt und anschließend für 2.5 h bei –78°C nachgerührt. Bei dieser Temperatur wird mit 26,4 mL (112 mmol) Borsäure-triisopropylester möglichst zügig versetzt und die Reaktion langsam auf Raumtemperatur kommen gelassen (ca. 18 h).
  • 18,9 g (80 mmol) 5-Brom-2-pyridin-2-yl-pyrimidin werden in einem entgasten Gemisch aus 400 mL Toluol und 42 mL Tetraethylammoniumhydroxid (20%) gelöst und mit 2,77 g (2,4 mmol) Pd(PPh3)4 versetzt. Die 9-Boronsäureanthracen-Lösung wird dazu getropft. Die Reaktionsmischung wird für 8 h unter Rückfluss erhitzt. Nach dem Abkühlen wird mit Dichlormethan versetzt, die Wasserphase abgetrennt und die organische Phase mit Toluol azeotrop eingeengt. Das Reaktionsprodukt wird aus Toluol umkristallisiert und man erhält 23 g (85%) des 5-Anthracen-9-yl-2-pyridin-2-yl-pyrimidin.
  • c) 5-(10-Brom-anthracen-9-yl)-2-pyridin-2-yl-pyrimidin
    Figure 00390002
  • 20 g (68mmol) 5-Anthracen-9-yl-2-pyridin-2-yl-pyrimidin werden in 300 mL Chloroform vorgelegt. Anschließend tropft man unter Lichtausschluss bei 0°C eine Lösung aus 13,31 g (74,8 mmol) NBS in 200 ml Chloroform hinzu und rührt 4 h weiter bei dieser Temperatur. Anschließend wird die Mischung mit 150 mL Wasser versetzt und mit Essigester extrahiert. Die organische Phase wird über MgSO4 getrocknet und die Lösungsmittel im Vakuum entfernt. Das Produkt wird aus Toluol umkristallisiert. Ausbeute: 22,4 g, 80% der Theorie, Reinheit nach HPLC ca. 98%.
  • d) 5-(10-Phenanthren-3-yl-anthracen-9-yl)-2-pyridin-2-yl-pyrimidin
    Figure 00400001
  • 20 g (77,8 mmol) 3-Bromphenanthren werden in 400 mL trockenem THF gelöst und auf –78°C gekühlt. Bei dieser Temperatur wird mit 40,5 mL (101,1 mmol/2.5 M in Hexan) n-BuLi innerhalb von ca. 20 min. versetzt und anschließend für 2.5 h bei –78°C nachgerührt. Bei dieser Temperatur wird mit 28,7 mL (124,4 mmol) Borsäure-triisopropylester möglichst zügig versetzt und die Reaktion langsam auf Raumtemperatur kommen gelassen (ca. 18 h). Anschließend wird die Reaktionsmischung mit 100 mL NH4Cl-Lösung versetzt und mit Essigester extrahiert. Die organische Phase wird über MgSO4 getrocknet und die Lösungsmittel im Vakuum entfernt. Ausbeute: 14 g von 3-Phenanthrenboronsäure, 80% der Theorie.
  • 22 g (53,36 mmol) 5-(10-Brom-anthracen-9-yl)-2-pyridin-2-yl-pyrimidin, 13 g (58,7 mmol) 3-Phenanthrenboronsäure und 23,8 g (112 mmol) K3PO4 werden in 200 mL Toluol, 200 mL 1,4-Dioxan und 120 mL Wasser suspendiert. Zu dieser Suspension werden 1,85 (1,6 mmol) Pd(PPh3)4. Die Reaktionsmischung wird 16 h unter Rückfluss erhitzt. Nach Erkalten wird die Reaktionsmischung mit Dichlormethan versetzt, die Wasserphase abgetrennt, die organische Phase mit Toluol azeotrop eingeengt und anschließend zur Trockene eingeengt. Der Rückstand wird aus Toluol umkristallisiert und abschließend im Hochvakuum sublimiert, Reinheit beträgt 99,9%. Ausbeute: 16 g, 60% der Theorie.
  • Beispiel 4: Herstellung der OLEDs
  • Die Herstellung von erfindungsgemäßen OLEDs sowie OLEDs nach dem Stand der Technik erfolgt nach einem allgemeinen Verfahren gemäß WO 2004/058911 , das auf die hier beschriebenen Gegebenheiten (Schichtdickenvariation, verwendete Materialien) angepasst wird.
  • In den folgenden OLED-Beispielen 1–23 (siehe Tabellen 1 und 2) werden die Ergebnisse verschiedener OLEDs vorgestellt. Glasplättchen, die mit strukturiertem ITO (Indium Zinn Oxid) der Dicke 50 nm beschichtet sind bilden die Substrate, auf welche die OLEDs aufgebracht werden. Die OLEDs haben prinzipiell den folgenden Schichtaufbau: Substrat ITO/Lochtransportschicht (HTL, 140 nm)/Zwischenschicht (IL, 5 nm)/Elektronenblockierschicht (EBL, 20 nm)/Emissionsschicht ([ML (H1 + x% D1), z nm)/Elektronentransportschicht (ETL, y nm)/optionale Elektroneninjektionsschicht (EIL, x nm) und abschließend eine Kathode. Die Kathode wird durch eine 100 nm dicke Aluminiumschicht gebildet. Der genaue Aufbau der OLEDs ist Tabelle 1 zu entnehmen. Die zur Herstellung der OLEDs verwendeten Materialien sind in Tabelle 3 gezeigt.
  • Alle Materialien werden in einer Vakuumkammer thermisch aufgedampft. Dabei besteht die Emissionsschicht immer aus mindestens einem Matrixmaterial (Hostmaterial, Wirtsmaterial) und einem emittierenden Dotierstoff (Dotand, Emitter), der dem Matrixmaterial bzw. den Matrixmaterialien durch Coverdampfung in einem bestimmten Volumenanteil beigemischt wird. Eine Angabe wie H1:D1 (95%:5%) bedeutet hierbei, dass das Material H1 in einem Volumenanteil von 95% und D1 in einem Volumenanteil von 5% in der Schicht vorliegt. Analog kann auch die Elektronentransportschicht aus einer Mischung zweier Materialien bestehen.
  • Die OLEDs werden standardmäßig charakterisiert. Hierfür werden die Elektrolumineszenzspektren, Strom-Spannungs-Helligkeits-Kennlinien (IUL-Kennlinien) sowie die Lebensdauer gemessen. Als Lebensdauer wird die Zeit definiert, nach der die Leuchtdichte von einer bestimmten Startleuchtdichte I0 auf einen gewissen Anteil abgesunken ist. Die Angabe LD50 bedeutet, dass es sich bei der genannten Lebensdauer um die Zeit handelt, bei der die Leuchtdichte auf 0.5·I0 (auf 50%) abgefallen ist. In den Beispielen für Blau (y < 0.25) von 6000 cd/m2 auf 3000 cd/m2 in den anderen Beispielen von 4000 cd/m2 auf 2000 cd/m2. Die Stromeffizienz (cd/A) und die Leistungseffizienz (Im/W) werden aus den IUL Kennlinien berechnet.
  • Die erfindungsgemäßen Verbindungen lassen sich unter anderem als Elektronentransportmaterial einer einer Elektronentransportschicht (ETL) für fluoreszierende und phosphoreszierende OLEDs einsetzen. Hierbei kommen die erfindungsgemäßen Verbindungen ETL2, ETL3 und ETL4 zum Einsatz. Als Vergleich gemäß dem Stand der Technik werden die Verbindungen ETL1 und ETL5 verwendet. Die Ergebnisse der OLEDs sind in Tabelle 2 zusammengefasst. Die Beispiele 1–5 und 21–23 zeigen OLEDs mit Materialien gemäß dem Stand der Technik und dienen als Vergleichsbeispiele. Die erfindungsgemäßen OLEDs gemäß den Beispielen 6–20 zeigen die Vorteile beim Einsatz von erfindungsgemäßen Verbindungen gemäß Formel (1).
  • Durch den Einsatz von erfindungsgemäßen Verbindungen lassen sich, verglichen mit dem Stand der Technik, Verbesserungen in der operativen Spannung, Effizienz und Lebensdauer der Bauteile erzielen
  • Im Vergleich zu den Referenzbauteilen sind die elektrischen Kenndaten in alle Fällen besser. Bei sonst identischen Schichtaufbau zeigen die erfindungsgemäßen Bauteile verbesserte Leistungsdaten. Tabelle 1: Aufbau der OLEDs
    Bsp. EML ETL EIL
    1 (Vgl.) H1:D1 (95%:5%) 30 nm ETL1 20 nm EIL1 3 nm
    2 (Vgl.) H1:D1 (95%:5%) 30 nm ETL1:EIL1 (50%:50%) 20 nm -
    3 (Vgl.) H2:D2 (85%:15%) 40 nm ETL1 30 nm EIL2 1 nm
    4 (Vgl.) H2:D2 (85%:15%) 40 nm ETL1 30 nm EIL1 3 nm
    5 (Vgl.) H2:D2 (85%:15%) 40 nm ETL1:EIL1 (50%:50%) 30 nm -
    21 (Vgl.) H2:D2 (85%:15%) 40 nm ETL5:EIL1 (50%:50%) 30 nm -
    22 (Vgl.) H2:D2 (85%:15%) 40 nm ETL5 30 nm EIL2 1 nm
    23 (Vgl.) H2:D2 (85%:15%) 40 nm ETL5 30 nm EIL1 3 nm
    6 H1:D1 (95%:5%) 30 nm ETL2 20 nm EIL1 3 nm
    7 H1:D1 (95%:5%) 30 nm ETL3 20 nm EIL1 3 nm
    8 H1:D1 (95%:5%) 30 nm ETL4 20 nm EIL1 3 nm
    9 H1:D1 (95%:5%) 30 nm ETL2:EIL1 (50%:50%) 20 nm
    10 H1:D1 (95%:5%) 30 nm ETL3:EIL1 (50%:50%) 20 nm
    11 H1:D1 (95%:5%) 30 nm ETL4:EIL1 (50%:50%) 20 nm
    12 H1:D1 (95%:5%) 30 nm ETL2:EIL1 (30%:70%) 20 nm
    13 H2:D2 (85%:15%) 40 nm ETL2 20 nm EIL2 1 nm
    14 H2:D2 (85%:15%) 40 nm ETL3 20 nm EIL2 1 nm
    15 H2:D2 (85%:15%) 40 nm ETL4 20 nm EIL2 1 nm
    16 H2:D2 (85%:15%) 40 nm ETL2:EIL1 (50:50) 20 nm
    17 H2:D2 (85%:15%) 40 nm ETL3:EIL1 (50%:50%) 20 nm
    18 H2:D2 (85%:15%) 40 nm ETL4:EIL1 (50%:50%) 20 nm
    19 H2:D2 (85%:15%) 40 nm ETL2 20 nm EIL1 3 nm
    20 H2:D2 (85%:15%) 40 nm ETL4 20 nm EIL1 3 nm
    Tabelle 2: Erebnisse für die OLEDs
    Bsp. Spannung [V] für 1000 cd/m2 Effizienz [cd/A] bei 1000 cd/m2 CIE x/y bei 1000 cd/m2 LD50 I = 6000 cd/m2
    1 (Vgl.) 4.9 6.6 0.14 0.15 250
    6 4.3 7.0 0.14 0.14 290
    7 4.6 6.9 0.14 0.15 270
    8 4.4 7.2 0.14 0.14 310
    2 (Vgl.) 5.1 6.9 0.14 0.15 300
    9 4.4 8.4 0.14 0.14 330
    10 4.8 8.3 0.14 0.15 320
    11 4.6 8.1 0.14 0.14 370
    12 4.6 7.9 0.14 0.14 350
    3 (Vgl.) 3.7 46.3 0.33 0.62 900
    22 (Vgl.) 3.9 43.4 0.33 0.61 800
    13 3.4 49.1 0.33 0.62 1900
    14 3.6 48.5 0.33 0.62 1700
    15 3.5 48.7 0.33 0.62 2100
    4 (Vgl.) 4.1 43.3 0.33 0.62 1070
    23 (Vgl.) 4.3 41.2 0.33 0.61 950
    19 3.9 45.1 0.33 0.62 1450
    20 3.5 50.3 0.33 0.62 1600
    5 (Vgl.) 3.6 44.5 0.33 0.62 1100
    21 (Vgl.) 3.8 41.3 0.33 0.62 900
    16 3.4 49.2 0.33 0.62 2100
    17 3.5 47.2 0.33 0.62 1700
    18 3.3 53.7 0.33 0.62 3100
    Tabelle 3: Strukturformeln der verwendeten Materialien
    Figure 00440001
    Figure 00450001
  • Als EIL2 wird LiF verwendet.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • US 4539507 [0002, 0006, 0006]
    • US 5151629 [0002]
    • EP 0676461 [0002]
    • WO 98/27136 [0002]
    • EP 1582516 [0009]
    • WO 2006/067931 [0009]
    • WO 05/011013 [0042]
    • WO 07/050301 [0051]
    • WO 07/050334 [0051]
    • EP 1144543 [0051]
    • WO 2004/058911 [0091]
  • Zitierte Nicht-Patentliteratur
    • fluss [0003]
    • D. M. Koller et al., Nature Photonics 2008, 1–4 [0039]
    • M. S. Arnold et al., Appl. Phys. Lett. 2008, 92, 053301 [0069]
    • Org. Biomol. Chem., 2004, 2, 852 [0079]

Claims (15)

  1. Verbindung gemäß Formel (1),
    Figure 00460001
    Formel (1) wobei für die verwendeten Symbole und Indizes gilt: Pym ist eine Gruppe der folgenden Formel (2) oder (3),
    Figure 00460002
    wobei die gestrichelte Bindung die Bindung an das Anthracen andeutet; Ar ist eine kondensierte Aryl- oder Heteroarylgruppe mit 10 bis 30 aromatischen Ringatomen, die mit einem oder mehreren Resten R12 substituiert sein kann; R1, R2, R3, R4, R5, R6, R7, R8, R9, R19, R11, R12 ist bei jedem Auftreten gleich oder verschieden H, D, F, Cl, Br, I, CHO, N(R13)2, N(Ar1)2, B(Ar1)2, Si(R13)2, Si(Ar1)2, C(=O)Ar1, P(=O)(Ar1)2, S(=O)Ar1, S(=O)2Ar1, CR13=CR13Ar1, CN, NO2, Si(R13)3, B(OR13)2, B(R13)2, B(N(R13)2)2, OSO2R13, eine geradkettige Alkyl-, Alkenyl-, Alkinyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkenyl-, Alkinyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R13 substituiert sein kann, wobei eine oder mehrere nicht benachbade CH2-Gruppen durch R13C=CR13, C≡C, Si(R13)2, Ge(R13)2, Sn(R13)2, C=O, C=S, C=Se, C=NR13, P(=O)(R13), SO, SO2, NR13, O, S oder CONR13 ersetzt sein können und wobei ein oder mehrere H-Atome durch D, F, Cl, Br, I, CN oder NO2 ersetzt sein können, oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R13 substituiert sein kann, oder eine Aryloxy- oder Heteroaryloxygruppe mit 5 bis 60 aromatischen Ringatomen, die durch einen oder mehrere Reste R13 substituiert sein kann, oder eine Kombination dieser Systeme; dabei können zwei oder mehrere benachbarte Substituenten R1 bis R12 auch miteinander ein mono- oder polycyclisches, aliphatisches oder aromatisches Ringsystem bilden; Ar1 ist bei jedem Auftreten gleich oder verschieden ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 30 aromatischen Ringatomen, das mit einem oder mehreren Resten R13 substituiert sein kann; dabei können auch zwei Reste Ar1, welche an dasselbe Stickstoff-, Phosphor-, Silicium- oder Boratom binden, durch eine Einfachbindung oder eine Brücke, ausgewählt aus B(R13), C(R13)2, Si(R13)2, C=O, C=NR13, C=C(R13)2, O, S, S=O, SO2, N(R13), P(R13) und P(=O)R13, miteinander verknüpft sein; R13 ist bei jedem Auftreten gleich oder verschieden H, D oder ein aliphatischer, aromatischer und/oder heteroaromatischer Kohlenwasserstoffrest mit 1 bis 20 C-Atomen, in dem auch H-Atome durch D oder F ersetzt sein können; dabei können zwei oder mehrere benachbarte Substituenten R13 auch miteinander ein mono- oder polycyclisches, aliphatisches oder aromatisches Ringsystem bilden.
  2. Verbindung nach Anspruch 1, ausgewählt aus den Verbindungen gemäß Formel (4) bis (6),
    Figure 00480001
    wobei die verwendeten Symbole die in Anspruch 1 genannten Bedeutungen aufweisen.
  3. Verbindung nach Anspruch 2, ausgewählt aus den Verbindungen der Formeln (4a) bis (6a),
    Figure 00480002
    Figure 00490001
    Formel (6a) wobei die verwendeten Symbole die in Anspruch 1 genannten Bedeutungen aufweisen.
  4. Verbindung nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Gruppe Ar für eine kondensierte Arylgruppe mit 10 bis 16 C-Atomen steht, die mit einem oder mehreren Resten R12 substituiert sein kann, bevorzugt für Naphthalin, Anthracen, Phenanthren, Benzanthracen, Chrysen, Benzphenanthren oder Pyren, welches jeweils mit einem oder mehreren Resten R12 substituiert sein kann.
  5. Verbindung nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Gruppe Ar ausgewählt ist aus den Strukturen der Formeln (6) bis (27),
    Figure 00490002
    Figure 00500001
    Figure 00510001
    wobei die verwendeten Symbole die in Anspruch 1 genannten Bedeutungen aufweisen und die gestrichelte Bindung jeweils die Position der Verknüpfung an das Anthracen darstellt.
  6. Verbindung nach Anspruch 5, dadurch gekennzeichnet, dass die Gruppe Ar ausgewählt ist aus den Gruppen der Formeln (7a), (8a), (9a), (10a), (12a), (16a) und (26a),
    Figure 00520001
    wobei die verwendeten Symbole die in Anspruch 1 genannten Bedeutungen aufweisen.
  7. Verbindung nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Reste R1 bis R12 bei jedem Auftreten gleich oder verschieden ausgewählt sind aus der Gruppe bestehend aus H, D, F, N(Ar1)2, C(=O)Ar1, P(=O)(Ar1)2, S(=O)Ar1, S(=O)2Ar1, CN, Si(R13)3, einer geradkettigen Alkylgruppe mit 1 bis 10 C-Atomen oder einer verzweigten oder cyclischen Alkylgruppe mit 3 bis 10 C-Atomen, die jeweils mit einem oder mehreren Resten R13 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CH2-Gruppen durch R13C=CR13 ersetzt sein können und wobei ein oder mehrere H-Atome durch D oder F ersetzt sein können, oder einem aromatischen oder heteroaromatischen Ringsystem mit 5 bis 30 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R13 substituiert sein kann; dabei können zwei oder mehrere benachbarte Substituenten R1 bis R12 auch miteinander ein mono- oder polycyclisches, aliphatisches oder aromatisches Ringsystem bilden.
  8. Verbindung nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Reste R9, R10 und R11 gleich oder verschieden bei jedem Auftreten für H oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 24 aromatischen Ringatomen, welches jeweils durch einen oder mehrere Reste R13 substituiert sein kann, stehen.
  9. Verfahren zur Synthese einer Verbindung nach einem oder mehreren der Ansprüche 1 bis 8, umfassend die Reaktion eines Anthracenderivats, welches mit einer reaktiven Abgangsgruppe substituiert ist, mit einem Pyrimidinderivat, welches mit einer Boronsäuregruppe bzw. einer Boronsäureestergruppe substituiert ist, oder umfassend die Reaktion eines Anthracenderivats, welches mit einer Boronsäuregruppe bzw. einer Boronsäureestergruppe substituiert ist, mit einem Pyrimidinderivat, welches mit einer reaktiven Abgangsgruppe substituiert ist.
  10. Verwendung einer Verbindung nach einem oder mehreren der Ansprüche 1 bis 8 in einer elektronischen Vorrichtung, insbesondere in einer organischen Elektrolumineszenzvorrichtung.
  11. Elektronische Vorrichtung, bevorzugt ausgewählt aus der Gruppe bestehend aus organischen Elektrolumineszenzvorrichtungen, organischen integrierten Schaltungen, organischen Feld-Effekt-Transistoren, organischen Dünnfilmtransistoren, organischen lichtemittierenden Transistoren, organischen Solarzellen, farbstoffsensibilisierten organischen Solarzellen, organischen optischen Detektoren, organischen Photorezeptoren, organischen Feld-Quench-Devices, lichtemittierenden elektrochemischen Zellen, organischen Laserdioden und „organic plasmon emitting devices”, enthaltend mindestens eine Verbindung nach einem oder mehreren der Ansprüche 1 bis 8.
  12. Organische Elektrolumineszenzvorrichtung nach Anspruch 11, dadurch gekennzeichnet, dass die Verbindung nach einem oder mehreren der Ansprüche 1 bis 9 in einer Elektronentransportschicht und/oder einer Elektroneninjektionsschicht und/oder in einer Lochblockierschicht und/oder als Matrixmaterial für fluoreszierende Emitter in einer emittierenden Schicht eingesetzt wird.
  13. Organische Elektrolumineszenzvorrichtung nach Anspruch 12, dadurch gekennzeichnet, dass die Verbindung nach einem oder mehreren der Ansprüche 1 bis 9 in einer Elektronentransportschicht bzw. in einer Elektroneninjektionsschicht in Mischung mit einem weiteren Elektronentransport- bzw. Elektroneninjektionsmaterial verwendet wird, insbesondere mit einer organischen Alkalimetallverbindung.
  14. Mischung enthaltend mindestens eine Verbindung nach einem oder mehreren der Ansprüche 1 bis 8 und mindestens eine organische Alkalimetallverbindung.
  15. Formulierung enthaltend mindestens eine Verbindung nach einem oder mehreren der Ansprüche 1 bis 8 und mindestens eine Lösemittel.
DE102010013806.1A 2010-04-03 2010-04-03 Materialien für organische Elektrolumineszenzvorrichtungen Active DE102010013806B4 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE102010013806.1A DE102010013806B4 (de) 2010-04-03 2010-04-03 Materialien für organische Elektrolumineszenzvorrichtungen
US13/638,975 US9796684B2 (en) 2010-04-03 2011-03-09 Materials for organic electroluminescence devices
JP2013503022A JP6230908B2 (ja) 2010-04-03 2011-03-09 有機エレクトロルミネセンスデバイス用材料
PCT/EP2011/001143 WO2011120626A1 (de) 2010-04-03 2011-03-09 Materialien für organische elektrolumineszenzvorrichtungen
JP2015247681A JP6141397B2 (ja) 2010-04-03 2015-12-18 有機エレクトロルミネセンスデバイス用材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010013806.1A DE102010013806B4 (de) 2010-04-03 2010-04-03 Materialien für organische Elektrolumineszenzvorrichtungen

Publications (2)

Publication Number Publication Date
DE102010013806A1 true DE102010013806A1 (de) 2011-10-06
DE102010013806B4 DE102010013806B4 (de) 2021-06-10

Family

ID=43927620

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102010013806.1A Active DE102010013806B4 (de) 2010-04-03 2010-04-03 Materialien für organische Elektrolumineszenzvorrichtungen

Country Status (4)

Country Link
US (1) US9796684B2 (de)
JP (2) JP6230908B2 (de)
DE (1) DE102010013806B4 (de)
WO (1) WO2011120626A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8171567B1 (en) 2002-09-04 2012-05-01 Tracer Detection Technology Corp. Authentication method and system
US7995196B1 (en) 2008-04-23 2011-08-09 Tracer Detection Technology Corp. Authentication method and system
DE102010013806B4 (de) * 2010-04-03 2021-06-10 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
DE102011117364A1 (de) * 2011-10-29 2013-05-02 Merck Patent Gmbh Hautaufheller in der Phototherapie
CN103130724A (zh) * 2011-11-23 2013-06-05 海洋王照明科技股份有限公司 含萘基蒽的有机半导体材料、其制备方法和应用
CN103288730A (zh) * 2012-02-27 2013-09-11 海洋王照明科技股份有限公司 含喹啉有机半导体材料、其制备方法及有机电致发光器件
GB201403096D0 (en) * 2014-02-21 2014-04-09 Oxford Nanopore Tech Ltd Sample preparation method
KR102356301B1 (ko) * 2014-07-25 2022-01-26 호도가야 가가쿠 고교 가부시키가이샤 유기 일렉트로 루미네센스 소자
EP3223330B1 (de) * 2014-11-18 2022-02-23 Hodogaya Chemical Co., Ltd. Organisches elektrolumineszentes element
EP3248966B1 (de) * 2015-01-20 2022-12-21 Hodogaya Chemical Co., Ltd. Pyrimidinderivat und organisches elektrolumineszenzelement
KR102471110B1 (ko) * 2015-08-11 2022-11-28 삼성디스플레이 주식회사 유기 발광 소자
US20180327339A1 (en) * 2015-08-28 2018-11-15 Merck Patent Gmbh Compounds for electronic devices
KR102209936B1 (ko) * 2018-03-22 2021-02-01 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
KR20210141528A (ko) * 2019-03-22 2021-11-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 유기 화합물, 발광 디바이스, 발광 장치, 전자 기기, 및 조명 장치
KR20210008979A (ko) * 2019-07-15 2021-01-26 삼성디스플레이 주식회사 화합물 및 이를 포함하는 유기 발광 소자

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4539507A (en) 1983-03-25 1985-09-03 Eastman Kodak Company Organic electroluminescent devices having improved power conversion efficiencies
US5151629A (en) 1991-08-01 1992-09-29 Eastman Kodak Company Blue emitting internal junction organic electroluminescent device (I)
EP0676461A2 (de) 1994-04-07 1995-10-11 Hoechst Aktiengesellschaft Spiroverbindungen und ihre Verwendung als Elektrolumineszenzmaterialien
WO1998027136A1 (de) 1996-12-16 1998-06-25 Aventis Research & Technologies Gmbh & Co Kg ARYLSUBSTITUIERTE POLY(p-ARYLENVINYLENE), VERFAHREN ZUR HERSTELLUNG UND DEREN VERWENDUNG IN ELEKTROLUMINESZENZBAUELEMENTEN
EP1144543A1 (de) 1998-12-02 2001-10-17 South Bank University Enterprises Ltd. Elektrolumineszente chinolate
WO2004058911A2 (de) 2002-12-23 2004-07-15 Covion Organic Semiconductors Gmbh Organisches elektrolumineszenzelement
WO2005011013A1 (de) 2003-07-21 2005-02-03 Covion Organic Semiconductors Gmbh Organisches elektrolumineszenzelement
EP1582516A1 (de) 2003-01-10 2005-10-05 Idemitsu Kosan Co., Ltd. Stickstoffhaltiges heterozyklisches derivat und organisches elektrolumineszenzelement damit
WO2006067931A1 (ja) 2004-12-22 2006-06-29 Idemitsu Kosan Co., Ltd. アントラセン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2007050334A1 (en) 2005-10-26 2007-05-03 Eastman Kodak Company Organic element for low voltage electroluminescent devices
WO2007050301A2 (en) 2005-10-26 2007-05-03 Eastman Kodak Company Organic element for low voltage electroluminescent devices

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4646494B2 (ja) 2002-04-11 2011-03-09 出光興産株式会社 新規含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP4496949B2 (ja) * 2004-12-13 2010-07-07 株式会社豊田自動織機 有機el素子
KR100910150B1 (ko) * 2008-04-02 2009-08-03 (주)그라쎌 신규한 유기 발광 화합물 및 이를 발광재료로서 채용하고있는 유기 발광 소자
JP5532705B2 (ja) * 2008-07-01 2014-06-25 東レ株式会社 発光素子
EP2335288A4 (de) 2008-09-15 2013-07-17 Osi Optoelectronics Inc Fischgräten-fotodiode mit dünner aktiver schicht und flacher n+-schicht sowie herstellungsverfahren dafür
KR20100109050A (ko) * 2009-03-31 2010-10-08 다우어드밴스드디스플레이머티리얼 유한회사 신규한 유기 발광 화합물 및 이를 포함하는 유기 전계 발광소자
KR101427605B1 (ko) * 2009-03-31 2014-08-07 롬엔드하스전자재료코리아유한회사 신규한 유기 발광 화합물 및 이를 채용하고 있는 유기 전계발광 소자
KR101177172B1 (ko) 2009-09-22 2012-08-24 주식회사 두산 신규한 안트라센 유도체 및 이를 이용한 유기 전계 발광 소자
DE102010013806B4 (de) 2010-04-03 2021-06-10 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4539507A (en) 1983-03-25 1985-09-03 Eastman Kodak Company Organic electroluminescent devices having improved power conversion efficiencies
US5151629A (en) 1991-08-01 1992-09-29 Eastman Kodak Company Blue emitting internal junction organic electroluminescent device (I)
EP0676461A2 (de) 1994-04-07 1995-10-11 Hoechst Aktiengesellschaft Spiroverbindungen und ihre Verwendung als Elektrolumineszenzmaterialien
WO1998027136A1 (de) 1996-12-16 1998-06-25 Aventis Research & Technologies Gmbh & Co Kg ARYLSUBSTITUIERTE POLY(p-ARYLENVINYLENE), VERFAHREN ZUR HERSTELLUNG UND DEREN VERWENDUNG IN ELEKTROLUMINESZENZBAUELEMENTEN
EP1144543A1 (de) 1998-12-02 2001-10-17 South Bank University Enterprises Ltd. Elektrolumineszente chinolate
WO2004058911A2 (de) 2002-12-23 2004-07-15 Covion Organic Semiconductors Gmbh Organisches elektrolumineszenzelement
EP1582516A1 (de) 2003-01-10 2005-10-05 Idemitsu Kosan Co., Ltd. Stickstoffhaltiges heterozyklisches derivat und organisches elektrolumineszenzelement damit
WO2005011013A1 (de) 2003-07-21 2005-02-03 Covion Organic Semiconductors Gmbh Organisches elektrolumineszenzelement
WO2006067931A1 (ja) 2004-12-22 2006-06-29 Idemitsu Kosan Co., Ltd. アントラセン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2007050334A1 (en) 2005-10-26 2007-05-03 Eastman Kodak Company Organic element for low voltage electroluminescent devices
WO2007050301A2 (en) 2005-10-26 2007-05-03 Eastman Kodak Company Organic element for low voltage electroluminescent devices

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
D. M. Koller et al., Nature Photonics 2008, 1-4
fluss
M. S. Arnold et al., Appl. Phys. Lett. 2008, 92, 053301
Org. Biomol. Chem., 2004, 2, 852

Also Published As

Publication number Publication date
JP2013523788A (ja) 2013-06-17
JP2016106094A (ja) 2016-06-16
US20130032764A1 (en) 2013-02-07
DE102010013806B4 (de) 2021-06-10
US9796684B2 (en) 2017-10-24
JP6230908B2 (ja) 2017-11-15
WO2011120626A1 (de) 2011-10-06
JP6141397B2 (ja) 2017-06-07

Similar Documents

Publication Publication Date Title
EP2883422B1 (de) Materialien für organische elektrolumineszenzvorrichtungen
DE102009053644B4 (de) Materialien für organische Elektrolumineszenzvorrichtungen
EP2875699B1 (de) Derivate von 2-diarylaminofluoren und diese enthaltnde organische elektronische verbindungen
EP2303814B1 (de) Verbindungen für elektronische vorrichtungen
DE102010013806B4 (de) Materialien für organische Elektrolumineszenzvorrichtungen
DE112009004294B4 (de) Materialien für organische Elektrolumineszenzvorrichtungen, deren Verwendung, Verfahren zu deren Herstellung und elektronische Vorrichtung
EP3107977B1 (de) Materialien für organische elektrolumineszenzvorrichtungen
EP3016952B1 (de) Spirokondensierte lactamverbindungen für organische elektrolumineszenzvorrichtungen
WO2011060877A2 (de) Materialien für organische elektrolumineszenzvorrichtungen
WO2014015935A2 (de) Verbindungen und organische elektronische vorrichtungen
EP3077477A1 (de) Verbindungen und organische elektronische vorrichtungen
EP3080229A1 (de) Materialien für elektronische vorrichtungen
DE102009053382A1 (de) Materialien für elektronische Vorrichtungen
DE102009032922A1 (de) Materialien für organische Elektrolumineszenzvorrichtungen
DE102010019306A1 (de) Organische Elektrolumineszenzvorrichtungen
WO2010136109A1 (de) Materialien für organische elektrolumineszenzvorrichtungen
EP3335254A1 (de) Materialien für organische elektrolumineszenzvorrichtungen
DE102008064200A1 (de) Organische Elektrolumineszenzvorrichtung
DE102009053836A1 (de) Materialien für organische Elektrolumineszenzvorrichtungen
DE102010048607A1 (de) Verbindungen für elektronische Vorrichtungen
DE102010033548A1 (de) Materialien für elektronische Vorrichtungen
DE102010048608A1 (de) Materialien für organische Elektrolumineszenzvorrichtungen
WO2013139431A1 (de) 9,9&#39;-spirobixanthenderivate für elektrolumineszenzvorrichtungen
EP2906661A1 (de) Materialien für organische elektrolumineszenzvorrichtungen
WO2011157346A1 (de) Verbindungen für elektronische vorrichtungen

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final