DE102007052375A1 - Energiespeicher mit Kühlvorrichtung, insbesondere für Hybridfahrzeuge - Google Patents

Energiespeicher mit Kühlvorrichtung, insbesondere für Hybridfahrzeuge Download PDF

Info

Publication number
DE102007052375A1
DE102007052375A1 DE200710052375 DE102007052375A DE102007052375A1 DE 102007052375 A1 DE102007052375 A1 DE 102007052375A1 DE 200710052375 DE200710052375 DE 200710052375 DE 102007052375 A DE102007052375 A DE 102007052375A DE 102007052375 A1 DE102007052375 A1 DE 102007052375A1
Authority
DE
Germany
Prior art keywords
spacers
cooler plates
energy storage
cells
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE200710052375
Other languages
English (en)
Other versions
DE102007052375B4 (de
Inventor
Swen Wiethoff
Peter Birke
Jens Unterdörfer
Stefan Dr. Tillmann
Michael Keller
Knut Welke
Sönke GÜRTLER
Dullek Matti
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vitesco Technologies Germany GmbH
Original Assignee
Temic Automotive Electric Motors GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Temic Automotive Electric Motors GmbH filed Critical Temic Automotive Electric Motors GmbH
Priority to DE102007052375.2A priority Critical patent/DE102007052375B4/de
Publication of DE102007052375A1 publication Critical patent/DE102007052375A1/de
Application granted granted Critical
Publication of DE102007052375B4 publication Critical patent/DE102007052375B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/291Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • H01M10/6565Gases with forced flow, e.g. by blowers with recirculation or U-turn in the flow path, i.e. back and forth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Es wird ein Energiespeicher mit elektrischen Speicherzellen (5) und einer Vorrichtung zur Kühlung vorgestellt, die modular aus Kühlerplatten (1) und Abstandshaltern (2) aufgebaut ist. Die Speicherzellen sind auf den Kühlerplatten aufgebracht. Kühlkanäle, die entweder nur in den Abstandshaltern oder durch Kühlerplatten und Abstandshalter verlaufen, dienen zur Führung des Kühlmittelstroms insbesondere bei einem geschlossenen Kühlmittelstrom. Ein wesentlicher Vorteil des Konzeptes ist die einfache Schichtung und die Möglichkeit der Vorkonfektionierung der Einheit Zelle-Kühlerplatte sowie modulare Zusammenschaltung von Zellen und Einheiten je nach Anwendungsfall.

Description

  • Die Erfindung betrifft einen Energiespeicher mit einer Kühlvorrichtung gemäß dem Oberbegriff von Anspruch 1. Zudem wird ein entsprechendes Herstellungsverfahren beschrieben.
  • Als Hybrid- bzw. Elektrofahrzeug bezeichnet man Fahrzeuge, die prinzipbedingt ganz oder teilweise durch elektrische Energie angetrieben werden.
  • Kraftfahrzeuge mit Hybridantrieb, auch Hybridfahrzeuge genannt, weisen beispielsweise eine Verbrennungsmaschine, eine elektrische Maschine und einen oder mehrere elektrochemische Energiespeicher auf. Elektrofahrzeuge mit Brennstoffzellen bestehen allgemein aus einer Brennstoffzelle zur Energiewandlung, einem Tank für flüssige oder gasförmige Energieträger, einem elektrochemischen Energiespeicher und einer elektrischen Maschine für den Antrieb.
  • Die elektrische Maschine des Hybridfahrzeuges ist in der Regel als Starter/Generator und/oder elektrischer Antrieb ausgeführt. Als Starter/Generator ersetzt sie den normalerweise vorhandenen Anlasser und die Lichtmaschine. Bei einer Ausführung als elektrischer Antrieb kann ein zusätzliches Drehmoment, d. h. ein Beschleunigungsmoment, zum Vortrieb des Fahrzeugs von der elektrischen Maschine beigetragen werden. Als Generator ermöglicht sie eine Rekuperation von Bremsenergie und Bordnetzversorgung.
  • Bei einem reinen Elektrofahrzeug wird die Antriebsleistung allein durch eine elektrische Maschine bereitgestellt. Beiden Fahrzeugtypen, Hybrid- und Elektrofahrzeug ist gemein, dass große Mengen elektrischer Energie bereitgestellt und transferiert werden müssen.
  • Die Steuerung des Energieflusses erfolgt über eine Elektronik allgemein Hybrid-Controller genannt. Er regelt unter anderem, ob und in welcher Menge dem Energiespeicher Energie entnommen oder zugeführt werden soll.
  • Die Energieentnahme aus der Brennstoffzelle oder dem Energiespeicher dient allgemein zur Darstellung von Antriebsleistung und zur Versorgung des Fahrzeugbordnetzes. Die Energiezuführung dient der Aufladung des Speichers bzw. zur Wandlung von Bremsenergie in elektrische Energie d. h. dem regenerativen Bremsen.
  • Der Energiespeicher für Hybridanwendungen kann während des Fahrbetriebs wieder aufgeladen werden. Die hierfür benötigte Energie stellt der Verbrennungsmotor bereit.
  • Als Energielieferanten und Speicher für Elektrofahrzeuganwendungen lassen sich beispielsweise Bleibatterien, Doppelschichtkondensatoren, Nickel-Metallhydrid- oder Lithium-Ionen Zellen nutzen.
  • Die Zelle ist in den meisten Fällen in einem gasdichten Metallgehäuse untergebracht. Eine spezielle Möglichkeit der Ausführung bei Lithium-Ionen Zellen besteht in Form eines Softpacks. Dieser besteht aus der Batteriezelle, welche von einer Folie, typischerweise eine Aluminiumverbundfolienverpackung, umgeben ist.
  • Eine wichtige Anforderung an diese Speicher ist, ein Optimum des Produktes aus Spannung und Strom für eine geforderte Leistung zu finden. In diese Optimierungsbetrachtung gehen Material- und Kostenaspekte ein. Man findet, dass für das vorgesehene Anwendungsfeld eine Systemauslegung weder auf hohe Spannungen noch auf hohe Ströme zielführend ist.
  • Typische Spannungsbereiche für eine optimale Systemauslegung liegen zwischen 100–450 V Maximalspannung, die resultierenden Ströme können im Pulsbetrieb 400 A, für besondere Extremanwendungen und für höhere Temperaturbereiche sogar bis zu 550 A erreichen. Kontinuierliche Ströme liegen im Bereich von 80–100 A, können aber ggf. anwendungsspezifisch auch noch höher liegen. Eine Herabsetzung dieser Ströme zu Gunsten höherer Spannungen ist wie bereits erwähnt aus konstruktiven und kostenbedingten Gründen mit deutlich mehr Aufwand als eine konsequente Systemauslegung auf diese Ströme verbunden.
  • Diese Anforderungen treten nicht nur für Energiespeicher für automotive Anwendungen wie Hybrid- oder Elektrofahrzeuge auf, sondern auch im stationären Bereich, z. B. zur Pufferung von Lastspitzen oder bei Energiespeichern zur dezentralen Energieversorgung.
  • Die Kosten für solche Hochleistungszellen (typischerweise > 4 Ah) liegen konstruktionsbedingt deutlich höher als jene von einfachen Konsumerzellen mit zudem in der Regel geringeren Kapazitäten. Zusätzlich werden in der Automobilindustrie Lebensdaueranforderungen von mehr als 10 Jahren gefordert.
  • Ein effizientes Kühlkonzept ist für die Erreichung dieser Lebensdaueranforderungen unabdingbar.
  • Die thermische Anbindung der Batterie an eine externe Temperiereinheit kann auch zur gezielten Erwärmung des Systems bei besonders geringen Umgebungstemperaturen genutzt werden, um auch hiermit eine möglichst einheitliche Zellentemperatur zu gewährleisten.
  • Je nach Anwendung als Energiespeicher für Hybridfahrzeuge, Plug-in Hybride oder als Elektrofahrzeug werden Spitzenleistungen von 10 kW bis zu über 100 kW gefordert. Obwohl die Anforderungen an kontinuierliche Leistungen deutlich darunter liegen können, stellen insbesondere diese kontinuierlichen Leistungen hohe Anforderungen an die Kühlung, zumal die Bauräume für Energiespeicher in der Regel recht begrenzt sind.
  • Dabei ist es für die Lebensdauer der Zelle nicht nur von Bedeutung, dass diese (absolut) gekühlt wird, sondern dass diese Kühlung gleichmäßig (relativ), d. h., mit möglichst geringem Temperaturgradient über die Zelle und im Falle der Verschaltung von mehreren Zellen zu einem Energiespeicher auch über diesen, d. h., über die Zellen, erfolgt. Das Ziel ist dabei eine Temperaturdifferenz von ΔT < 3 K, ein guter Wert ist bereits ΔT < 5 K.
  • Trotz gleichmäßigem Kühlmittelfluss über bzw. durch den gesamten Speicher kann es jedoch zur unterschiedlichen Erwärmung einzelner Zellsegmente kommen.
  • Insbesondere, wenn Zellen parallel verschaltet werden, sind diese zwar elektrisch gekoppelt, aber noch nicht zwangsläufig auch thermisch. Eine thermische Kopplung ist wichtig, um einen gleichmäßigen Stromfluss unter Belastung zu gewährleisten. In der Regel kann man davon ausgehen, dass 15 K Temperaturerhöhung die Kinetik verdoppelt. Fließen im Belastungsfall unterschiedliche Ströme innerhalb einer Parallelschaltung so kann dies eine beschleunigte Alterung lokaler Bereiche und sogar Schäden im Falle hoher Ströme hervorrufen.
  • Um dies zu umgehen, können mehrere („MultiPack"), bevorzugt zwei Zellen („BiPack") aber auch nur eine Zelle an eine Kühlerplatte („Kühlfinne") angeschlossen werden.
  • Die Anbindung an die Kühlerplatte erfolgt bevorzugt mit einer Klebeverbindung über den Zellkörper, kann aber auch zusätzlich durch mechanischen Druck oder eine Halterung am Zellrand erfolgen.
  • Unterschiedliche Kunden wünschen jedoch unterschiedliche Energiespeicher. Aufgabe der Erfindung ist es daher, einen Energiespeicher sowie ein Verfahren zur Herstellung vorzustellen, welches ein effektive Kühlung einerseits und eine kostengünstige Herstellung für unterschiedliche Kunden andererseits ermöglicht. Diese Aufgabe wird durch die Merkmale der unabhängigen Ansprüche gelöst. Vorteilhafte Weiterbildungen sind den Unteransprüchen und Ausführungsbeispielen zu entnehmen.
  • Der entscheidende Punkt dieser Erfindung besteht darin, dass eine kompakte, kostengünstige und modulare Bauweise mit einer effektiven Kühlleistung kombiniert wird. Diese kompakte, einfache Bauweise ist im Rahmen eines Baukastensystems einsetzbar, d. h. je nach Anwendungsfall können beliebig viele Zellen zusammengeschaltet werden. Es wird eine effektive Halterung der Zellen im Hinblick auf Vibration und Schichtungstoleranzen erreicht. Es entsteht eine sehr effektive Kühlung, da die Kühlerplatte gleichzeitig Bestandteil des Grundkörpers ist. Damit lassen sich optimale Kühlung eines Energiespeichers und somit besonders hohe Lebensdauererwartungen realisieren.
  • Es sind vorzugweise Kühlkanäle für ein Kühlmedium nur in den Abstandshaltern, also beispielsweise längs verlaufend zu den Kühlerplatten, oder alternativ beispielsweise als senkrecht zur Kühlerplatte verlaufende Aussparungen in Kühlerplatten und Abstandshaltern vorgesehen sind.
  • Die Herstellung eines Energiespeichers erfolgt jeweils modular aus Kühlerplatten, welche ein- oder beidseitig mit einer gewünschte Anzahl von Speicherzellen versehen sind und eine gewünschte Anzahl von Kühlerplatten mit den Speicherzellen mit Abstandshaltern zu einem Energiespeicher einer gewünschten Speicherkapazität modular zusammengesetzt und die Speicherzellen untereinander elektrisch verbunden werden.
  • Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen und Figuren näher erläutert.
  • 1 erste Ausgestaltung eines modularen Kühlkörpers für einen Energiespeicher
  • 2 zweite Ausgestaltung eines modularen Kühlkörpers für einen Energiespeicher
  • 3 Detailansicht einer Kühlerplatte gemäß 2 mit zwei beidseitig der Kühlerplatte angeordneten Zellen des Energiespeichers
  • 45 Seitenansichten von 3
  • 1 zeigt eine Mehrzahl von Kühlerplatten 1, auf denen jeweils ein oder mehrere Energiespeicherzellen 5 angeordnet sein können. Zwischen den einzelnen Kühlerplatten 1 befindet sich jeweils ein Abstandshalter 2 in den ein Kühlungskanal 3 integriert ist. Zwei Abstandshalter 2 werden über die Verbindung 4 mit der Kühlerplatte 1 und miteinander verbunden.
  • 2 zeigt eine alternative Ausführung eines modularen Kühlkörpers. Hierbei besteht die Kühlerplatte 1 aus der Kühlfinne 1.1 und dem integrierten Kühlungskanal 1.2, der senkrecht zur Plattenebene durch die Schichtung von Kühlerplatten 1 und Abstandshaltern 2. Die Dichtung 2.1 ist zwischen Kühlerplatte und Abstandshalter angebracht.
  • 3 zeigt eine Kühlerplatte gemäß 2, auf die zwei Speicherzellen 5a und 5b beidseitig angebracht sind, z. B durch Verkleben. Die Kontaktierung der Zellen 5a und 5b erfolgt über die Kontakte 5a.1, 5a.2 bzw. 5b.1 und 5b.2. 4 zeigt die Draufsicht von 3 und 5 zeigt die Seitenansicht. Dadurch, dass die beiden Kontakte 5b.1 und 5a.2 verbunden sind, sind die beiden Zellen in Serie geschaltet.
  • Um eine besonders effektive Kühlung zu erreichen ist daher in allen Ausführungsbeispielenein Teil der Kühlerplatte gleichzeitig Bestandteil des Grundkörpers, welcher sich aus den Kühlerplatten und Abstandshaltern bildet.
  • Dadurch wird ein kontinuierlicher Übergang ohne eine Zwischenverbindung erreicht, die einen empfindlichen Engpass bei der Wärmeübertragung darstellen kann.
  • Ein weiterer Vorteil des Konzeptes ist die einfache Schichtung und die Möglichkeit der Vorkonfektionierung der Einheit Zelle-Kühlerplatte sowie modulare Zusammenschaltung von Zellen und Einheiten je nach Anwendungsfall. Dies macht das System besonders geeignet für kleine modulare Einheiten, kleine Energiespeicher und indirekte Luftkühlung.
  • Zur Vereinfachung des Zusammenbaus des Systems können die Multi- oder Bi-Packs an den Kühlkanälen mit direkt angespritzten Dichtungen vorbereitet werden. Dadurch wird die Fehlerrate beim Zusammenfügen der Gesamtmodule deutlich gesenkt werden können. Die schiere Anzahl der Packs würde sonst zu einer schwer kontrollierbaren Zahl von Einzelteilen führen, die in der richtigen Position zusammengebaut werden müssen.
  • Werden die Zellableiter zusätzlich so flexibel gestaltet, dass sie durch einfache Vorrichtungen gekröpft und bevorzugt mittels Ultraschallverschweißung zusammengefügt werden können so bestimmen in der Gesamtkonstruktion nur die Abstandshalter für die Kühlerplatten die Fixierung der Zellpacks und können, wenn Abstände zwischen den Zellpacks vorgesehen sind, somit effektiv sämtliche Toleranzen des Softpacks effektiv ausgleichen.
  • Die Kühlkanäle bieten die Möglichkeit eines geschlossenen Kühlmittelstroms, so dass neben Luft auch andere Kühlmedien eingesetzt werden können. Insbesondere wird vermieden, dass bei Defekten an einer Zelle Ausdünstungen der Zelle in den Kühlmittelstrom, beispielsweise die Innenraumluft des Fahrzeugs gelangen.
  • Die vorliegende Kühlvorrichtung für Energiespeicher eignet sich insbesondere für die Umsetzung in Kombination insbesondere mit einem Hybrid-Antrieb oder Elektrofahrzeuge mit Batteriespeicher.

Claims (5)

  1. Energiespeicher mit elektrischen Speicherzellen (5a, 5b) und einer Vorrichtung zur Kühlung, dadurch gekennzeichnet, dass die Vorrichtung modular aus Kühlerplatten (1) und Abstandshaltern (2) aufgebaut ist und die Speicherzellen (5a, 5b) auf den Kühlerplatten (1) aufgebracht sind.
  2. Energiespeicher nach Anspruch 1, wobei Kühlkanäle (3) für ein Kühlmedium in den Abstandshaltern (2) vorgesehen sind.
  3. Energiespeicher nach Anspruch 1, wobei Kühlkanäle (3) durch Aussparungen (1.2) in Kühlerplatten (1) und Abstandshaltern (2) vorgesehen sind.
  4. Energiespeicher nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass ein geschlossener Kühlmittelkreislauf vorgesehen ist.
  5. Verfahren zur Herstellung eines Energiespeichers nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass jeweils eine Kühlerplatte (1) ein- oder beidseitig mit einer gewünschte Anzahl von Speicherzellen versehen und eine gewünschte Anzahl von Kühlerplatten (1) mit den Speicherzellen mit Abstandshaltern (2) zu einem Energiespeicher einer gewünschten Speicherkapazität modular zusammengesetzt und die Speicherzellen (5) untereinander elektrisch verbunden werden.
DE102007052375.2A 2007-10-31 2007-10-31 Energiespeicher mit Kühlvorrichtung und Verfahren zur Herstellung eines Energiespeichers Active DE102007052375B4 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102007052375.2A DE102007052375B4 (de) 2007-10-31 2007-10-31 Energiespeicher mit Kühlvorrichtung und Verfahren zur Herstellung eines Energiespeichers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102007052375.2A DE102007052375B4 (de) 2007-10-31 2007-10-31 Energiespeicher mit Kühlvorrichtung und Verfahren zur Herstellung eines Energiespeichers

Publications (2)

Publication Number Publication Date
DE102007052375A1 true DE102007052375A1 (de) 2009-05-07
DE102007052375B4 DE102007052375B4 (de) 2021-07-15

Family

ID=40514306

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102007052375.2A Active DE102007052375B4 (de) 2007-10-31 2007-10-31 Energiespeicher mit Kühlvorrichtung und Verfahren zur Herstellung eines Energiespeichers

Country Status (1)

Country Link
DE (1) DE102007052375B4 (de)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011089121A1 (de) * 2010-01-20 2011-07-28 Continental Automotive Gmbh Gekühlter energiespeicher
WO2012007205A1 (de) 2010-07-16 2012-01-19 Sb Limotive Company Ltd. Batteriezellenmodul, batterie und kraftfahrzeug
DE102010051010A1 (de) 2010-11-10 2012-05-10 Daimler Ag Vorrichtung zur Speicherung von elektrischer Energie
DE102011000572A1 (de) 2011-02-09 2012-08-09 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Batterie
WO2013026621A1 (de) * 2011-08-25 2013-02-28 Sb Limotive Germany Gmbh Batteriesystem mit temperierung mindestens einer batteriezelle und kraftfahrzeug
CN102986083A (zh) * 2010-08-30 2013-03-20 住友重机械工业株式会社 挖土机
WO2013171142A1 (de) * 2012-05-14 2013-11-21 Continental Automotive Gmbh Kühleinrichtung sowie energiespeicher mit einer kühleinrichtung
CN104412439A (zh) * 2012-07-12 2015-03-11 株式会社Lg化学 具有间接空气冷却结构的电池模块
DE102011109306B4 (de) * 2010-08-11 2017-03-09 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Modulares Plattenträgerkonzept zum Anbringen und eingebetteten Kühlen von Beutelzellenbatterieanordnungen
DE102011107075B4 (de) * 2010-08-30 2019-11-28 Samsung Sdi Co., Ltd. Batteriemodul
CN111602287A (zh) * 2018-01-17 2020-08-28 西门子股份公司 能量存储系统
DE102012204320B4 (de) 2011-03-23 2021-08-05 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Kühlsystem für eine Batteriezelle, Batteriepackung sowie Verfahren zum Herstellen eines Kühlsystems für eine Batteriezelle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022120576A1 (de) 2022-08-16 2024-02-22 Elringklinger Ag Temperierrahmen und Temperieranordnung für einen Batteriezellstapel, Kanalverzweigungselement, Zell-Rahmen-Einheit und Batteriezellstapel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1671751A1 (de) * 1959-05-12 1971-09-23 Paul Eisler Kuehlung fuer eine Akkumulatorbatterie
DE7439582U (de) * 1974-11-28 1975-04-10 Varta Batterie Ag Vorrichtung zui Kühlung oder Erwärmung einer aus Einzelzellen bestehenden Akkumulatorenbatterie
DE9002249U1 (de) * 1990-02-26 1990-05-03 Varta Batterie Ag, 3000 Hannover Akkumulatorenbatterie
EP1011156B1 (de) * 1998-11-10 2002-06-05 Japan Storage Battery Company Limited Batterie mit Sicherheitsventil

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19503085C2 (de) 1995-02-01 1997-02-20 Deutsche Automobilgesellsch Batteriemodul mit mehreren elektrochemischen Zellen
JP3727840B2 (ja) 2000-09-29 2005-12-21 株式会社東芝 電池パック及び携帯用電子機器
DE10214367B4 (de) 2002-03-30 2006-08-24 Robert Bosch Gmbh Energiespeichermodul und Handwerkzeugmaschine
FR2879827B1 (fr) 2004-12-17 2007-04-20 Hawker Sa Sa Batterie comportant une pluralite d'elements places cote a cote dans un coffre

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1671751A1 (de) * 1959-05-12 1971-09-23 Paul Eisler Kuehlung fuer eine Akkumulatorbatterie
DE7439582U (de) * 1974-11-28 1975-04-10 Varta Batterie Ag Vorrichtung zui Kühlung oder Erwärmung einer aus Einzelzellen bestehenden Akkumulatorenbatterie
DE9002249U1 (de) * 1990-02-26 1990-05-03 Varta Batterie Ag, 3000 Hannover Akkumulatorenbatterie
EP1011156B1 (de) * 1998-11-10 2002-06-05 Japan Storage Battery Company Limited Batterie mit Sicherheitsventil

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011089121A1 (de) * 2010-01-20 2011-07-28 Continental Automotive Gmbh Gekühlter energiespeicher
US9543550B2 (en) 2010-07-16 2017-01-10 Robert Bosch Gmbh Battery cell module, battery, and motor vehicle
WO2012007205A1 (de) 2010-07-16 2012-01-19 Sb Limotive Company Ltd. Batteriezellenmodul, batterie und kraftfahrzeug
DE102010031462A1 (de) 2010-07-16 2012-01-19 Sb Limotive Company Ltd. Batteriezellenmodul, Batterie und Kraftfahrzeug
DE102011109306B4 (de) * 2010-08-11 2017-03-09 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Modulares Plattenträgerkonzept zum Anbringen und eingebetteten Kühlen von Beutelzellenbatterieanordnungen
DE102011107075B4 (de) * 2010-08-30 2019-11-28 Samsung Sdi Co., Ltd. Batteriemodul
CN102986083A (zh) * 2010-08-30 2013-03-20 住友重机械工业株式会社 挖土机
DE102010051010A1 (de) 2010-11-10 2012-05-10 Daimler Ag Vorrichtung zur Speicherung von elektrischer Energie
DE102011000572A1 (de) 2011-02-09 2012-08-09 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Batterie
DE102012204320B4 (de) 2011-03-23 2021-08-05 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Kühlsystem für eine Batteriezelle, Batteriepackung sowie Verfahren zum Herstellen eines Kühlsystems für eine Batteriezelle
CN103947004A (zh) * 2011-08-25 2014-07-23 罗伯特·博世有限公司 带有对至少一个电池电芯的温度控制的电池系统及汽车
WO2013026621A1 (de) * 2011-08-25 2013-02-28 Sb Limotive Germany Gmbh Batteriesystem mit temperierung mindestens einer batteriezelle und kraftfahrzeug
WO2013171142A1 (de) * 2012-05-14 2013-11-21 Continental Automotive Gmbh Kühleinrichtung sowie energiespeicher mit einer kühleinrichtung
CN104412439A (zh) * 2012-07-12 2015-03-11 株式会社Lg化学 具有间接空气冷却结构的电池模块
EP2853436A4 (de) * 2012-07-12 2015-06-17 Lg Chemical Ltd Batteriemodul mit indirekter luftkühlungsstruktur
US10074881B2 (en) 2012-07-12 2018-09-11 Lg Chem, Ltd. Battery module having indirect air-cooling structure
CN111602287A (zh) * 2018-01-17 2020-08-28 西门子股份公司 能量存储系统

Also Published As

Publication number Publication date
DE102007052375B4 (de) 2021-07-15

Similar Documents

Publication Publication Date Title
DE102007052375A1 (de) Energiespeicher mit Kühlvorrichtung, insbesondere für Hybridfahrzeuge
EP2380223B1 (de) Wiederaufladbare batterie mit einer wärmetransporteinrichtung zum heizen und/oder kühlen der batterie
DE102008034860B4 (de) Batterie mit einem Batteriegehäuse und einer Wärmeleitplatte zum Temperieren der Batterie
WO2011089121A1 (de) Gekühlter energiespeicher
WO2008106946A2 (de) Energiespeicherzelle mit wärmeleitplatte
DE102018202120A1 (de) Batterieanordnung zur strukturellen Integration von Batterien in ein Fahrzeug
EP3386001A1 (de) Traktionsakkumulator, insbesondere länglicher bauart mit benachbart angeordneten lithium-ionen-sekundärzellen und verfahren zur kontrolle des wärmehaushalts
DE102016207325A1 (de) Steifrahmen aus Polymermaterial für Batteriemodul
DE102014200877A1 (de) Modulträger für Batteriezellen und Verfahren zur Herstellung des Modulträgers sowie Batteriemodul, Batteriepack, Batterie und Batteriesystem
DE102015113622A1 (de) Traktionsbatteriebaugruppe mit Thermovorrichtung
DE102009025802B4 (de) Akkumulator mit gekühlten Zellen und Verfahren zur Herstellung desselben
EP2608309A1 (de) Batteriemodul mit Batteriemodulgehäuse und Batteriezellen
EP2684234A2 (de) Energiespeichervorrichtung, energiespeicherzelle und wärmeleitelement
WO2011057815A1 (de) Batteriegehäuse zur aufnahme von elektrochemischen energiespeichereinrichtungen
EP3424096B1 (de) Fixierung von elektrochemischen zellen in einem gehäuse eines batteriemoduls
CN106042949B (zh) 电源模块总成和方法
DE102010025656A1 (de) Modulare Vorrichtung zur Spannungsversorgung eines Kraftfahrzeugs und Verfahren zu deren Herstellung
DE102018119876A1 (de) Multifunktionaler Kühlkanal und Sammelschiene für ein Batteriezellenpaket
US10431803B2 (en) Traction battery assembly having multipiece busbar module
EP2389696A1 (de) Galvanische zelle mit umhüllung ii
DE102013215975B4 (de) Abstandshalter für eine Batterie, Batterie und Kraftfahrzeug
WO2011120632A1 (de) Batteriegehäuse zur aufnahme von elektrochemischen energiespeicherzellen
EP2226886A1 (de) Batterie mit Ableiteinrichtung
DE102021106125A1 (de) Batteriepack mit umspritzten stromschienen, die parallele kühlwege bieten
DE102009013651A1 (de) Kühlsystem für einen Energiespeicher aus Batteriezellen und Verfahren zur Steuerung einer aktiven Kühlung

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
R079 Amendment of ipc main class

Free format text: PREVIOUS MAIN CLASS: H01M0010500000

Ipc: H01M0010655200

R079 Amendment of ipc main class

Free format text: PREVIOUS MAIN CLASS: H01M0010500000

Ipc: H01M0010655200

Effective date: 20131210

R012 Request for examination validly filed

Effective date: 20140710

R084 Declaration of willingness to licence
R079 Amendment of ipc main class

Free format text: PREVIOUS MAIN CLASS: H01M0010655200

Ipc: H01M0010655500

R016 Response to examination communication
R081 Change of applicant/patentee

Owner name: VITESCO TECHNOLOGIES GERMANY GMBH, DE

Free format text: FORMER OWNER: TEMIC AUTOMOTIVE ELECTRIC MOTORS GMBH, 10553 BERLIN, DE

R082 Change of representative
R018 Grant decision by examination section/examining division
R081 Change of applicant/patentee

Owner name: VITESCO TECHNOLOGIES GERMANY GMBH, DE

Free format text: FORMER OWNER: VITESCO TECHNOLOGIES GERMANY GMBH, 30165 HANNOVER, DE

R020 Patent grant now final