EP2389696A1 - Galvanische zelle mit umhüllung ii - Google Patents

Galvanische zelle mit umhüllung ii

Info

Publication number
EP2389696A1
EP2389696A1 EP10701205A EP10701205A EP2389696A1 EP 2389696 A1 EP2389696 A1 EP 2389696A1 EP 10701205 A EP10701205 A EP 10701205A EP 10701205 A EP10701205 A EP 10701205A EP 2389696 A1 EP2389696 A1 EP 2389696A1
Authority
EP
European Patent Office
Prior art keywords
molded part
electrode stack
galvanic cell
sheath
galvanic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10701205A
Other languages
English (en)
French (fr)
Inventor
Claus-Rupert Hohenthanner
Jens Meintschel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Li Tec Battery GmbH
Original Assignee
Li Tec Battery GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Li Tec Battery GmbH filed Critical Li Tec Battery GmbH
Priority to EP10701205A priority Critical patent/EP2389696A1/de
Publication of EP2389696A1 publication Critical patent/EP2389696A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • H01M50/529Intercell connections through partitions, e.g. in a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/654Means for temperature control structurally associated with the cells located inside the innermost case of the cells, e.g. mandrels, electrodes or electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/454Separators, membranes or diaphragms characterised by the material having a layered structure comprising a non-fibrous layer and a fibrous layer superimposed on one another
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • H01M50/557Plate-shaped terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/54Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Definitions

  • the present invention relates to a galvanic cell for a battery.
  • the invention will be described in the context of lithium-ion batteries for the supply of motor vehicle drives. It is pointed out that the invention can also be used independently of the chemistry, the type of galvanic cell or independently of the type of drive supplied.
  • Batteries with a plurality of galvanic cells for supplying motor vehicle drives are known from the prior art. During the operation of such a battery irreversible chemical reactions also occur in the galvanic cells. These irreversible reactions lead to a reduced charge capacity of the galvanic cells.
  • the invention has for its object to obtain the charging capacity of the galvanic cells of a battery over a higher number of charging cycles. This is achieved according to the invention by the subject matters of the independent claims. Preferred developments of the invention are the subject of the dependent claims.
  • a galvanic cell according to the invention in particular of a substantially prismatic shape, has at least one first electrode stack.
  • a first current collector is connected to a first electrode stack.
  • the galvanic cell has an enclosure which at least partially surrounds the first electrode stack. In this case, the first current drain extends ladder partially out of the cladding.
  • the galvanic cell has a second electrode stack and a second current collector.
  • the envelope has at least a first molded part and a second molded part.
  • One of the moldings has a higher thermal conductivity than the other moldings.
  • the molded parts are provided to at least partially enclose at least one electrode stack.
  • a galvanic cell Under a galvanic cell is in the present case to understand a device which also serves to deliver electrical energy.
  • the galvanic cell stores the energy in chemical form. Before delivering an electric current, the chemical energy is converted into electrical energy. Under certain circumstances, the galvanic cell is also suitable for receiving electrical energy, convert it into chemical energy and store it. This is called a rechargeable galvanic cell.
  • the conversion from electrical to chemical energy or vice versa is lossy and accompanied by irreversible chemical reactions.
  • the irreversible chemical reactions mean that areas of the galvanic cell are no longer available for energy storage and energy conversion.
  • the storage capacity or charging capacity of the galvanic cell decreases with increasing number of discharging and charging cycles. Even with increasing operating temperature of a galvanic cell, the irreversible chemical reactions increase.
  • the shape of a galvanic cell can be selected depending on the available space at the site.
  • the galvanic cell is formed substantially cylindrical or prismatic.
  • an electrode stack is to be understood as meaning the arrangement of at least two electrodes and an electrolyte arranged therebetween.
  • the electrolyte may be partially absorbed by a separator. Then the separator separates the electrodes.
  • at least one electrode more preferably at least one cathode, comprises a compound having the formula LiMPO 4 , where M is at least one transition metal cation of the first row of the Periodic Table of the Elements.
  • the transition metal cation is preferably selected from the group consisting of Mn, Fe, Ni and Ti or a combination of these elements.
  • the compound preferably has an olivine structure, preferably parent olivine.
  • At least one electrode comprises a lithium manganate, preferably LiMn 2 O 4 VOm spinel type, a lithium cobaltate, preferably LiCoO 2 , or a lithium nickelate, preferably LiNiO 2 , or a mixture two or three of these oxides, or a lithium mixed oxide containing manganese, cobalt and nickel on.
  • a lithium manganate preferably LiMn 2 O 4 VOm spinel type
  • a lithium cobaltate preferably LiCoO 2
  • a lithium nickelate preferably LiNiO 2
  • a mixture two or three of these oxides preferably LiNiO 2
  • the negative and positive electrodes are separated by one or more separators.
  • separator materials may, for example, also consist of porous inorganic materials which are such that a mass transport through the separator can take place perpendicular to the separator layer, whereas a mass transport parallel to the separator layer is hindered or even suppressed.
  • separator materials which consist of a porous inorganic material which is interspersed with particles or has particles at least on its surface which melt when a temperature threshold is reached or exceeded and at least locally reduce or close the pores of the separator layer.
  • Such particles may preferably be made of a material selected from a group of materials comprising polymers or mixtures of polymers, waxes or mixtures of these materials.
  • the separator layer is designed such that its pores fill due to a capillary action with the mobile component, which is involved as reactant in the chemical reaction, so that outside of the pores of the separator layer only a relatively small portion of the total amount of the mobile component present in the galvanic cell.
  • the electrolyte present in the galvanic cell or one of its chemical constituents or a mixture of such constituents is a particularly preferred starting material which according to a particularly preferred embodiment of the invention is as far as possible the entire porous one
  • a separator which is not or only poorly electron-conducting, and which consists of an at least partially permeable carrier.
  • the carrier is preferably coated on at least one side with an inorganic material.
  • at least partially permeable carrier is preferably an organic material is used, which preferably designed as a non-woven fabric is.
  • the organic material which preferably comprises a polymer and particularly preferably a polyethylene terephthalate (PET), is coated with an inorganic, preferably ion-conducting material, which is more preferably ion-conducting in a temperature range from -40 ° C to 200 ° C.
  • PET polyethylene terephthalate
  • the inorganic, ion-conducting material preferably has particles with a largest diameter below 100 nm.
  • Such a separator is marketed, for example, under the trade name "Separion” by Evonik AG in Germany.
  • the electrode stack also serves to store chemical energy and convert it into electrical energy.
  • the electrode stack is also capable of converting from electrical to chemical energy.
  • the electrodes are plate-shaped or foil-like.
  • the electrode stack may also be wound up and have a substantially cylindrical shape. One speaks then rather of an electrode winding.
  • the term electrode stack is also used for electrode windings.
  • a first electrode stack and a second electrode stack are preferably formed identically.
  • the electrode stack may also comprise lithium or another alkali metal in ionic form.
  • a current conductor means a device which also allows the flow of electrons from one electrode in the direction of another electrically active device, in particular an electrical consumer.
  • the current conductor also works in the opposite direction of the current.
  • a current collector is electrically connected to an electrode stack.
  • a current conductor can be connected to a connection cable.
  • the figure a Stromableiters is adapted to the shape of the galvanic cell or an electrode stack.
  • a current collector is plate-shaped and / or foil-like.
  • a first current conductor partially extends from the enclosure.
  • a second current collector may partially extend from the enclosure or may form a conductive connection between two electrode stacks.
  • Each electrode of the electrode stack preferably has its own current conductor or electrodes of the same polarity are connected to a common current conductor.
  • a current conductor is partially coated, wherein the coating is in particular designed to be electrically insulating.
  • the enclosure means a device which also prevents the escape of chemicals from the electrode stack into the environment. Furthermore, the sheath protects the chemical components of the electrode stack from undesirable interaction with the environment. For example, the sheath protects the electrode stack from the ingress of water or water vapor from the environment.
  • the envelope may be formed like a film. The envelope should affect the passage of heat energy as little as possible.
  • the enclosure has at least two molded parts. The casing is preferably at least partially adapted to the shape of the electrode stacks.
  • a molded part is to be understood as a solid which is adapted to the shape of an electrode stack. Under some circumstances, a molded part only acquires its shape in cooperation with a further molded part and / or an electrode stack. In the case of a cuboid electrode stack, the molded parts can be cut substantially rectangular. In this case, some dimensions of the molded part are preferably selected larger than certain dimensions of an electrode stack. When two moldings are placed around the electrode stack, the moldings partially protrude beyond the electrode stack and partially form a protruding edge. A border area a molded part preferably touches an edge region of a further molded part, preferably flat.
  • a molded part is formed as a flat plate, while another molded part nestles around the electrode stack to the first molded part.
  • a molding has a higher thermal conductivity than the other moldings and touches at least one electrode stack partially and thermally conductive.
  • heat energy is transferred out of an electrode stack or in an electrode stack.
  • a molded part is arranged between two electrode stacks and touches both electrode stacks heat-conducting.
  • the term "enclosing” is to be understood as meaning that a molded part can be brought into contact with another molded part in certain areas. At least one electrode stack comes to lie between the moldings involved. After enclosing, at least two shaped parts contact each other areally, preferably at least along a delimiting edge or an edge region of a molded part involved.
  • the battery is temporarily removed from high electrical currents, which can lead to a noticeable heating of the galvanic cells of a battery.
  • irreversible chemical reactions also increase in a galvanic cell.
  • the sheath of the galvanic cell is formed with a molded part, which is distinguished from the other parts of the sheath by a markedly increased thermal conductivity.
  • the thermal resistance can be markedly reduced and the heat flow in an electrode stack or from an electrode stack can be increased.
  • a heating power can be dissipated in a galvanic cell with a smaller temperature difference.
  • connection is, for example, non-positively or preferably cohesively.
  • these are joined together, for example by gluing or welding.
  • ultrasonic welding or laser welding can be used to connect at least two molded parts.
  • a pretreatment or activation of at least one of the surfaces of a molded part involved may be useful.
  • a non-positive or cohesive connection connects molded parts such that preferably a circumferential strip-shaped connection seals the space between the molded parts relative to the environment.
  • inserted strips can also be used, for example a sealing strip.
  • at least two molded parts are in particular connected in a first connection region in a materially bonded manner. This first connection region preferably extends along an edge region of a participant
  • the first connection region is strip-shaped. It is not necessary for the first connection area to wrap completely along the bounding edges of the molding. Before the connection of the moldings involved, further inserts can be arranged such that they are likewise connected to the moldings in a non-positive or cohesive manner. In particular, current conductors are inserted so that they partially extend from the enclosure. Thus, the envelope is gas-tight in the areas of the current collector against the environment.
  • at least one molded part of the envelope has a heat transfer region. This heat transfer region also serves to improve the heat transfer into or out of an electrode stack.
  • the heat transfer area of a first Tempe- riermitte! flows and / or is in heat-conducting contact with a tempering.
  • a heat transfer region of a molded part can also correspond to a predominant part of the surface of the molded part.
  • the heat transfer region can simultaneously serve for fastening the galvanic cell to a tempering element, for example by screwing, riveting, gluing or welding.
  • At least one molded part of the envelope is rigid.
  • This molding can hold an electrode stack, protect the electrode stack from mechanical damage or serve the mechanical connection of the galvanic cell with a receiving device.
  • this molding is formed as a metal plate or sheet metal.
  • the molded part can be stiffened, for example, by beads, raised edges or ribs.
  • At least one molded part of the envelope is made thin-walled.
  • the wall thickness for adapting the at least one molded part to a mechanical, electrical or thermal stress is formed.
  • the wall thickness does not have to be uniform.
  • a region of a thin-walled molded part with increased wall thickness can act as a heat sink or heat reservoir and thus contribute to heat energy being removed from or transported into the electrode stack.
  • the thin-walled design of a molded part also saves weight and space.
  • at least one molded part is formed as a film, particularly preferably as a composite film.
  • the materials used for the composite film include metals or plastics.
  • at least one molding of the sheath at least partially on a coating.
  • This coating also serves to adapt to stresses to which the molded part is exposed.
  • the coating is used for electrical insulation, to protect the molded part against the chemicals of the galvanic cell, to improve the adhesion of an adhesive bond, to improve the thermal conductivity or to protect against harmful effects from the environment.
  • a coating can cause chemical activation of the surface of the molding.
  • a coating is preferably made of a material that deviates from the material of the molded part.
  • the at least one molded part can also have a plurality of different coatings, which can also be arranged at different locations of the molded part. If a molded part is in electrical contact with an electrode stack, then a current collector is preferably electrically insulated from this molded part.
  • At least one molded part of the envelope has a recess, in particular a shell.
  • the molded part also gains an increased area moment of inertia or bending stiffness.
  • this recess at least partially accommodates an electrode stack. This also serves to protect an electrode stack.
  • the wall thickness of a molded part with a recess is preferably adapted to the stress.
  • Shaped parts of the sheath may have recesses which together form a space for receiving an electrode stack.
  • a molded part is formed as a deep-drawn or kaltf jetgepresstes sheet metal.
  • a molded part is formed as a deep-drawn plastic plate, composite film or plastic film.
  • a molded part of the envelope with a recess additionally has at least one first connecting region, which is provided for connection to a further molded part.
  • At least one molding advantageously has a second connection region.
  • the second connection area also serves to attach the galvanic Cell, for example, in a housing, in a frame or on a base plate.
  • a second connection region is formed such that the connection of the relevant molding with another body takes place only in a predetermined manner.
  • a second connection region has a geometric shape that corresponds to a region of another body.
  • a connection between the molding and the further body may be possible only in a predetermined manner.
  • the arrangement of through holes or threads may allow a connection only in a predetermined manner.
  • a second connection region is spatially separated from a first connection region.
  • At least one molded part of the sheath preferably has a plurality of separate second connecting regions.
  • the connection of the molded part with another body takes place, for example, by means of riveting, screwing, welding or gluing.
  • a second connection region of a molded part and a heat transfer region of the same molded article coincide.
  • the molded part is connected to, for example, a tempering element, a frame or a base plate of the battery housing.
  • At least two electrode stacks of a galvanic cell according to the invention are electrically conductively connected to one another.
  • the electrically conductive connection can be produced indirectly via the current conductors of the electrode stacks.
  • the connection can bring about an electrical series connection of the electrode stacks or their parallel connection.
  • a first current collector is connected to a first electrode stack and a second current collector is connected to a second electrode stack.
  • the electrically conductive connection of the current conductors or the electrode stacks can take place outside the enclosure.
  • two current conductors protrude beyond the edge of a molded part.
  • at least one current conductor itself extend in the direction of another Stromableiters and touch this partially electrically conductive or connected.
  • at least one current conductor can be coated in a partially electrically insulating manner.
  • At least one molded part has at least one breakthrough in particular within the covering.
  • a breakthrough is limited by edges, which preferably coated electrically insulating.
  • a second current collector is guided through a breakthrough of a molded part.
  • a second current collector is designed to seal a breakthrough and / or partially coated electrically insulating.
  • a region of a second current collector is at least partially electrically conductive with a first
  • At least two electrode stacks are electrically connected in series.
  • a galvanic cell with two electrode stacks can also have only two outgoing current conductors of different polarity.
  • At least two galvanic cells are grouped into a battery.
  • the at least two galvanic cells are preferably arranged parallel to one another.
  • Prismatic or cuboidal cells are preferably brought into contact with one another flatly and can form a substantially parallelepipedic packet.
  • the battery is assigned at least one tempering.
  • the tempering element has a predetermined temperature, which may be variable in time.
  • the temperature of the tempering element is preferably selected as a function of the temperature of an electrode stack of a galvanic cell.
  • a predetermined temperature gradient causes a heat flow in this electrode stack into or out of this electrode stack.
  • the tempering element exchanges heat energy with an electrode stack via at least one molded part or its heat transfer region, which is in contact with the tempering element.
  • the existing galley vanische cells in particular non-positively or cohesively be connected via a second connection region with the tempering.
  • the tempering element advantageously also has at least one first channel for the division of a predetermined temperature of the tempering element.
  • this channel is filled with a second temperature control.
  • a second temperature control medium flows through this at least one channel.
  • the flowing second temperature control leads to the tempering heat energy or dissipates heat energy.
  • the at least one tempering element is preferably operatively connected to a heat exchanger.
  • the heat exchanger dissipates heat energy from this tempering element or supplies heat energy to this tempering element, in particular by means of the second tempering means.
  • the heat exchanger or the temperature control can also interact with the air conditioning of a motor vehicle.
  • the heat exchanger may have an electric heater.
  • a battery is operated with at least two galvanic cells so that at least one molded part of a galvanic cell is flown by a first temperature control.
  • a first temperature control For example, ambient air or a refrigerant of the air conditioning system of the vehicle is used as the first temperature control medium.
  • the first temperature control means may have a higher or lower temperature than the at least one molding, its heat transfer region or as an electrode stack.
  • a galvanic cell according to the invention is produced in such a way that initially at least two molded parts of the envelope are combined around an electrode stack.
  • the current conductors of the galvanic cell can be inserted.
  • the two mold parts are then in particular materially connected to each other, so that a particular circumferential connection of at least two moldings is generated.
  • a gas-tight enclosure is preferably produced around the electrode stack.
  • at least one molded part is transferred by bending, in particular by raising at least one edge region of the molded part in a deformed state.
  • the first connection region is at least partially folded.
  • a dimension of the at least one molded part can be reduced.
  • the raised areas of the molding cause additional mechanical protection of the electrode stack.
  • an elevated edge region increases the area moment of inertia of the relevant molded part.
  • Fig. 1 is a perspective view of a galvanic cell according to the invention with two electrode stacks.
  • FIG. 2 shows an exploded view of a galvanic cell according to the invention with two electrode stacks.
  • Fig. 3 is a side view and a section through a galvanic cell according to the invention with two electrode stacks.
  • FIG 4 shows an enlarged section through a galvanic cell according to the invention with two electrode stacks.
  • FIG. 5 shows a perspective view of a galvanic cell according to the invention with two electrode stacks with connected current conductors.
  • 6 shows an enlarged section through a galvanic cell according to the invention with two electrode stacks and connected current conductors.
  • Fig. 7 shows a galvanic cell according to the invention with two electrode stacks, which are internally connected electrically in series.
  • FIG. 9 is a perspective view of a molded part with breakthrough of the galvanic cells of Figures 7 and 8.
  • FIG. 10 shows an enlarged detail of a galvanic cell according to the invention with two electrode stacks and internal series connection.
  • FIG. 1 shows a galvanic cell according to the invention with two electrode stacks.
  • Form part 5a is formed as a metal sheet. Along the lower edge of the molded part 5a is partially bent. The superscript area acts as a heat transfer area 7 and as a second attachment area 12.
  • an electrode stack (not shown) is arranged in each case.
  • the first current collector 3, 3a are connected to the first electrode stack. These extend in part from the envelope 4.
  • the envelope 4 further comprises two further mold parts 5, 5b, which are connected by means of a first connection region 6 with the interposed therebetween mold part 5a cohesively. The electrode stacks are secured against slipping.
  • Form 5a supports the electrode stack.
  • the molded part 5a serves to exchange heat energy with the electrode stacks of the galvanic cell.
  • a tempering with which the molded part 5a by means of the second connection region 12 is materially connected in a heat-conducting manner and by means of the heat transfer region 7.
  • FIG. 2 shows a galvanic cell according to the invention with two electrode stacks 2, 2 a before the enclosure is closed. It is also shown that sealing strips 16 are placed together with the current conductors 3, 3a between the molded parts 5, 5a, 5b prior to the production of the integral connection.
  • FIG. 3 shows a side view of a galvanic cell according to the invention with two electrode stacks according to FIG. 1.
  • the sectional view of the figure shows the electrode stacks 2, 2a. These each have a plurality of anode layers, cathode layers and separator layers. Of the Separator Anlagenen the electrolyte is partially absorbed.
  • FIG. 4 shows an enlargement of a part of the galvanic cell of FIG. 3. It is shown that an electrode stack has numerous anodes and cathodes, which are connected via current bands to the first current conductors 3, 3a. In this case, the connection is generated by welding. It is also shown that the electrodes 2, 2 a are arranged on both sides of the molded part 5 a and contact this molded part 5 a in a heat-conducting manner.
  • FIG. 5 shows a galvanic cell according to the invention with two electrode stacks, which are electrically interconnected.
  • the second current conductors 18, 18a are connected to one another cohesively and electrically conductively outside the enclosure 4.
  • the electrode stacks are connected in series.
  • FIG. 6 shows an enlarged section of the galvanic cell from FIG. 5. It is shown that the second current conductors 18, 18a are angled above the molded part 5a in such a way that they contact each other in a planar and electrically conductive manner.
  • FIG. 7 shows a galvanic cell according to the invention with electrode stacks which are interconnected. From the envelope 4 protrude only two first Current conductor 3, 3a of different polarity. It is not shown that the two electrode stacks are electrically connected within the enclosure 4 by means of a second current collector and connected in series. Also, the interconnection can be performed as a parallel connection.
  • FIG. 8 shows the galvanic cell from FIG. 7 prior to closing of the sheath 4.
  • the molded part 5a arranged in the center and designed as a metal sheet has an opening 9. The edges of this opening are coated electrically insulating 10.
  • the second current collector 18, 18 a are formed so that they touch each other in the region of the window of opening 9 electrically conductive. In this case, the second current conductors 18, 18a do not protrude from the enclosure 4.
  • FIG. 9 shows an enlarged detail of the flexurally rigid molded part 5a with a breakthrough 9.
  • the areal coating 10 of the molded part 5a is also shown along the edges of the aperture 9.
  • This coating 10 is made of a polymer material that is electrically insulating.
  • FIG. 10 shows an alternative embodiment of the galvanic cell according to FIG. 7. Shown is an enlarged section in the region of the opening 9 in the molded part 5a.
  • the two electrode stacks 2, 2 a are welded to a second current conductor 18 via discharge lugs.
  • the second current collector 18 is disposed within the aperture 9.
  • the second current conductor 18 is electrically separated from the molded part 5 a by the insulating coating 10.
  • the coating 10 and the second current conductor 18 are matched in terms of their dimensions to one another that the second current collector 18 also seals the opening 9.
  • the two spaces of the enclosure 4, which receive the electrode stacks 2, 2 a, can each be hermetically sealed.

Abstract

Eine erfindungsgemäße galvanische Zelle von insbesondere im Wesentlichen prismatischer Gestalt weist wenigstens einen ersten Elektrodenstapel auf. Ein erster Stromableiter ist mit einem ersten Elektrodenstapel verbunden. Weiter weist die galvanische Zelle eine Umhüllung auf, welche einen ersten Elektrodenstapel wenigstens teilweise umschließt. Dabei erstreckt sich ein erster Stromableiter teilweise aus der Umhüllung. Ferner weist die galvanische Zelle einen zweiten Elektrodenstapel und einen zweiten Stromableiter auf. Die Umhüllung hat wenigstens ein erstes Formteil und ein zweites Formteil. Eines der Formteile weist eine höhere Wärmeleitfähigkeit auf, als die übrigen Formteile. Die Formteile sind vorgesehen, wenigstens einen Elektrodenstapel wenigstens teilweise zu umschließen.

Description

Galvanische Zelle mit Umhüllung Il
B e s c h r e i b u n g
Die vorliegende Erfindung betrifft eine galvanische Zelle für eine Batterie. Die Erfindung wird im Zusammenhang mit Lithium-Ionen-Batterien zur Versorgung von KFZ-Antrieben beschrieben. Es wird darauf hingewiesen, dass die Erfin- düng auch unabhängig von der Chemie, der Bauart der galvanischen Zelle oder unabhängig von der Art des versorgten Antriebs Verwendung finden kann.
Aus dem Stand der Technik sind Batterien mit mehreren galvanischen Zellen zur Versorgung von KFZ-Antrieben bekannt. Während des Betriebs einer derartigen Batterie treten in den galvanischen Zellen auch unumkehrbare chemische Reak- tionen auf. Diese unumkehrbaren Reaktionen führen zu einer verringerten Ladekapazität der galvanischen Zellen.
Der Erfindung liegt die Aufgabe zugrunde, die Ladekapazität der galvanischen Zellen einer Batterie über eine höhere Zahl von Ladezyklen zu erhalten. Das wird erfindungsgemäß durch die Gegenstände der unabhängigen Ansprüche erreicht. Zu bevorzugende Weiterbildungen der Erfindung sind Gegenstand der Unteransprüche.
Eine erfindungsgemäße galvanische Zelle von insbesondere im Wesentlichen prismatischer Gestalt weist wenigstens einen ersten Elektrodenstapel auf. Ein erster Stromableiter ist mit einem ersten Elektrodenstapel verbunden. Weiter weist die galvanische Zelle eine Umhüllung auf, welche den ersten Elektrodenstapel wenigstens teilweise umschließt. Dabei erstreckt sich der erster Stromab- leiter teilweise aus der Umhüllung. Ferner weist die galvanische Zelle einen zweiten Elektrodenstapel und einen zweiten Stromableiter auf. Die Umhüllung weist wenigstens ein erstes Formteil und ein zweites Formteil auf. Eines der Formteile weist eine höhere Wärmeleitfähigkeit auf, als die übrigen Formteile. Die Formteile sind vorgesehen, wenigstens einen Elektrodenstapel wenigstens teilweise zu umschließen.
Unter einer galvanischen Zelle ist vorliegend eine Vorrichtung zu verstehen, welche auch der Abgabe von elektrischer Energie dient. Die galvanische Zelle speichert die Energie in chemischer Form. Vor Abgabe eines elektrischen Stroms wird die chemische Energie in elektrische Energie gewandelt. Unter Umständen ist die galvanische Zelle auch geeignet, elektrische Energie aufzunehmen, in chemische Energie zu wandeln und abzuspeichern. Man spricht dann von einer wiederaufladbaren galvanischen Zelle. Die Wandlung von elektrischer in chemische Energie oder umgekehrt ist verlustbehaftet und begleitet von unumkehrba- ren chemischen Reaktionen. Die unumkehrbaren chemischen Reaktionen führen dazu, dass Bereiche der galvanischen Zelle zur Energiespeicherung und Energiewandlung nicht mehr zur Verfügung stehen. So nimmt die Speicherfähigkeit oder auch Ladekapazität der galvanischen Zelle mit zunehmender Anzahl von Entlade- und Ladevorgängen bzw. Ladezyklen ab. Auch mit zunehmender Betriebstemperatur einer galvanischen Zelle nehmen die unumkehrbaren chemischen Reaktionen zu. Die Gestalt einer galvanischen Zelle kann abhängig vom verfügbaren Raum am Einsatzort gewählt werden. Bevorzugt ist die galvanische Zelle im Wesentlichen zylindrisch oder prismatisch ausgebildet.
Vorliegend ist unter einem Elektrodenstapel die Anordnung wenigstens zweier Elektroden und einem dazwischen angeordneten Elektrolyt zu verstehen. Der Elektrolyt kann teilweise von einem Separator aufgenommen sein. Dann trennt der Separator die Elektroden. Vorzugsweise weist wenigstens eine Elektrode, besonders bevorzugt wenigstens eine Kathode, eine Verbindung mit der Formel LiMPO4 auf, wobei M wenigstens ein Übergangsmetallkation der ersten Reihe des Periodensystems der Elemente ist. Das Übergangsmetallkation ist vorzugsweise aus der Gruppe bestehend aus Mn, Fe, Ni und Ti oder einer Kombination dieser Elemente gewählt. Die Verbindung weist vorzugsweise eine Olivinstruktur auf, vorzugsweise übergeordnetes Olivin.
In einer weiteren Ausführungsform weist vorzugsweise wenigstens eine Elektrode, besonders bevorzugt wenigstens eine Kathode, ein Lithiummanganat, vor- zugsweise LiMn2O4 VOm Spinell-Typ, ein Lithiumkobaltat, vorzugsweise LiCoO2, oder ein Lithiumnickelat, vorzugsweise LiNiO2, oder ein Gemisch aus zwei oder drei dieser Oxide, oder ein Lithiummischoxid, welches Mangan, Kobalt und Nickel enthält, auf.
Vorzugsweise sind die negative und die positive Elektrode durch einen oder mehrere Separatoren voneinander getrennt. Solche Separatormaterialien können beispielsweise auch aus porösen anorganischen Materialien bestehen die so beschaffen sind, dass ein Stofftransport durch den Separator senkrecht zur Separatorschicht erfolgen kann, wohingegen ein Stofftransport parallel zur Separatorschicht behindert oder sogar unterdrückt wird.
Besonders bevorzugt sind dabei Separatormaterialien, die aus einem porösen anorganischen Material bestehen, das mit Partikeln durchsetzt ist oder solche Partikel wenigstens an seiner Oberfläche aufweist, die beim Erreichen oder Überschreiten einer Temperaturschwelle schmelzen und die Poren der Separatorschicht wenigstens lokal verkleinern oder verschließen. Solche Partikel können vorzugsweise aus einem Material bestehen, dass aus einer Gruppe von Materialien ausgewählt ist, die Polymere oder Mischungen von Polymeren, Wachse oder Mischungen dieser Materialien umfasst. - A -
Besonders bevorzugt ist eine Ausführungsform der Erfindung, bei der die Separatorschicht derart ausgestaltet ist, dass sich ihre Poren aufgrund einer Kapillarwirkung mit dem beweglichen Bestandteil füllen, der als Edukt an der chemischen Reaktion beteiligt ist, so dass sich außerhalb der Poren der Separator- schicht nur ein relativ geringer Teil der in der galvanischen Zelle vorhandenen Gesamtmenge des beweglichen Bestandteils befindet. In diesem Zusammenhang ist der in der galvanischen Zelle befindliche Elektrolyt oder einer seiner chemischen Bestandteile oder eine Mischung solcher Bestandteile ein besonders bevorzugtes Edukt, der gemäß einem besonders bevorzugten Ausführungsbeispiel der Erfindung möglichst die gesamte poröse
Separatorschicht benetzt oder durchtränkt, der jedoch außerhalb der Separatorschicht nicht oder nur in vernachlässigbarer oder verhältnismäßig geringer Menge anzutreffen ist. Eine solche Anordnung kann bei der Herstellung der galvanischen Zelles dadurch erhalten werden, dass der poröse Separator mit dem in der galvanischen Zelle befindlichen Elektrolyten oder einem anderen Edukt einer geeignet gewählten chemischen Reaktion getränkt wird, so dass dieses Edukt sich anschließend weitgehend nur in dem Separator befindet.
Kommt es nun aufgrund einer chemischen Reaktion zu einer möglicherweise zunächst nur lokalen Drucksteigerung durch Bildung einer Gasblase oder durch eine lokale Erwärmung, dann kann dieses Edukt nicht aus anderen Bereichen in das Reaktionsgebiet nachfließen. Soweit oder solange es noch nachfließen kann, wird die Verfügbarkeit dieses Eduktes an anderen Stellen entsprechend vermindert. Die Reaktion kommt schließlich zum Stillstand oder bleibt wenigs- tens auf ein vorzugsweise kleines Gebiet begrenzt.
Erfindungsgemäß wird vorzugsweise ein Separator verwendet, welcher nicht oder nur schlecht elektronenleitend ist, und welcher aus einem zumindest teilweise stoffdurchlässigen Träger besteht. Der Träger ist vorzugsweise auf min- destens einer Seite mit einem anorganischen Material beschichtet. Als wenigstens teilweise stoffdurchlässiger Träger wird vorzugsweise ein organisches Material verwendet, welches vorzugsweise als nicht verwebtes Vlies ausgestaltet ist. Das organische Material, welches vorzugsweise ein Polymer und besonders bevorzugt ein Polyethylenterephthalat (PET) umfasst, ist mit einem anorganischen, vorzugsweise ionenleitenden Material beschichtet, welches weiter vorzugsweise in einem Temperaturbereich von - 40° C bis 200° C ionenleitend ist. Das anorganische Materia! umfasst bevorzugt wenigstens eine Verbindung aus der Gruppe der Oxide, Phosphate, Sulfate, Titanate, Silikate, Aluminosilikate mit wenigstens einem der Elemente Zr, AI, Li, besonders bevorzugt Zirkonoxid. Bevorzugt weist das anorganische, ionenleitende Material Partikel mit einem größten Durchmesser unter 100 nm auf.
Ein solcher Separator wird beispielsweise unter dem Handelsnamen "Separion" von der Evonik AG in Deutschland vertrieben.
Der Elektrodenstapel dient auch zum Abspeichern chemischer Energie und zu deren Wandlung in elektrische Energie. Im Fall einer wiederaufladbaren galvani- sehen Zelle ist der Elektrodenstapel auch zur Wandlung von elektrischer in chemische Energie in der Lage. Beispielsweise sind die Elektroden plattenförmig oder folienartig ausgebildet. Der Elektrodenstapel kann auch aufgewickelt sein und eine im Wesentlichen zylindrische Gestalt aufweisen. Man spricht dann eher von einem Elektrodenwickel. Nachfolgend wird der Begriff Elektrodensta- pel auch für Elektrodenwickel verwendet. Ein erster Elektrodenstapel und ein zweiter Elektrodenstapel sind vorzugsweise gleichartig ausgebildet. Der Elektrodenstapel kann Lithium oder ein anderes Alkalimetall auch in ionischer Form aufweisen.
Vorliegend ist unter einem Stromableiter eine Einrichtung zu verstehen, welche auch den Fluss von Elektronen aus einer Elektrode in Richtung einer weiteren elektrisch wirksamen Einrichtung, insbesondere ein elektrischer Verbraucher, ermöglicht. Der Stromableiter wirkt auch in entgegengesetzter Stromrichtung. Ein Stromableiter ist mit einem Elektrodenstapel elektrisch leitend verbunden. Ein Stromableiter kann mit einem Anschlusskabel verbunden sein. Die Gestalt eines Stromableiters ist an die Gestalt der galvanischen Zelle bzw. eines Elektrodenstapels angepasst. Vorzugsweise ist ein Stromableiter plattenförmig und/oder folienartig ausgebildet. Ein erster Stromableiter erstreckt sich teilweise aus der Umhüllung. Ein zweiter Stromableiter kann sich teilweise aus der Um- hüllung erstrecken oder kann eine leitfähige Verbindung zwischen zwei Elektrodenstapeln bilden. Bevorzugt weist jede Elektrode des Elektrodenstapels einen eigenen Stromableiter auf bzw. Elektroden gleicher Polarität sind mit einem gemeinsamen Stromableiter verbunden.
Vorzugsweise ist ein Stromableiter teilweise beschichtet, wobei die Beschichtung insbesondere elektrisch isolierend ausgebildet ist.
Vorliegend ist unter der Umhüllung eine Einrichtung zu verstehen, welche auch den Austritt von Chemikalien aus dem Elektrodenstapel in die Umgebung verhindert. Weiter schützt die Umhüllung die chemischen Bestandteile des Elektrodenstapels vor unerwünschter Wechselwirkung mit der Umgebung. Beispiels- weise schützt die Umhüllung den Elektrodenstapel vor dem Zutritt von Wasser oder Wasserdampf aus der Umgebung. Die Umhüllung kann folienartig ausgebildet sein. Die Umhüllung soll den Durchtritt von Wärmeenergie möglichst wenig beeinträchtigen. Vorliegend weist die Umhüllung wenigstens zwei Formteile auf. Bevorzugt ist die Umhüllung wenigstens teilweise an die Gestalt der Elekt- rodenstapel angepasst.
Vorliegend ist unter einem Formteil ein Festkörper zu verstehen, welcher an die Gestalt eines Elektrodenstapels angepasst ist. Unter Umständen gewinnt ein Formteil erst in Zusammenwirkung mit einem weiteren Formteil und/oder einem Elektrodenstapel seine Form. Im Fall eines quaderförmigen Elektrodenstapels können die Formteile im Wesentlichen rechteckig zugeschnitten sein. Dabei sind einige Abmessungen des Formteils vorzugsweise größer als bestimmte Abmessungen eines Elektrodenstapels gewählt. Wenn zwei Formteile um den Elektrodenstapel gelegt werden, so ragen die Formteile teilweise über den Elektrodenstapel hinaus und bilden teilweise einen überstehenden Rand. Ein Randbereich eines Formteiles berührt dabei vorzugsweise einen Randbereich eines weiteren Formteils, vorzugsweise flächig. Beispielsweise ist ein Formteil als ebene Platte ausgebildet, während ein weiteres Formteil sich um den Elektrodenstapel an das erste Formteil schmiegt. Ein Formteil weist eine höhere Wärmeleitfähigkeit als die übrigen Formteile auf und berührt wenigstens einen Elektrodenstapel teilweise und wärmeleitend. Abhängig von einem Temperaturunterschied zwischen dem Formteil und einem Elektrodenstapel wird Wärmeenergie aus einem Elektrodenstapel heraus oder in einem Elektrodenstapel hinein übertragen. Vorzugsweise ist ein Formteil zwischen zwei Elektrodenstapeln angeordnet und berührt beide Elektrodenstapel wärmeleitend.
Vorliegend ist unter Umschließen zu verstehen, dass ein Formteil bereichsweise in Berührung mit einem weiteren Formteil gebracht werden kann. Dabei kommt wenigstens ein Elektrodenstapel zwischen den beteiligten Formteilen zu liegen. Nach dem Umschließen berühren sich wenigstens zwei Formteile bereichsweise flächig, vorzugsweise wenigstens entlang einer begrenzenden Kante bzw. eines Randbereichs eines beteiligten Formteils.
Zur Versorgung eines KFZ-Antriebs werden der Batterie zeitweise hohe elektrische Ströme entnommen, welche zu einer merklichen Erwärmung der galvani- sehen Zellen einer Batterie führen können. Mit steigender Temperatur nehmen in einer galvanischen Zelle auch unumkehrbare chemische Reaktionen zu. Erfindungsgemäß wird die Umhüllung der galvanischen Zelle mit einem Formteil ausgebildet, welches sich gegenüber den übrigen Teilen der Umhüllung durch eine merklich erhöhte Wärmeleitfähigkeit auszeichnet. So kann der thermische Widerstand merklich verringert und der Wärmestrom in einen Elektrodenstapel oder aus einem Elektrodenstapel erhöht werden. So kann eine Heizleistung in einer galvanischen Zelle bei geringerem Temperaturunterschied abgeführt werden. Mit der Begrenzung der Betriebstemperatur einer galvanischen Zelle werden unumkehrbare chemische Reaktionen verringert, die Ladekapazität der galvanischen Zelle weitgehend erhalten, die Betriebsdauer erhöht und die zugrunde liegende Aufgabe gelöst.
Nachfolgend werden zu bevorzugende Weiterbildungen der Erfindung beschrie- ben.
Vorteilhaft sind wenigstens zwei Formteile der Umhüllung vorgesehen, miteinander verbunden zu werden. Die Verbindung erfolgt beispielsweise kraftschlüssig oder vorzugsweise stoffschlüssig. Abhängig von den Werkstoffen der verschiedenen Formteile werden diese beispielsweise durch Kleben oder ein Schweiß- verfahren miteinander verbunden. Insbesondere das Ultraschallschweißen oder das Laserschweißen kann zur Verbindung von wenigstens zwei Formteilen Anwendung finden. Dabei ist möglicherweise eine Vorbehandlung bzw. Aktivierung wenigstens einer der Oberflächen eines beteiligten Formteils dienlich. Eine kraft- oder stoffschlüssige Verbindung verbindet Formteile derart, dass vorzugsweise eine umlaufende streifenförmige Verbindung den Raum zwischen den Formteilen gegenüber der Umgebung abdichtet. Zur Haftverbesserung können auch eingelegte Streifen Anwendung finden, beispielsweise ein Siegelband. Vorzugsweise werden wenigstens zwei Formteile in einem ersten Verbindungsbereich insbesondere stoffschlüssig miteinander verbunden. Dieser erste Verbindungs- bereich verläuft vorzugsweise entlang eines Randbereichs eines beteiligten
Formteils. Der erste Verbindungsbereich ist dabei streifenförmig ausgebildet. Es ist nicht erforderlich, dass der erste Verbindungsbereich gänzlich entlang der begrenzenden Kanten des Formteils umläuft. Vor der Verbindung der beteiligten Formteile können weitere Einlegeteile so angeordnet werden, dass diese eben- falls mit den Formteilen kraft- oder stoffschlüssig verbunden werden. Insbesondere werden Stromableiter so eingelegt, dass sich diese teilweise aus der Umhüllung erstrecken. So ist die Umhüllung auch in den Bereichen der Stromableiter gasdicht gegenüber der Umgebung. Vorteilhaft weist wenigstens ein Formteil der Umhüllung einen Wärmeübergangsbereich auf. Dieser Wärmeübergangsbereich dient auch der Verbesserung der Wärmeübertragung in einen Elektrodenstapel hineinoder aus diesem heraus. Vorzugsweise ist der Wärmeübergangsbereich von einem ersten Tempe- riermitte! angeströmt und/oder ist in wärmeleitender Berührung mit einem Temperierelement. Ein Wärmeübergangsbereich eines Formteils kann auch einem überwiegenden Teil der Oberfläche des Formteils entsprechen. Der Wärmeübergangsbereich kann gleichzeitig auch zur Befestigung der galvanischen Zelle an einem Temperierelement dienen, beispielsweise durch Schrauben, Nieten, Kleben oder Schweißen.
Vorzugsweise ist wenigstens ein Formteil der Umhüllung biegesteif ausgeführt. Dieses Formteil kann einem Elektrodenstapel Halt geben, den Elektrodenstapel vor mechanischer Beschädigung bewahren oder der mechanischen Verbindung der galvanischen Zelle mit einer Aufnahmevorrichtung dienen. Vorzugsweise ist dieses Formteil als Metallplatte bzw. Metallblech ausgebildet. Das Formteil kann beispielsweise durch Sicken, hochgestellte Randbereiche oder Rippen versteift sein.
Vorzugsweise ist wenigstens ein Formteil der Umhüllung dünnwandig ausgeführt. Vorzugsweise ist die Wandstärke zur Anpassung des wenigstens einen Formteils an eine mechanische, elektrische oder thermische Beanspruchung ausgebildet. Dabei muss die Wandstärke nicht gleichförmig sein. Ein Bereich eines dünnwandigen Formteils mit erhöhter Wandstärke kann als Wärmesenke oder Wärmereservoir wirken und so dazu beitragen, dass Wärmeenergie aus dem Elektrodenstapel abgeführt oder in diesen transportiert wird. Auch spart die dünnwandige Ausbildung eines Formteils Gewicht und Platz. Vorzugsweise ist wenigstens ein Formteil als Folie, besonders bevorzugt als Verbundfolie, ausgebildet. Als Werkstoffe für die Verbundfolie kommen auch Metalle oder Kunststoffe in Frage. Vorzugsweise weist wenigstens ein Formteil der Umhüllung wenigstens bereichsweise eine Beschichtung auf. Diese Beschichtung dient auch zur Anpassung an Beanspruchungen, denen das Formteil ausgesetzt ist. Beispielsweise dient die Beschichtung zur elektrischen Isolation, zum Schutz des Formteils ge- gen die Chemikalien der galvanischen Zelle, zur Haftverbesserung für eine Klebeverbindung, zur Verbesserung der Wärmeleitfähigkeit oder zum Schutz gegen schädigende Einwirkungen aus der Umgebung. Eine Beschichtung kann eine chemische Aktivierung der Oberfläche des Formteils bewirken. Eine Beschichtung ist vorzugsweise aus einem Werkstoff, der von dem Werkstoff des Form- teils abweicht. Das wenigstens eine Formteil kann auch mehrere verschiedene Beschichtungen aufweisen, welche auch an unterschiedlichen Orten des Formteils angeordnet sein können. Wenn ein Formteil in elektrischem Kontakt mit einem Elektrodenstapel steht, dann ist ein Stromableiter gegenüber diesem Formteil bevorzugt elektrisch isoliert.
Vorteilhaft weist wenigstens ein Formteil der Umhüllung eine Ausnehmung auf, insbesondere eine Schale. Mit dieser Gestaltung gewinnt das Formteil auch ein erhöhtes Flächenträgheitsmoment bzw. Biegesteifigkeit. Vorzugsweise nimmt diese Ausnehmung einen Elektrodenstapel wenigstens teilweise auf. Das dient auch dem Schutz eines Elektrodenstapels. Die Wandstärke eines Formteils mit Ausnehmung ist vorzugsweise an die Beanspruchung angepasst. Mehrere
Formteile der Umhüllung können Ausnehmungen aufweisen, welche gemeinsam einen Raum zur Aufnahme eines Elektrodenstapels bilden. Vorzugsweise ist ein Formteil als tiefgezogenes oder kaltfließgepresstes Metallblech ausgebildet. Vorzugsweise ist ein Formteil als tiefgezogene Kunststoffplatte, Verbundfolie oder Kunststofffolie ausgebildet. Ein Formteil der Umhüllung mit einer Ausnehmung weist zusätzlich wenigstens einen ersten Verbindungsbereich auf, der zum Verbinden mit einem weiteren Formteil vorgesehen ist.
Vorteilhaft weist wenigstens ein Formteil einen zweiten Verbindungsbereich auf. Der zweite Verbindungsbereich dient auch der Befestigung der galvanischen Zelle beispielsweise in einem Gehäuse, in einem Rahmen oder auf einer Grundplatte. Vorzugsweise ist ein zweiter Verbindungsbereich derart ausgebildet, dass die Verbindung des betreffenden Formteils mit einem weiteren Körper nur in vorbestimmter Weise erfolgt. Beispielsweise weist ein zweiter Verbindungsbereich eine geometrische Gestalt auf, welche einem Bereich eines weiteren Körpers entspricht. Vorzugsweise kann mittels einer Anordnung von Formelementen, beispielsweise Löcher und Zapfen, eine Verbindung zwischen dem Formteil und dem weiteren Körper nur in vorbestimmter Weise möglich sein. Auch kann die Anordnung von Durchgangslöchern oder Gewinden eine Verbindung nur in vorbestimmter Weise gestatten. Vorzugsweise ist ein zweiter Verbindungsbereich räumlich getrennt von einem ersten Verbindungsbereich. Wenigstens ein Formteil der Umhüllung weist vorzugsweise mehrere getrennte zweite Verbindungsbereiche auf. Die Verbindung des Formteils mit einem anderen Körper erfolgt beispielsweise mit- tels Nieten, Schrauben, Schweißen oder Kleben. Vorzugsweise fallen ein zweiter Verbindungsbereich eines Formteils und ein Wärmeübergangsbereich desselben Formteils zusammen. In diesen Bereichen ist das Formteil mit beispielsweise mit einem Temperierelement, einem Rahmen oder mit einer Grundplatte des Batteriegehäuses verbunden.
Vorteilhaft sind wenigstens zwei Elektrodenstapel einer erfindungsgemäßen galvanischen Zelle miteinander elektrisch leitend verbunden. Die elektrisch leitende Verbindung kann mittelbar über die Stromableiter der Elektrodenstapel hergestellt sein. Die Verbindung kann eine elektrische Reihenschaltung der Elektrodenstapel oder deren Parallelschaltung bewirken. Es sind jeweils ein erster Stromableiter mit einem ersten Elektrodenstapel und ein zweiter Stromableiter mit einem zweiten Elektrodenstapel verbunden. Wenn sich beide Stromableiter teilweise aus der Umhüllung erstrecken, dann kann die elektrisch leitende Verbindung der Stromableiter bzw. der Elektrodenstapel außerhalb der Umhüllung erfolgen. Beispielsweise ragen zwei Stromableiter über den Rand eines Formteils hinaus. Dabei kann wenigstens ein Stromableiter sich in Richtung eines weiteren Stromableiters erstrecken und diesen teilweise elektrisch leitend berühren bzw. verbunden sein. Weiter kann wenigstens ein Stromableiter teilweise elektrisch isolierend beschichtet sein.
Vorteilhaft weist wenigstens ein Formteil wenigstens einen Durchbruch insbe- sondere innerhalb der Umhüllung auf. Ein Durchbruch ist durch Kanten begrenzt, welche vorzugsweise elektrisch isolierend beschichtet. Ein zweiter Stromableiter ist durch einen Durchbruch eines Formteils geführt. Vorzugsweise ist ein zweiter Stromableiter zur Abdichtung eines Durchbruchs ausgebildet und/oder teilweise elektrisch isolierend beschichtet. Ein Bereich eines zweiten Stromableiters ist wenigstens teilweise elektrisch leitend mit einem ersten
Stromableiter verbunden. Vorzugsweise werden wenigstens zwei Elektrodenstapel elektrisch in Reihe geschaltet. Eine galvanische Zelle mit zwei Elektrodenstapeln kann auch nur zwei herausgeführte Stromableiter unterschiedlicher Polarität aufweisen.
Vorteilhaft werden wenigstens zwei galvanische Zellen zu einer Batterie gruppiert. Dabei werden die wenigstens zwei galvanischen Zellen bevorzugt parallel zueinander angeordnet. Prismatischen oder quaderförmige Zellen werden bevorzugt flächig miteinander in Berührung gebracht und können ein im Wesentlichen quaderförmiges Paket bilden. Weiter ist der Batterie wenigstens ein Temperierelement zugeordnet. Das Temperierelement weist eine vorbestimmte Temperatur auf, welche zeitlich veränderlich sein kann. Die Temperatur des Temperierelements wird bevorzugt in Abhängigkeit von der Temperatur eines Elektrodenstapels einer galvanischen Zelle gewählt. Ein vorbestimmtes Temperaturgefälle verursacht einen Wärmestrom in diesen Elektrodenstapel hinein bzw. aus diesem Elektrodenstapel hinaus. Dabei tauscht das Temperierelement mit einem Elektrodenstapel Wärmeenergie über wenigstens ein Formteil bzw. dessen Wärmeübergangsbereich aus, welcher mit dem Temperierelement in Berührung steht. Auch können die vorhandenen gal- vanischen Zellen insbesondere kraft- oder stoffschlüssig über einen zweiten Verbindungsbereich mit dem Temperierelement verbunden sein.
Vorteilhaft weist das Temperierelement wenigstens einen ersten Kanal auch zur Einsteilung einer vorgegebenen Temperatur des Temperierelements auf. Vor- zugsweise ist dieser Kanal mit einem zweiten Temperiermittel gefüllt. Besonders bevorzugt durchströmt ein zweites Temperiermittel diesen wenigstens einen Kanal. Dabei führt das strömende zweite Temperiermittel dem Temperierelement Wärmeenergie zu oder führt Wärmeenergie ab. Das wenigstens eine Temperierelement ist vorzugsweise mit einem Wärmetauscher wirkverbunden. Der Wärmetauscher führt Wärmeenergie aus diesem Temperierelement ab oder führt diesem Temperierelement Wärmeenergie zu, insbesondere mittels des zweiten Temperiermittels. Der Wärmetauscher bzw. das Temperiermittel können auch mit der Klimaanlage eines Kraftfahrzeugs wechselwirken. Der Wärmetauscher kann eine elektrische Heizeinrichtung aufweisen.
Vorteilhaft wird eine Batterie mit wenigstens zwei galvanischen Zellen so betrieben, dass wenigstens ein Formteil einer galvanischen Zelle von einem ersten Temperiermittel angeströmt wird. Beispielsweise wird als erstes Temperiermittel Umgebungsluft oder ein Kältemittel der Klimaanlage des KFZ verwendet. Das erste Temperiermittel kann eine höhere oder geringere Temperatur als das we- nigstens eine Formteil, dessen Wärmeübergangsbereich oder als ein Elektrodenstapel aufweisen.
Vorteilhaft wird eine erfindungsgemäße galvanische Zelle so hergestellt, dass zunächst wenigstens zwei Formteile der Umhüllung um einen Elektrodenstapel zusammengelegt werden. Dabei können die Stromableiter der galvanischen ZeI- Ie eingelegt werden. Die zwei Formteile werden anschließend insbesondere stoffschlüssig miteinander verbunden, so dass eine insbesondere umlaufende Verbindung von wenigstens zwei Formteilen erzeugt wird. So wird bevorzugt eine gasdichte Umhüllung um den Elektrodenstapel erzeugt. Anschließend wird wenigstens ein Formteil durch Biegen, insbesondere durch Hochstellen wenigstens eines Randbereichs des Formteils in einen verformten Zustand überführt. Vorzugsweise wird der erste Verbindungsbereich wenigstens teilweise abgekantet. Dabei kann sich eine Abmessung des wenigstens einen Formteils verringern. Vorteilhaft bewirken die hochgestellten Bereiche des Formteils einen zusätzlichen mechanischen Schutz des Elektrodenstapels. Vorteilhaft erhöht ein hochgestellter Randbereich das Flächenträgheitsmoment des betreffenden Formteils.
Weitere Vorteile, Merkmale und Anwendungsmöglichkeiten der vorliegenden Erfindung ergeben sich aus der nachfolgenden Beschreibung im Zusammenhang mit den Figuren. Es zeigen:
Fig. 1 eine perspektivische Ansicht einer erfindungsgemäßen galvanischen Zelle mit zwei Elektrodenstapeln.
Fig. 2 eine Explosionsdarstellung einer erfindungsgemäßen galvanischen ZeI- Ie mit zwei Elektrodenstapeln.
Fig. 3 eine Seitenansicht und einen Schnitt durch eine erfindungsgemäße galvanische Zelle mit zwei Elektrodenstapeln.
Fig. 4 einen ausschnittsvergrößerten Schnitt durch eine erfindungsgemäße galvanische Zelle mit zwei Elektrodenstapeln.
Fig. 5 eine perspektivische Ansicht einer erfindungsgemäßen galvanischen Zelle mit zwei Elektrodenstapeln mit verbundenen Stromableitern. Fig. 6 einen ausschnittsvergrößerten Schnitt durch eine erfindungsgemäße galvanische Zelle mit zwei Elektrodenstapeln und verbundenen Stromableitern.
Fig. 7 eine erfindungsgemäße galvanische Zelle mit zwei Elektrodenstapeln, welche intern elektrisch in Reihe geschaltet sind.
Fig. 8 eine Explosionsdarstellung der galvanischen Zelle aus Figur 7.
Fig. 9 eine perspektivische Ansicht eines Formteils mit Durchbruch der galvanischen Zellen aus den Figuren 7 und 8.
Fig. 10 einen vergrößerten Ausschnitt einer erfindungsgemäßen galvanischen Zelle mit zwei Elektrodenstapeln und innerer Reihenschaltung.
Figur 1 zeigt eine erfindungsgemäße galvanische Zelle mit zwei Elektrodenstapeln. Formteil 5a ist als Metallblech ausgebildet. Entlang der unteren Kante ist das Formteil 5a teilweise umgebogen. Der hochgestellte Bereich wirkt als Wärmeübergangsbereich 7 und als zweiter Befestigungsbereich 12. Beiderseits des Formteils 5a ist jeweils ein Elektrodenstapel (nicht dargestellt) angeordnet. Mit dem ersten Elektrodenstapel sind die ersten Stromableiter 3, 3a verbunden. Diese erstrecken sich teilweise aus der Umhüllung 4. Die Umhüllung 4 weist weiter zwei weitere Formteile 5, 5b auf, welche mittels eines ersten Verbindungsbereichs 6 mit dem dazwischen angeordneten Formteil 5a stoffschlüssig verbunden sind. Die Elektrodenstapel werden so gegen Verrutschen gesichert. Formteil 5a stützt dabei die Elektrodenstapel. Weiter dient das Formteil 5a zum Austausch von Wärmeenergie mit den Elektrodenstapeln der galvanischen Zelle. Nicht dargestellt ist ein Temperierelement, mit welchem das Formteil 5a mittels des zweiten Verbindungsbereichs 12 stoffschlüssig und mittels des Wär- meübergangsbereichs 7 wärmeleitend verbunden ist. Figur 2 zeigt eine erfindungsgemäß galvanische Zelle mit zwei Elektrodenstapeln 2, 2a vor dem Schließen der Umhüllung. Auch ist dargestellt, dass vor der Herstellung der stoffschlüssigen Verbindung Siegelbänder 16 gemeinsam mit den Stromableitern 3, 3a zwischen die Formteile 5, 5a, 5b gelegt werden.
Figur 3 zeigt eine Seitenansicht einer erfindungsgemäßen galvanischen Zelle mit zwei Elektrodenstapeln gemäß Figur 1. In der Schnittdarstellung der Figur sind die Elektrodenstapel 2, 2a zu sehen. Diese weisen jeweils mehrere Anodenschichten, Kathodenschichten und Separatorschichten auf. Von den Separatorschichten ist der Elektrolyt teilweise aufgenommen.
Figur 4 zeigt als Vergrößerung einen Teil der galvanischen Zelle aus Figur 3. Es ist dargestellt, dass ein Elektrodenstapel zahlreiche Anoden und Kathoden aufweist, welche über Strombänder mit den ersten Stromableitern 3, 3a verbunden sind. In diesem Fall ist die Verbindung durch Schweißen erzeugt. Auch ist dargestellt, dass die Elektroden 2, 2a beiderseits des Formteils 5a angeordnet sind und dieses Formteil 5a wärmeleitend berühren.
Figur 5 zeigt eine erfindungsgemäße galvanische Zelle mit zwei Elektrodenstapeln, welche miteinander elektrisch verschaltet sind. Dazu sind die zweiten Stromableiter 18, 18a außerhalb der Umhüllung 4 stoffschlüssig und elektrisch leitend miteinander verbunden. Mit der Verbindung zweiter Stromableiter unter- schiedlicher Polarität werden die Elektrodenstapel in Reihe geschaltet.
Figur 6 zeigt einen vergrößerten Ausschnitt der galvanischen Zelle aus Figur 5. Es ist dargestellt, dass die zweiten Stromableiter 18, 18a oberhalb des Formteils 5a so abgewinkelt sind, dass sie einander flächig und elektrisch leitend berühren.
Figur 7 zeigt eine erfindungsgemäße galvanische Zelle mit Elektrodenstapeln, die miteinander verschaltet sind. Aus der Umhüllung 4 ragen nur zwei erste Stromableiter 3, 3a unterschiedlicher Polarität. Nicht dargestellt ist, dass die beiden Elektrodenstapel innerhalb der Umhüllung 4 mittels eines zweiten Stromableiters elektrisch leitend verbunden und in Reihe geschaltet sind. Auch kann die Verschaltung als Parallelschaltung ausgeführt werden.
Figur 8 zeigt die galvanische Zelle aus Figur 7 vor dem Schließen der Umhüllung 4. Das in der Mitte angeordnete und als Metallblech ausgebildete Formteil 5a weist einen Durchbruch 9 auf. Die Ränder dieses Durchbruchs sind elektrisch isolierend beschichtet 10. Die zweiten Stromableiter 18, 18a sind so ausgebildet, dass sie einander im Bereich des Fensters von Durchbruch 9 elektrisch leitend berühren. Dabei ragen die zweiten Stromableiter 18, 18a nicht aus der Umhüllung 4.
Figur 9 zeigt ausschnittsvergrößert das biegesteife und als Metallblech ausgebildete Formteil 5a mit einem Durchbruch 9. Auch dargestellt ist die bereichsweise Beschichtung 10 des Formteils 5a entlang der Ränder des Durchbruchs 9. Diese Beschichtung 10 ist aus einem Polymerwerkstoff elektrisch isolierend ausgebildet.
Figur 10 zeigt eine alternative Ausführung der galvanischen Zelle gemäß Figur 7. Dargestellt ist ein vergrößerter Ausschnitt im Bereich des Durchbruchs 9 im Formteil 5a. Die beiden Elektrodenstapel 2, 2a sind über Ableiterfahnen mit ei- nem zweiten Stromableiter 18 verschweißt. Der zweite Stromableiter 18 ist innerhalb des Durchbruchs 9 angeordnet. Der zweite Stromableiter 18 ist elektrisch gegenüber dem Formteil 5a durch die isolierende Beschichtung 10 getrennt. Die Beschichtung 10 und der zweite Stromableiter 18 sind hinsichtlich ihrer Abmaße so aufeinander abgestimmt, dass der zweite Stromableiter 18 den Durchbruch 9 auch abdichtet. Die beiden Räume der Umhüllung 4, welche die Elektrodenstapel 2, 2a aufnehmen, können jeweils hermetisch abgedichtet sein.

Claims

P a t e n t a n s p r ü c h e
1. Galvanische Zelle (1) von insbesondere im Wesentlichen prismatischer Gestalt, welche wenigstens aufweist: einen ersten Elektrodenstapel (2), einen ersten Stromableiter (3, 3a), welcher mit einem ersten Elektrodenstapel (2) verbunden ist, und eine Umhüllung (4), welche einen ersten Elektrodenstapel (2) wenigstens teilweise umschließt, wobei ein erster Stromableiter (3, 3a) sich teilweise aus der Umhüllung (4) erstreckt, dadurch gekennzeichnet, dass die galvanische Zelle (1) weiter einen zweiten Elektrodenstapel (2a) und einen zweiten Stromableiter (18, 18a) aufweist, dass die Umhüllung (4) wenigstens ein erstes Formteil (5a) und ein zweites Formteil (5b) aufweist, wobei ein Formteil eine höhere Wärmeleitfähigkeit aufweist als die übrigen Formteile, und dass die Formteile (5, 5a, 5b) weiter vorgesehen sind, wenigstens einen Elektrodenstapel (2, 2a) wenigstens teilweise zu umschließen.
2. Galvanische Zelle (1) gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens zwei Formteile (5, 5a, 5b) der Umhüllung (4) vorgesehen sind, wenigstens teilweise und insbesondere stoffschlüssig miteinander verbunden zu werden, wobei wenigstens zwei Formteile (5, 5a, 5b) der Umhüllung (4) vorgesehen sind, in einem ersten Verbindungsbereich (6) insbesondere stoffschlüssig miteinander verbunden zu werden.
3. Galvanische Zelle (1) gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens ein Formteil (5, 5a, 5b) der Umhüllung (4) einen Wärmeübergangsbereich (7) aufweist, welcher insbesonde- re zur Berührung mit einem Temperierelement (8) und/oder mit einem ersten Temperiermittel (14) vorgesehen ist.
4. Galvanische Zelle (1) gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens ein Formteil (5, 5a, 5b) der Umhül- lung (4) biegesteif ausgeführt ist und/oder dass wenigstens ein Formteil (5,
5a, 5b) der Umhüllung (4) dünnwandig ausgeführt ist.
5. Galvanische Zelle (1) gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens ein Formteil (5, 5a, 5b) der Umhüllung (4) wenigstens bereichsweise eine Beschichtung (10) aufweist.
6. Galvanische Zelle (1) gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens ein Formteil (5, 5a, 5b) der Umhüllung (4) eine Ausnehmung (11 ) insbesondere zur Aufnahme eines Elektrodenstapels (2) aufweist.
7. Galvanische Zelle (1) gemäß einem der vorhergehenden Ansprüche, da- durch gekennzeichnet, dass wenigstens ein Formteil (5, 5a, 5b) der Umhüllung (4) einen zweiten Verbindungsbereich (12) aufweist.
8. Galvanische Zelle (1) gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein erster Stromableiter (3, 3a) mit einem ersten Elektrodenstapel (2) verbunden ist, dass ein zweiter Stromableiter (18, 18a) mit einem zweiten Elektrodenstapel (2a) verbunden ist, und dass ein zweiter Stromableiter (18, 18a) mit einem ersten Stromableiter (3, 3a) oder mit einem ersten Elektrodenstapel (2) verbunden ist.
9. Galvanische Zelle (1) gemäß Anspruch 8, dadurch gekennzeichnet, dass wenigstens ein Formteil (5, 5a, 5b) einen Durchbruch (9) aufweist, dass wenigstens ein zweiter Stromableiter (18, 18a) durch den Durchbruch (9) geführt ist und dass ein zweiter Stromableiter (18, 18a) mit einem ersten Stromableiter (3, 3a) oder mit einem ersten Elektrodenstapel (2) insbesondere inner- halb der Umhüllung (4) verbunden sind.
10. Galvanische Zelle (1) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass sie wenigstens einen Elektrodenstapel (2, 2a) um- fasst, welcher wenigstens eine Elektrode umfasst, vorzugsweise wenigstens eine Kathode, welche eine Verbindung mit der Formel LiMPO4 auf- weist, wobei M wenigstens ein Übergangsmetallkation der ersten Reihe des Periodensystems der Elemente ist, wobei dieses Übergangsmetallkation vorzugsweise aus der Gruppe bestehend aus Mn, Fe, Ni und Ti oder einer Kombination dieser Elemente gewählt ist, und wobei die Verbindung vorzugsweise eine Olivinstruktur aufweist, vorzugsweise übergeordnetes Olivin, wobei Fe besonders bevorzugt ist.
11. Galvanische Zelle (1 ) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass sie wenigstens einen Elektrodenstapel (2, 2a) umfasst, welcher wenigstens eine Elektrode umfasst, vorzugsweise wenigstens eine Kathode, welche ein Lithiummanganat, vorzugsweise LiMn2O4 vom Spinell-Typ, ein üthiumkobaltat, vorzugsweise LiCoO2, oder ein Li- thiumnickelat, vorzugsweise LiNiO2, oder ein Gemisch aus zwei oder drei dieser Oxide, oder ein Lithiummischoxid, welches Mangan, Kobalt und Nickel enthält, aufweist.
12. Galvanische Zelle (1) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass sie wenigstens einen Elektrodenstapel (2, 2a) umfasst, welcher wenigstens einen Separator umfasst, welcher nicht oder nur schlecht elektronenleitend ist, und welcher aus einem zumindest teilweise stoffdurchlässigen Träger besteht, wobei der Träger vorzugsweise auf mindestens einer Seite mit einem anorganischen Material beschichtet ist, wobei als wenigstens teilweise stoffdurchlässiger Träger vorzugsweise ein organisches Material verwendet wird, welches vorzugsweise als nicht verwebtes Vlies ausgestaltet ist, wobei das organische Material vorzugsweise ein Polymer und besonders bevorzugt ein Polyethylenterephthalat (PET) umfasst, wobei das organische Material mit einem anorganischen, vorzugsweise ionenleitenden Material beschichtet ist, welches weiter vorzugsweise in einem Temperaturbereich von - 40° C bis 200 0C ionenleitend ist, wobei das anorganische Material bevorzugt wenigstens eine Verbindung aus der Gruppe der Oxide, Phosphate, Sulfate, Titanate, Silikate, Aluminosilikate wenigstens eines der Elemente Zr, AI, Li umfasst, besonders bevorzugt Zirkonoxid, und wobei das anorganische, ionenleitende Material bevorzugt Partikel mit einem größten Durchmesser unter 100 nm aufweist.
13. Batterie mit wenigstens zwei galvanischen Zellen (1) gemäß einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die galvanischen Zellen (1) im Wesentlichen parallel zueinander angeordnet sind, und dass der Batterie weiter wenigstens ein Temperierelement (8) zugeordnet ist, wobei wenigstens ein Temperierelement (8) zur Berührung wenigstens eines Formteils (5, 5a, 5b) der Umhüllung (4) wenigstens einer der galvanischen Zellen (1) vorgesehen ist.
14. Batterie gemäß Anspruch 13 mit wenigstens zwei galvanischen Zellen (1 ) gemäß einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass das wenigstens eine Temperierelement (8) wenigstens einen ersten Kanal (13) aufweist, welcher vorzugsweise mit einem zweiten Temperiermittel (14) gefüllt ist, und/oder dass das wenigstens eine Temperierelement (8) mit einem Wärmetauscher (15) wirkverbunden ist.
15. Verfahren zum Betrieb einer Batterie gemäß Anspruch 13 oder 14, dadurch gekennzeichnet, dass die Temperatur des Temperierelements (8) in Abhängigkeit von der gewünschten Betriebstemperatur der galvanischen Zellen (1) der Batterie ausgewählt wird.
16. Verfahren zum Betrieb einer Batterie gemäß Anspruch 14 oder 15, dadurch gekennzeichnet, dass wenigstens ein erster Kanal (13) des Temperierelements (8) von dem zweiten Temperiermittel (14) durchströmt wird.
17. Verfahren zum Betrieb einer Batterie mit wenigstens zwei galvanischen Zellen (1) gemäß einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass wenigstens ein Formteil (5, 5a, 5b), insbesondere ein Wärmeübergangsbereich (7) eines Formteils (5, 5a, 5b) von einem ersten Temperiermittel (14) angeströmt bzw. teilweise umströmt wird.
18. Verfahren zur Herstellung einer galvanischen Zelle (1) gemäß einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass zunächst wenigstens zwei Formteile (5, 5a, 5b) der Umhüllung (4) insbesondere stoffschlüssig miteinander verbunden werden und dass anschließend wenigstens ein Formteil (5, 5a, 5b) der Umhüllung (4) aus einem Ausgangszustand durch Biegen in einen verformten Zustand überführt wird, wobei wenigstens eine Ausdehnung des Formteils (5, 5a, 5b) im verformten Zustand gegenüber dem Ausgangszustand verringert ist.
EP10701205A 2009-01-21 2010-01-18 Galvanische zelle mit umhüllung ii Withdrawn EP2389696A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10701205A EP2389696A1 (de) 2009-01-21 2010-01-18 Galvanische zelle mit umhüllung ii

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE200910005497 DE102009005497A1 (de) 2009-01-21 2009-01-21 Galvanische Zelle mit Umhüllung II
EP20090012981 EP2221901A1 (de) 2009-01-21 2009-10-14 Galvanische Zelle mit Umhüllung II
PCT/EP2010/000257 WO2010083973A1 (de) 2009-01-21 2010-01-18 Galvanische zelle mit umhüllung ii
EP10701205A EP2389696A1 (de) 2009-01-21 2010-01-18 Galvanische zelle mit umhüllung ii

Publications (1)

Publication Number Publication Date
EP2389696A1 true EP2389696A1 (de) 2011-11-30

Family

ID=42077023

Family Applications (2)

Application Number Title Priority Date Filing Date
EP20090012981 Withdrawn EP2221901A1 (de) 2009-01-21 2009-10-14 Galvanische Zelle mit Umhüllung II
EP10701205A Withdrawn EP2389696A1 (de) 2009-01-21 2010-01-18 Galvanische zelle mit umhüllung ii

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP20090012981 Withdrawn EP2221901A1 (de) 2009-01-21 2009-10-14 Galvanische Zelle mit Umhüllung II

Country Status (8)

Country Link
US (1) US20110318613A1 (de)
EP (2) EP2221901A1 (de)
JP (1) JP2012516004A (de)
KR (1) KR20110122131A (de)
CN (1) CN102292845A (de)
BR (1) BRPI1006931A2 (de)
DE (1) DE102009005497A1 (de)
WO (1) WO2010083973A1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101259757B1 (ko) * 2009-12-04 2013-05-07 주식회사 엘지화학 우수한 냉각 효율성과 콤팩트한 구조의 전지모듈 및 중대형 전지팩
DE102011011432A1 (de) * 2011-02-16 2012-08-16 Francesco Furlanetto Batteriezelle und Batterie für Elektrofahrzeuge
JP2012248381A (ja) * 2011-05-27 2012-12-13 Murata Mfg Co Ltd 電池
JP6396799B2 (ja) 2011-07-25 2018-09-26 エイ123・システムズ・リミテッド・ライアビリティ・カンパニーA123 Systems, Llc 混合カソード材料
DE102011109218A1 (de) * 2011-08-02 2013-02-07 Daimler Ag Einzelzelle und Batterie aus einer Mehrzahl von Einzelzellen
DE102012016022A1 (de) * 2012-08-13 2014-03-13 Li-Tec Battery Gmbh Wandlerzelle mit einem Zellgehäuse, Batterie mit wenigstens zwei dieser Wandlerzellen und Verfahren zum Herstellen einer Wandlerzelle
DE102012018035A1 (de) * 2012-09-13 2014-03-13 Daimler Ag Batterieeinzelzelle in Form einer bipolaren Rahmenflachzelle
JP6020920B2 (ja) * 2013-04-09 2016-11-02 株式会社デンソー 蓄電素子
US10115997B2 (en) 2016-05-12 2018-10-30 Bosch Battery Systems Llc Prismatic electrochemical cell
DE102016008190A1 (de) 2016-07-05 2017-02-09 Daimler Ag Verfahren zur Herstellung eines elektrochemischen Energiespeichers
CN112886144B (zh) * 2019-11-30 2023-06-20 华为技术有限公司 一种分隔膜、电池组合及用电设备
CN114631221A (zh) * 2020-09-27 2022-06-14 宁德新能源科技有限公司 一种电化学装置及包含该电化学装置的电子装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4305560A1 (de) * 1993-02-24 1994-08-25 Varta Batterie Gasdicht verschlossener Nickel/Hydrid-Akkumulator
JP3727840B2 (ja) * 2000-09-29 2005-12-21 株式会社東芝 電池パック及び携帯用電子機器
JP4053802B2 (ja) * 2002-03-28 2008-02-27 Tdk株式会社 電気化学デバイス
US20050255379A1 (en) * 2004-05-12 2005-11-17 Michael Marchio Battery assembly with heat sink
JP4830302B2 (ja) * 2005-01-25 2011-12-07 トヨタ自動車株式会社 二次電池
JP4890795B2 (ja) * 2005-06-16 2012-03-07 日本電気株式会社 フィルム外装電池及びそれが集合した組電池
JP2007018917A (ja) * 2005-07-08 2007-01-25 Nissan Motor Co Ltd 積層型電池および組電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010083973A1 *

Also Published As

Publication number Publication date
US20110318613A1 (en) 2011-12-29
BRPI1006931A2 (pt) 2016-09-06
EP2221901A1 (de) 2010-08-25
JP2012516004A (ja) 2012-07-12
WO2010083973A1 (de) 2010-07-29
CN102292845A (zh) 2011-12-21
DE102009005497A1 (de) 2010-07-22
KR20110122131A (ko) 2011-11-09

Similar Documents

Publication Publication Date Title
EP2216842B1 (de) Galvanische Zelle mit Umhüllung
EP2389696A1 (de) Galvanische zelle mit umhüllung ii
EP2436062A2 (de) Elektrodenwickel
DE102010035580B4 (de) Batterie
DE60130302T2 (de) Vielfach gestapelte elektrochemische zelle und verfahren zu deren herstellung
EP3520163B1 (de) Verfahren zur herstellung einer elektrodeneinheit für eine batteriezelle und elektrodeneinheit
EP3152796B1 (de) Elektroenergiespeicherelement, verfahren und vorrichtung zu seiner herstellung
DE102004054821B4 (de) Batteriemodul
WO2013189593A1 (de) Wandlerzelle mit einem zellgehäuse, batterie mit zumindest zwei dieser wandlerzellen und verfahren zum herstellen einer wandlerzelle
DE102012018128A1 (de) Einzelzelle, Batterie und Verfahren zur Herstellung einer Einzelzelle
DE102012001440A1 (de) Elektrochemische Energiewandlereinrichtung mit einem Zellgehäuse, Batterie mit zumindest zwei dieser elektrochemischen Energiewandlereinrichtungen und Verfahren zum Herstellen einer elektrochemischen Energiewandlereinrichtung.
EP2226886A1 (de) Batterie mit Ableiteinrichtung
WO2013097968A1 (de) Batteriemodul mit schrumpfschlauch
WO2013023767A1 (de) Elektrochemische energiespeicherzelle mit metallischem gehäuse, verfahren zur herstelllung einer elektrochemischen energiespeicherzelle mit metallischem gehäuse
DE102012018041A1 (de) Isolation von elektrochemischen Energiespeichern
WO2015052006A1 (de) Batteriezelle und herstellungsverfahren für diese, sowie batterie
DE102012005788A1 (de) Wandlerzelle mit einem Zellgehäuse, Batterie mit zumindest zwei dieser Wandlerzellen und Verfahren zum Herstellen einer Wandlerzelle
EP3447819B1 (de) Sekundäre miniaturbatterie mit metallischem gehäuse und verfahren zu ihrer herstellung
DE102017221532A1 (de) Dünne, sekundäre Miniaturzelle mit metallischem, mittels eines Kunststoffdeckels verschlossenem Gehäuse und Verfahren zu ihrer Herstellung
WO2022073677A1 (de) Batteriezelle mit mehreren elektrodeneinheiten in einem gemeinsamen batteriezellgehäuse
DE102012012065A1 (de) Elektrochemische Energiewandlereinrichtung mit einem Zellgehäuse, Batterie mit zumindest zwei dieser elektrochemischen Energiewandlereinrichtungen und Verfahren zum Herstellen einer elektrochemischen Energiewandlereinrichtung
WO2011012203A1 (de) Batterieeinzelzelle mit einem gehäuse
EP3711103A1 (de) Dünne, sekundäre miniaturzelle mit metallischem, mittels eines kunststoffdeckels verschlossenem gehäuse und verfahren zu ihrer herstellung
DE102011003741A1 (de) Batteriezelle, Verfahren zur Herstellung einer Batteriezelle, Batteriezellenmodul und Kraftfahrzeug
WO2013020688A2 (de) Verfahren zur herstellung einer elektrochemischen zelle, eine elektrochemische zelle und eine energiespeichervorrichtung mit elektrochemischen zellen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110819

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150410

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20150716