DE102009052304A1 - Thermochemischer Wärmespeicher sowie Verfahren zur Aufnahme, Umwandlung, Speicherung und Abgabe von Reaktionswärme - Google Patents

Thermochemischer Wärmespeicher sowie Verfahren zur Aufnahme, Umwandlung, Speicherung und Abgabe von Reaktionswärme Download PDF

Info

Publication number
DE102009052304A1
DE102009052304A1 DE102009052304A DE102009052304A DE102009052304A1 DE 102009052304 A1 DE102009052304 A1 DE 102009052304A1 DE 102009052304 A DE102009052304 A DE 102009052304A DE 102009052304 A DE102009052304 A DE 102009052304A DE 102009052304 A1 DE102009052304 A1 DE 102009052304A1
Authority
DE
Germany
Prior art keywords
reaction
heat
solid
storage
reaction space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE102009052304A
Other languages
English (en)
Inventor
Franziska Schaube
Rainer Dr. Tamme
Paul Cetin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsches Zentrum fuer Luft und Raumfahrt eV
Universitaet Stuttgart
Original Assignee
Deutsches Zentrum fuer Luft und Raumfahrt eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsches Zentrum fuer Luft und Raumfahrt eV filed Critical Deutsches Zentrum fuer Luft und Raumfahrt eV
Priority to DE102009052304A priority Critical patent/DE102009052304A1/de
Priority to PCT/EP2010/065830 priority patent/WO2011054676A2/de
Publication of DE102009052304A1 publication Critical patent/DE102009052304A1/de
Ceased legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/003Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using thermochemical reactions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/16Materials undergoing chemical reactions when used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/002Central heating systems using heat accumulated in storage masses water heating system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H7/00Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release
    • F24H7/02Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid
    • F24H7/04Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid with forced circulation of the transfer fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/14Solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/16Waste heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

Die Erfindung betrifft einen thermochemischen Wärmespeicher (1, 22) zur Aufnahme, Umwandlung, Speicherung und Abgabe von Reaktionswärme durch reversible Umsetzung eines ersten partikulären Feststoffs (13) zu einem zweiten partikulären Feststoff (14) und einem Reaktionsfluid (19), wobei der Wärmespeicher (1, 22) wenigstens einen Reaktionsraum (2), eine hieran angeschlossene Reaktionsfluidleitung (7, 29) und wenigstens einen Wärmetauscher (9) aufweist, über den mittels einer externen Energiequelle oder eines Verbrauchers Energie zu- oder abgeführt werden kann, welcher dadurch gekennzeichnet ist, dass an den wenigstens einen Reaktionsraum (2) über Feststoffleitungen (3, 4) zwei Feststoffspeicher (5, 6) zur jeweiligen Speicherung der partikulären Feststoffe (13, 14) angeschlossen sind und zumindest eine Feststofffördereinrichtung (15) vorgesehen ist, um die partikulären Feststoffe (13, 14) zwischen Reaktionsraum (2) und den Feststoffspeichern (5, 6) unter Ausbildung eines Partikelstroms im Reaktionsraum (2) zu fördern.

Description

  • Die vorliegende Erfindung betrifft einen thermochemischen Wärmespeicher und ein Verfahren zur Aufnahme, Umwandlung, Speicherung und Abgabe von Reaktionswärme durch reversible Umsetzung eines ersten partikulären Feststoffs zu einem zweiten partikulären Feststoff und einem Reaktionsfluid, wobei der Wärmespeicher wenigstens einen Reaktionsraum, eine hieran angeschlossene Reaktionsfluidleitung und wenigstens einen Wärmetauscher aufweist, über den mittels einer externen Energiequelle oder eines Verbrauchers Energie zu- oder abgeführt werden kann.
  • Bei der thermochemischen Energiespeicherung wird die Reaktionswärme einer chemischen oder physikalischen Umsetzung gemäß der Gleichgewichtsreaktion AB + ΔHR ⇔ A + B gespeichert. Für die technische Anwendbarkeit einer solchen Wärmespeicherung ist es wesentlich, dass die jeweilige Reaktion vollständig reversibel abläuft und eine hohe Zyklenzahl ohne stärkere Einbußen bezüglich der Speicherkapazität realisiert werden kann.
  • Thermochemische Wärmespeicher sind aus dem Stand der Technik bekannt. Eine Anlage zur Speicherung von Wärmeenergie wird beispielsweise in der DE 43 33 829 beschrieben, bei der zur Speicherung von Wärmeenergie diese über einen Solarkollektor gewonnen und über einen Wärmeträger zum Speichermedium transportiert wird. Dort wird die eingebrachte Wärmeenergie in Form von Adsorptions- und Desorptionsenergie auf das Speichermedium übertragen bzw. aus diesem rückgewonnen. Als Speichermaterialien werden Molekularsiebe vorgeschlagen, an denen Wasserdampf ad- bzw. desorbiert wird.
  • Aus der DE 35 32 093 ist weiterhin ein thermochemischer Wärmespeicher bekannt, bei dem mittels Adsorptions- und Desorptionsprozessen von Wasser oder Ammoniak an Zeolith oder Silicagel Wärmeenergie gespeichert bzw. abgerufen werden kann. Bei beiden zuvor genannten Vorrichtungen befinden sich die Adsorptions- bzw. Desorptionsmedien in einem Reaktionsbehälter, in dem sie mittels eines Wärmetauschers erhitzt werden können, um den adsorbierten Stoff, d. h. Wasser oder Ammoniak abzuspalten, wodurch der thermochemische Wärmespeicher geladen wird. Die desorbierte Substanz wird anschließend aus dem Reaktionsbehälter entfernt. Um die gespeicherte Wärmeenergie zurück zu gewinnen, wird der desorbierte Stoff, also das Wasser bzw. der Ammoniak wieder mit dem im Reaktionsbehälter befindlichen Feststoff in Kontakt gebracht, wodurch Adsorptionswärme frei wird, die dann über den Wärmetauscher an einen Verbraucher, beispielsweise eine Heizung oder einen Warmwasseraufbereiter, abgegeben wird.
  • Schließlich ist in der EP 1 975 219 ein thermochemischer Wärmetauscher sowie ein Heizsystem mit einem solchen Wärmespeicher beschrieben, bei dem in einem Reaktionsraum Magnesiumamid bereitgestellt wird, das durch Eintrag von Wärmeenergie über einen Wärmetauscher in einer chemischen Reaktion Ammoniakgas unter Bildung von Magnesiumnitrid freisetzt, wobei der Wärmespeicher geladen wird. Das gebildete Ammoniakgas wird mittels einer Pumpe bzw. eines Verdichters in einen Fluidspeicher überführt, wo es unter Druck verflüssigt werden kann. Zum Entladen des Wärmespeichers wird das Ammoniakgas wieder in den Reaktionsraum überführt, wo es mit dem Magnesiumnitrid in einer exothermen Reaktion zu Magnesiumamid reagiert, wobei die Reaktionswärme über den Wärmetauscher an einen Verbraucher abgegeben werden kann. Als Energiequelle zum Laden des Wärmespeichers dient beispielsweise ein Solarkollektor oder die Wärme eines Abgasstroms in einem Kraftfahrzeug.
  • Bei den zuvor genannten Vorrichtungen kann es als nachteilig empfunden werden, dass der eingesetzte Feststoff insbesondere mit zunehmender Zahl der Lade- und Entladezyklen teilweise zusammenbacken kann, wodurch sich dessen aktive Oberfläche reduziert. Dies erschwert den Zutritt des Reaktionspartners, wodurch der Wärmespeicher nicht mehr vollständig geladen werden kann und mit zunehmender Betriebsdauer an Wärmekapazität verliert.
  • Die Aufgabe der vorliegenden Erfindung besteht darin, einen thermochemischen Wärmespeicher zu schaffen, der über eine Vielzahl von Lade- und Entladezyklen seine ursprüngliche Wärmeaufnahme- und Abgabeleistung weitestgehend unverändert beibehält.
  • Diese Aufgabe wird bei einem thermochemischen Wärmespeicher der eingangs genannten Art dadurch gelöst, dass an den wenigstens einen Reaktionsraum über Feststoffleitungen zwei Feststoffspeicher zur jeweiligen Speicherung der partikulären Feststoffe angeschlossen sind und zumindest eine Feststofffördereinrichtung vorgesehen ist, um die partikulären Feststoffe zwischen Reaktionsraum und den Feststoffspeichern unter Ausbildung eines Partikelstroms im Reaktionsraum zu fördern. Ebenfalls wird die vorstehende Aufgabe bei einem Verfahren der eingangs genannten Art dadurch gelöst, dass die Reaktanden und die Reaktionsprodukte jeweils zwischen zwei Feststoffspeichern mittels wenigstens einer Feststofffördereinrichtung wenigstens einem Reaktionsraum zugeführt oder aus diesem abgeführt werden, wobei die während der Umsetzung in dem wenigstens einen Reaktionsraum freiwerdende oder aufgenommene Energie über einen Wärmetauscher an einen externen Verbraucher abgegeben oder von einer externen Energiequelle bezogen wird.
  • Der vorliegenden Erfindung liegt die Überlegung zugrunde, den oder die Reaktionsräume als Durchflussreaktor(en) auszugestalten, dem die Reaktionspartner aus separaten Speichern zugeführt werden und aus dem die Reaktionsprodukte in entsprechende Speicher abgeführt werden. Durch diese Ausgestaltung wird erreicht, dass die Feststoffe in partikulärer Form verbleiben und damit über zahlreiche Lade- und Entladezyklen eine große Reaktionsoberfläche bereitstellen, die eine weitestgehend unveränderte Speicherkapazität des Wärmespeichers sicherstellt. Hierfür kommen beispielsweise Öfen, insbesondere Schachtofen, Etagenöfen oder Drehöfen, sowie Wanderbett-, Rieselwolken- oder gegebenenfalls mehrstufige Wirbelschichtreaktoren zum Einsatz.
  • Ein weiterer Vorteil des erfindungsgemäßen Wärmespeichers besteht darin, dass zur Erhöhung der Gesamt-Speicherkapazität keine unmittelbare Vergrößerung des Reaktionsraums erfolgen muss. Da weder die Edukte noch die Produkte im Reaktionsraum gelagert werden, sondern in separaten Speicherbehältern, wird die Gesamtkapazität des Wärmespeichers nicht durch die Größe des Reaktionsraums, sondern nur durch die Größe der Edukt- bzw. Produktspeicher bestimmt. Dieser Umstand ermöglicht eine deutlich kostengünstigere Anpassung des Wärmespeichers an die geforderte Speicherkapazität. Außerdem verringert die kleinere Dimensionierung des Reaktionsraums bei der erfindungsgemäßen Vorrichtung den Wärmeverlust.
  • Ein weiterer hieraus erwachsender Vorteil ist der, dass mit zunehmener Größe des Reaktionsraums auch Inhomogenitäten in der Temperaturverteilung auftreten können, die mit dem erfindungsgemäßen Aufbau vermieden werden. Dies macht sich vor allem dann bemerkbar, wenn die Betriebstemperaturen im Reaktor verhältnismäßig hoch liegen, also beispielsweise bei 300°C oder darüber. Verstärkt wird dieser Umstand durch die regelmäßig geringe Wärmeleitfähigkeit der eingesetzten Feststoffe.
  • Der erfindungsgemäße Aufbau ermöglicht außerdem ein gleichmäßiges Wärmeabgabeprofil, da die erzeugte und abgegebene Wärme im Idealfall nur durch die Menge an in den Reaktionsraum eingebrachten Reaktanden bestimmt wird. Bei den aus dem Stand der Technik bekannten Festbettreaktoren tritt jedoch zu Beginn der Einspeisung der Reaktionsfluids in der Regel eine Temperaturspitze auf, da der reaktive Feststoff sofort an seiner Oberfläche abreagiert. Mit zunehmender Einspeisung von Reaktionsfluid nimmt die Geschwindigkeit der Reaktion dann immer weiter ab, da das Fluid zunächst durch den bereits abreagierten Feststoff diffundieren muss, um zum darunterliegenden Reaktanden gelangen zu können. Diese Verzögerungen lassen sich schwer vorhersagen und aus diesem Grunde auch regelungstechnisch schlecht kompensieren.
  • Die erfindungsgemäße Vorrichtung besitzt einen oder auch mehrere Reaktionsräume, wie beispielsweise zwei oder mehr, drei oder mehr oder vier oder mehr. Beim Einsatz mehrerer Reaktionsräume werden diese zweckmäßigerweise parallel geschaltet. Sie können dabei voneinander separtiert oder über Leitungen untereinander verbunden sein. Die einzelnen Reaktionsräume können außerdem über separate Leitungen jeweils mit den beiden Feststoffspeichern verbunden sein. Der Einsatz mehrerer Reaktionsräume ermöglicht es, eine größere Wärmemenge in derselben Zeit umzusetzen. Außerdem können auf diese Weise einzelne Reaktionsräume separat gereinigt werden, ohne dass hierfür die gesamte Vorrichtung außer Betrieb genommen werden müsste. Zu diesem Zweck können an sämtlichen Leitungen der einzelnen Reaktionsräume Absperrvorrichtungen vorgesehen sein. Im Folgenden wird aus Vereinfachungsgründen der Begriff des Reaktionsraums im Singular benutzt auch wenn die weiteren Ausgestaltungen grundsätzlich auch mehrere Reaktionsräume vorsehen können.
  • Bei Anordnung der Wärmetauscher innerhalb der Reaktionsräume ist eine der Anzahl der Reaktionsräume entsprechende Zahl an Wärmetauschern vorgesehen. Bei Anordnung des Wärmetauschers außerhalb der Reaktionsräume genügt prinzipiell ein Wärmetauscher, der über Leitungen mit den einzelnen Reaktionsräumen verbunden ist.
  • Als erfindungsgemäß einsetzbare partikuläre Feststoffe kommen prinzipiell sämtliche Verbindungen in Frage, die mit einem Fluid zusammen in einer reversiblen Reaktion einen zweiten partikulären Feststoff liefern. Die Natur der Reaktion kann dabei sämtliche Möglichkeiten umfassen, wie beispielsweise Adsorption und Desorption, Einlagerung und Auslagerung im Kristallgitter des Feststoffs sowie auch reversible chemische Reaktionen.
  • Als konkrete Beispiele seien die Adsorption und Desorption von Gasen oder Flüssigkeiten, insbesondere von Ammoniak oder Wasser an Silikaten, vor allem an Silicagel, Molekularsieben und Zeolithen sowie an Aktivkohle genannt.
  • Ein Beispiel für die reversible Einlagerung eines Fluids in einem Kristallgitter ist die Hydratation bzw. Dehydration von Magnesiumsulfat gemäß: MgSO4 × 7H2O ⇔ MgSO4 + 7H2O
  • Weitere Beispiele sind die entsprechenden Reaktionen von Calciumchlorid-Dihydrat, Kupfersulfat-Pentahydrat, Kupfersulfat-Monohydrat, Calciusulfat-Dihydrat oder Calciumsulfat-Halbhydrat.
  • Die Dehydratation von Kupfersulfat-Pentahydrat und Calziumsulfat-Dihydrat kann je nach Temperaturführung im Reaktionsraum, auf der Stufe des Mono- bzw. Halbhydrates gestoppt oder bis zum Anhydrid bzw. Anhydrit unter Abspaltung des gesamten Kristallwassers durchgeführt werden.
  • Als Beispiel für eine reversible chemische Reaktion sei die Reaktion von CaO + H2O ⇔ Ca(OH)2 genannt. Analog kann die Umsetzung auch mit Magnesiumoxid erfolgen. Des Weiteren kommt auch die Decarboxylierung von Metallcarbonaten, insbesondere von Alkali- und Erdalkalimetallcarbonaten in Frage: CaO + CO2 ⇔ CaCO3
  • Eine weitere Möglichkeit eröffnet sich in der reversiblen Desoxigenierung von Metalloxiden, insbesondere von Alkali- und Erdalkalimetalloxiden: 4K2O + ¾O2 ⇔ KO2 bzw. BaO + ½O2 ⇔ BaO2
  • Chemische Reaktionen haben gegenüber der Kristallwassereinlagerung oder der reinen Physisorption an Feststoffen in der Regel den Vorteil, dass sie größere Energiemengen pro Mol des Feststoffs aufnehmen bzw. freisetzen können. So verläuft die oben dargestellte Reaktion von Calziumoxid mit Wasser stark exotherm unter Freisetzung von etwa ΔH = –100 kJ/mol. Auf diese Weise können verhältnismäßig große Energiemengen in einer geringen Menge an Feststoff gespeichert werden, wodurch sich der thermochemische Wärmespeicher mit einer geringeren Baugröße realisieren lässt.
  • Bei dem zuvor genannten Beispiel wird durch Reaktion eines Feststoffs mit einem Reaktionsfluid zu einem anderen Feststoff Energie an die Umgebung abgegeben. Es ist jedoch ebenso möglich, dass bei dieser Reaktion Energie von der Umgebung aufgenommen wird, d. h., dass diese Reaktion endotherm verläuft.
  • Als erste partikuläre Feststoffe, also in der Regel die Edukte zur Bildung des zweiten partikulären Feststoffs und des Reaktionsfluids, kommen beispielsweise LiO2, NaO2, KO2, Li2O2, Na2O2, K2O2, Mg(OH)2, MgSO4 × 7H2O, Ca(OH)2, CaCO3, CaSO4 × 2H2O, CaCl2 × 2H2O, BaCO3, BaO2, CuSO4 × 5H2O, Mg(NH2)2 oder deren Mischungen in Frage.
  • Erfindungsgemäß einsetzbare zweite Feststoffe zur Reaktion mit einem Reaktionsfluid sind beispielsweise Li2O, Na2O, K2O, MgO, CaO, BaO, CaSO4, CaSO4 × 0,5H2O, MgSO4, CaCl2 × H2O, CuSO4 × H2O, CuSO4, Mg3N2 oder Mischungen hiervon.
  • Als mit diesen zweiten partikulären Feststoffen zur Reaktion zu bringenden Reaktionsfluide kommen beispielsweise H2O, CO2, CO, O2, Cl2, Br2, NH3 oder Mischungen von diesen zum Einsatz. Neben der Eigenschaft als Recktand kann dem Reaktionsfluid auch eine wärmeübertragende Funktion zum bzw. vom Wärmetauscher zukommen.
  • Das Reaktionsfluid wird über die Reaktionsfluidleitung in den Reaktionsraum gefördert bzw. aus diesem entfernt. Hierzu kann beispielsweise feuchte Luft aus der Umgebung in den Reaktionsraum eingebracht werden für den Fall, dass Wasser im Rahmen der Reaktion benötigt wird. Umgekehrt wird dann feuchte Luft mit aus der Reaktion stammendem Wasser über die Reaktionsleitung an die Umgebung abgegeben.
  • Zusätzlich zum Reaktionsfluid kann ein Wärmeträgerfluid verwendet werden, das sich im Inneren des Wärmespeichers befindet. Mit diesem, vorzugsweise nicht an der Reaktion beteiligten Fluid, kann der Wärmeübergang zum Wärmetauscher erleichtert werden. Besonders geeignet sind dabei reaktionsträge Gase mit einer großen Wärmekapazität wie Edelgase, beispielsweise Argon, Stickstoff, Schwefelhexafluorid, Distickstoffmonoxid, Luft oder Mischungen hiervon.
  • Der erfindungsgemäß vorgesehene Reaktionsraum wird als kontinuierlicher Reaktor betrieben, d. h. die Edukte werden diesem aus den jeweiligen Speichern zugeführt, im Reaktionsraum zu den Produkten umgesetzt, welche dann anschließend in die jeweiligen Speicher abtransportiert werden. Auch eine stufenweise Zufuhr ist möglich.
  • Zur Erzeugung des Partikelstroms aus Edukten bzw. Produkten ist erfindungsgemäß eine Feststofffördereinrichtung vorgesehen. Hierfür kommen prinzipiell sämtliche denkbaren Fördereinrichtungen in Frage, mit denen sich partikuläre Feststoffe transportieren lassen. Insbesondere eignen sich Fördereinrichtungen mit einem Gebläse, durch das der aus dem Speicher geförderte partikuläre Feststoff in dem Reaktionsraum fein verteilt werden kann, so dass die entsprechende Reaktion während einer kurzen Verweilzeit im Reaktionsraum ablaufen kann. Eine Wärmeisolierung der Wärmetauscherleitungen ist ebenfalls zweckmäßig.
  • Der erfindungsgemäß vorgesehene Reaktionsraum ist ausreichend dicht und stabil ausgebildet und weist ferner ein Volumen auf, welches für eine entsprechende endotherme bzw. exotherme Reaktion ausreichend bemessen ist. Zur Reduzierung bzw. Verhinderung eines ungewünschten Wärmeverlustes über die Behälterwandungen des Reaktionsraums kann dieser mit einer Wärmeisolierung versehen sein.
  • Bei der erfindungsgemäßen Vorrichtung ist es vorgesehen, dass der Wärmetauscher entweder in dem Reaktionsraum angeordnet oder an diesen angeschlossen ist. Im erstgenannten Fall ist der Wärmetauscher beispielsweise in Form einer spiral- oder schlangenartig im Reaktionsraum geführten Rohrleitung ausgebildet, durch die ein Energieträgerfluid gepumpt wird. Als solches kommen beispielsweise Wasser, wässrige Salzlösungen, Salzschmelzen, wie beispielsweise eutektische Gemische aus Kalium- und Natriumnitrat, Öle, Gase, insbesondere Luft oder Wasserdampf zum Einsatz.
  • Bei Anordnung des Wärmetauschers außerhalb des Reaktionsraums ist der Wärmetauscher über Rohrleitungen mit dem Reaktionsraum verbunden. Als Energieträgerfluid fungiert in diesem Fall die Gasatmosphäre des Reaktionsraums, d. h. das Reaktionsfluid selbst bzw. eine Mischung aus diesem und einem der zuvor genannten zusätzlichen Wärmeträgerfluide. Auch in diesem Fall kann der Wärmetauscher als spiralartig ausgeführte Rohrleitung ausgestaltet sein. Eine Anordnung des Wärmetauschers außerhalb des Reaktionsraums hat den Vorteil, dass der Wärmetauscher nicht durch Feststoffe im Reaktionsraum verunreinigt wird.
  • Die Energieabgabe erfolgt erfindungsgemäß über einen Wärmetauscher an einen Verbraucher. Der Wärmetauscher kann jedoch auch selbst der Verbraucher sein. Beispielsweise kann ein außerhalb des Reaktionsraums angeordneter Wärmetauscher durch einen Heizkörper gebildet sein, der mit der Reaktionswärme betrieben wird, indem das Reaktionsfluid bzw. eine Mischung aus diesem und einem zusätzlichen Wärmeträgerfluid durch den Heizkörper hindurchgeführt wird.
  • Zur Aufladung des thermochemischen Wärmespeichers wird dieser von einer externen Energiequelle mit thermischer Energie versorgt. Hierfür kommen insbesondere eine solarthermische Energiequelle, ein Ofen oder andere Wärmequellen wie beispielsweise eine Abgasleitung einer Verbrennungsmaschine, insbesondere eines Fahrzeugmotors, oder Prozesswärme in Frage.
  • Beim Entladen des thermochemischen Energiespeichers gibt dieser über den Wärmetauscher die Energie an einen Verbraucher ab. Dies kann das Heizungssystem eines Gebäudes, einer Fernwärmeeinrichtung oder auch die Heizung eines Fahrzeugs, insbesondere in Form einer Standheizung, sein.
  • Eine Weiterbildung der erfindungsgemäßen Vorrichtung sieht vor, dass die wenigstens eine Feststofffördereinrichtung an einer der beiden Feststoffleitungen angeordnet ist. Die Feststofffördereinrichtungen können grundsätzlich bidirektional betrieben werden.
  • Es ist ferner insbesondere vorgesehen, dass wenigstens zwei Feststofffördereinrichtungen vorgesehen sind, welche bevorzugt jeweils an einer der beiden Feststoffleitungen angebracht sind. Auf diese Weise kann ein besonders effizienter Transport und eine gleichmäßige Ausbildung des Feststoffpartikelstroms im Reaktionsraum realisiert werden.
  • Des Weiteren kann an der Reaktionsfluidleitung wenigstens eine Reaktionsfluidfördereinrichtung, insbesondere in Form einer Pumpe oder eines Verdichters vorgesehen sein. Auf diese Weise kann der Abtransport oder die Einbringung des Reaktionsfluids in den Reaktionsraum in exakt dosierter Weise erfolgen. Insbesondere kann so die Menge an gefördertem Reaktionsfluid an die im Reaktionsraum eingebrachte Feststoffmenge in gewünschter Weise angepasst werden. Dies kann beispielsweise derart erfolgen, dass im Reaktionsraum dauerhaft ein stöchiometrisches Verhältnis von Reaktionsfluid und hiermit umzusetzendem partikulären Feststoff eingestellt wird oder auch ein gezielt überstöchiometrisches Verhältnis in Bezug auf das Reaktionsfluid.
  • In Weiterbildung der erfindungsgemäßen Vorrichtung kann an die Reaktionsfluidleitung ein Reaktionsfluidspeicher angeschlossen sein. In dieser Ausgestaltung wird das Reaktionsfluid nicht aus der Umgebung in den Reaktionsraum eingebracht oder abgeführt, sondern in einem geschlossenen System vorgehalten. Bei Verwendung mehrerer Reaktionsräume können diese über separate Reaktionsfluidleitungen mit einem Reaktionsfluidspeicher verbunden sein.
  • Zusätzlich zu der Reaktionsfluidfördereinrichtung kann an der Reaktionsfluidleitung ein Ventil vorgesehen sein. Mit diesem kann die Einbringung des Reaktionsfluids in den Reaktionsraum gesteuert werden, insbesondere, wenn das Reaktionsfluid mithilfe eines Kompressors beim Entfernen aus dem Reaktionsraum verflüssigt oder zumindest komprimiert wurde und bei der Abgabe in den Reaktionsraum automatisch verdampft bzw. entspannt. In diesem Fall kann alleine der Druckunterschied zwischen Reaktionsfluidspeicher und Reaktionsraum ausgenutzt werden, um das Reaktionsfluid mit Hilfe des Ventils in gewünschter Weise zu dosieren.
  • Eine Weiterbildung des erfindungsgemäßen Wärmespeichers sieht vor, dass in zumindest einer der Feststoffleitungen und der Reaktionsfluidleitung eine Heiz-/Kühleinrichtung vorgesehen ist. Auf diese Weise lassen sich durch die entsprechenden Leitungen in den Reaktionsraum eingespeisten bzw. aus diesem abgeführten Substanzen auf die jeweils gewünschte Temperatur bringen. So lässt sich beispielsweise im Reaktionsraum gebildeter Wasserdampf mithilfe einer Kühleinrichtung vor dem Eintritt in den Reaktionsfluidspeicher verflüssigen. Umgekehrt kann flüssiges Wasser vor dem Einbringen in den Reaktionsraum verdampft werden, damit sich dieses gleichmäßiger im Reaktionsraum verteilen lässt. Außerdem kann durch die vorherige Verdampfung des Wassers die Bildung von Ablagerungen durch Niederschlagbildung mit dem partikulären Feststoff im Reaktionsraum verhindert werden. Die Heiz-/Kühleinrichtung kann dabei in den Wärmetransportkreislauf der Vorrichtung in der Weise integriert werden, dass die beim Kühlen anfallende Wärme an den angeschlossenen Verbraucher abgegeben wird. Analog kann die für das Vorwärmen erforderliche Wärme von der externen Energiequelle, also beispielsweise von einem Solarkollektor bezogen werden.
  • Der Aufbau und die Funktionsweise eines erfindungsgemäßen thermochemischen Wärmespeichers werden im Folgenden mittels zweier Ausführungsbeispiele anhand der 1 bis 4 näher erörtert. Dabei zeigt
  • 1 den schematischen Aufbau eines ersten erfindungsgemäßen Wärmespeichers mit im Reaktionsraum befindlichem Wärmetauscher während des Ladens;
  • 2 den in 1 dargestellten Wärmespeicher beim Entladevorgang;
  • 3 eine alternative Ausführungsform eines erfindungsgemäßen Wärmespeichers, bei dem der Wärmetauscher außerhalb des Reaktionsraums angeordnet ist beim Ladevorgang sowie
  • 4 den Wärmespeicher gemäß 3 während der Entladung.
  • Im Detail ist in den 1 und 2 ein erfindungsgemäßer thermochemischer Wärmespeicher 1 dargestellt. Dieser umfasst einen Reaktionsraum 2, an den über Feststoffleitungen 3 und 4 zwei Feststoffspeicher 5 und 6 sowie über eine Reaktionsfluidleitung 7 ein Reaktionsfluidspeicher 8 angeschlossen sind.
  • Im Reaktionsraum 2 ist ein Wärmetauscher 9 angeordnet, der über Leitungen 10 und 11 mit einer aus Vereinfachungsgründen nicht dargestellten Energiequelle, beispielsweise mit einem Solarkollektor, oder einem Verbraucher, beispielsweise einem Heizregister verbunden ist. Der Reaktionsraum 2 kann zur Unterstützung der Wärmeübertragung mit einem Wärmeträgerfluid 12 wie Stickstoff befällt sein.
  • In den Feststoffspeichern 5 und 6 befinden sich partikuläre Feststoffe 13 und 14, vorliegend Calciumhydroxid 13 und Calciumoxid 14. Diese Feststoffe 13, 14 können zwischen den jeweiligen Feststoffspeichern 5 und 6 und dem Reaktionsraum 2 mit Hilfe von an den Feststoffleitungen 3, 4 angeordneten Feststofffördereinrichtungen 15, 16 und Heiz-/Kühleinrichtungen 17, 18 unter Ausbildung eines Partikelstroms transportiert und dabei vorgewärmt bzw. abgekühlt werden.
  • Der Reaktionsfluidspeicher 8 ist mit einem Reaktionsfluid, vorliegend Wasser 19 befüllt, das durch die Reaktionsfluidleitung 7 mittels einer daran angeordneten Reaktionsfluidfördereinrichtung 20 und einer Heiz-/Kühleinrichtung 21 zwischen Reaktionsraum 2 und Reaktionsfluidspeicher 8 unter Vorwärmung bzw. Abkühlung befördert werden kann. Die Vorwärmung bzw. Abkühlung umfasst dabei eine Änderung des Aggregatzustandes.
  • Die Heiz-/Kühleinrichtungen 17, 18 und 21 können zum Heizen an dieselbe externe Energiequelle bzw. zum Kühlen an denselben Verbraucher angeschlossen werden, mit dem auch der Wärmetauscher 9 verbunden ist.
  • Beim Betrieb des in den 1 und 2 dargestellten thermochemischen Wärmespeichers 1 wird bei diesem während des Ladevorgangs das in einem ersten der beiden Feststoffspeicher 5 gelagerte partikuläre Calciumhydroxid 13 mit Hilfe der Feststofffördereinrichtung 15 über die Feststoffleitung 3 in den Reaktionsraum 2 eingebracht und dabei durch die Heiz-/Kühleinrichtung 17 vorgewärmt, die an einen externen Solarkollektor als Energiequelle angeschlossen ist.
  • Im Reaktionsraum 2 tritt das Calciumhydroxid 13 in Kontakt mit dem Wärmetauscher 9, der durch die externe Energiequelle beheizt wird und die für die thermochemische Reaktion erforderliche Energie liefert, wodurch das Calciumhydroxid 13 unter Aufnahme von Wärme und Abspaltung von Wasser 19 in Calciumoxid 14 reagiert. Aufgrund der hohen Temperaturen im Reaktionsraum 2 fällt das Wasser gasförmig an.
  • Das entstandene Calciumoxid 14 wird mit Hilfe der Feststofffördereinrichtung 16 aus dem Reaktionsraum 2 durch die Feststoffleitung 4 in den zweiten Feststoffspeicher 6 überführt und dabei durch die Heiz-/Kühleinrichtung 18 abgekühlt. Der gebildete Wasserdampf wird aus dem Reaktionsraum 2 über die Reaktionsfluidleitung 7 mit Hilfe der Reaktionsfluidfördereinrichtung 20 entfernt, durch die Heiz-/Kühleinrichtung 21 zu flüssigem Wasser 19 kondensiert und in den Reaktionsfluidspeicher 8 befördert.
  • Der Ladevorgang des thermochemischen Wärmespeichers 1 ist abgeschlossen, wenn die gesamte Menge an im ersten Feststoffspeicher 5 enthaltenen Cacliumhydroxid 13 umgewandelt wurde. Wahlweise kann der Ladevorgang jedoch zu jedem beliebigen Zeitpunkt gestoppt bzw. temporär unterbrochen werden.
  • Das in 2 dargestellte Schaubild zeigt den erfindungsgemäßen Wärmetauscher 1 aus der 1 während des Entladevorgangs. Zur Entnahme der thermochemisch gespeicherten Wärme wird mittels der Feststofffördereinrichtung 16 Calciumoxid 14 aus dem Feststoffspeicher 6 über die Feststoffleitung 4 in den Reaktionsraum 2 eingebracht. Gleichzeitig wird das in dem Reaktionsfluidspeicher 8 befindliche flüssige Wasser 19 mithilfe der Reaktionsfluidfördereinrichtung 20 durch die Reaktionsfluidleitung 7 gefördert, dabei durch die Heiz-/Kühleinrichtung 21 erhitzt und als Wasserdampf in den Reaktionsraum 2 eingebracht.
  • Im Reaktionsraum 2 findet die Umsetzung von Calciumoxid 14 mit Wasserdampf 19 zu Calciumhydroxid 13 unter Freisetzung von Wärme statt, welche über den Wärmetauscher 9 an einen über die Leitungen 10 und 11 angeschlossenen Verbraucher abgegeben wird. Das während der Umsetzung gebildete Calciumhydroxid 13 wird über die Feststoffleitung 3 mittels der Feststofffördereinrichtung 15 aus dem Reaktionsraum 2 in den Feststoffspeicher 5 transportiert, wobei es über die Heiz-/Kühleinrichtung 17 heruntergekühlt wird. Die in Heiz-/Kühleinrichtung 17 anfallende Wärme kann ebenfalls an den Verbraucher abgegeben werden.
  • In den 3 und 4 ist eine alternative Ausführungsform 22 des erfindungsgemäßen thermochemischen Wärmespeichers 1 dargestellt, der sich von der in 1 und 2 abgebildeten Ausführungsform darin unterscheidet, dass der Wärmetauscher 9 außerhalb des Reaktionsraums 2 angeordnet und über eine Wärmetauscherzulaufleitung 23 und eine Wärmetauscherrücklaufleitung 24 mit dem Reaktionsraum 2 verbunden ist.
  • Eine in der Wärmetauscherzulaufleitung 23 vorgesehene Umwälzpumpe 25 fördert ein Gemisch aus einem Wärmeträgerfluid, beispielsweise Stickstoff, sowie dem Reaktionsfluid 19 aus dem Reaktionsraum 2 in den Wärmetauscher 9, der an eine hier aus Vereinfachungsgründen nicht dargestellte externe Energiequelle angeschlossen ist und aus dem Wärmetauscher 9 zurück in den Reaktionsraum 2.
  • In der Wärmetauscherzulaufleitung 23 des thermochemischen Wärmespeichers 22 können zwei 3-Wegeventile 26 und 27 vorgesehen sein, an die die Leitungen 28 und 29 angeschlossen sind. Über diese Leitungen 28 und 29 kann alternativ oder zusätzlich zu der Reaktionsfluidleitung 7 ein Reaktionsfluid 19 ggf. in Kombination mit einem Wärmeträgerfluid aus der Umgebung zu- oder abgeführt werden. Das bedeutet, dass bei einer solchen Ausführungsform auf den Reaktionsfluidspeicher 8 verzichtet werden könnte. In diesem Fall wird der thermochemischen Wärmespeicher 22 als offenes System betrieben.
  • Die 3 zeigt den alternativen Wärmespeicher 22 während des Ladevorgangs, welcher analog zu den Darstellungen zur 1 verläuft mit dem Unterschied, dass der Wärmeaustausch über den außerhalb des Reaktionsraums 2 angeordneten Wärmetauscher 9 vollzogen wird.
  • Soll der thermochemische Wärmespeicher 22 als offenes System betrieben werden, werden die 3-Wegeventile 26 und 27 in der mit den Pfeilen angedeuteten Richtung um 90° gedreht und auf diese Weise Leitungen 28 und 29 angekoppelt und die Wärmetauscherzulaufleitung 23 zwischen den 3-Wegeventile 26 und 27 unterbrochen. Die Leitung 28 fungiert nun als Zulaufleitung, über die Außenluft in die Wärmetauscherzulaufleitung 23 gefördert wird. Die Luft wird im Wärmetauscher 9 erhitzt und über die Wärmetauscherrücklaufleitung 24 in den Reaktionsraum 2 gefördert, wo sie die nötige Energie für die Dehydratation des Calciumhydroxids liefert, wobei die freiwerdende Feuchtigkeit an die Luft abgegeben wird. Über die Wärmetauscherzulaufleitung 23 wird die Luft anschließend über das 3-Wegeventil 27 und die Leitung 29, die als Reaktionsfluidleitung fungiert, aus dem thermochemischen Wärmespeicher 22 entfernt.
  • In der 4 ist der Energieentnahmeprozess aus dem in 3 dargestellten Wärmespeicher 22 abgebildet. Dieser vollzieht sich analog zu den Ausführungen zu 2, wobei die anfallende Wärmeenergie mittels des wie in 3 beschriebenen Wärmetauschervorgangs vonstatten geht.
  • Wird der thermochemische Wärmespeicher 22 als offenes System betrieben, werden wiederum die 3-Wegeventile 26 und 27 in der mit den Pfeilen angedeuteten Richtung um 90° gedreht und auf diese Weise Leitungen 28 und 29 angekoppelt und die Wärmetauscherzulaufleitung 23 zwischen den 3-Wegeventile 26 und 27 unterbrochen. Die Leitung 29 fungiert nun als Reaktionsfluidleitung, über die feuchte Außenluft in die Wärmetauscherzulaufleitung 23 und von dort in den Reaktionsraum 2 gefördert wird. Im Reaktionsraum 2 findet die Umsetzung zwischen dem Wasser der feuchten Außenluft und dem Calciumoxid statt, wobei die Luft die entstehende thermische Energie aufnimmt und über die Wärmetauscherrücklaufleitung 24 zum Wärmetauscher 9 transportiert. Dort wird die Wärme abgegeben und die Luft über das 3-Wegeventil 26 und die Leitung 28 an die Umgebung abgegeben.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 4333829 [0003]
    • DE 3532093 [0004]
    • EP 1975219 [0005]

Claims (10)

  1. Thermochemischer Wärmespeicher (1, 22) zur Aufnahme, Umwandlung, Speicherung und Abgabe von Reaktionswärme durch reversible Umsetzung eines ersten partikulären Feststoffs (13) zu einem zweiten partikulären Feststoff (14) und einem Reaktionsfluid (19), wobei der Wärmespeicher (1, 22) wenigstens einen Reaktionsraum (2), eine hieran angeschlossene Reaktionsfluidleitung (7, 29) und wenigstens einen Wärmetauscher (9) aufweist, über den mittels einer externen Energiequelle oder eines Verbrauchers Energie zu- oder abgeführt werden kann, dadurch gekennzeichnet, dass an den wenigstens einen Reaktionsraum (2) über Feststoffleitungen (3, 4) zwei Feststoffspeicher (5, 6) zur jeweiligen Speicherung der partikularen Feststoffe (13, 14) angeschlossen sind und zumindest eine Feststofffördereinrichtung (15) vorgesehen ist, um die partikulären Feststoffe (13, 14) zwischen Reaktionsraum (2) und den Feststoffspeichern (5, 6) unter Ausbildung eines Partikelstroms im Reaktionsraum (2) zu fördern.
  2. Wärmespeicher nach Anspruch 1, dadurch gekennzeichnet, dass als externe Energiequelle eine solarthermische Energiequelle, ein Ofen oder eine andere Wärmequelle, insbesondere eine Abgasleitung einer Verbrennungsmaschine, vorzugsweise eines Fahrzeugmotors, oder Prozesswärme vorgesehen ist.
  3. Wärmespeicher nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die wenigstens eine Feststofffördereinrichtung (15) an einer der beiden Feststoffleitungen (3, 4) angeordnet ist, insbesondere, dass wenigstens zwei Feststofffördereinrichtungen (15, 16) vorgesehen sind, die vorzugsweise jeweils an einer der beiden Feststoffleitungen (3, 4) angebracht sind.
  4. Wärmespeicher nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass an der Reaktionsfluidleitung (7, 29) wenigstens eine Reaktionsfluidfördereinrichtung (20), insbesondere in Form einer Pumpe oder eines Verdichters, vorgesehen ist und/oder an die Reaktionsfluidleitung (7) ein Reaktionsfluidspeicher (19) angeschlossen ist.
  5. Wärmespeicher nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass zumindest in einer der Feststoffleitungen (3, 4) und der Reaktionsfluidleitung (7, 29) eine Heiz-/Kühleinrichtung (17, 18, 21) vorgesehen ist.
  6. Wärmespeicher nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Wärmetauscher (9) außerhalb des Reaktionsraums (2) angeordnet und mit diesem über eine an den Reaktionsraum (2) angeschlossene Wärmetauscherzulaufleitung (23) und eine Wärmetauscherrücklaufleitung (24) verbunden ist.
  7. Verfahren zur Aufnahme, Umwandlung, Speicherung und Abgabe von Reaktionswärme durch reversible Umsetzung eines ersten partikulären Feststoffs (13) zu einem zweiten partikulären Feststoff (14) und einem Reaktionsfluid (19) in einem thermochemischen Wärmespeicher (1, 22), dadurch gekennzeichnet, dass die Reaktanden und die Reaktionsprodukte jeweils zwischen zwei Feststoffspeichern (5, 6) mittels wenigstens einer Feststofffördereinrichtung (15) wenigstens einem Reaktionsraum (2) zugeführt oder aus diesem abgeführt werden, wobei die während der Umsetzung in dem wenigstens einen Reaktionsraum (2) freiwerdende oder aufgenommene Energie über einen Wärmetauscher (9) an einen externen Verbraucher abgegeben oder von einer externen Energiequelle bezogen wird.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die partikulären Feststoffe (13, 14) und/oder das Reaktionsfluid (14) außerhalb des Reaktionsraums (2) gekühlt oder erwärmt werden.
  9. Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass für den Transport der bei der Umsetzung freiwerdenden oder aufgenommenen wärme zum Wärmetauscher (9) ein Wärmeträgerfluid (12) verwendet wird, welches insbesondere ausgewählt ist aus Edelgasen, vorzugsweise Argon, Stickstoff, Schwefelhexafluorid, Distickstoffmonoxid, Luft oder Mischungen hiervon.
  10. Verfahren nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass das Reaktionsfluid (19) aus einem Reaktionsfluidspeicher (8) dem Reaktionsraum (2) zugeführt oder aus dem Reaktionsraum (2) in den Reaktionsfluidspeicher (8) abgeführt wird.
DE102009052304A 2009-11-09 2009-11-09 Thermochemischer Wärmespeicher sowie Verfahren zur Aufnahme, Umwandlung, Speicherung und Abgabe von Reaktionswärme Ceased DE102009052304A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102009052304A DE102009052304A1 (de) 2009-11-09 2009-11-09 Thermochemischer Wärmespeicher sowie Verfahren zur Aufnahme, Umwandlung, Speicherung und Abgabe von Reaktionswärme
PCT/EP2010/065830 WO2011054676A2 (de) 2009-11-09 2010-10-20 Thermochemischer wärmespeicher sowie verfahren zur aufnahme, umwandlung, speicherung und abgabe von reaktionswärme

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102009052304A DE102009052304A1 (de) 2009-11-09 2009-11-09 Thermochemischer Wärmespeicher sowie Verfahren zur Aufnahme, Umwandlung, Speicherung und Abgabe von Reaktionswärme

Publications (1)

Publication Number Publication Date
DE102009052304A1 true DE102009052304A1 (de) 2011-05-26

Family

ID=43639892

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102009052304A Ceased DE102009052304A1 (de) 2009-11-09 2009-11-09 Thermochemischer Wärmespeicher sowie Verfahren zur Aufnahme, Umwandlung, Speicherung und Abgabe von Reaktionswärme

Country Status (2)

Country Link
DE (1) DE102009052304A1 (de)
WO (1) WO2011054676A2 (de)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012103427A1 (de) 2012-04-19 2013-10-24 Cic Energigune Verfahren zur Herstellung eines Reaktionsmediums, Reaktionsmedium und Verwendung eines Reaktionsmediums
WO2014053224A1 (de) * 2012-10-02 2014-04-10 Linde Aktiengesellschaft Verfahren zur speicherung von energie in salzschmelzen
DE102013203619A1 (de) * 2013-03-04 2014-09-04 Deutsches Zentrum für Luft- und Raumfahrt e.V. Wärmespeichervorrichtung, Kraftfahrzeug und Verfahren zum Speichern und Bereitstellen von Wärme
DE102014101987A1 (de) 2014-02-17 2015-01-22 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zur Speicherung von Wärme
DE102014202266A1 (de) * 2014-02-07 2015-08-13 Siemens Aktiengesellschaft Verfahren zum Betreiben eines Energiespeichers
DE102014002678A1 (de) * 2014-02-28 2015-09-03 Bw-Energiesysteme Gmbh Verfahren und Vorrichtung zur Speicherung von Energie in Lauge
DE102015101214A1 (de) * 2015-01-28 2016-07-28 Deutsches Zentrum für Luft- und Raumfahrt e.V. Energiespeichervorrichtung und Verfahren zur Speicherung und/oder Bereitstellung von Energie
DE102015212406A1 (de) * 2015-07-02 2017-01-05 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung zur Wärmespeicherung
DE102015212395A1 (de) * 2015-07-02 2017-01-05 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Wärmespeicherung
DE202017000671U1 (de) 2017-02-08 2017-03-29 Heinz Sause System zur latenten Speicherung der Abgaswärme von Dieselmotoren
DE102016200921A1 (de) * 2016-01-22 2017-07-27 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zum Übertragen von Wärme und Wärmeübertrager
DE102018109185A1 (de) * 2018-04-18 2019-10-24 Vaillant Gmbh Verfahren zur verlustfreien Speicherung von thermischer Energie in adsorptiven Kleinstpartikeln
DE102018131408A1 (de) 2018-12-07 2020-06-10 Deutsches Zentrum für Luft- und Raumfahrt e.V. Beschichtung zur Stabilisierung von thermochemischen Energiespeichermaterialien
DE102018132467A1 (de) * 2018-12-17 2020-06-18 ELMESS-Thermosystemtechnik GmbH & Co. KG Verfahren und Vorrichtung zur Beladung und Entladung eines thermochemischen Wärmespeicher-Mediums
DE102019107440A1 (de) * 2019-03-22 2020-09-24 Otto-Von-Guericke-Universität Magdeburg Feststoffreaktor, System und Verfahren zur Kohlendioxidabtrennung
EP3795936A1 (de) 2019-09-23 2021-03-24 Deutsches Zentrum für Luft- und Raumfahrt e.V. Speicheranlage zur thermochemischen speicherung von energie und verfahren zum betreiben einer speicheranlage
DE202021001986U1 (de) 2020-06-12 2021-09-14 enerma - gesellschaft für energiedienstleistungen mbH Heizsystem mit thermochemischen Energiespeichermaterialien
DE102023100682A1 (de) 2023-01-12 2024-07-18 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren und Vorrichtung zum Bereitstellen von Wärmeenergie

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014126592A1 (en) * 2013-02-18 2014-08-21 Poole Ventura, Inc. Thermal diffusion chamber with cooling tubes
FR3004246A1 (fr) * 2013-04-09 2014-10-10 Commissariat Energie Atomique Systeme de stockage par voie thermochimique a efficacite de stockage amelioree
FR3004245B1 (fr) * 2013-04-09 2015-05-15 Commissariat Energie Atomique Systeme de stockage thermique par voie thermochimique
FR3030706B1 (fr) 2014-12-19 2019-04-05 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif de stockage destine a une installation de production d'energie thermique et procede d'utilisation
FR3037872B1 (fr) * 2015-06-23 2017-06-23 Renault Sas Dispositif de chauffage d'une batterie comprenant au moins un accumulateur
DE102015223997A1 (de) * 2015-12-02 2017-06-08 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Speicherung von Wasserstoff
DE102016217090A1 (de) * 2016-09-08 2018-03-08 Siemens Aktiengesellschaft Verfahren und System zum Speichern und Rückgewinnen von Wärmeenergie in einer Energieerzeugungsanlage
WO2021136959A1 (de) * 2019-12-30 2021-07-08 Trebuchet B.V. Verfahren und vorrichtung zum erzeugen und speichern von wärme

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3532093C1 (de) 1985-09-09 1987-04-09 Schiedel Gmbh & Co Diskontinuierlich arbeitende Sorptions-Speichervorrichtung mit Feststoffabsorber
DE4333829A1 (de) 1993-09-30 1995-04-06 Auf Adlershofer Umweltschutzte Verfahren und Anlage zur Speicherung von Wärmeenergie
WO1999053257A1 (en) * 1998-04-15 1999-10-21 Progetto Fa.Ro. S.R.L. System for thermo-chemical accumulation of heat
EP1975219A2 (de) 2007-03-28 2008-10-01 Robert Bosch GmbH Thermochemischer Wärmespeicher und Heizsystem mit einem thermochemischen Wärmespeicher

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4303121A (en) * 1978-04-24 1981-12-01 Institute Of Gas Technology Energy storage by salt hydration
FR2505992A1 (fr) * 1981-05-13 1982-11-19 Amselem Elbas Moise Procede de stockage et de restitution d'energie calorifique

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3532093C1 (de) 1985-09-09 1987-04-09 Schiedel Gmbh & Co Diskontinuierlich arbeitende Sorptions-Speichervorrichtung mit Feststoffabsorber
DE4333829A1 (de) 1993-09-30 1995-04-06 Auf Adlershofer Umweltschutzte Verfahren und Anlage zur Speicherung von Wärmeenergie
WO1999053257A1 (en) * 1998-04-15 1999-10-21 Progetto Fa.Ro. S.R.L. System for thermo-chemical accumulation of heat
EP1975219A2 (de) 2007-03-28 2008-10-01 Robert Bosch GmbH Thermochemischer Wärmespeicher und Heizsystem mit einem thermochemischen Wärmespeicher

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012103427B4 (de) * 2012-04-19 2017-03-23 Cic Energigune Verfahren zur Herstellung eines Reaktionsmediums, Reaktionsmedium und Verwendung eines Reaktionsmediums
DE102012103427A1 (de) 2012-04-19 2013-10-24 Cic Energigune Verfahren zur Herstellung eines Reaktionsmediums, Reaktionsmedium und Verwendung eines Reaktionsmediums
WO2014053224A1 (de) * 2012-10-02 2014-04-10 Linde Aktiengesellschaft Verfahren zur speicherung von energie in salzschmelzen
DE102013203619A1 (de) * 2013-03-04 2014-09-04 Deutsches Zentrum für Luft- und Raumfahrt e.V. Wärmespeichervorrichtung, Kraftfahrzeug und Verfahren zum Speichern und Bereitstellen von Wärme
DE102014202266A1 (de) * 2014-02-07 2015-08-13 Siemens Aktiengesellschaft Verfahren zum Betreiben eines Energiespeichers
DE102014101987A1 (de) 2014-02-17 2015-01-22 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zur Speicherung von Wärme
DE102014002678B4 (de) * 2014-02-28 2017-05-24 Bw-Energiesysteme Gmbh Verfahren zur Speicherung von Energie in Lauge
DE102014002678A1 (de) * 2014-02-28 2015-09-03 Bw-Energiesysteme Gmbh Verfahren und Vorrichtung zur Speicherung von Energie in Lauge
DE102015101214A1 (de) * 2015-01-28 2016-07-28 Deutsches Zentrum für Luft- und Raumfahrt e.V. Energiespeichervorrichtung und Verfahren zur Speicherung und/oder Bereitstellung von Energie
DE102015212406A1 (de) * 2015-07-02 2017-01-05 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung zur Wärmespeicherung
DE102015212395A1 (de) * 2015-07-02 2017-01-05 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Wärmespeicherung
DE102016200921A1 (de) * 2016-01-22 2017-07-27 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zum Übertragen von Wärme und Wärmeübertrager
DE102016200921B4 (de) * 2016-01-22 2020-02-13 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zum Übertragen von Wärme, Wärmeübertrager und Wärmespeichervorrichtung
DE202017000671U1 (de) 2017-02-08 2017-03-29 Heinz Sause System zur latenten Speicherung der Abgaswärme von Dieselmotoren
DE102018109185A1 (de) * 2018-04-18 2019-10-24 Vaillant Gmbh Verfahren zur verlustfreien Speicherung von thermischer Energie in adsorptiven Kleinstpartikeln
DE102018131408A1 (de) 2018-12-07 2020-06-10 Deutsches Zentrum für Luft- und Raumfahrt e.V. Beschichtung zur Stabilisierung von thermochemischen Energiespeichermaterialien
EP3670629A1 (de) 2018-12-07 2020-06-24 Deutsches Zentrum für Luft- und Raumfahrt e.V. Beschichtung zur stabilisierung von thermochemischen energiespeichermaterialien
DE102018132467A1 (de) * 2018-12-17 2020-06-18 ELMESS-Thermosystemtechnik GmbH & Co. KG Verfahren und Vorrichtung zur Beladung und Entladung eines thermochemischen Wärmespeicher-Mediums
DE102019107440A1 (de) * 2019-03-22 2020-09-24 Otto-Von-Guericke-Universität Magdeburg Feststoffreaktor, System und Verfahren zur Kohlendioxidabtrennung
EP3795936A1 (de) 2019-09-23 2021-03-24 Deutsches Zentrum für Luft- und Raumfahrt e.V. Speicheranlage zur thermochemischen speicherung von energie und verfahren zum betreiben einer speicheranlage
DE102019125540A1 (de) * 2019-09-23 2021-03-25 Deutsches Zentrum für Luft- und Raumfahrt e.V. Speicheranlage zur thermochemischen Speicherung von Energie und Verfahren zum Betreiben einer Speicheranlage
DE202021001986U1 (de) 2020-06-12 2021-09-14 enerma - gesellschaft für energiedienstleistungen mbH Heizsystem mit thermochemischen Energiespeichermaterialien
DE102020003530B3 (de) 2020-06-12 2021-09-30 enerma - gesellschaft für energiedienstleistungen mbH Verfahren zur Nutzung von Abwärme für Heizwecke durch ein Heizsystem und Heizsystem mit thermochemischen Energiespeichermaterialien
DE102023100682A1 (de) 2023-01-12 2024-07-18 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren und Vorrichtung zum Bereitstellen von Wärmeenergie

Also Published As

Publication number Publication date
WO2011054676A2 (de) 2011-05-12
WO2011054676A3 (de) 2011-12-01

Similar Documents

Publication Publication Date Title
DE102009052304A1 (de) Thermochemischer Wärmespeicher sowie Verfahren zur Aufnahme, Umwandlung, Speicherung und Abgabe von Reaktionswärme
RU2395335C2 (ru) Хранение аммиака при его высоком содержании
DE69233044T2 (de) Herstellung von methanol zur verminderung von gasen, die ein treibhauseffekt hervorrufen
EP2174699B1 (de) Verfahren und Anordnung zur Abscheidung von CO2 aus Verbrennungsabgas
AT517934B1 (de) Anlage und Verfahren zur gaskompressionsfreien Rückgewinnung und Speicherung von Kohlenstoff in Energiespeichersystemen
DE102013013835B4 (de) Adsorptionswärmepumpensystem und Verfahren zur Erzeugung von Kühlleistung
EP2536993B1 (de) Verfahren, wärmespeicher und wärmespeichersystem zur erwärmung und abkühlung eines arbeitsfluides
DE2939423A1 (de) Verfahren zum betrieb einer eine absorber-waermepumpe enthaltenden heizungsanlage und heizungsanlage zur durchfuehrung dieses verfahrens
WO2014173572A2 (de) Kraftwerkssystem mit thermochemischem speicher
DE102007014846B4 (de) Thermochemischer Wärmespeicher, Heizsystem mit einem thermochemischen Wärmespeicher und Verwendung des Heizsystems
CH629248A5 (de) Verfahren zum speichern und entnehmen von waermeenergie sowie anlage zur durchfuehrung dieses verfahrens.
DE102014210482A1 (de) Wärmeträgerpartikel für solarbetriebene, thermochemische Prozesse
DE1262233B (de) Verfahren zur Entfernung von Schwefeltroxyd und gegebenenfalls von Schwefeldioxyd aus heissen Gasen, insbesondere aus Feuerungsabgasen
DE102014222919A1 (de) Verbrennung von elektropositivem Metall in einer Flüssigkeit
EP3080408B1 (de) Verfahren zum betreiben eines energiespeichers
AT518448B1 (de) Verfahren zur thermochemischen Energiespeicherung
DE2549370A1 (de) Verfahren und vorrichtung zur erzeugung von wasserstoff aus wasser
DE102020003530B3 (de) Verfahren zur Nutzung von Abwärme für Heizwecke durch ein Heizsystem und Heizsystem mit thermochemischen Energiespeichermaterialien
DE3006733A1 (de) Verfahren und einrichtung zum nutzbarmachen von waerme
DE102011051632B3 (de) Wärmeübertragungsvorrichtung und Verfahren zum Übertragen von Wärme
WO2015007274A1 (de) Adsorptionskältemaschine mit einem adsorptionsmittel und verfahren zur erzeugung von kälte und verwendung eines dealuminierten zeolithen als adsorptionsmittel in einer adsorptionskältemaschine
AT512153B1 (de) Verfahren zum Gewinnen von Kohlendioxid
DE2737059B2 (de) Kreisprozeß mit einem Mehrstoffarbeitsmittel
DE102011014339A1 (de) Verfahren zur Gewinnung von gereinigten Halogeniden aus Halogen-haltigen Kohlenstoffträgern
WO2020177997A1 (de) Absorptionsmittel, vorrichtung und verfahren zum gewinnen von kohlenstoffdioxid und wasser aus luft

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
R016 Response to examination communication
R016 Response to examination communication
R082 Change of representative

Representative=s name: PAUL & ALBRECHT PATENTANWALTSSOZIETAET, DE

R081 Change of applicant/patentee

Owner name: UNIVERSITAET STUTTGART, DE

Free format text: FORMER OWNER: DEUTSCHES ZENTRUM FUER LUFT- UND RAUMFAHRT E.V., 51147 KOELN, DE

Effective date: 20140701

Owner name: DEUTSCHES ZENTRUM FUER LUFT- UND RAUMFAHRT E.V, DE

Free format text: FORMER OWNER: DEUTSCHES ZENTRUM FUER LUFT- UND RAUMFAHRT E.V., 51147 KOELN, DE

Effective date: 20140701

R082 Change of representative

Representative=s name: PAUL & ALBRECHT PATENTANWALTSSOZIETAET, DE

Effective date: 20140701

Representative=s name: PAUL & ALBRECHT PATENTANWAELTE PARTG MBB, DE

Effective date: 20140701

R002 Refusal decision in examination/registration proceedings
R003 Refusal decision now final