DE102006060910A1 - Suspensionen von Kompositmaterialien - Google Patents

Suspensionen von Kompositmaterialien Download PDF

Info

Publication number
DE102006060910A1
DE102006060910A1 DE200610060910 DE102006060910A DE102006060910A1 DE 102006060910 A1 DE102006060910 A1 DE 102006060910A1 DE 200610060910 DE200610060910 DE 200610060910 DE 102006060910 A DE102006060910 A DE 102006060910A DE 102006060910 A1 DE102006060910 A1 DE 102006060910A1
Authority
DE
Germany
Prior art keywords
acid
und
weight
oder
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE200610060910
Other languages
English (en)
Inventor
Adolf Peter Dr. Barth
Stefan Dr. Huchler
Ullrich Dr. Bernecker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to DE200610060910 priority Critical patent/DE102006060910A1/de
Priority to PCT/EP2007/063216 priority patent/WO2008074626A2/de
Publication of DE102006060910A1 publication Critical patent/DE102006060910A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q11/00Preparations for care of the teeth, of the oral cavity or of dentures; Dentifrices, e.g. toothpastes; Mouth rinses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0241Containing particulates characterized by their shape and/or structure
    • A61K8/027Fibers; Fibrils
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/24Phosphorous; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/44Aminocarboxylic acids or derivatives thereof, e.g. aminocarboxylic acids containing sulfur; Salts; Esters or N-acylated derivatives thereof
    • A61K8/442Aminocarboxylic acids or derivatives thereof, e.g. aminocarboxylic acids containing sulfur; Salts; Esters or N-acylated derivatives thereof substituted by amido group(s)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/46Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing sulfur
    • A61K8/463Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing sulfur containing sulfuric acid derivatives, e.g. sodium lauryl sulfate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/64Proteins; Peptides; Derivatives or degradation products thereof
    • A61K8/65Collagen; Gelatin; Keratin; Derivatives or degradation products thereof

Abstract

Suspensionen mindestens eines Kompositmaterials, die -bezogen auf das Gewicht der Suspension - 60 bis 90 Gew.-% Wasser, 0,02 bis 30 Gew.-% mindestens eines Kompositmaterials aus 0,01 bis 15 Gew.-% mindestens eines wasserlöslichen Tensids und/oder mindestens eines wasserlöslichen polymeren Schutzkolloids und 0,01 bis 15 Gew.-% eines bzw. mehrerer Calciumsalze(s) in Form von stäbchenförmigen und/oder plättchenförmigen Partikeln mit einer Dicke im Bereich von 2 bis 50 nm und einer Länge im Bereich von 10 bis 150 nm sowie 0,01 bis 20 Gew.-% mindestens eines Salzes enthalten, sind physikalisch (gegen Absetzen) und chemisch (gegen Befall durch Mikroorganismen) stabil.

Description

  • Die Erfindung betrifft Suspensionen von Kompositmaterialien, die sich beispielsweise zum Einsatz in Zubereitungen zur Mund- und Zahnpflege- und -reinigung eignen.
  • Phosphatsalze des Calciums werden seit langem sowohl als Abrasivkomponenten als auch zur Förderung der Remineralisierung des Zahnschmelzes den Rezepturen von Zahnreinigungsmitteln und Zahnpflegemitteln zugesetzt. Dies gilt insbesondere für Hydroxylapatit und Fluorapatit sowie für amorphe Calciumphosphate und für Brushit (Dicalciumphosphatdihydrat). Auch Calciumfluorid ist als Bestandteil von Zahnreinigungsmitteln und als Komponente zur Festigung des Zahnschmelzes und zur Kariesprophylaxe mehrfach beschrieben worden.
  • Die Verfügbarkeit von Calcium-Verbindungen für die erwünschte Remineralisierung hängt ganz entscheidend von der Teilchengröße dieser in Wasser schwerlöslichen und in den Zahnpflegemitteln dispergierten Komponenten ab. Man hat daher vorgeschlagen, diese schwerlöslichen Calciumsalze in feinster Verteilung einzusetzen.
  • Der Zahnschmelz sowie das Stützgewebe der Knochen bestehen überwiegend aus dem Mineral Hydroxylapatit. Im biologischen Entstehungsprozeß lagert sich Hydroxylapatit in geordneter Weise an die Proteinmatrix im Knochen oder Zahn an, die überwiegend aus Kollagen besteht. Die Ausbildung der harten und belastungsfähigen mineralischen Strukturen wird dabei durch die so genannten Matrixproteine gesteuert, welche neben Kollagen durch weitere Proteine gebildet werden, die sich an das Kollagen anlagern und so einen strukturierten Mineralisierungsprozeß, der auch als Biomineralisation bezeichnet wird, bewirken.
  • Bei der Wiederherstellung von Knochenmaterial spielen so genannte Knochenersatzmittel, welche den natürlichen Biomineralisationsprozeß fördern, eine wichtige Rolle. Derartige Mittel werden auch benötigt zur Beschichtung von Implantaten, um stoffschlüssige Verbindungen zwischen Knochen und Implantat zu erreichen, mit denen auch Zugkräfte übertragen werden können. Von besonderer Bedeutung sind hier Beschichtung mit einer hohen Bioaktivität, die zu einer wirksamen Verbundosteogenese führen. Nach dem Stand der Technik wird in der Regel Hydroxylapatit auf Implantate aufgebracht. Nachteilig an dieser Vorgehensweise ist neben der oft unzureichenden Beschleunigung des Biomineralisationsprozesses das Abplatzen der Hydroxylapatit-Schichten und ihre unbefriedigende chemische Stabilität.
  • Für bestimmte Anwendungen werden flüssig injizierbare Knochenersatzmaterialien benötigt. Hier ist eine besonders geringe Teilchengröße erforderlich.
  • Unter den Knochenersatzmitteln sind Komposite aus Hydroxylapatit und Kollagen von besonderem Interesse, da sie die Zusammensetzung des natürlichen Knochens nachahmen. Eine ähnliche Situation herrscht bei der Wiederherstellung von Zahnmaterial, das zu etwa 95% aus Hydroxylapatit besteht.
  • Suspensionen von schwer wasserlöslichen Calciumsalzen sowie ihr Einsatz in Zusammensetzung zur Mund- und Zahnpflege und -reinigung sind beispielsweise in der DE 199 30 335 A1 offenbart. Ein weiteres Kompositmaterial für die genannten Einsatzzwecke ist in der DE 103 40 543 A1 beschrieben.
  • Die Suspensionen von Kompositmaterialien, die in diesen Schriften offenbart werden bzw. kommerziell erhältlich sind, enthalten neben den nanopartikulären Calciumssalzen oft Schutzkolloide, beispielsweise Gelatine. Um eine mikrobiologische Kontamination zu vermeiden, können den Produkten Konservierungsmittel zugesetzt werden, wobei eine Reihe gängiger Konservierungsmittel im Bereich der Kosmetik rechtlichen Restriktionen unterworfen ist. Zudem begegnen bestimmte Konservierungsmittel gelegentlich einem Mißtrauen, so daß ein Bedarf nach anderen Konservierungsmethoden besteht.
  • Es wurde nun gefunden, daß sich bestimmte Salze dazu eignen, bestimmte Suspensionen sowohl physikalisch zu stabilisieren und damit das Absetzen zu verhindern, als auch die mikrobiologische Kontamination unterdrücken können.
  • Gegenstand der vorliegenden Erfindung ist in einer ersten Ausführungsform eine Suspension mindestens eines Kompositmaterials, die – bezogen auf das Gewicht der Suspension –
    • a) 60 bis 90 Gew.-% Wasser,
    • b) 0,02 bis 30 Gew.-% mindestens eines Kompositmaterials aus
    • b1) 0,01 bis 15 Gew.-% mindestens eines wasserlöslichen Tensids und/oder mindestens eines wasserlöslichen polymeren Schutzkolloids;
    • b2) 0,01 bis 15 Gew.-% eines bzw. mehrerer Calciumsalze(s) in Form von stäbchenförmigen und/oder plättchenförmigen Partikeln mit einer Dicke im Bereich von 2 bis 50 nm und einer Länge im Bereich von 10 bis 150 nm,
    • c) 0,01 bis 20 Gew.-% mindestens eines Salzes
    enthält.
  • Als ersten wesentlichen Inhaltsstoff enthalten die erfindungsgemäßen Suspensionen Wasser, welches in den erfindungsgemäßen Mitteln in Mengen bis zu 90 Gew.-% enthalten sein kann. Bevorzugte erfindungsgemäße Suspensionen enthalten – bezogen auf das Gewicht der Suspension – 65 bis 85 Gew.-%, vorzugsweise 67,5 bis 80 Gew.-% und insbesondere 70 bis 76 Gew.-% Wasser.
  • Das in den erfindungsgemäßen Suspensionen enthaltene Wasser kann Leitungswasser sein, dessen Härtegrad je nach Herstellungsort bzw. Quelle des Wassers variieren kann. Möglich und bevorzugt ist es jedoch, Wasser mit Härtegraden zwischen 0 und 20°dH, vorzugsweise zwischen 1 und 16°dH einzusetzen. Besonders bevorzugt ist der Einsatz von technisch vollentsalztem Wasser („Wasser VE"), das mit Hilfe von Ionenaustauschern weitgehend von Salzen befreit wurde.
  • Als weiteren wesentlichen Inhaltsstoff enthalten die erfindungsgemäßen Suspensionen mindestens ein Kompositmaterial. Unter Kompositmaterialien werden Verbundstoffe verstanden, welche die unter b1) und b2) genannten Komponenten umfassen und mikroskopisch heterogene, makroskopisch aber homogen erscheinende Aggregate darstellen.
  • Unter Primärteilchen werden die Kristallite, d. h. die Einzelkristalle der genannten Calciumsalze verstanden. Als Teilchendurchmesser soll hier der Durchmesser der Teilchen in Richtung ihrer größten Längenausdehnung verstanden werden. Unter dem mittleren Teilchendurchmesser ist ein über die Gesamtmenge des Komposits gemittelter Wert zu verstehen. Die Bestimmung der Teilchendurchmesser kann durch den Fachmann geläufige Methoden bestimmt werden, beispielsweise durch die Methode der Transmissionselektronenmikroskopie (TEM).
  • Erfindungsgemäß bevorzugte Suspensionen sind dadurch gekennzeichnet, daß sie 0,2 bis 20 Gew.-%, vorzugsweise 1 bis 15 Gew.-% und insbesondere 5 bis 11 Gew.-% mindestens eines Kompositmaterials aus
    • b1) 0,01 bis 15 Gew.-%, vorzugsweise 0,1 bis 10 Gew.-% und insbesondere 0,5 bis 7,5 Gew.-% mindestens eines wasserlöslichen Tensids und/oder mindestens eines wasserlöslichen polymeren Schutzkolloids;
    • b2) 0,01 bis 15 Gew.-%, vorzugsweise 0,1 bis 10 Gew.-% und insbesondere 0,5 bis 7,5 Gew.-% eines bzw. mehrerer Calciumsalze(s) in Form von stäbchenförmigen und/oder plättchenförmigen Partikeln mit einer Dicke im Bereich von 2 bis 50 nm und einer Länge im Bereich von 10 bis 150 nm,
    enthalten.
  • Unter „Partikelgröße" wird dabei im Rahmen der vorliegenden Anmeldung die Größe der Partikel in ihrer größten räumlichen Ausdehnung verstanden.
  • Besonders bevorzugt werden erfindungsgemäß wenig wasserlösliche Calciumsalze eingesetzt, die weiter bevorzugt ausgewählt werden aus Phosphaten, Fluoriden und Fluorphosphaten.
  • Als wenig wasserlöslich (bzw. wenig löslich) sollen solche Salze verstanden werden, die in Wasser (bzw. in einem flüssigen Suspensionsmedium) zu weniger als 1 g/l (20°C) löslich sind. Bevorzugt geeignete Salze sind Calciumhydroxyphosphat (Ca5[OH(PO4)3]) bzw. Hydroxylapatit, Calciumfluorphosphat (Ca5[F(PO4)3]) bzw. Fluorapatit, F-dotierter Hydroxylapatit der allgemeinen Zusammensetzung Ca5(PO4)3(OH, F) und Calciumfluorid (Ca F2) bzw. Fluorit (Flußspat).
  • Die feinteiligen Calciumsalze können in der erfindungsgemäßen Suspension amorph, kristallin oder teilkristallin vorliegen. Die Partikel der feinteiligen Calciumsalze enthalten bevorzugt kristalline Bereiche. Die Partikel können aus einem (bevorzugt kristallinen) Primärpartikel bestehen oder bevorzugt aus einer Zusammenlagerung mehrerer (bevorzugt kristalliner) Primärpartikel aufgebaut sein. Kristalline Primärpartikel werden als Kristallite bezeichnet.
  • Die Bestimmung der Dimensionen der Kristallite, wie beispielsweise Teilchendurchmesser, Dicke oder Länge, kann durch den Fachmann geläufige Methoden bestimmt werden, insbesondere durch die Auswertung der bei der Röntgenbeugung beobachteten Verbreiterung der Reflexe. Vorzugsweise erfolgt dabei die Auswertung durch Fit-Verfahren beispielsweise die Rietveld-Methode.
  • Gemäß einer besonders bevorzugten Ausführungsform weisen die Kristallite der feinteiligen Calciumsalze vorzugsweise eine Dicke von 2 bis 15 nm und eine Länge von 10 bis 50 nm; besonders bevorzugt eine Dicke von 3 bis 11 nm und eine Länge von 15 bis 25 nm, auf.
  • Die Partikel der feinteiligen Calciumsalze, die erfindungsgemäß eingesetzt werden, weisen vorzugsweise bestimmte Formen auf. Diese Partikel können je nach den Bedingungen des Herstellverfahrens plättchen- und/oder stäbchenförmig vorliegen. Es ist erfindungsgemäß bevorzugt, wenn die Partikel der feinteiligen Calciumsalze stäbchenförmig und/oder plättchenförmig, bevorzugt vorwiegend plättchenförmig sind. Vorwiegend plättchenförmig bedeutet, dass mindestens 50%, bevorzugt mindestens 70%, besonders bevorzugt mindestens 80% der Partikel in Form von Plättchen vorliegen.
  • Die Calciumsalze können in dem erfindungsgemäßen Suspensionen ebenso als Aggregat mehrerer einzelner Partikel vorliegen.
  • Insbesondere sind erfindungsgemäße Suspensionen bevorzugt, die solche stäbchenförmigen Partikel feinteiliger Calciumsalze enthalten, die in einer Raumrichtung eine größere Ausdehnung besitzen als in den anderen zwei Raumrichtungen.
  • Als Teilchendurchmesser soll bei der Betrachtung stäbchenförmiger Partikel der Durchmesser der Partikel in Richtung ihrer größten Längenausdehnung verstanden werden. Unter Dicke stäbchenförmiger Teilchen ist der kleinste Durchmesser der Stäbchen zu verstehen, unter Länge ihr größter. Unter dem mittleren Teilchendurchmesser ist ein über die Gesamtmenge des Komposits (vide infra) gemittelter Wert zu verstehen. Die Bestimmung der Teilchendurchmesser kann durch den Fachmann geläufige Methoden bestimmt werden, beispielsweise durch die Methode der Transmissionselektronenmikroskopie (TEM).
  • Des weiteren sind bevorzugte erfindungsgemäße Suspensionen dadurch gekennzeichnet, daß das Calciumsalz des/der Kompositmaterialien ausgewählt ist aus der Gruppe Hydroxylapatit und Fluorapatit.
  • Die erfindungsgemäß ebenso bevorzugt einzusetzenden Calciumsalze in den Kompositmaterialien (vide infra) umfassen (insbesondere vorwiegend) plättchenförmige Calciumpartikel der Struktur der Knochensubstanz in vivo, die ebenfalls aus Platten aufgebaut ist. Diese Calciumsalze weisen eine verbesserte Biokompatibilität auf. Ferner eignen sich erfindungsgemäß Suspensionen, die feinteilige Calciumsalze in Gestalt plättchenförmiger Partikel enthalten (gegebenenfalls in Gegenwart feinteiliger Calciumsalze in Gestalt stäbchenförmiger Partikel), bevorzugt zur Lösung der technischen Aufgabe.
  • Gemäß einer besonderen Ausführungsform weisen die erfindungsgemäß eingesetzten (insbesondere wenig wasserlöslichen) Calciumsalze und/oder die Kompositmaterialien, umfassend diese, plättchenförmigen Partikel mit einer Breite im Bereich von 5 bis 150 nm und einer Länge im Bereich von 10 bis 150 nm sowie einer Höhe (Dicke) von 2 bis 50 nm auf.
  • Unter Höhe (Dicke) der plättchenförmigen Partikel ist der kleinste Durchmesser der Partikel bezogen auf die drei zueinander senkrecht stehenden Raumrichtungen zu verstehen, unter Länge ihr größter Durchmesser. Die Breite der Partikel ist demnach der weitere senkrecht zur Länge liegende Durchmesser, der gleich oder kleiner als die Längenabmessung des Partikels, aber größer oder zumindest gleich ihrer Höhenabmessung ist.
  • Die plättchenförmigen Partikel liegen als mehr oder minder unregelmäßig geformte Partikel, teilweise als eher runde Partikel, teilweise eher eckige Partikel mit abgerundeten Kanten vor.
  • Dies ist insbesondere bei den Abbildungen zu beobachten, die im Wege der Transmissionselektronenmikroskopie aufgenommen werden können.
  • Die plättchenförmigen Partikel liegen in solchen Proben häufig auch mehrfach überlappend vor. Sich überlappende Partikel werden in der Regel an den Stellen der Überlappung mit einer stärkeren Schwärzung abgebildet als nicht überlappende Partikel. Die angegebenen Längen, Breiten und Höhen werden bevorzugt an sich nicht überlappenden Partikeln der Probe bestimmt (vermessen).
  • Die Höhe der plättchenförmigen Partikel kann aus solchen Aufnahmen bevorzugt durch die Bestimmung der Abmessungen der mit ihrer größten Fläche senkrecht zur Bildebene stehenden Partikel erhalten werden. Die senkrecht zur Bildebene stehenden Partikel zeichnen sich durch einen besonders hohen Kontrast (hohe Schwärzung) aus und erscheinen dabei eher stäbchenartig. Diese senkrecht zur Bildebene stehenden plättchenförmigen Partikel können als tatsächlich senkrecht zur Bildebene stehend identifiziert werden, wenn sie bei einer Kippung der Bildebene eine Verbreiterung der Abmessung (zumindest in eine Raumrichtung) und eine Abnahme der Schwärzung der Abbildung zeigen.
  • Zur Bestimmung der Höhe der Partikel ist es insbesondere geeignet, die Bildebene der Probe mehrfach in verschiedenen Positionen zu kippen und die Abmessungen der Partikel in der Einstellung zu bestimmen, die durch den höchsten Kontrast/höchste Schwärzung und die geringste Ausdehnung der Partikel gekennzeichnet ist. Die kürzeste Ausdehnung entspricht dabei dann der Höhe der Partikel.
  • Gemäß einer bevorzugten Ausführungsform beträgt die durchschnittliche Länge der Partikel bevorzugt 30 bis 100 nm. Bevorzugt liegt die Breite dieser Partikel dabei im Bereich zwischen 10 bis 100 nm.
  • Gemäß einer besonderen Ausführungsform beträgt bei den Partikeln der (insbesondere wenig wasserlöslichen) Calciumsalze und/oder Kompositmaterialien, umfassend diese, das Verhältnis von Länge zu Breite zwischen 1 und 4, bevorzugt von 1 bis 3, besonders bevorzugt zwischen 1 und 2, bspw. 1,2 (Länge 60 nm, Breite 50 nm) oder 1,5 (Länge 80, Breite 40 nm).
  • Die plättchenförmige Form der Partikel wird durch das Verhältnis von Länge zu Breite gebildet. Beträgt das Verhältnis zwischen Länge und Breite deutlich größer als 4, liegen eher stäbchenförmige Partikel vor.
  • Gemäß einer weiteren besonderen Ausführungsform weisen die plättchenförmigen Partikel eine Fläche von 0,1·10–15 m2 bis 90·10–15 m2, bevorzugt eine Fläche von 0,5·10 15 m2 bis 50·10–15 m2, besonders bevorzugt 1,0·10–15 m2 bis 30·10–15 m2, ganz besonders bevorzugt 1,5·10–15 m2 bis 15·10–15 m2 beispielsweise 2·10–15 m2 auf. Als Fläche der Partikel wird die Fläche der Ebene, aufgespannt durch die Länge und die dazu senkrechte Breite, nach den gängigen geometrischen Berechnungsmethoden ermittelt.
  • Die erfindungsgemäßen Suspensionen enthalten (bezogen auf das Gewicht der Suspension) 0,01 bis 15 Gew.-%, vorzugsweise 0,1 bis 10 Gew.-% und insbesondere 0,5 bis 7,5 Gew.-% des bzw. der Calciumsalze(s) in Form von stäbchenförmigen und/oder plättchenförmigen Partikeln (insbesondere vorwiegend plättchenförmigen Partikeln) mit einer Dicke im Bereich von 2 bis 50 nm und einer Länge im Bereich von 10 bis 150 nm. Als weiterer Inhaltsstoff der Suspension sind (bezogen auf die Suspension) 0,01 bis 15 Gew.-%, vorzugsweise 0,1 bis 10 Gew.-% und insbesondere 0,5 bis 7,5 Gew.-% mindestens eines wasserlöslichen Tensids und/oder mindestens eines wasserlöslichen polymeren Schutzkolloids enthalten.
  • Unter dem Begriff Tenside werden grenzflächenaktive Substanzen, die an Ober- und Grenzflächen Adsorptionsschichten bilden oder in Volumenphasen zu Mizellkolloiden oder lyotropen Mesophasen aggregieren können, verstanden. Man unterscheidet Aniontenside bestehend aus einem hydrophoben Rest und einer negativ geladenen hydrophilen Kopfgruppe, amphotere Tenside, welche sowohl eine negative als auch eine kompensierende positive Ladung tragen, kationische Tenside, welche neben einem hydrophoben Rest eine positiv geladene hydrophile Gruppe aufweisen, und nichtionische Tenside, welche keine Ladungen sondern starke Dipolmomente aufweisen und in wäßriger Lösung stark hydratisiert sind.
  • Als anionische Tenside (E1) eignen sich in erfindungsgemäßen Zubereitungen alle für die Verwendung am menschlichen Körper geeigneten anionischen oberflächenaktiven Stoffe. Diese sind gekennzeichnet durch eine wasserlöslich machende, anionische Gruppe wie z. B. eine Carboxylat-, Sulfat-, Sulfonat- oder Phosphat-Gruppe und eine lipophile Alkylgruppe mit etwa 8 bis 30 C-Atomen. Zusätzlich können im Molekül Glykol- oder Polyglykolether-Gruppen, Ester-, Ether- und Amidgruppen sowie Hydroxylgruppen enthalten sein. Beispiele für geeignete anionische Tenside sind, jeweils in Form der Natrium-, Kalium- und Ammonium- sowie der Mono-, Di- und Trialkanolammoniumsalze mit 2 bis 4 C-Atomen in der Alkanolgruppe,
    • – lineare und verzweigte Fettsäuren mit 8 bis 30 C-Atomen (Seifen),
    • – Ethercarbonsäuren der Formel R-O-(CH2-CH2O)x-CH2-COOH, in der R eine lineare Alkylgruppe mit 8 bis 30 C-Atomen und x = 0 oder 1 bis 16 ist,
    • – Acylsarcoside mit 8 bis 24 C-Atomen in der Acylgruppe,
    • – Acyltauride mit 8 bis 24 C-Atomen in der Acylgruppe,
    • – Acylisethionate mit 8 bis 24 C-Atomen in der Acylgruppe,
    • – Sulfobernsteinsäuremono- und -dialkylester mit 8 bis 24 C-Atomen in der Alkylgruppe und Sulfobernsteinsäuremono-alkylpolyoxyethylester mit 8 bis 24 C-Atomen in der Alkylgruppe und 1 bis 6 Oxyethylgruppen,
    • – lineare Alkansulfonate mit 8 bis 24 C-Atomen,
    • – lineare Alpha-Olefinsulfonate mit 8 bis 24 C-Atomen,
    • – Alpha-Sulfofettsäuremethylester von Fettsäuren mit 8 bis 30 C-Atomen,
    • – Alkylsulfate und Alkylpolyglykolethersulfate der Formel R-O(CH2-CH2O)x-OSO3H, in der R eine bevorzugt lineare Alkylgruppe mit 8 bis 30 C-Atomen und x = 0 oder 1 bis 12 ist,
    • – sulfatierte Hydroxyalkylpolyethylen- und/oder Hydroxyalkylenpropylenglykolether
    • – Sulfonate ungesättigter Fettsäuren mit 8 bis 24 C-Atomen und 1 bis 6 Doppelbindungen
    • – Ester der Weinsäure und Zitronensäure mit Alkoholen, die Anlagerungsprodukte von etwa 2-15 Molekülen Ethylenoxid und/oder Propylenoxid an Fettalkohole mit 8 bis 22 C-Atomen darstellen,
    • – Alkyl- und/oder Alkenyletherphosphate der Formel (E1-I), R1(OCH2OH2)n-O-P(O)(OX)-OR2 (E1-I)in der R1 bevorzugt für einen aliphatischen Kohlenwasserstoffrest mit 8 bis 30 Kohlenstoffatomen, R2 für Wasserstoff, einen Rest (CH2CH2O)nR2 oder X, n für Zahlen von 1 bis 10 und X für Wasserstoff, ein Alkali- oder Erdalkalimetall oder NR3R4R5R6, mit R3 bis R6 unabhängig voneinander stehend für Wasserstoff oder einen C1 bis C4-Kohlenwasserstoffrest, steht,
    • – sulfatierte Fettsäurealkylenglykolester der Formel (E1-II) R7CO(AlkO)nSO3M (E1-II)in der R7CO- für einen linearen oder verzweigten, aliphatischen, gesättigten und/oder ungesättigten Acylrest mit 6 bis 22 C-Atomen, Alk für CH2CH2, CHCH3CH2 und/oder CH2CHCH3, n für Zahlen von 0,5 bis 5 und M für ein Kation steht,
    • – Monoglyceridsulfate und Monoglyceridethersulfate der Formel (E1-III)
      Figure 00090001
      in der R8CO für einen linearen oder verzweigten Acylrest mit 6 bis 22 Kohlenstoffatomen, x, y und z in Summe für 0 oder für Zahlen von 1 bis 30, vorzugsweise 2 bis 10, und X für ein Alkali- oder Erdalkalimetall steht. Typische Beispiele für im Sinne der Erfindung geeignete Monoglycerid(ether)sulfate sind die Umsetzungsprodukte von Laurinsäuremonoglycerid, Kokosfettsäuremonoglycerid, Palmitinsäuremonoglycerid, Stearinsäuremonoglycerid, Ölsäuremonoglycerid und Talgfettsäuremonoglycerid sowie deren Ethylenoxidaddukte mit Schwefeltrioxid oder Chlorsulfonsäure in Form ihrer Natriumsalze. Vorzugsweise werden Monoglyceridsulfate der Formel (E1-III) eingesetzt, in der R8CO für einen linearen Acylrest mit 8 bis 18 Kohlenstoffatomen steht,,
    • – Amidethercarbonsäuren,
    • – Kondensationsprodukte aus C8-C30-Fettalkoholen mit Proteinhydrolysaten und/oder Aminosäuren und deren Derivaten, welche dem Fachmann als Eiweissfettsäurekondensate bekannt sind, wie beispielsweise die Lamepon®-Typen, Gluadin®-Typen, Hostapon® KCG oder die Amisoft®-Typen.
  • Bevorzugte anionische Tenside sind Alkylsulfate, Alkylpolyglykolethersulfate und Ethercarbonsäuren mit 10 bis 18 C-Atomen in der Alkylgruppe und bis zu 12 Glykolethergruppen im Molekül, Sulfobernsteinsäuremono- und -dialkylester mit 8 bis 18 C-Atomen in der Alkylgruppe und Sulfobernsteinsäuremono-alkylpolyoxyethylester mit 8 bis 18 C-Atomen in der Alkylgruppe und 1 bis 6 Oxyethylgruppen, Monoglycerdisulfate, Alkyl- und Alkenyletherphosphate sowie Eiweissfettsäurekondensate.
  • Als zwitterionische Tenside (E2) werden solche oberflächenaktiven Verbindungen bezeichnet, die im Molekül mindestens eine quartäre Ammoniumgruppe und mindestens eine -COO(–)- oder -SO3 (–)-Gruppe tragen. Besonders geeignete zwitterionische Tenside sind die so genannten Betaine wie die N-Alkyl-N,N-dimethylammonium-glycinate, beispielsweise das Kokosalkyl-dimethylammoniumglycinat, N-Acyl-aminopropyl-N,N-dimethylammoniumglycinate, beispielsweise das Kokosacylaminopropyl-dimethylammoniumglycinat, und 2-Alkyl-3-carboxymethyl-3-hydroxyethyl-imidazoline mit jeweils 8 bis 18 C-Atomen in der Alkyl- oder Acylgruppe sowie das Kokosacylaminoethylhydroxyethylcarboxymethylglycinat. Ein bevorzugtes zwitterionisches Tensid ist das unter der INCI-Bezeichnung Cocamidopropyl Betaine bekannte Fettsäureamid-Derivat.
  • Unter ampholytischen Tensiden (E3) werden solche oberflächenaktiven Verbindungen verstanden, die außer einer C8-C24-Alkyl- oder -Acylgruppe im Molekül mindestens eine freie Aminogruppe und mindestens eine -COOH- oder -SO3H-Gruppe enthalten und zur Ausbildung innerer Salze befähigt sind. Beispiele für geeignete ampholytische Tenside sind N-Alkylglycine, N-Alkylpropionsäuren, N-Alkylaminobuttersäuren, N-Alkyliminodipropionsäuren, N-Hydroxyethyl-N-alkylamidopropylglycine, N-Alkyltaurine, N-Alkylsarcosine, 2-Alkylaminopropionsäuren und Alkylaminoessigsäuren mit jeweils etwa 8 bis 24 C-Atomen in der Alkylgruppe. Besonders bevorzugte ampholytische Tenside sind das N-Kokosalkylaminopropionat, das Kokosacylaminoethylaminopropionat und das C12-C18-Acylsarcosin.
  • Nichtionische Tenside (E4) enthalten als hydrophile Gruppe z. B. eine Polyolgruppe, eine Polyalkylenglykolethergruppe oder eine Kombination aus Polyol- und Polyglykolethergruppe. Solche Verbindungen sind beispielsweise
    • – Anlagerungsprodukte von 2 bis 50 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylenoxid an lineare und verzweigte Fettalkohole mit 8 bis 30 C-Atomen, an Fettsäuren mit 8 bis 30 C-Atomen und an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe,
    • – mit einem Methyl- oder C2-C6-Alkylrest endgruppenverschlossene Anlagerungsprodukte von 2 bis 50 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylenoxid an lineare und verzweigte Fettalkohole mit 8 bis 30 C-Atomen, an Fettsäuren mit 8 bis 30 C-Atomen und an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe, wie beispielsweise die unter den Verkaufsbezeichnungen Dehydol® LS, Dehydol® LT (Cognis) erhältlichen Typen,
    • – C12-C30-Fettsäuremono- und -diester von Anlagerungsprodukten von 1 bis 30 Mol Ethylenoxid an Glycerin,
    • – Anlagerungsprodukte von 5 bis 60 Mol Ethylenoxid an Rizinusöl und gehärtetes Rizinusöl,
    • – Polyolfettsäureester, wie beispielsweise das Handelsprodukt Hydagen® HSP (Cognis) oder Sovermol-Typen (Cognis),
    • – alkoxilierte Triglyceride,
    • – alkoxilierte Fettsäurealkylester der Formel (E4-I) R1CO-(OCH2CHR2)wOR3 (E4-I)in der R1CO für einen linearen oder verzweigten, gesättigten und/oder ungesättigten Acylrest mit 6 bis 22 Kohlenstoffatomen, R2 für Wasserstoff oder Methyl, R3 für lineare oder verzweigte Alkylreste mit 1 bis 4 Kohlenstoffatomen und w für Zahlen von 1 bis 20 steht,
    • – Aminoxide,
    • – Hydroxymischether,
    • – Sorbitanfettsäureester und Anlagerungeprodukte von Ethylenoxid an Sorbitanfettsäureester wie beispielsweise die Polysorbate,
    • – Zuckerfettsäureester und Anlagerungsprodukte von Ethylenoxid an Zuckerfettsäureester,
    • – Anlagerungsprodukte von Ethylenoxid an Fettsäurealkanolamide und Fettamine,
    • – Zuckertenside vom Typ der Alkyl- und Alkenyloligoglykoside gemäß Formel (E4-II), R4O-[G]p (E4-II)in der R4 für einen Alkyl- oder Alkenylrest mit 4 bis 22 Kohlenstoffatomen, G für einen Zuckerrest mit 5 oder 6 Kohlenstoffatomen und p für Zahlen von 1 bis 10 steht. Sie können nach den einschlägigen Verfahren der präparativen organischen Chemie erhalten werden. Die Alkyl- und Alkenyloligoglykoside können sich von Aldosen bzw. Ketosen mit 5 oder 6 Kohlenstoffatomen, vorzugsweise von Glucose, ableiten. Die bevorzugten Alkyl- und/oder Alkenyloligoglykoside sind somit Alkyl- und/oder Alkenyloligoglucoside. Die Indexzahl p in der allgemeinen Formel (E4-II) gibt den Oligomerisierungsgrad (DP), d. h. die Verteilung von Mono- und Oligoglykosiden an und steht für eine Zahl zwischen 1 und 10. Während p im einzelnen Molekül stets ganzzahlig sein muß und hier vor allem die Werte p = 1 bis 6 annehmen kann, ist der Wert p für ein bestimmtes Alkyloligoglykosid eine analytisch ermittelte rechnerische Größe, die meistens eine gebrochene Zahl darstellt. Vorzugsweise werden Alkyl- und/oder Alkenyloligoglykoside mit einem mittleren Oligomerisierungsgrad p von 1,1 bis 3,0 eingesetzt. Aus anwendungstechnischer Sicht sind solche Alkyl- und/oder Alkenyloligoglykoside bevorzugt, deren Oligomerisierungsgrad kleiner als 1,7 ist und insbesondere zwischen 1,2 und 1,4 liegt. Der Alkyl- bzw. Alkenylrest R4 kann sich von primären Alkoholen mit 4 bis 11, vorzugsweise 8 bis 10 Kohlenstoffatomen ableiten. Typische Beispiele sind Butanol, Capronalkohol, Caprylalkohol, Caprinalkohol und Undecylalkohol sowie deren technische Mischungen, wie sie beispielsweise bei der Hydrierung von technischen Fettsäuremethylestern oder im Verlauf der Hydrierung von Aldehyden aus der Roelen'schen Oxosynthese erhalten werden. Bevorzugt sind Alkyloligoglucoside der Ket tenlänge C8-C10 (DP = 1 bis 3), die als Vorlauf bei der destillativen Auftrennung von technischem C8-C18-Kokosfettalkohol anfallen und mit einem Anteil von weniger als 6 Gew.-% C12-Alkohol verunreinigt sein können sowie Alkyloligoglucoside auf Basis technischer C9/11-Oxoalkohole (DP = 1 bis 3). Der Alkyl- bzw. Alkenylrest R15 kann sich ferner auch von primären Alkoholen mit 12 bis 22, vorzugsweise 12 bis 14 Kohlenstoffatomen ableiten. Typische Beispiele sind Laurylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol, Brassidylalkohol sowie deren technische Gemische, die wie oben beschrieben erhalten werden können. Bevorzugt sind Alkyloligoglucoside auf Basis von gehärtetem C12/14-Kokosalkohol mit einem DP von 1 bis 3.
    • – Zuckertenside vom Typ der Fettsäure-N-alkylpolyhydroxyalkylamide, ein nichtionisches Tensid der Formel (E4-III), R5CO-NR6-[Z] (E4-III)in der R5CO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R6 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 12 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Fettsäure-N-alkylpolyhydroxyalkylamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuckers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden. Vorzugsweise leiten sich die Fettsäure-N-alkylpolyhydroxyalkylamide von reduzierenden Zuckern mit 5 oder 6 Kohlenstoffatomen, insbesondere von der Glucose ab. Die bevorzugten Fettsäure-N-alkylpolyhydroxyalkylamide stellen daher Fettsäure-N-alkylglucamide dar, wie sie durch die Formel (E4-IV) wiedergegeben werden: R7CO-NR8-CH2-(CHOH)4-CH2OH (E4-IV)
    • Vorzugsweise werden als Fettsäure-N-alkylpolyhydroxyalkylamide Glucamide der Formel (E4-IV) eingesetzt, in der R8 für Wasserstoff oder eine Alkylgruppe steht und R7CO für den Acylrest der Capronsäure, Caprylsäure, Caprinsäure, Laurinsäure, Myristinsäure, Palmitinsäure, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Arachinsäure, Gadoleinsäure, Behensäure oder Erucasäure bzw. derer technischer Mischungen steht. Besonders bevorzugt sind Fettsäure-N-alkylglucamide der Formel (E4-IV), die durch reduktive Aminierung von Glucose mit Methylamin und anschließende Acylierung mit Laurinsäure oder C12/14-Kokosfettsäure bzw. einem entsprechenden Derivat erhalten werden. Weiterhin können sich die Polyhydroxyalkylamide auch von Maltose und Palatinose ableiten.
  • Als bevorzugte nichtionische Tenside haben sich die Alkylenoxid-Anlagerungsprodukte an gesättigte lineare Fettalkohole und Fettsäuren mit jeweils 2 bis 30 Mol Ethylenoxid pro Mol Fettalkohol bzw. Fettsäure erwiesen. Zubereitungen mit hervorragenden Eigenschaften werden ebenfalls erhalten, wenn sie als nichtionische Tenside Fettsäureester von ethoxyliertem Glycerin enthalten.
  • Diese Verbindungen sind durch die folgenden Parameter gekennzeichnet. Der Alkylrest R enthält 6 bis 22 Kohlenstoffatome und kann sowohl linear als auch verzweigt sein. Bevorzugt sind primäre lineare und in 2-Stellung methylverzweigte aliphatische Reste. Solche Alkylreste sind beispielsweise 1-Octyl, 1-Decyl, 1-Lauryl, 1-Myristyl, 1-Cetyl und 1-Stearyl. Besonders bevorzugt sind 1-Octyl, 1-Decyl, 1-Lauryl, 1-Myristyl. Bei Verwendung so genannter "Oxo-Alkohole" als Ausgangsstoffe überwiegen Verbindungen mit einer ungeraden Anzahl von Kohlenstoffatomen in der Alkylkette.
  • Weiterhin sind ganz besonders bevorzugte nichtionische Tenside die Zuckertenside. Diese können in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,1–20 Gew.-%, bezogen auf das gesamte Mittel, enthalten sein. Mengen von 0,5–15 Gew.-% sind bevorzugt, und ganz besonders bevorzugt sind Mengen von 0,5–7,5 Gew.%.
  • Bei den als Tensid eingesetzten Verbindungen mit Alkylgruppen kann es sich jeweils um einheitliche Substanzen handeln. Es ist jedoch in der Regel bevorzugt, bei der Herstellung dieser Stoffe von nativen pflanzlichen oder tierischen Rohstoffen auszugehen, so daß man Substanzgemische mit unterschiedlichen, vom jeweiligen Rohstoff abhängigen Alkylkettenlängen erhält.
  • Bei den Tensiden, die Anlagerungsprodukte von Ethylen- und/oder Propylenoxid an Fettalkohole oder Derivate dieser Anlagerungsprodukte darstellen, können sowohl Produkte mit einer "normalen" Homologenverteilung als auch solche mit einer eingeengten Homologenverteilung verwendet werden. Unter "normaler" Homologenverteilung werden dabei Mischungen von Homologen verstanden, die man bei der Umsetzung von Fettalkohol und Alkylenoxid unter Verwendung von Alkalimetallen, Alkalimetallhydroxiden oder Alkalimetallalkoholaten als Katalysatoren erhält. Eingeengte Homologenverteilungen werden dagegen erhalten, wenn beispielsweise Hydrotalcite, Erdalkalimetallsalze von Ethercarbonsäuren, Erdalkalimetalloxide, -hydroxide oder -alkoholate als Katalysatoren verwendet werden. Die Verwendung von Produkten mit eingeengter Homologenverteilung kann bevorzugt sein.
  • Erfindungsgemäß einsetzbar sind kationische Tenside vom Typ der quarternären Ammoniumverbindungen, der Esterquats und der Amidoamine. Bevorzugte quaternäre Ammoniumverbindungen sind Ammoniumhalogenide, insbesondere Chloride und Bromide, wie Alkyltrimethylammoniumchloride, Dialkyldimethylammoniumchloride und Trialkylmethylammoniumchloride, z. B. Cetyltrimethylammoniumchlorid, Stearyltrimethylammoniumchlorid, Distearyldimethylammoniumchlorid, Lauryldimethylammoniumchlorid, Lauryldimethylbenzylammoniumchlorid und Tricetylmethylammoniumchlorid, sowie die unter den INCI-Bezeichnungen Quaternium-27 und Quaternium-83 bekannten Imidazolium-Verbindungen. Die langen Alkylketten der oben genannten Tenside weisen bevorzugt 10 bis 18 Kohlenstoffatome auf.
  • Bevorzugt einsetzbar sind erfindungsgemäß QAV mit Behenylresten, insbesondere die unter der Bezeichnung Behentrimoniumchlorid bzw. -bromid (Docosanyltrimethylammonium Chlorid bzw. -Bromid) bekannten Substanzen. Andere bevorzugte QAV weisen mindestens zwei Behenylreste auf, wobei QAV, welche zwei Behenylreste an einem Imidazoliniumrückgrat besonders bevorzugt sind. Kommerziell erhältlich sind diese Substanzen beispielsweise unter den Bezeichnungen Genamin® KDMP (Clariant) und Crodazosoft® DBQ (Crodauza).
  • Bei Esterquats handelt es sich um bekannte Stoffe, die sowohl mindestens eine Esterfunktion als auch mindestens eine quartäre Ammoniumgruppe als Strukturelement enthalten. Bevorzugte Esterquats sind quaternierte Estersalze von Fettsäuren mit Triethanolamin, quaternierte Estersalze von Fettsäuren mit Diethanolalkylaminen und quaternierten Estersalzen von Fettsäuren mit 1,2-Dihydroxypropyldialkylaminen. Solche Produkte werden beispielsweise unter den Warenzeichen Stepantex®, Dehyquart® und Armocare® vertrieben. Die Produkte Armocare® VGH-70, ein N,N-Bis(2-Palmitoyloxyethyl)dimethylammoniumchlorid, sowie Dehyquart® F-75, Dehyquart®C-4046, Dehyquart® 180 und Dehyquart® AU-35 sind Beispiele für solche Esterquats.
  • Die Alkylamidoamine werden üblicherweise durch Amidierung natürlicher oder synthetischer Fettsäuren und Fettsäureschnitte mit Dialkylaminoaminen hergestellt. Eine erfindungsgemäß besonders geeignete Verbindung aus dieser Substanzgruppe stellt das unter der Bezeichnung Tegoamid® S 18 im Handel erhältliche Stearamidopropyl-dimethylamin dar.
  • Unabhängig davon, ob die Suspension zusätzlich noch wasserlösliche polymere Schutzkolloide enthält oder nicht, sind erfindungsgemäße Suspensionen bevorzugt, die Tenside, vorzugsweise aus der Gruppe der anionischen und/oder der zwitterionischen Tenside und insbesonder aus der Gruppe der Fettalkoholsulfate und/oder der Fettalkoholethersulfate und/oder der Amidopropylbetaine enthalten.
  • Als wasserlösliche polymere Schutzkolloide werden hochmolekulare Verbindungen verstanden, die an die Oberfläche der Nanopartikel adsorbiert werden und diese so modifizieren, daß sie an der Koagulation und Agglomeration gehindert werden. Geeignete polymere Schutzkolloide sind z. B. natürliche wasserlösliche Polymere wie z. B. Gelatine, Casein, Albumin, Stärke, Pflanzengumme und wasserlösliche Derivate von wasserunlöslichen polymeren Naturstoffen wie z. B. Celluloseether (Methylcellulose, Hydroxyethylcellulose, Carboxymethylcellulose), Hydroxyethyl-Stärke oder Hydroxy-propyl-Guar.
  • Synthetische wasserlösliche Polymere, die sich als Schutzkolloide eignen, sind z. B. Polyvinylalkohol, Polyvinylpyrrolidon, Polyacrylsäuren, Polyasparaginsäure und andere.
  • In bevorzugten erfindungsgemäßen Zusammensetzungen dieser Ausführungsform umfaßt die Suspension ein oder mehrere Materialien aus der Gruppe (gegebenenfalls acetalisierter) Polyvinylalkohol (PVAL) und/oder PVAL-Copolymere, Polyvinylpyrrolidon, Polyethylenoxid, Polyethylenglykol, Gelatine, Cellulose und deren Derivate, insbesondere MC, HEC, HPC, HPMC und/oder CMC, und/oder Copolymere sowie deren Mischungen.
  • Im Rahmen der vorliegenden Erfindung sind Polyvinylalkohole als wasserlösliche Polymere besonders bevorzugt. "Polyvinylalkohole" (Kurzzeichen PVAL, gelegentlich auch PVOH) ist dabei die Bezeichnung für Polymere der allgemeinen Struktur
    Figure 00150001
    die in geringen Anteilen (ca. 2%) auch Struktureinheiten des Typs
    Figure 00150002
    enthalten.
  • Handelsübliche Polyvinylalkohole, die als weiß-gelbliche Pulver oder Granulate mit Polymerisationsgraden im Bereich von ca. 100 bis 2500 (Molmassen von ca. 4000 bis 100.000 g/mol) angeboten werden, haben Hydrolysegrade von 98–99 bzw. 87–89 Mol-%, enthalten also noch einen Restgehalt an Acetyl-Gruppen. Charakterisiert werden die Polyvinylalkohole von Seiten der Hersteller durch Angabe des Polymerisationsgrades des Ausgangspolymeren, des Hydrolysegrades, der Verseifungszahl bzw. der Lösungsviskosität.
  • Im Rahmen der vorliegenden Erfindung bevorzugte Mittel dieser Ausführungsform sind dadurch gekennzeichnet, daß die Suspension Polyvinylalkohole und/oder PVAL-Copolymere umfaßt, deren Hydrolysegrad 70 bis 100 Mol-%, vorzugsweise 80 bis 90 Mol-%, besonders bevorzugt 81 bis 89 Mol-% und insbesondere 82 bis 88 Mol-% beträgt.
  • Vorzugsweise werden Polyvinylalkohole eines bestimmten Molekulargewichtsbereichs eingesetzt, wobei erfindungsgemäße Mittel dieser Ausführungsform bevorzugt sind, bei denen die Suspension Polyvinylalkohole und/oder PVAL-Copolymere umfaßt, deren Molekulargewicht im Bereich von 3.500 bis 100.000 gmol–1, vorzugsweise von 10.000 bis 90.000 gmol–1, besonders bevorzugt von 12.000 bis 80.000 gmol–1 und insbesondere von 13.000 bis 70.000 gmol–1 liegt.
  • Der Polymerisationsgrad solcher bevorzugten Polyvinylalkohole liegt zwischen ungefähr 200 bis ungefähr 2100, vorzugsweise zwischen ungefähr 220 bis ungefähr 1890, besonders bevorzugt zwischen ungefähr 240 bis ungefähr 1680 und insbesondere zwischen ungefähr 260 bis ungefähr 1500.
  • Die vorstehend beschriebenen Polyvinylalkohole sind kommerziell breit verfügbar, beispielsweise unter dem Warenzeichen Mowiol® (Clariant). Im Rahmen der vorliegenden Erfindung besonders geeignete Polyvinylalkohole sind beispielsweise Mowiol® 3-83, Mowiol® 4-88, Mowiol® 5-88 sowie Mowiol® 8-88.
  • Weitere als Schutzkolloid für die Suspension besonders geeignete Polyvinylalkohole sind der nachstehenden Tabelle zu entnehmen:
    Bezeichnung Hydrolysegrad [%] Molmasse [kDa] Schmelzpunkt [°C]
    Airvol® 205 88 15–27 230
    Vinex® 2019 88 15–27 170
    Vinex® 2144 88 44–65 205
    Vinex® 102599 15–27 170
    Vinex® 202588 25–45 192
    Gohsefimer® 540730–28 23.600 100
    Gohsefimer® LL0241–51 17.700 100
  • Weitere als Schutzkolloid für die Suspension geeignete Polyvinylalkohole sind ELVANOL® 51-05, 52-22, 50-42, 85-82, 75-15, T-25, T-66, 90-50 (Warenzeichen der Du Pont), ALCOTEX® 72.5, 78, 672, F80/40, F88/4, F88/26, F88/40, F88/47 (Warenzeichen der Harlow Chemical Co.), Gohsenol®NK-05, A-300, AH-22, C-500, GH-20, GL-03, GM-14L, KA-20, KA-500, KH-20, KP-06, N-300, NH-26, NM11Q, KZ-06 (Warenzeichen der Nippon Gohsei K. K.). Auch geeignet sind ERKOL-Typen von Wacker.
  • Eine weiter bevorzugte Gruppe wasserlöslicher Polymere, die erfindungsgemäß als Schutzkolloid für die Suspension dienen kann, sind die Polyvinylpyrrolidone. Diese werden beispielsweise unter der Bezeichnung Luviskol® (BASF) vertrieben. Polyvinylpyrrolidone [Poly(1-vinyl-2-pyrrolidinone)], Kurzzeichen PVP, sind Polymere der allg. Formel (I)
    Figure 00170001
    die durch radikalische Polymerisation von 1-Vinylpyrrolidon nach Verfahren der Lösungs- oder Suspensionspolymerisation unter Einsatz von Radikalbildnern (Peroxide, Azo-Verbindungen) als Initiatoren hergestellt werden. Die ionische Polymerisation des Monomeren liefert nur Produkte mit niedrigen Molmassen. Handelsübliche Polyvinylpyrrolidone haben Molmassen im Bereich von ca. 2500–750000 g/mol, die über die Angabe der K-Werte charakterisiert werden und – K-Wertabhängig – Glasübergangstemperaturen von 130–175° besitzen.
  • Geeignet sind auch Copolymere des Vinylpyrrolidons mit anderen Monomeren, insbesondere Vinylpyrrolidon/Vinylester-Copolymere, wie sie beispielsweise unter dem Warenzeichen Luviskol® (BASF) vertrieben werden. Luviskol® VA 64 und Luviskol® VA 73, jeweils Vinylpyrrolidon/Vinylacetat-Copolymere, sind besonders bevorzugte nichtionische Polymere.
  • Die Vinylester-Polymere sind aus Vinylestern zugängliche Polymere mit der Gruppierung der Formel (II)
    Figure 00180001
    als charakteristischem Grundbaustein der Makromoleküle. Von diesen haben die Vinylacetat-Polymere (R = CH3) mit Polyvinylacetaten als mit Abstand wichtigsten Vertretern die größte technische Bedeutung.
  • Die Polymerisation der Vinylester erfolgt radikalisch nach unterschiedlichen Verfahren (Lösungspolymerisation, Suspensionspolymerisation, Emulsionspolymerisation, Substanzpolymerisation.). Copolymere von Vinylacetat mit Vinylpyrrolidon enthalten Monomereinheiten der Formeln (I) und (II)
  • Weitere geeignete wasserlösliche Polymere sind die Polyethylenglykole (Polyethylenoxide), die kurz als PEG bezeichnet werden. PEG sind Polymere des Ethylenglycols, die der allgemeinen Formel (III) H-(O-CH2-CH2)n-OH (III)genügen, wobei n Werte zwischen 5 und > 100.000 annehmen kann.
  • PEGs werden technisch hergestellt durch anionische Ringöffnungspolymerisation von Ethylenoxid (Oxiran) meist in Gegenwart geringer Mengen Wasser. Sie haben je nach Reaktionsführung Molmassen im Bereich von ca. 200–5 000 000 g/mol, entsprechend Polymerisationsgraden von ca. 5 bis > 100 000.
  • Die Produkte mit Molmassen < ca. 25 000 g/mol sind bei Raumtemperatur flüssig wund werden als eigentliche Polyethylenglycole, Kurzzeichen PEG, bezeichnet. Diese kurzkettigen PEGs können insbesondere anderen wasserlöslichen Polymeren, z. B. Polyvinvlalkoholen oder Celluloseethern als Weichmacher zugesetzt werden. Die erfindungsgemäß einsetzbaren, bei Raumtemperatur festen Polyethylenglycole werden als Polyethylenoxide, Kurzzeichen PEOX, bezeichnet. Hochmolekulare Polyethylenoxide besitzen eine äußerst niedrige Konzentration an reaktiven Hydroxy-Endgruppen und zeigen daher nur noch schwache Glykol-Eigenschaften.
  • Weiter als wasserlösliches Schutzkolloid geeignet ist erfindungsgemäß auch Gelatine, wobei diese vorzugsweise mit anderen Polymeren zusammen eingesetzt wird. Gelatine ist ein Polypeptid (Molmasse: ca. 15.000 bis > 250.000 g/mol), das vornehmlich durch Hydrolyse des in Haut und Knochen von Tieren enthaltenen Kollagens unter sauren oder alkalischen Bedingungen gewonnen wird. Die Aminosäuren-Zusammensetzung der Gelatine entspricht weitgehend der des Kollagens, aus dem sie gewonnen wurde und variiert in Abhängigkeit von dessen Provenienz. Die Verwendung von Gelatine als wasserlösliches Hüllmaterial ist insbesondere in der Pharmazie in Form von Hart- oder Weichgelatinekapseln äußerst weit verbreitet. In Form von Folien findet Gelatine wegen ihres im Vergleich zu den vorstehend genannten Polymeren hohen Preises nur geringe Verwendung.
  • Weitere erfindungsgemäß in der Suspension geeignete wasserlösliche Polymere werden nachstehend beschrieben:
    • – Celluloseether, wie Hydroxypropylcellulose, Hydroxyethylcellulose und Methylhydroxypropylcellulose, wie sie beispielsweise unter den Warenzeichen Culminal® und Benecel® (AQUALON) vertrieben werden. Celluloseether lassen sich durch die allgemeine Formel (IV) beschreiben,
      Figure 00190001
      in der R für H oder einen Alkyl-, Alkenyl-, Alkinyl-, Aryl- oder Alkylarylrest steht. In bevorzugten Produkten steht mindestens ein R in Formel (IV) für -CH2CH2CH2-OH oder -CH2CH2-OH. Celluloseether werden technisch durch Veretherung von Alkalicellulose (z. B. mit Ethylenoxid) hergestellt. Celluloseether werden charakterisiert über den durchschnittlichen Substitutionsgrad DS bzw. den molaren Substitutionsgrad MS, die angeben, wie viele Hydroxy-Gruppen einer Anhydroglucose-Einheit der Cellulose mit dem Veretherungsreagens reagiert haben bzw. wie viel mol des Veretherungsreagens im Durchschnitt an eine Anhydroglucose-Einheit angelagert wurden. Hydroxyethylcellulosen sind ab einem DS von ca. 0,6 bzw. einem MS von ca. 1 wasserlöslich. Handelsübliche Hydroxyethyl- bzw. Hydroxypropylcellulosen haben Substitutionsgrade im Bereich von 0,85–1,35 (DS) bzw. 1,5–3 (MS). Hydroxyethyl- und -propylcellulosen werden als gelblichweiße, geruch- und geschmacklose Pulver in stark unterschiedlichen Polymerisationsgraden vermarktet. Hydroxyethyl- und -propylcellulosen sind in kaltem und heißem Wasser sowie in einigen (wasserhaltigen) organischen Lösungsmitteln löslich, in den meisten (wasserfreien) organischen Lösungsmitteln dagegen unlöslich; ihre wäßrigen Lösungen sind relativ unempfindlich gegenüber Änderungen des pH-Werts oder Elektrolyt-Zusatz.
  • Bevorzugte erfindungsgemäße Mittel sind dadurch gekennzeichnet, daß die Suspension Hydroxypropylmethylcellulose (HPMC) umfaßt, die einen Substitutionsgrad (durchschnittliche Anzahl von Methoxygruppen pro Anhydroglucose-Einheit der Cellulose) von 1,0 bis 2,0, vorzugsweise von 1,4 bis 1,9, und eine molare Substitution (durchschnittliche Anzahl von Hydroxypropoxylgruppen pro Anhydroglucose-Einheit der Cellulose) von 0,1 bis 0,3, vorzugsweise von 0,15 bis 0,25, aufweist.
  • Weitere erfindungsgemäß geeignete Polymere sind wasserlösliche Amphopolymere. Unter dem Oberbegriff Ampho-Polymere sind amphotere Polymere, d. h. Polymere, die im Molekül sowohl freie Aminogruppen als auch freie -COOH- oder SO3H-Gruppen enthalten und zur Ausbildung innerer Salze befähigt sind, zwitterionische Polymere, die im Molekül quartäre Ammoniumgruppen und -COO- oder –SO3 -Gruppen enthalten, und solche Polymere zusammengefaßt, die -COOH- oder SO3H-Gruppen und quartäre Ammoniumgruppen enthalten. Ein Beispiel für ein erfindungsgemäß einsetzbares Amphopolymer ist das unter der Bezeichnung Amphomer® erhältliche Acrylharz, das ein Copolymer aus tert.-Butylaminoethylmethacrylat, N-(1,1,3,3-Tetramethylbutyl)acrylamid sowie zwei oder mehr Monomeren aus der Gruppe Acrylsäure, Methacrylsäure und deren einfachen Estern darstellt. Ebenfalls bevorzugte Amphopolymere setzen sich aus ungesättigten Carbonsäuren (z. B. Acryl- und Methacrylsäure), kationisch derivatisierten ungesättigten Carbonsäuren (z. B. Acrylamidopropyl-trimethyl-ammoniumchlorid) und gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren zusammen, wie beispielsweise in der deutschen Offenlegungsschrift 39 29 973 und dem dort zitierten Stand der Technik zu entnehmen sind. Terpolymere von Acrylsäure, Methylacrylat und Methacrylamidopropyltrimoniumchlorid, wie sie unter der Bezeichnung Merquat®2001 N im Handel erhältlich sind, sind erfindungsgemäß besonders bevorzugte Ampho-Polymere. Weitere geeignete amphotere Polymere sind beispielsweise die unter den Bezeichnungen Amphomer® und Amphomer® LV-71 (DELFT NATIONAL) erhältlichen Octylacrylamid/Methylmethacrylat/tert.-Butylaminoethylmethacrylat/2-Hydroxypropylmethacrylat-Copolymere.
  • Erfindungsgemäß geeignete wasserlösliche anionische Polymere sind u. a.:
    • – Vinylacetat/Crotonsäure-Copolymere, wie sie beispielsweise unter den Bezeichnungen Resyn® (NATIONAL STARCH), Luviset® (BASF) und Gafset® (GAF) im Handel sind. Diese Polymere weisen neben Monomereinheiten der vorstehend genannten Formel (II) auch Monomereinheiten der allgemeinen Formel (V) auf: [-CH(CH3)-CH(COOH)-]n (V)
    • – Vinylpyrrolidon/Vinylacrylat-Copolymere, erhältlich beispielsweise unter dem Warenzeichen Luviflex® (BASF). Ein bevorzugtes Polymer ist das unter der Bezeichnung Luviflex® VBM-35 (BASF) erhältliche Vinylpyrrolidon/Acrylat-Terpolymere.
    • – Acrylsäure/Ethylacrylat/N-tert.Butylacrylamid-Terpolymere, die beispielsweise unter der Bezeichnung Ultrahold® strong (BASF) vertrieben werden.
    • – Pfropfpolymere aus Vinylestern, Estern von Acrylsäure oder Methacrylsäure allein oder im Gemisch, copolymerisiert mit Crotonsäure, Acrylsäure oder Methacrylsäure mit Polyalkylenoxiden und/oder Polykalkylenglycolen. Solche gepfropften Polymere von Vinylestern, Estern von Acrylsäure oder Methacrylsäure allein oder im Gemisch mit anderen copolymerisierbaren Verbindungen auf Polyalkylenglycolen werden durch Polymerisation in der Hitze in homogener Phase dadurch erhalten, daß man die Polyalkylenglycole in die Monomeren der Vinylester, Ester von Acrylsäure oder Methacrylsäure, in Gegenwart von Radikalbildner einrührt. Als geeignete Vinylester haben sich beispielsweise Vinylacetat, Vinylpropionat, Vinylbutyrat, Vinylbenzoat und als Ester von Acrylsäure oder Methacrylsäure diejenigen, die mit aliphatischen Alkoholen mit niedrigem Molekulargewicht, also insbesondere Ethanol, Propanol, Isopropanol, 1-Butanol, 2-Butanol, 2-Methy-1-Propanol, 2-Methyl-2-Propanol, 1-Pentanol, 2-Pentanol, 3-Pentanol, 2,2-Dimethyl-1-Propanol, 3-Methyl-1-butanol; 3-Methyl-2-butanol, 2-Methyl-2-butanol, 2-Methyl-1-Butanol, 1-Hexanol, erhältlich sind, bewährt. Polypropylenglycole (Kurzzeichen PPG) sind Polymere des Propylenglycols, die der allgemeinen Formel VI
      Figure 00210001
      genügen, wobei n Werte zwischen 1 (Propylenglycol) und mehreren tausend annehmen kann. Technisch bedeutsam sind hier insbesondere Di-, Tri- und Tetrapropylenglycol, d. h. die Vertreter mit n = 2, 3 und 4 in Formel VI. Insbesondere können die auf Polyethylenglycole gepfropften Vinylacetatcopolymeren und die auf Polyethylenglycole gepfropften Polymeren von Vinylacetat und Crotonsäure eingesetzt werden.
    • – gepropfte und vernetzte Copolymere aus der Copolymerisation von i) mindesten einem Monomeren vom nicht-ionischen Typ, ii) mindestens einem Monomeren vom ionischen Typ, iii) von Polyethylenglycol und iv) einem Vernetzter
    • Das verwendete Polyethylenglycol weist ein Molekulargewicht zwischen 200 und mehreren Millionen, vorzugsweise zwischen 300 und 30.000, auf.
    • Die nicht-ionischen Monomeren können von sehr unterschiedlichem Typ sein und unter diesen sind folgende bevorzugt: Vinylacetat, Vinylstearat, Vinyllaurat, Vinylpropionat, Allylstearat, Allyllaurat, Diethylmaleat, Allylacetat, Methylmethacrylat, Cetylvinylether, Stearylvinylether und 1-Hexen.
    • Die nicht-ionischen Monomeren können gleichermaßen von sehr unterschiedlichen Typen sein, wobei unter diesen besonders bevorzugt Crotonsäure, Allyloxyessigsäure, Vinylessigsäure, Maleinsäure, Acrylsäure und Methacrylsäure in den Pfropfcopolymeren enthalten sind.
    • Als Vernetzer werden vorzugsweise Ethylenglycoldimethacrylat, Diallylphthalat, ortho-, meta- und para-Divinylbenzol, Tetraallyloxyethan und Polyallylsaccharosen mit 2 bis 5 Allylgruppen pro Molekül Saccharin.
    • Die vorstehend beschriebenen gepfropften und vernetzten Copoymere werden vorzugsweise gebildet aus: i) 5 bis 85 Gew.-% mindesten eine Monomeren vom nicht-ionischen Typ, ii) 3 bis 80 Gew.-% mindestens eines Monomeren vom ionischen Typ, iii) 2 bis 50 Gew.-%, vorzugsweise 5 bis 30 Gew.-% Polyethylenglycol und iv) 0,1 bis 8 Gew.-% eines Vernetzers, wobei der Prozentsatz des Vernetzers durch das Verhältnis der Gesamtgewichte von i), ii) und iii) ausgebildet ist.
    • – durch Copolymerisation mindestens eines Monomeren jeder der drei folgenden Gruppen erhaltene Copolymere: i) Ester ungesättigter Alkohole und kurzkettiger gesättigter Carbonsäuren und/oder Ester kurzkettiger gesättigter Alkohole und ungesättigter Carbonsäuren, ii) ungesättigte Carbonsäuren, iii) Ester langkettiger Carbonsäuren und ungesättigter Alkohole und/oder Ester aus den Carbonsäuren der Gruppe ii) mit gesättigten oder ungesättigten, geradkettigen oder verzweigten C8-18-Alkohols
    • Unter kurzkettigen Carbonsäuren bzw. Alkoholen sind dabei solche mit 1 bis 8 Kohlenstoffatomen zu verstehen, wobei die Kohlenstoffketten dieser Verbindungen gegebenenfalls durch zweibindige Heterogruppen wie -O-, -NH-, -S- unterbrochen sein können.
    • – Terpolymere aus Crotonsäure, Vinylacetat und einem Allyl- oder Methallylester Diese Terpolymere enthalten Monomereinheiten der allgemeinen Formeln (II) und (IV) (siehe oben) sowie Monomereinheiten aus einem oder mehreren Allyl- oder Methallyestern der Formel VII:
      Figure 00230001
      worin R3 für -H oder -CH3, R2 für -CH3 oder -CH(CH3)2 und R1 für -CH3 oder einen gesättigten geradkettigen oder verzweigten C1-6-Alkylrest steht und die Summe der Kohlenstoffatome in den Resten R1 und R2 vorzugsweise 7, 6, 5, 4, 3 oder 2 ist.
    • Die vorstehend genannten Terpolymeren resultieren vorzugsweise aus der Copolymerisation von 7 bis 12 Gew.-% Crotonsäure, 65 bis 86 Gew.-%, vorzugsweise 71 bis 83 Gew.-% Vinylacetat und 8 bis 20 Gew.-%, vorzugsweise 10 bis 17 Gew.-% Allyl- oder Methallyletsre der Formel VII.
    • – Tetra- und Pentapolymere aus i) Crotonsäure oder Allyloxyessigsäure ii) Vinylacetat oder Vinylpropionat iii) verzweigten Allyl- oder Methallylestern iv) Vinylethern, Vinylesterrn oder geradkettigen Allyl- oder Methallylestern
    • – Crotonsäure-Copolymere mit einem oder mehreren Monomeren aus der Gruppe Ethylen, Vinylbenzol, Vinymethylether, Acrylamid und deren wasserlöslicher Salze
    • – Terpolymere aus Vinylacetat, Crotonsäure und Vinylestern einer gesättigten aliphatischen in α-Stellung verzweigten Monocarbonsäure.
  • Weitere, bevorzugt erfindungsgemäß in der Suspension einsetzbare Polymere sind kationische Polymere. Unter den kationischen Polymeren sind dabei die permanent kationischen Polymere bevorzugt. Als "permanent kationisch" werden erfindungsgemäß solche Polymere bezeichnet, die unabhängig vom pH-Wert eine kationische Gruppe aufweisen. Dies sind in der Regel Polymere, die ein quartäres Stickstoffatom, beispielsweise in Form einer Ammoniumgruppe, enthalten. Bevorzugte kationische Polymere sind beispielsweise
    • – quaternisierte Cellulose-Derivate, wie sie unter den Bezeichnungen Celquat® und Polymer JR® im Handel erhältlich sind. Die Verbindungen Celquat® H 100, Celquat® L 200 und Polymer JR®400 sind bevorzugte quaternierte Cellulose-Derivate.
    • – Polysiloxane mit quaternären Gruppen, wie beispielsweise die im Handel erhältlichen Produkte Q2-7224 (Hersteller: Dow Corning; ein stabilisiertes Trimethylsilylamodimethicon), Dow Corning® 929 Emulsion (enthaltend ein hydroxyl-aminomodifiziertes Silicon, das auch als Amodimethicone bezeichnet wird), SM-2059 (Hersteller: General Electric), SLM-55067 (Hersteller: Wacker) sowie Abil®-Quat 3270 und 3272 (Hersteller: Th. Goldschmidt; diquaternäre Polydimethylsiloxane, Quaternium-80),
    • – Kationische Guar-Derivate, wie insbesondere die unter den Handelsnamen Cosmedia®Guar und Jaguar® vertriebenen Produkte,
    • – Polymere Dimethyldiallylammoniumsalze und deren Copolymere mit Estern und Amiden von Acrylsäure und Methacrylsäure. Die unter den Bezeichnungen Merquat®100 (Poly(dimethyldiallylammoniumchlorid)) und Merquat®550 (Dimethyldiallylammoniumchlorid-Acrylamid-Copolymer) im Handel erhältlichen Produkte sind Beispiele für solche kationischen Polymere.
    • – Copolymere des Vinylpyrrolidons mit quaternierten Derivaten des Dialkylaminoacrylats und -methacrylats, wie beispielsweise mit Diethylsulfat quaternierte Vinylpyrrolidon-Dimethylaminomethacrylat-Copolymere. Solche Verbindungen sind unter den Bezeichnungen Gafquat®734 und Gafquat®755 im Handel erhältlich.
    • – Vinylpyrrolidon-Methoimidazoliniumchlorid-Copolymere, wie sie unter der Bezeichnung Luviquat® angeboten werden.
    • – quaternierter Polyvinylalkohol
    sowie die unter den Bezeichnungen
    • – Polyquaternium 2,
    • – Polyquaternium 17,
    • – Polyquaternium 18 und
    • – Polyquaternium 27
    bekannten Polymeren mit quartären Stickstoffatomen in der Polymerhauptkette. Die genannten Polymere sind dabei nach der so genannten INCI-Nomenklatur bezeichnet, wobei sich detaillierte Angaben im CTFA International Cosmetic Ingredient Dictionary and Handbook, 5th Edition, The Cosmetic, Toiletry and Fragrance Association, Washington, 1997, finden, auf die hier ausdrücklich Bezug genommen wird.
  • Erfindungsgemäß bevorzugte kationische Polymere sind quaternisierte Cellulose-Derivate sowie polymere Dimethyldiallylammoniumsalze und deren Copolymere. Kationische Cellulose-Derivate, insbesondere das Handelsprodukt Polymer®JR 400, sind ganz besonders bevorzugte kationische Polymere.
  • Eine bevorzugte Ausführungsform der Erfindung besteht darin, dass als Polymerkomponente Polyelektrolyte eingesetzt werden. Als Polyelektrolyte kommen im Sinne der Erfindung Polysäuren und Polybasen in Betracht, wobei die Polyelektrolyte Biopolymere oder auch synthetische Polymere sein können. So enthalten die erfindungsgemäßen Zusammensetzungen beispielsweise einen oder auch mehrere Polyelektrolyte ausgewählt aus
    • – Alginsäuren
    • – Pektinen
    • – Carrageenan
    • – Polygalakturonsäuren
    • – Amino- und Aminosäurederivaten von Alginsäuren, Pektinen, Carrageenan und Polygalakturonsäuren
    • – Polyaminosäuren, wie z. B. Polyasparaginsäuren
    • – Polyaspartamiden
    • – Nucleinsäuren, wie z. B. DNA und RNA
    • – Ligninsulfonaten
    • – Carboxymethylcellulosen
    • – Amino- und/oder Carboxylgruppen-haltigen Cyclodextrin-, Cellulose- oder Dextran-Derivaten
    • – Polyacrylsäuren
    • – Polymethacrylsäuren
    • – Polymaleinaten
    • – Polyvinylsulfonsäuren
    • – Polyvinylphosphonsäuren
    • – Polyethyleniminen
    • – Polyvinylaminen
    sowie Derivaten der vorstehend genannten Stoffe, insbesondere Amino- und/oder Carboxyl-Derivaten. Bevorzugt werden im Rahmen der vorliegenden Erfindung Polyelektrolyte eingesetzt, die zur Salzbildung mit zweiwertigen Kationen geeignete Gruppen tragen. Insbesondere eignen sich Carboxylat-Gruppen tragende Polymere.
  • Im Sinne der Erfindung besonders bevorzugte Polyelektrolyte sind Polyasparaginsäuren, Alginsäuren, Pektine, Desoxyribonukleinsäuren, Ribonukleinsäuren, Polyacrylsäuren und Polymethacrylsäuren.
  • Ganz besonders bevorzugt sind Polyasparaginsäuren mit einem Molekulargewicht im Bereich zwischen ca. 500 und 10000 Dalton, insbesondere 1000 bis 5000 Dalton.
  • Eine andere bevorzugte Ausführungsform der Erfindung besteht darin, dass als Polymerkomponente Polysaccharide ausgewählt sind. Insbesondere sind diese Polysaccharide ausgewählt sind aus Glucuronsäure- und/oder Iduronsäurehaltigen Polysacchariden. Darunter sind solche Polysaccharide zu verstehen, die unter anderem aus Glucuronsäure, bevorzugt D-Glucuronsäure, und/oder Iduronsäure, insbesondere L-Iduronsäure, aufgebaut sind. Ein Bestandteil des Kohlenhydratgerüsts wird dabei von Glucuronsäure bzw. Iduronsäure gebildet. Die zu Glucuronsäure isomere Iduronsäure weist am C5-Kohlenstoffatom des Rings die andere Konfiguration auf. Bevorzugt sind unter Glucuronsäure- und/oder Iduronsäurehaltigen Polysacchariden solche Polysaccharide zu verstehen, die Glucuronsäure- und/oder Iduronsäure in einem molaren Verhältn's von 1:10 bis 10:1, insbesondere von 1:5 bis 5:1, besonders bevorzugt 1:3 bis 2:1, bezogen auf die Summe der weiteren Monosaccharidbausteine des Polysaccharids, enthalten. Vorteilhafterweise kann durch die anionischen Carboxylgruppen der Glucuronsäure und/oder Iduronsäure haltigen Polysaccharide eine besonders gute Wechselwirkung mit dem Calciumsalz erreicht werden, die zu einem besonders stabilen und gleichzeitig besonders gut biomineralisierenden Kompositmaterial führen. Beispielsweise geeignete Polysaccharide sind die Glucuronsäure- und/oder Iduronsäurehaltige Glykosaminoglykane (auch als Mucopolysaccharide bezeichnet), mikrobiell hergestelltes Xanthan oder Welan oder Gummi Arabicum, welches aus Akazien gewonnen wird.
  • Mit besonderem Vorzug wird das wasserlösliche polymere Schuzzukolloid aus Proteinen und/oder Proteinderivaten ausgewählt. Hier sind erfindungsgemäße Suspensionen bevorzugt, bei denen das wasserlösliche polymere Schutzkolloid ausgewählt ist aus Proteinen, Proteinhydrolysaten und Proteinhydrolysat-Derivaten, wobei bevorzugte Verbindungen ausgewählt sind aus Kollagen, Gelatine, Keratin, Casein, Weizenprotein, Reisprotein, Sojaprotein, Mandelprotein und deren Hydrolysaten und Hydrolysat-Derivaten.
  • Als Proteine kommen im Rahmen der vorliegenden Erfindung grundsätzlich alle Proteine unabhängig von ihrem Ursprung oder ihrer Herstellung in Betracht. Beispiele für Proteine tierischen Ursprungs sind Keratin, Elastin, Kollagen, Fibroin, Albumin, Casein, Molkeprotein, Plazentaprotein. Erfindungsgemäß bevorzugt aus diesen sind Kollagen, Keratin, Casein, Molkeprotein, Proteine pflanzlichen Ursprungs wie beispielsweise Weizen- und Weizenkeimprotein, Reisprotein, Sojaprotein, Haferprotein, Erbsenprotein, Kartoffelprotein, Mandelprotein und Hefeprotein können erfindungsgemäß ebenfalls bevorzugt sein.
  • Unter Proteinhydrolysaten sind hierbei Abbauprodukte von Proteinen wie beispielsweise Kollagen, Elastin, Casein, Keratin, Mandel-, Kartoffel-, Weizen-, Reis- und Sojaprotein zu verstehen, die durch saure, alkalische und/oder enzymatische Hydrolyse der Proteine selbst oder ihrer Abbauprodukte wie beispielsweise Gelatine erhalten werden. Für den enzymatischen Abbau sind alle hydrolytisch wirkenden Enzyme geeignet, wie z. B. alkalische Proteasen. Weitere geeignete Enzyme sowie enzymatische Hydrolyseverfahren sind beispielsweise beschrieben in K. Drauz und H. Waldmann, Enzyme Catalysis in Organic Synthesis, VCH-Verlag, Weinheim 1975. Bei dem Abbau werden die Proteine in kleinere Untereinheiten gespalten, wobei der Abbau über die Stufen der Polypeptide über die Oligopeptide bis hin zu den einzelnen Aminosäuren gehen kann. Zu den wenig abgebauten Proteinhydrolysaten zählt beispielsweise die im Rahmen der vorliegenden Erfindung bevorzugte Gelatine, welche Molmassen im Bereich von 15000 bis 250000 D aufweisen kann. Gelatine ist ein Polypeptid, das vornehmlich durch Hydrolyse von Kollagen unter sauren (Gelatine Typ A) oder alkalischen (Gelatine Typ B) Bedingungen gewonnen wird. Die Gelstärke der Gelatine ist proportional zu ihrem Molekulargewicht, d. h., eine stärker hydrolysierte Gelatine ergibt eine niedriger viskose Lösung. Die Gelstärke der Gelatine wird in Bloom-Zahlen angegeben. Bei der enzymatischen Spaltung der Gelatine wird die Polymergröße stark erniedrigt, was zu sehr niedrigen Bloom-Zahlen führt.
  • Weiterhin sind im Rahmen der vorliegenden Erfindung als Proteinhydrolysate bevorzugt die in der Kosmetik gebräuchlichen Proteinhydrolysate mit einem durchschnittlichen Molekulargewicht im Bereich von 600 bis 4000, besonders bevorzugt von 2000 bis 3500. Übersichten zu Herstellung und Verwendung von Proteinhydrolysaten sind beispielsweise von G. Schuster und A. Domsch in Seifen Öle Fette Wachse 108, (1982) 177 bzw. Cosm.Toil. 99, (1984) 63, von H. W. Steisslinger in Parf.Kosm. 72, (1991) 556 und F. Aurich et al. in Tens.Surf.Det. 29, (1992) 389 erschienen. Vorzugsweise werden erfindungsgemäß Proteinhydrolysate aus Kollagen, Keratin, Casein sowie pflanzlichen Proteinen eingesetzt, beispielsweise solche auf Basis von Weizengluten oder Reisprotein, deren Herstellung in den beiden Deutschen Patentschriften DE 19502167 C1 und DE 19502168 C1 (Henkel) beschrieben wird.
  • Unter Proteinhydrolysat-Derivaten sind im Rahmen der vorliegenden Erfindung chemisch und/oder chemoenzymatisch modifizierte Proteinhydrolysate zu verstehen wie beispielsweise die unter den INCI-Bezeichnungen Sodium Cocoyl Hydrolyzed Wheat Protein, Laurdimonium Hydroxypropyl Hydrolyzed Wheat Protein, Potassium Cocoyl Hydrolyzed Collagen, Potassium Undecylenoyl Hydrolyzed Collagen und Laurdimonium Hydroxypropyl Hydrolyzed Collagen bekannten Verbindungen. Vorzugsweise werden erfindungsgemäß Derivate aus Proteinhydrolysaten des Kollagens, Keratins und Caseins sowie pflanzlichen Proteinhydrolysaten eingesetzt wie z. B. Sodium Cocoyl Hydrolyzed Wheat Protein oder Laurdimonium Hydroxypropyl Hydrolyzed Wheat Protein.
  • Weitere Beispiele für Proteinhydrolysate und Proteinhydrolysat-Derivate, die unter den Rahmen der vorliegenden Erfindung fallen, sind beschrieben in CTFA 1997 International Buyers' Guide, John A. Wenninger et al. (Ed.), The Cosmetic, Toiletry, and Fragrance Association, Washington DC 1997, 686–688.
  • Besonders bevorzugt ist die Proteinkomponente ausgewählt aus Gelatine, Casein und/oder deren Hydrolysaten.
  • Gemäß einer besonders bevorzugten Ausführungsform können Gelatinen vom Typ AB eingesetzt werden, die auch unter den Namen „acid-bone"- oder „acid process ossein"-Gelatine bekannt sind, und aus Ossein durch stark saure Prozessbedingungen hergestellt werden.
  • Ossein, als kollagenhaltiges Ausgangsmaterial zur Herstellung von Gelatine vom Typ AB „acid bone" oder „acid process ossein", wird hergestellt als Auszug aus zerkleinerten Knochen, insbesondere Rinderknochen, die ggf. nach Entfettung und Trocknung für ein oder mehrere Tage (bevorzugt mindestens eine Woche und mehr) in wässriger Lösung, bevorzugt kalter Säure, bevorzugt verdünnter Säure (z. B. Salzsäure), eingelagert werden, um die anorganischen Knochenbestandteile, insbesondere Hydroxylapatit und Calciumcarbonat, zu entfernen. Es resultiert ein schwammartiges entmineralisiertes Knochenmaterial, das Ossein.
  • Das im Ossein befindliche Kollagen wird durch einen Aufschlussprozess denaturiert und freigesetzt, in dem das Material unter stark sauren Bedingungen behandelt wird.
  • Die Herstellung der Gelatine aus den genannten Rohmaterialien findet durch mehrfache Extraktion mit wässrigen Lösungen statt. Bevorzugt kann vor dem Extraktionsprozess der pH-Wert der Lösung eingestellt werden. Insbesondere bevorzugt sind mehrere Extraktionsschritte mit Wasser bzw. wässrigen Lösungen bei steigender Lösungsmitteltemperatur.
  • Kompositmaterialien, die aus einem schwer wasserlöslichen Calciumsalz mit Gelatine vom Typ AB (acid-bone) gewonnen werden können, sind besonders zum Einsatz in den erfindungsgemäßen Mitteln geeignet.
  • Erfindungsgemäße Suspensionen lassen sich durch den Zusatz von Salzen gegen Absatzen (= phasikalisch) und gegen Befall durch Mikroorganismen (= chemisch) stabilisieren. Besonders bevorzugte erfindungsgemäße Suspensionen enthalten 0,05 bis 15 Gew.-%, vorzugsweise 0,1 bis 10 Gew.-%, weiter bevorzugt 0,25 bis 7,5 Gew.-% und insbesondere 0,5 bis 5 Gew.-% mindestens eines Salzes.
  • Zur Stabilisierung haben sich insbesondere Salze des Typs AB bewährt, wobei sowohl einwertige Kationen und Anionen (Salz A+ B) als auch mehr-, insbesondere zweiwertige, Kationen und Anionen (A2+ B2–) die erfindungsgemäß eingesetzten Salze bilden können.
  • Als Kationen haben sich das Ammoniumion, die Alkalimetallionen, Magnesium, Zink, Mangan und Eisen bewährt, bevorzugte Anionen sind Chlorid, Bromid, Nitrat, Perchlorat und Sulfat.
  • Besonders bevorzugte erfindungsgemäße Suspensionen sind dadurch gekennzeichnet, daß sie mindestens ein Salz des Typs AB, vorzugsweise aus der Gruppe der Halogenide und/oder der Nitrate von Ammonium- und/oder Alkalimetallen und/oder der Sulfate von Erdalkalimetallen, insbesondere aus der Gruppe NH4Cl, NaCl, KCl, NaBr, KBr, NaNO3, KNO3, MgSO4, enthalten.
  • Erfindungsgemäß bevorzugte Suspensionen sind dadurch gekennzeichnet, daß sie zusätzlich 5 bis 25 Gew.-%, vorzugsweise 7,5 bis 22,5 Gew.-%, weiter bevorzugt 10 bis 20 Gew.-% und insbesondere 12,5 bis 17,5 Gew.-% mindestens eines mehrwertigen Alkohols aus der Gruppe Sorbit und/oder Glycerin und/oder 1,2-Propylenglycol.-%, jeweils bezogen auf das Gewichts des gesamten Mittels, enthalten.
  • Sorbit (auch als Glucit bezeichnet) ist ein Zuckeralkohol von Glucose, also ein Hexit. Sorbit ist durch Hydrierung von Glucose herstellbar, spaltet intramolekular relativ leicht ein oder zwei Moleküle Wasser ab und bildet cyclische Ether. Sorbit läßt sich durch die Formel
    Figure 00300001
    beschreiben und kommt in Form farbloser, mäßig hygroskopischer, optisch aktiver Nadeln, welche sich leicht in Wasser lösen, in den Handel.
  • Glycerin (1,2,3-Propantriol, 1,2,3-Trihydroxypropan, Glycerol, Ölsüß, INCI-Bezeichnung: Glycerin, E 422) ist eine farblose, klare, schwerbewegliche, geruchlose, süß schmeckende, hygroskopische Flüssigkeit, die mit Wasser und Alkohol in jedem Verhältnis mischbar ist.
  • Glycerin läßt sich durch die Formel
    Figure 00300002
    beschreiben. Die Herstellung von Glycerin erfolgte ursprünglich als Nebenprodukt der Fettverseifung. Die heutigen technischen Verfahren gehen von Propen aus, das über die Zwischenstufen Allylchlorid und Epichlorhydrin zu Glycerin verarbeitet wird. Ein weiteres technisches Verfahren ist die Hydroxylierung von Allylalkohol mit Wasserstoffperoxid am WO3-Kontakt über die Stufe des Glycids.
  • 1,2-Propylenglykol (1,2-Propandiol) ist eine farblose und stark hygroskopische Flüssigkeit, die in jedem Verhältnis mit Wasser und Alkoholen (wie Methanol, Ethanol, Propanolen, Butanolen) mischbar ist. Technisches 1,2-Propandiol ist ein Racemat aus (–)-(R)- und (+)-(S)-1,2-Prpylenglycol. Die Herstellung erfolgt über direkte Hydrolyse von Propylenoxid. Da 1,2-P. mit Propylenoxid weiterreagiert, entsteht dabei eine Mischung aus 1,2- und Tripropylenglykol, die durch Destillation getrennt werden muß. 1,2-Propylenglycol kann auch aus nachwachsenden Rohstoffen über drei unterschiedliche Routen hergestellt werden: a) Katalytische Hydrierung von Zuckern; b) Gärung von Zuckern zu Milchsäure und anschließend Hydrierung des Milchsäureesters; c) direkte Fermentation von Zuckern.
  • Die Suspension weist vorzugsweise pH-Werte zwischen 5 und 7, besonders bevorzugt zwischen 5,5 und 6,9, insbesondere zwischen 6 und 6,6, auf. Bevorzugte Suspensionen sind zusätzlich dadurch gekennzeichnet, daß sie bei 20°C eine Viskosität (gemessen mit Brookfield Synchro-Lectric Viskosimeter, Typ RVT mit Helipath-Stativ, Spindel 3 und 20 U/min) von 1 bis 500 Pas (1.000 bis 500.000 mPas), vorzugsweise von 2 bis 250 Pas (2.000 bis 250.000 mPas), weiter bevorzugt von 5 bis 50 Pas (5.000 bis 50.000 mPas) und insbesondere von 10 bis 35 Pas (10.000 bis 35.000 mPas) aufweisen.
  • Die erfindungsgemäßen Suspensionen von Kompositmaterialien, insbesondere die von Hydroxylapatit, Fluorapatit und Calciumfluorid, eignen sich als remineralisierende Komponente zur Herstellung von Zusammensetzungen zur Reinigung und/oder Pflege der Zähne. Durch die strukturierte Form der Komposite und die Partikelgröße der darin enthaltenen Calciumverbindungen kann die Wirkung einer Festigung des Zahnschmelzes und des Verschlusses von Läsionen und Dentinkanälchen besonders rasch und vollständig erfolgen. Die Zusammensetzungen zur Reinigung und Pflege der Zähne können dabei beispielsweise in Form von Pasten, flüssigen Cremes, Gelen oder Mundspülungen vorliegen. Selbst in flüssigen Zubereitungen verteilen sich die erfindungsgemäßen Suspensionen von Kompositmaterialien leicht, bleiben stabil dispergiert und neigen nicht zur Sedimentation.
  • Ein weiterer Gegenstand der vorliegenden Erfindung ist daher die Verwendung der erfindungsgemäßen Suspensionen als remineralisierende Komponenten in Zusammensetzungen zur Reinigung und/oder Pflege der Zähne.
  • Ein weiterer Gegenstand der vorliegenden Erfindung ist auch die Verwendung der erfindungsgemäßen Suspensionen als die Biomineralisation induzierende oder fördernde Komponente in Zusammensetzungen für die Behandlung von Zahn- oder Knochendefekten.
  • Bezüglich bevorzugter Verwendungen gilt mutatismutandis das zu den erfindungsgemäßen Suspensionen Ausgeführte.
  • Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Mund und Zahnpflege- und -reinigungsmittel, enthaltend – bezogen auf sein Gewicht – 0,01 bis 5 Gew.-%, vorzugsweise 0,05 bis 2,5 Gew.-% und insbesondere 0,1 bis 1 Gew.-% mindestens einer erfindungsgemäßen Suspension.
  • Mund- und Zahnpflegemittel sowie Mund- und Zahnreinigungsmittel im Sinne der Erfindung sind Mund- und Zahnpulver, Mund- und Zahnpasten, flüssige Mund- und Zahncremes sowie Mund- und Zahngele. Bevorzugt geeignet sind Zahnpasten und flüssige Zahnreinigungsmittel. Hierzu können die Mund- und Zahnpflege- und reinigungsmittel z. B. in Form von Zahnpasten, flüssigen Zahncremes, Zahnpulvern, Mundwässern oder gegebenenfalls auch als Kaumasse, z. B. als Kaugummi, vorliegen. Bevorzugt liegen sie jedoch als mehr oder weniger fließfähige oder plastische Zahnpasten vor, wie sie zur Reinigung der Zähne unter Einsatz einer Zahnbürste verwendet werden.
  • Die erfindungsgemäßen Mund- und Zahnpflege- und -reinigungsmittel enthalten als Matrix vorzugsweise – bezogen auf ihr Gewicht – 10 bis 60 Gew.-% mindestens eines mehrwertigen Alkohols aus der Gruppe Sorbit und/oder Glycerin und/oder 1,2-Propylenglycol.-%. Sollte die erfindungsgemäße Suspension eine dieser Substanzen enthalten (was wie oben erwähnt, insbesondere im Hinblick auf das Glycerin bevorzugt ist), ist die Menge entsprechend in die bevorzugte Gesamtmenge einzuberechnen.
  • Vorzugsweise wird/werden der bzw. die mehrwertige(n) Alkohol(e) innerhalb engerer Mengenbereiche eingesetzt. Hier sind erfindungsgemäße Mund- und Zahnpflege- und -reinigungsmittel bevorzugt, die 10 bis 60 Gew.-%, vorzugsweise 15 bis 55 Gew.-%, besonders bevorzugt 20 bis 50 Gew.-% und insbesondere 30 bis 40 Gew.-% mindestens eines mehrwertigen Alkohols aus der Gruppe Sorbit und/oder Glycerin und/oder 1,2-Propylenglycol.-%, jeweils bezogen auf das Gewichts des gesamten Mittels, enthalten.
  • Für bestimmte Anwendungsbereiche kann es vorteilhaft sein, nur einen der drei oben genannten Inhaltsstoffe einzusetzen. In den meisten Fällen ist dabei Sorbit bevorzugt. Allerdings können auf anderen Anwendungsgebieten Mischungen von zwei der drei Stoffe oder aller drei Stoffe bevorzugt sein. Besonders vorteilhaft hat sich hier eine Mischung aus Glycerin, Sorbit und 1,2-Propylenglycol in einem Gewichtsverhältnis von 1:(0,5–1):(0,1–0,5) erwiesen.
  • Neben Sorbit bzw. Glycerin bzw. 1,2-Propylenglycol eignen sich als weitere mehrwertige Alkohole solche mit mindestens 2 OH-Gruppen, vorzugsweise Mannit, Xylitol, Polyethylenglycol, Polypropylenglycol und deren Mischungen.
  • Unter diesen Verbindungen sind diejenigen mit 2 bis 12 OH-Gruppen und insbesondere diejenigen mit 2, 3, 4, 5, 6 oder 10 OH-Gruppen bevorzugt.
  • Polyhydroxyverbindungen mit 2 OH-Gruppen sind beispielsweise Glycol (CH2(OH)CH2OH) und andere 1,2-Diole wie H-(CH2)n-CH(OH)CH2OH mit n = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20. Auch 1,3-Diole wie H-(CH2)n-CH(OH)CH2CH2OH mit n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 sind erfindungsgemäß einsetzbar. Die (n, n + 1)- bzw. (n, n + 2)-Diole mit nicht endständigen OH-Gruppen können ebenfalls eingesetzt werden.
  • Wichtige Vertreter von Polyhydroxyverbindungen mit 2 OH-Gruppen sind auch die Polyethylen- und Polypropylenglycole.
  • Als bevorzugte weitere mehrwertige Alkohole können z. B. Xylit, Propylenglycole, Polyethylenglycole, insbesondere solche mit mittleren Molekulargewichten von 200–800 eingesetzt werden.
  • Besonders bevorzugt ist der Einsatz von Sorbit, so daß Mittel, die außer Sorbit keine anderen mehrwertigen Alkohole enthalten, besonders bevorzugt sind.
  • Der Einsatz von Putzkörpern (Abrasiva) ist ebenfalls bevorzugt. Putzkörper sind amorphe, überwiegend anorganische, weitgehend wasserunlösliche, kleinstteilige Pulver, die keine scharfen Kanten aufweisen. Sie begünstigen in Zahn- und Mundpflegemitteln die Reinigung der Zähne und polieren gleichzeitig die Zahnoberfläche (Poliermittel).
  • Als Poliermittel eignen sich prinzipiell alle für Zahnpasten bekannten Reibkörper, insbesondere solche, die keine Calciumionen enthalten. Bevorzugt geeignete Poliermittel-komponenten sind daher Kieselsäuren, Aluminiumhydroxid, Aluminiumoxid, Natrium-aluminiumsilikate, organische Polymere oder Gemische solcher Reibkörper.
  • Calciumhaltige Polierkomponenten wie z. B. Kreide, Calciumpyrophosphat, Dicalcium-phosphatdihydrat können aber in Mengen bis zu 5 Gew.-% – bezogen auf die Gesamtzusammensetzung – enthalten sein.
  • Der Gesamtgehalt an Poliermitteln liegt vorzugsweise im Bereich von 5–50 Gew.-% des Zahnpflegemittels.
  • Besonders bevorzugt sind Zahnpasten und flüssige Zahnreinigungsmittel, die als Poliermittel Kieselsäuren enthalten. Geeignete Kieselsäuren sind z. B. Gelkieselsäuren, Hydrogelkieselsäuren und Fällungskieselsäuren. Gelkieselsäuren werden durch Umsetzung von Natriumsilikatlösungen mit starken, wäßrigen Mineralsäuren unter Ausbildung eines Hydrosols, Alterung zum Hydrogel, Waschen und Trocknen hergestellt. Erfolgt die Trocknung unter schonenden Bedingungen auf Wassergehalte von 15 bis 35 Gew.-%, so werden die sogenannten Hydrogelkieselsäuren erhalten. Durch Trocknung auf Wassergehalte unterhalb 15 Gew.-% erfolgt eine irreversible Schrumpfung der vorher lockeren Struktur des Hydrogels zur dichten Struktur des sog. Xerogels.
  • Eine zweite, bevorzugt geeignete Gruppe von Kieselsäure-Poliermitteln sind die Fällungskieselsäuren. Diese werden durch Ausfällung von Kieselsäure aus verdünnten Alkalisilikat-Lösungen durch Zugabe von starken Säuren unter Bedingungen erhalten, bei welchen die Aggregation zum Sol und Gel nicht eintreten kann. Geeignete Verfahren zur Bevorzugt geeignet ist eine Fällungskieselsäure mit einer BET-Oberfläche von 15–110 m2/g, einer Partikelgröße von 0,5–20 μm, wobei wenigstens 80 Gew.-% der Primärpartikel unter 5 μm liegen sollen, und einer Viskosität in 30%iger Glycerin-Wasser-(1:1)-Dispersion von 30–60 Pa·s (20°C) in einer Menge von 10–20 Gew.-% der Zahnpaste. Bevorzugt geeignete Fällungskieselsäuren dieser Art weisen außerdem gerundete Ecken und Kanten auf und sind unter der Handelsbezeichnung Sident®12 DS (DEGUSSA) erhältlich.
  • Andere Fällungskieselsäuren dieser Art sind Sident® 8 (DEGUSSA) und Sorbosil® AC 39 (Crosfield Chemicals). Diese Kieselsäuren zeichnen sich durch eine geringere Verdickungswirkung und eine etwas höhere mittlere Teilchengröße von 8–14 μm bei einer spezifischen Oberfläche von 40–75 m2/g (nach BET) aus und eignen sich besonders gut für flüssige Zahncremes. Diese sollten eine Viskosität (25°C, Scherrate D = 10 s–1) von 10–100 Pa·s aufweisen.
  • Zahnpasten, die eine deutlich höhere Viskosität von mehr als 100 Pa·s (25° C, D = 10 s–1) aufweisen, benötigen hingegen einen genügend hohen Anteil an Kieselsäuren mit einer Teilchengröße von weniger als 5 μm, bevorzugt wenigstens 3 Gew.-% einer Kieselsäure mit einer Partikelgröße von 1–3 μm. Solchen Zahnpasten setzt man daher bevorzugt neben den genannten Fällungskieselsäuren noch feinteiligere, so genannte Verdickungs-Kieselsäuren mit einer BET-Oberfläche von 150–250 m2/g zu, z. B. die Handelsprodukte Sipernat 22 LS oder Sipernat® 320 DS.
  • Als weitere Poliermittelkomponente kann auch z. B. Aluminiumoxid in Form von schwach calcinierter Tonerde mit einem Gehalt an – und -Aluminiumoxid in einer Menge von ca. 1–5 Gew.-% enthalten sein. Ein solches geeignetes Aluminiumoxid ist unter der Handelsbezeichnung "Poliertonerde P10 feinst" (Giulini Chemie) erhältlich.
  • Als Poliermittel eignen sich weiter alle für Zahnpasten bekannten Reibkörper wie z. B. Natriumaluminiumsilikate wie z. B. Zeolith A, organische Polymere wie z. B. Polymethacrylat oder Gemische dieser und der vorstehend genannten Reibkörper.
  • Zusammenfassend sind erfindungsgemäße Mund- und Zahnpflege- und -reinigungsmittel bevorzugt, die zusätzlich Putzkörper, vorzugsweise Kieselsäuren, Aluminiumhydroxid, Aluminiumoxid, Calciumpyrophosphat, Kreide, Dicalciumphosphat-dihydrat (CaHPO4·2H2O), Natriumaluminiumsilikate, insbesondere Zeolith A, organische Polymere, insbesondere Polymethacrylate oder Gemische dieser Reibkörper, vorzugsweise in Mengen von 1 bis 30 Gew.%, vorzugsweise von 2,5 bis 25 Gew.% und insbesondere von 5 bis 22 Gew.%, jeweils bezogen auf das gesamte Mittel, enthalten.
  • Mund- und Zahnpflege- und reinigungsmittel, insbesondere Zahnpasten, können z. B. auch Substanzen enthalten, die gegen Plaque und/oder Zahnstein wirksam sind.
  • Zahnbelag (Plaque) ist ein rauer, klebriger Belag auf den Zähnen, der aus Speichel, Bakterien und Nahrungsresten besteht. Setzen sich Mineralsalze (z. B. Calcium, Phosphat) aus dem Speichel im Zahnbelag ab, so bilden sich harte, weiße oder gelbliche Ablagerungen am Zahn, die man Zahnstein nennt. In dem porösen Zahnstein kann sich wiederum leicht Zahnbelag absetzen, der das Zahnfleisch angreift.
  • Die Bakterien auf der Zahnoberfläche bauen Kohlenhydrate, besonders Zucker, aus der Nahrung zu Säure ab. Diese Säure löst die Zahnsubstanz auf und es kommt zu Karies (Zahnfäule). Dabei werden besonders die Mineralien Calcium und Phosphat aus dem Zahnschmelz herausgelöst. Nach dem Zahnschmelzmantel werden auch innere Schichten des Zahnes angegriffen. Bakterien können in das Zahnmark eindringen und dort zu Entzündungen führen. Meist kommt es dann zu stechenden Zahnschmerzen.
  • Wie bereits erwähnt, beinhaltet Plaque Bakterien, so daß sich zur Bekämpfung von Plaque antimikrobielle Stoffe eignen. Diese besitzen darüber hinaus eine Wirkung als Konservierungsmittel.
  • In Mund und Zahnpflege- und -reinigungsmitteln können beispielsweise die auch in Lebensmitteln zugelassenen Konservierungsmittel Sorbinsäure (E 200), Kaliumsorbat (E 202), Calciumsorbat (E 203), Benzoesäure (E 210), Natriumbenzoat (E 211), Kaliumbenzoat (E 212), Calciumbenzoat (E 213), Ethyl-4-hydroxybenzoat (E 214), Ethyl-4-hydroxybenzoat, Natriumsalz (E 215), Propyl-4-hydroxybenzoat (E 216), Propyl-4-hydroxybenzoat, Natriumsalz (E 217), Methyl-4-hydroxybenzoat (E 218), Methyl-4-hydroxybenzoat, Natriumsalz (E 219), Schwefeldioxid (schweflige Säure), (E 220), Natriumsulfit (E 221), Natriumhydrogensulfit (E 222), Natriumdisulfit (E 223), Kaliumdisulfit (E 224), Calciumsulfit (E 226), Calciumhydrogensulfit (E 227), Kaliumhydrogensulfit (E 228), Biphenyl (E 230), Orthophenylphenol (2-Biphenylol), (E 231), Natriumorthophenylphenolat (E 232), Nisin (E 234), Natamycin (E 235), Ameisensäure (E 236), Natriumformiat (E 237), Calciumformiat (E 238), Hexamethylentetramin (E 239), Dimethyldicarbonat (E 242), Kaliumnitrit (E 249), Natriumnitrit (E 250), Natriumnitrat (E 251), Kaliumnitrat (E 252), Essigsäure (E 260), Kaliumacetat (E 261), Natriumacetat (E 262), Calciumacetat (E 263), Milchsäure (E 270), Propionsäure (E 280), Natriumpropionat (E 281), Calciumpropionat (E 282), Kaliumpropionat (E 283), Borsäure (E 284), Natriumtetraborat (E 285), Hydroxybernsteinsäure (Äpfelsäure), (E 296), Fumarsäure (E 297), Lysozym (E 1105), eingesetzt werden.
  • Bevorzugte Stoffe sind ausgewählt aus p-Hydroxybenzoesäuremethyl-, -ethyl- oder propylester, Natriumsorbat, Natriumbenzoat, Bromchlorophen, Triclosan, Phenyl-Salicylsäureester, Biguaniden z. B. Chlorhexidin (1,1'-Hexamethylenbis[5-(4-chlorphenyl)-biguanid), Thymol usw..
  • Erfindungsgemäß bevorzugte Mund- und Zahnpflege- und -reinigungsmittel sind dadurch gekennzeichnet, daß sie zusätzlich Antiplaque-Wirkstoffe, vorzugsweise p-Hydroxybenzoesäuremethyl-, -ethyl- oder propylester, Natriumsorbat, Natriumbenzoat, Bromchlorophen, Triclosan, Phenyl-Salicylsäureester, Biguanide z. B. Chlorhexidin, Thymol, vorzugsweise in Mengen von 0,1 bis 5 Gew.%, vorzugsweise von 0,25 bis 2,5 Gew.% und insbesondere von 0,5 bis 1,5 Gew.%, jeweils bezogen auf das gesamte Mittel, enthalten.
  • Gegen Zahnstein wirksame Stoffe können beispielsweise Chelatbildner sein wie z. B. Ethylendiamintetraessigsäure und deren Natriumsalze, Pyrophosphat-Salze wie die wasserlöslichen Dialkali- oder Tetraalkalimetallpyrophosphat- Salze, z. B. Na4P2O7, K4P2O7, Na2K2P2O7, Na2H2P2O7 und K2H2P2O7 oder Polyphosphat-Salze, die z. B. aus wasserlöslichen Alkalimethalltripolyphosphaten wie Natriumtripolyphosphat und Kaliumtripolyphosphat ausgewählt sein können.
  • Erfindungsgemäß bevorzugte Mund- und Zahnpflege- und -reinigungsmittel sind dadurch gekennzeichnet, daß sie zusätzlich Phosphat(e), vorzugsweise Alkalimetallphosphat(e) und insbesondere Natriumtripolyphosphat, vorzugsweise in Mengen von 1 bis 10 Gew.-%, besonders bevorzugt von 2 bis 8 Gew.-% und insbesondere von 3 bis 7 Gew.-%, jeweils bezogen auf das gesamte Mittel, enthalten.
  • Mund und Zahnpflege- und -reinigungsmittel können darüber hinaus mit besonderem Vorzug Antikaries-Wirkstoffe enthalten. Diese können beispielsweise aus organischen oder anorganischen Fluoriden ausgewählt sein, z. B. aus Natriumfluorid, Kaliumfluorid, Natriummonofluorphosphat und Natriumfluorosilikat. Auch Zinkfluorid, Zinn-(II)-fluorid sind bevorzugt. Bevorzugt sollte eine Menge von 0,01–0,2 Gew.-% Fluor in Form der genannten Verbindungen enthalten sein.
  • Erfindungsgemäße Mund- und Zahnpflege- und -reinigungsmittel, die zusätzlich Antikaries-Wirkstoffe, vorzugsweise Fluorverbindung(en), insbesondere Natriumfluorid, Kaliumfluorid, Natriummonofluorphosphat, Zinkfluorid, Zinnfluorid und Natriumfluorosilikat, vorzugsweise in Mengen von 0,01 bis 5 Gew.%, vorzugsweise von 0,1 bis 2,5 Gew.% und insbesondere von 0,2 bis 1,1 Gew.%, jeweils bezogen auf das gesamte Mittel, enthalten, sind erfindungsgemäß bevorzugt.
  • Als Konsistenzregler (bzw. Bindemittel) können z. B. natürliche und/oder synthetische wasserlösliche Polymere wie Alginate, Carragheenate, Traganth, Stärke und Stärkeether, Guar, Akaziengum, Agar-Agar, Xanthan-Gum, Succinoglycan-Gum, Johannisbrotmehl, Pectine, wasserlösliche Carboxyvinylpolymere (z. B. Carbopol®-Typen), Polyvinylalkohol, Polyvinylpyrrolidon, Polyethylenglycole, insbesondere solche mit Molekulargewichten von 1 500–1 000 000 eingesetzt werden.
  • Weitere Stoffe, die sich zur Viskositätskontrolle eignen, sind z. B. Schichtsilikate wie z. B. Montmorillonit-Tone, kolloidale Verdickungskieselsäuren wie z. B. Aerogel-Kieselsäuren, pyrogene Kieselsäuren oder feinstvermahlene Fällungskieselsäuren. Es können auch viskositätsstabilisierende Zusätze aus der Gruppe der kationischen, zwitterionischen oder ampholytischen stickstoffhaltigen Tenside, der hydroxypropylsubstituierten Hydrocolloide oder der Polyethylenglycol/Polypropylenglycol-Copolymere mit einem mittleren Molgewicht von 1000 bis 5000 oder eine Kombination der genannten Verbindungen in den Zahnpasten verwendet werden.
  • Auch oberflächenaktive Substanzen sind in den Zahnpasten zur Unterstützung der Reinigungswirkung und gewünschtenfalls auch zur Entwicklung von Schaum beim Zähnebürsten sowie zur Stabilisierung der Polierkörperdispersion im Träger in einer Menge von 0,1–5 Gew.-% enthalten.
  • Geeignete Tenside sind z. B. lineare Natriumalkylsulfate mit 12–18 C-Atomen in der Alkylgruppe. Die Tenside wurden weiter oben als mögliche Inhaltstoffe der Suspension detailliert beschrieben.
  • Die Mund- und Zahnpflegemittel, insbesondere die Zahnpasten, können auch die Unempfindlichkeit der Zähne steigernde Substanzen enthalten, beispielsweise Kaliumsalze wie z. B. Kaliumnitrat, Kaliumcitrat, Kaliumchlorid, Kaliumbicarbonat und Kaliumoxalat.
  • Erfindungsgemäß bevorzugte Mund- und Zahnpflege- und -reinigungsmittel sind dadurch gekennzeichnet, daß sie die Unempfindlichkeit der Zähne steigernde Substanzen, vorzugsweise Kaliumsalze, besonders bevorzugt Kaliumnitrat und/oder Kaliumcitrat und/oder Kaliumchlorid und/oder Kaliumbicarbonat und/oder Kaliumoxalat, vorzugsweise in Mengen von 0,5 bis 20 Gew.%, besonders bevorzugt von 1,0 bis 15 Gew.%, weiter bevorzugt von 2,5 bis 10 Gew.-% und insbesondere von 4,0 bis 8,0 Gew.%, jeweils bezogen auf das gesamte Mittel, enthalten.
  • Die erfindungsgemäßen Mittel, insbesondere die Zahnpasten, können auch zusätzlich weitere wundheilende und entzündungshemmende Stoffe, z. B. Wirkstoffe gegen Zahnfleischentzündungen, enthalten. Derartige Stoffe können z. B. ausgewählt sein aus Allantoin, Azulen, Kamillenextrakten, Tocopherol, Panthenol, Bisabolol, Salbeiextrakten.
  • Als nicht-kationische, bakterizide Komponente eignen sich z. B. Phenole, Resorcine, Bisphenole, Salicylanilide und deren halogenierte Derivate, halogenierte Carbanilide und p-Hydroxybenzoesäureester. Besonders bevorzugte antimikrobielle Komponenten sind halogenierte Diphenylether, z. B. 2,4-Dichlor-2'-hydroxydiphenylether, 4,4'-Dichlor-2'-hydroxydiphenylether, 2,4,4'-Tribrom-2'-hydroxydiphenylether und 2,4,4'-Trichlor-2'-hydroxydiphenylether (Triclosan). Sie werden bevorzugt in Mengen von 0,01–1 Gew.-% in die erfindungsgemäßen Zahnpflegemittel eingesetzt. Besonders bevorzugt wird Triclosan in einer Menge von 0,01–0,3 Gew.-% eingesetzt.
  • D-Panthenol D – (+) – 2,4-Dihydroxy-N-(3-hydroxypropyl)-3,3-dimethyl-butyramid zeigt eine der Pantothensäure entsprechende biologische Aktivität. Die Pantothensäure (R – (+) – N – (2,4-Dihydroxy-3,3-dimethylbutyryl-β-alanin) ist eine Vorstufe in der Biosynthese des Coenzyms A und wird zum Vitamin-B-Komplex (B3) gezählt. Diese Stoffe sind dafür bekannt, daß sie die Wundheilung fördern und eine günstige Wirkung auf die Haut haben. Sie sind daher auch gelegentlich in Zahnpasten beschrieben worden. Die erfindungsgemäßen Zahnpflegemittel enthalten bevorzugt 0,05–5 Gew.-% Panthenol oder ein Salz der Pantothensäure.
  • Retinol (3,7-Dimethyl-9-(2,6,6-trimethyl-1-cyclohexenyl)-2,4,6,8-nonatetraen-1-ol ist der internationale Freiname für Vitamin A1. Anstelle des Retinols kann auch eines seiner Derivate mit ähnlicher biologischer Wirkung, z. B. ein Ester oder die Retinoesäure (Tretinoin), eines ihrer Salze oder ihre Ester verwendet werden. Bevorzugt wird ein Retinol-Ester, insbesondere ein Fettsäureester einer Fettsäure mit 12–22 C-Atomen verwendet. Besonders bevorzugt ist Retinol-Palmitat geeignet. Bei Verwendung eines Retinol-Esters, z. B. Retinol-Palmitat mit einer Aktivität von 1,7·106 I. E. pro g ist eine Menge von 0,001 bis 0,1 Gew.-% bevorzugt. Bei Verwendung anderer Retinol-Derivate empfiehlt sich eine Einsatzmenge, die einer Konzentration von 103 bis 106 I. E. (Internationale Einheiten) pro 100 g entspricht. Bevorzugte Zahnpflegemittel gemäß der vorliegenden Erfindung enthalten neben Poliermitteln, Fluorverbindungen, Feuchthaltemitteln und Bindemitteln bevorzugt
    0,01–1 Gew.-% eines halogenierten Diphenylethers
    0,05–5 Gew.-% Panthenol oder ein Salz der Pantothensäure und
    0,01–0,1 Gew.-% eines Retinol-Esters, bevorzugt Retinol-Palmitat.
  • Gegen Zahnstein wirksame Stoffe können beispielsweise Chelatbildner sein wie z. B. Ethylendiamintetraessigsäure und deren Natriumsalze, Pyrophosphat-Salze wie die wasserlöslichen Dialkali- oder Tetraalkalimetallpyrophosphat- Salze, z. B. Na4P2O7, K4P2O7, Na2K2P2O7, Na2H2P2O7 und K2H2P2O7 oder Polyphosphat-Salze, die z. B. aus wasserlöslichen Alkalimethalltripolyphosphaten wie Natriumtripolyphosphat und Kaliumtripolyphosphat ausgewählt sein können.
  • Erfindungsgemäß bevorzugte Mund- und Zahnpflege- und -reinigungsmittel sind dadurch gekennzeichnet, daß sie zusätzlich Phosphat(e), vorzugsweise Alkalimetallphosphat(e) und insbesondere Natriumtripolyphosphat, vorzugsweise in Mengen von 1 bis 10 Gew.-%, besonders bevorzugt von 2 bis 8 Gew.-% und insbesondere von 3 bis 7 Gew.-%, jeweils bezogen auf das gesamte Mittel, enthalten.
  • Die erfindungsgemäßen Mittel, insbesondere die Zahnpasten, können auch Substanzen zur Erhöhung des mineralisierenden Potentials enthalten, beispielsweise calciumhaltige Substanzen wie z. B. Calciumchlorid, Calciumacetat und Dicalciumphosphat-Dihydrat. Die Konzentration der calciumhaltigen Substanz hängt von der Löslichkeit der Substanz und dem Zusammenwirken mit anderen in dem Mund- und Zahnpflegemittel enthaltenen Substanzen ab.
  • Neben den genannten obligatorischen Komponenten können die erfindungsgemäßen Zahnpflegemittel weitere, an sich bekannte Hilfs- und Zusatzstoffe enthalten. Dabei ist ein Zusatzstoff, der als Zahnpastenkomponente seit langem bekannt ist, in den erfindungsgemäßen Zahnpflegemitteln besonders wirksam: Calcium-glycerophosphat, das Calcium-Salz der Glycerin-1-phosphorsäure oder der Glycerin-2-phosphorsäure oder der zur Glycerin-1-phosphorsäure enantiomeren Glycerin-3-phosphorsäure – oder eines Gemisches dieser Säuren. Die Verbindung hat in Zahnpflegemitteln eine remineralisierende Wirkung, da sie sowohl Calcium- als auch Phosphationen liefert. In den erfindungsgemäßen Zahnpflegemitteln wird Calciumglycerophosphat bevorzugt in Mengen von 0,01–1 Gew.-% eingesetzt. Insgesamt können die erfindungsgemäßen Zahnreinigungsmittel übliche Hilfsmittel und Zusatzstoffe in Mengen bis zu 10 Gew.-% enthalten.
  • Die erfindungsgemäßen Zahnpflegemittel können z. B. durch Zusatz von Aromaölen und Süßungsmitteln in ihren organoleptischen Eigenschaften verbessert werden.
  • Als Aromaöle können alle die für Mund- und Zahnpflegemittel üblichen natürlichen und synthetischen Aromen eingesetzt werden. Natürliche Aromen können sowohl in Form der aus Drogen isolierten natürlichen ätherischen Öle als auch der daraus isolierten Einzelkomponenten enthalten sein.
  • Geeignete Aromen sind z. B. Pfefferminzöl, Krauseminzöl, Eukalyptusöl, Anisöl, Fenchelöl, Kümmelöl, Menthylacetat, Zimtaldehyd, Anethol, Vanillin, Thymol sowie Mischungen dieser Komponenten.
  • Geeignete Süßungsmittel sind z. B. Saccharin-Natrium, Natrium-Cyclamat, Sucrose, Lactose, Meltose, Fructose.
  • Weitere übliche Hilfs- und Zusatzstoffe für Zahnpasten sind
    • – Oberflächenaktive Stoffe, bevorzugt anionische, zwitterionische, amphotere, nichtionische Tenside oder eine Kombination mehrerer verschiedener Tenside
    • – Lösungsmittel und Lösungsvermittler, z. B. niedere einwertige oder mehrwertige Alkohole oder Ether, z. B. Ethanol, 1,2-Propylenglycol, Diethylenglycol oder Butyldiglycol
    • – Pigmente, wie z. B. Titandioxid
    • – Farbstoffe
    • – Puffersubstanzen, z. B. primäre, sekundäre oder tertiäre Alkaliphosphate oder Citronensäure-/Na-Citrat
    • – weitere wundheilende oder entzündungshemmende Stoffe, z. B. Allantoin, Harnstoff, Azulen, Kamillewirkstoffe, Acetylsalicylsäurederivate oder Rhodanid
    • – weitere Vitamine wie z. B. Ascorbinsäure, Biotin, Tocopherol oder Rutin
    • – Mineralsalze wie z. B. Mangan-, Zink- oder Magnesiumsalze.
  • Eine weitere wichtige Gruppe von Inhaltstoffen, die in den erfindungsgemäßen Mitteln enthalten sein kann, sind die so genannten bioaktiven Gläser.
  • Der Begriff „bioaktive Gläser" umfaßt im Rahmen der vorliegenden Anmeldung Gläser, welche biologisch wirksam und/oder biologisch aktiv sind. Die biologische Wirksamkeit eines Glases kann sich beispielsweise in dessen antimikrobiellen Eigenschaften zeigen, biologisch aktives Glas unterscheidet sich von herkömmlichen Kalk-Natrium-Silicat-Gläsern dadurch, daß es lebendes Gewebe bindet. Biologisch aktives Glas bezeichnet dabei beispielsweise ein Glas, das eine feste Bindung mit Körpergewebe eingeht, wobei eine Hydroxyl-Apatitschicht ausgebildet wird. Unter bioaktivem Glas wird auch ein Glas verstanden, das antimikrobielle und/oder entzündungshemmende Wirkung zeigt. Die Glaspulver zeigen gegenüber Bakterien, Pilzen sowie Viren eine biozide bzw. eine biostatische Wirkung; sind im Kontakt mit dem Menschen hautverträglich, toxikologisch unbedenklich und insbesondere auch zum Verzehr geeignet.
  • Erfindungsgemäß besonders bevorzugte Mund- und Zahnpflege- und -reinigungsmittel sind dadurch gekennzeichnet, daß sie 0,2 bis 20 Gew.-%, vorzugsweise 0,4 bis 14 Gew.-%, besonders bevorzugt 0,5 bis 3 Gew.-% und insbesondere 0,6 bis 2 Gew.-% mindestens eines bioaktiven Glases enthalten.
  • Die erfindungsgemäßen Mund- und Zahnpflege- und -reinigungsmittel dieser Ausführungsform enthalten bioaktives Glas oder Glaspulver oder Glaskeramikpulver oder Kompositmaterialien, welche ein solches bioaktives Glas umfassen. Unter Glaspulvern werden im Rahmen der vorliegenden Anmeldung auch Granulate und Glaskügelchen verstanden.
  • Aufgrund der Anforderungen an die toxikologische Unbedenklichkeit des Glases sowie deren Eignung zum Verzehr soll das Glaspulver besonders rein sein. Die Belastung durch Schwermetalle ist vorzugsweise gering. So beträgt die Maximalkonzentration im Bereich der kosmetischen Formulierungen vorzugsweise für Pb < 20 ppm, Cd < 5 ppm, As < 5 ppm, Sb < 10 ppm, Hg < 1 ppm, Ni < 10 ppm.
  • Das unkeramisierte Ausgangsglas, das direkt in den bevorzugten erfindungsgemäßen Zusammensetzungen enthalten oder gegebenenfalls für die Herstellung einer erfindungsgemäß einsetzbaren Glaskeramik verwandt wird, enthält SiO2 als Netzwerkbildner, vorzugsweise zwischen 35–80 Gew.-%. Bei niedrigeren Konzentrationen nimmt die spontane Kristallisationsneigung stark zu und die chemische Beständigkeit stark ab. Bei höheren SiO2-Werten kann die Kristallisationsstabilität abnehmen, und die Verarbeitungstemperatur wird deutlich erhöht, so daß sich die Heißformgebungseigenschaften verschlechtern. Na2O wird als Flußmittel beim Schmelzen des Glases eingesetzt. Bei Konzentrationen kleiner 5% wird das Schmelzverhalten negativ beeinflußt. Natrium ist Bestandteil der sich bei der Keramisierung bildenden Phasen und muß, sofern hohe kristalline Phasenanteile durch die Keramisierung eingestellt werden sollen, in entsprechend hohen Konzentrationen im Glas enthalten sein. K2O wirkt als Flußmittel beim Schmelzen des Glases. Außerdem wird Kalium in wässrigen Systemen abgegeben. Liegen hohe Kaliumkonzentrationen im Glas vor, werden kaliumhaltige Phasen wie Kalzium-Silicaten ebenfalls ausgeschieden. Über den P2O5-Gehalt kann bei silikatischen Gläsern, Glaskeramiken oder Kompositen die chemische Beständigkeit des Glases und damit die Ionenabgabe in wässrigen Medien eingestellt werden. Bei Phospahtgläsern ist P2O5 Netzwerkbilder. Der P2O5-Gehalt liegt vorzugsweise zwischen 0 und 80 Gew.-%. Um die Schmelzbarkeit zu verbessern, kann das Glas bis zu 25 Gew.-% B2O3 enthalten. Al2O3 wird genutzt, um die chemische Beständigkeit des Glases einzustellen.
  • Zur Verstärkung der antimikrobiellen, insbesondere der antibakteriellen Eigenschaften der Glaskeramik können antimikrobiell wirkende Ionen wie z. B. Ag, Au, I, Ce, Cu, Zn in Konzentrationen kleiner 5 Gew.-% enthalten sein.
  • Farbgebende Ionen wie z. B. Mn, Cu, Fe, Cr, Co, V, können einzeln oder kombiniert, vorzugsweise in einer Gesamtkonzentration kleiner 1 Gew.-%, enthalten sein.
  • Üblicherweise wird das Glas bzw. die Glaskeramik in Pulverform eingesetzt. Die Keramisierung kann entweder mit einem Glasblock bzw. Glasribbons erfolgen oder aber mit Glaspulver. Nach der Keramisierung müssen die Glaskeramikblöcke oder Ribbons zu Pulver gemahlen werden. Wurde das Pulver keramisiert, muß gegebenenfalls auch erneut gemahlen werden, um Agglomerate, die während des Keramisierungsschrittes entständen sind, zu entfernen. Die Mahlungen können sowohl trocken als auch in wässrigen oder nicht wässrigen Mahlmedien durchgeführt werden. Üblicherweise liegen die Partikelgrößen kleiner 500 μm. Als zweckmäßig haben sich Partikelgrößen < 100 μm bzw. < 20 μm erwiesen. Besonders geeignet sind Partikelgrößen < 10 μm sowie kleiner 5 μm sowie kleiner 2 μm, siehe weiter unten.
  • Die in den bevorzugten erfindungsgemäßen Zusammensetzungen enthaltenen bioaktiven Gläser bzw. Glaspulver oder Glaskeramikpulver oder Komposit-Zusammensetzungen umfassen Gläser, die bevorzugt nachfolgende Komponenten umfassen: SiO2: 35–80 Gew.-%, Na2O: 0–35 Gew.-%, P2O5: 0–80 Gew.-%, MgO: 0–5 Gew.-%, Ag2O: 0–0,5 Gew.-%, AgJ: 0–0,5 Gew.-%, NaJ: 0–5 Gew.-%, TiO2: 0–5 Gew.-%, K2O: 0–35 Gew.-%, ZnO: 0–10 Gew.-%, Al2O3: 0–25 Gew.-% und B2O3: 0–25 Gew.-%.
  • Weiterhin können dem Grundglas gemäß obiger Zusammensetzung zur Erzielung weiterer Effekte wie beispielsweise Farbigkeit oder UV-Filterung Ionen wie Fe, Co, Cr, V, Ce, Cu, Mn, Ni, Bi, Sn, Ag, Au, J einzeln oder in Summe bis zu 10 Gew.-% zugegeben werden. Eine weiter Glaszusammensetzung kann wie folgt sein: SiO2: 35–80 Gew.-%, Na2O: 0–35 Gew.-%, P2O5: 0– 80 Gew.-%, MgO: 0–5 Gew.-%, Ag2O: 0–0,5 Gew.-%, AgJ: 0–0,5 Gew.-%, NaJ: 0–5 Gew.-%, TiO2: 0–5 Gew.-%, K2O: 0–35 Gew.-%, ZnO: 0–10 Gew.-%, Al2O3: 0–25 Gew.-%, B2O3: 0–25 Gew.-%, SnO: 0–5 Gew.-%, CeO2: 0–3 Gew.-% und Au: 0,001–0,1 Gew.-%.
  • Besonders bevorzugte erfindungsgemäße Mund- und Zahnpflege- und -reinigungsmittel sind dadurch gekennzeichnet, daß das bioaktive Glas – bezogen auf sein Gewicht – folgende Zusammensetzung aufweist:
    SiO2 35 bis 60 Gew.-%, vorzugsweise 40 bis 60 Gew.-%,
    Na2O 0 bis 35 Gew.-%, vorzugsweise 5 bis 30 Gew.-%,
    K2O 0 bis 35 Gew.-%, vorzugsweise 0 bis 20 Gew.-%,
    P2O5 0 bis 10 Gew.-%, vorzugsweise 2 bis 10 Gew.-%,
    MgO 0 bis 10 Gew.-%, vorzugsweise 0 bis 5 Gew.-%,
    CaO 0 bis 35 Gew.-%, vorzugsweise 5 bis 30 Gew.-%,
    Al2O3 0 bis 25 Gew.-%, vorzugsweise 0 bis 5 Gew.-%,
    B2O3 0 bis 25 Gew.-%, vorzugsweise 0 bis 5 Gew.-%,
    TiO2 0 bis 10 Gew.-%, vorzugsweise 0,1 bis 5 Gew.-%.
  • Wie bereits weiter oben erwähnt, wird das bioaktive Glas vorzugsweise in partikulärer Form eingesetzt. Hier sind besonders bevorzugte erfindungsgemäße Mund- und Zahnpflege- und -reinigungsmittel dadurch gekennzeichnet, daß das antimikrobielle Glas Teilchengrößen < 10 μm, vorzugsweise von 0,5 bis 4 μm, besonders bevorzugt von 1 bis 2 μm, aufweist.
  • Es hat sich gezeigt, daß die remineralisierende Wirkung der erfindungsgemäßen Mund- und Zahnpflege- und -reinigungsmittel weiter gesteigert werden können, wenn die Mittel salivationsfördernde Substanzen enthalten.
  • Unter Salivation versteht man die Speichelproduktion und -freisetzung, im weiteren Sinne auch in unphysiologisch erhöhter Menge. Substanzen, die den Speichelfluß anregen und die Speichelmenge und/oder -freisetzung erhöhen, können aus den unterschiedlichsten Stoffklassen stammen.
  • Eine erfindungsgemäß beispielsweise geeignete Substanz ist das Pilocarpin, das in den erfindungsgemäßen Mund- und Zahnpflege- und -reinigungsmitteln enthalten sein kann.
  • Figure 00440001
    Pilocarpin
  • Weitere salivationsfördernde Substanzen sind insbesondere so genannte Scharfstoffe, d. h. scharf schmeckende und/oder ein Gefühl von Wärme erzeugende Substanzen. Erfindungsgemäß bevorzugte Mund- und Zahnpflege- und -reinigungsmittel sind dadurch gekennzeichnet, daß sie als salivationsfördernde Substanz mindestens eine scharf schmeckende und/oder ein Gefühl von Wärme erzeugende Substanz enthalten.
  • Als salivationsfördernden Inhaltsstoff enthalten die erfindungsgemäßen Erzeugnisse dieser Ausführungsform eine scharf schmeckende und/oder ein Gefühl von Wärme erzeugende Substanz. Diese Substanzen vermitteln dem Anwender einen scharfen, kribbelnden, mundwässernden oder wärmeerzeugenden Effekt, d. h. sie rufen sensorisch einen Wärmeeindruck oder ein Brennen, oder ein Prickeln, Perlen, Kitzeln oder Sprudeln hervor und fördern dadurch den Speichelfluß.
  • Erfindungsgemäß bevorzugte Erzeugnisse dieser Ausführungsform enthalten die scharf schmeckende(n) und/oder ein Gefühl von Wärme erzeugende(n) Substanz(en) in Mengen von 0,00001 bis 5 Gew.-%, vorzugsweise von 0,0005 bis 2,5 Gew.-%, weiter bevorzugt von 0,001 bis 1 Gew.-%, besonders bevorzugt von 0,005 bis 0,75 Gew.-% und insbesondere von 0,01 bis 0,5 Gew.-%, jeweils bezogen auf das Gewichts des gesamten Mittels.
  • Als scharf schmeckende oder ein Gefühl von Wärme erzeugende Substanz kann eine Reihe von Stoffen eingesetzt werden. Bevorzugt sind insbesondere N-Alkyl-substituierte Amide von ungesättigten Carbonsäuren, beispielsweise
    • – 2E,4E-Decadiensäure-N-Methylamid
    • – 2E,4E-Decadiensäure-N-Ethylamid
    • – 2E,4E-Decadiensäure-N-n-Propylamid
    • – 2E,4E-Decadiensäure-N-Isopropylamid
    • – 2E,4E-Decadiensäure-N-n-Butylamid
    • – 2E,4E-Decadiensäure-N-(1-Methylpropyl)-amid
    • – 2E,4E-Decadiensäure-N-Isobutylamid
    • – 2E,4E-Decadiensäure-N-tert-Butylamid
    • – 2E,4Z-Decadiensäure-N-Methylamid
    • – 2E,4Z-Decadiensäure-N-Ethylamid
    • – 2E,4Z-Decadiensäure-N-n-Propylamid
    • – 2E,4Z-Decadiensäure-N-Isopropylamid
    • – 2E,4Z-Decadiensäure-N-n-Butylamid
    • – 2E,4Z-Decadiensäure-N-(1-Methylpropyl)-amid
    • – 2E,4Z-Decadiensäure-N-Isobutylamid
    • – 2E,4Z-Decadiensäure-N-tert-Butylamid
    • – 2E,4E,8Z-Decatriensäure-N-Methylamid
    • – 2E,4E,8Z-Decatriensäure-N-Ethylamid
    • – 2E,4E,8Z-Decatriensäure-N-n-Propylamid
    • – 2E,4E,8Z-Decatriensäure-N-Isopropylamid
    • – 2E,4E,8Z-Decatriensäure-N-n-Butylamid
    • – 2E,4E,8Z-Decatriensäure-N-(1-Methylpropyl)-amid
    • – 2E,4E,8Z-Decatriensäure-N-Isobutylamid
    • – 2E,4E,8Z-Decatriensäure-N-tert-Butylamid
    • – 2E,4Z,8Z-Decatriensäure-N-Methylamid
    • – 2E,4Z,8Z-Decatriensäure-N-Ethylamid
    • – 2E,4Z,8Z-Decatriensäure-N-n-Propylamid
    • – 2E,4Z,8Z-Decatriensäure-N-Isopropylamid
    • – 2E,4Z,8Z-Decatriensäure-N-n-Butylamid
    • – 2E,4Z,8Z-Decatriensäure-N-(1-Methylpropyl)-amid
    • – 2E,4Z,8Z-Decatriensäure-N-Isobutylamid
    • – 2E,4Z,8Z-Decatriensäure-N-tert-Butylamid
    • – 2E,4E,8E-Decatriensäure-N-Methylamid
    • – 2E,4E,8E-Decatriensäure-N-Ethylamid
    • – 2E,4E,8E-Decatriensäure-N-n-Propylamid
    • – 2E,4E,8E-Decatriensäure-N-Isopropylamid
    • – 2E,4E,8E-Decatriensäure-N-n-Butylamid
    • – 2E,4E,8E-Decatriensäure-N-(1-Methylpropyl)-amid
    • – 2E,4E,8E-Decatriensäure-N-Isobutylamid
    • – 2E,4E,8E-Decatriensäure-N-tert-Butylamid
    • – 2E,4Z,8E-Decatriensäure-N-Methylamid
    • – 2E,4Z,8E-Decatriensäure-N-Ethylamid
    • – 2E,4Z,8E-Decatriensäure-N-n-Propylamid
    • – 2E,4Z,8E-Decatriensäure-N-Isopropylamid
    • – 2E,4Z,8E-Decatriensäure-N-n-Butylamid
    • – 2E,4Z,8E-Decatriensäure-N-(1-Methylpropyl)-amid
    • – 2E,4Z,8E-Decatriensäure-N-Isobutylamid
    • – 2E,4Z,8E-Decatriensäure-N-tert-Butylamid
    • – 2E,6Z,8E-Decatriensäure-N-Methylamid
    • – 2E,6Z,8E-Decatriensäure-N-Ethylamid
    • – 2E,6Z,8E-Decatriensäure-N-n-Propylamid
    • – 2E,6Z,8E-Decatriensäure-N-Isopropylamid
    • – 2E,6Z,8E-Decatriensäure-N-n-Butylamid
    • – 2E,6Z,8E-Decatriensäure-N-(1-Methylpropyl)-amid
    • – 2E,6Z,8E-Decatriensäure-N-Isobutylamid
    • – 2E,6Z,8E-Decatriensäure-N-tert-Butylamid
    • – 2E,6E,8E-Decatriensäure-N-Methylamid
    • – 2E,6E,8E-Decatriensäure-N-Ethylamid
    • – 2E,6E,8E-Decatriensäure-N-n-Propylamid
    • – 2E,6E,8E-Decatriensäure-N-Isopropylamid
    • – 2E,6E,8E-Decatriensäure-N-n-Butylamid
    • – 2E,6E,8E-Decatriensäure-N-(1-Methylpropyl)-amid
    • – 2E,6E,8E-Decatriensäure-N-Isobutylamid
    • – 2E,6E,8E-Decatriensäure-N-tert-Butylamid
    • – 2E,6Z,8Z-Decatriensäure-N-Methylamid
    • – 2E,6Z,8Z-Decatriensäure-N-Ethylamid
    • – 2E,6Z,8Z-Decatriensäure-N-n-Propylamid
    • – 2E,6Z,8Z-Decatriensäure-N-Isopropylamid
    • – 2E,6Z,8Z-Decatriensäure-N-n-Butylamid
    • – 2E,6Z,8Z-Decatriensäure-N-(1-Methylpropyl)-amid
    • – 2E,6Z,8Z-Decatriensäure-N-Isobutylamid
    • – 2E,6Z,8Z-Decatriensäure-N-tert-Butylamid
    • – 2E,6E,8Z-Decatriensäure-N-Methylamid
    • – 2E,6E,8Z-Decatriensäure-N-Ethylamid
    • – 2E,6E,8Z-Decatriensäure-N-n-Propylamid
    • – 2E,6E,8Z-Decatriensäure-N-Isopropylamid
    • – 2E,6E,8Z-Decatriensäure-N-n-Butylamid
    • – 2E,6E,8Z-Decatriensäure-N-(1-Methylpropyl)-amid
    • – 2E,6E,8Z-Decatriensäure-N-Isobutylamid
    • – 2E,6E,8Z-Decatriensäure-N-tert-Butylamid
    • – 2E,7Z,9E-Undecatriensäure-N-Methylamid
    • – 2E,7Z,9E-Undecatriensäure-N-Ethylamid
    • – 2E,7Z,9E-Undecatriensäure-N-n-Propylamid
    • – 2E,7Z,9E-Undecatriensäure-N-Isopropylamid
    • – 2E,7Z,9E-Undecatriensäure-N-n-Butylamid
    • – 2E,7Z,9E-Undecatriensäure-N-(1-Methylpropyl)-amid
    • – 2E,7Z,9E-Undecatriensäure-N-isobutylamid
    • – 2E,7Z,9E-Undecatriensäure-N-tert-Butylamid
    • – 2E,7E,9E-Undecatriensäure-N-Methylamid
    • – 2E,7E,9E-Undecatriensäure-N-Ethylamid
    • – 2E,7E,9E-Undecatriensäure-N-n-Propylamid
    • – 2E,7E,9E-Undecatriensäure-N-Isopropylamid
    • – 2E,7E,9E-Undecatriensäure-N-n-Butylamid
    • – 2E,7E,9E-Undecatriensäure-N-(1-Methylpropyl)-amid
    • – 2E,7E,9E-Undecatriensäure-N-isobutylamid
    • – 2E,7E,9E-Undecatriensäure-N-tert-Butylamid
    • – 2E,7Z,9Z-Undecatriensäure-N-Methylamid
    • – 2E,7Z,9Z-Undecatriensäure-N-Ethylamid
    • – 2E,7Z,9Z-Undecatriensäure-N-n-Propylamid
    • – 2E,7Z,9Z-Undecatriensäure-N-Isopropylamid
    • – 2E,7Z,9Z-Undecatriensäure-N-n-Butylamid
    • – 2E,7Z,9Z-Undecatriensäure-N-(1-Methylpropyl)-amid
    • – 2E,7Z,9Z-Undecatriensäure-N-isobutylamid
    • – 2E,7Z,9Z-Undecatriensäure-N-tert-Butylamid
    • – 2E,7Z,9E-Undecatriensäure-N-Methylamid
    • – 2E,7Z,9E-Undecatriensäure-N-Ethylamid
    • – 2E,7Z,9E-Undecatriensäure-N-n-Propylamid
    • – 2E,7Z,9E-Undecatriensäure-N-Isopropylamid
    • – 2E,7Z,9E-Undecatriensäure-N-n-Butylamid
    • – 2E,7Z,9E-Undecatriensäure-N-(1-Methylpropyl)-amid
    • – 2E,7Z,9E-Undecatriensäure-N-isobutylamid
    • – 2E,7Z,9E-Undecatriensäure-N-tert-Butylamid
  • Selbstverständlich sind auch andere Substitutionsmuster am Stickstoffatom möglich und bevorzugt, beispielsweise längerkettige n-Alkylreste (...-N-n-Pentylamid, ...-N-n-Pentylamid, ...-N-n-Pentylamid, ...-N-n-Pentylamid, ...-N-n-Pentylamid, ...-N-n-Hexylamid, ...-N-n-Heptylamid, ...-N-n-Octylamid, ...-N-n-Nonylamid, ...-N-n-Decylamid, ...-N-n-Undecylamid, ...-N-n-Dodecylamid, ...-N-n-Tridecylamid, usw.) oder disubstituierte ...-N,N-Dialkylamide wie ...-N,N-dimethylamid, ...-N,N-diethylamid, ...-N,N-di-n-propylamid, ...-N,N-diisopropylamid, ...-N,N-di-n-butylamid, ...-N,N-di(1-Methylpropyl)amid, ...-N,N-diisobutylamid, ...-N,N-di-tert-butylamid, ...-N,N-methyl-etylamid, ...-N,N-methyl-n-propylamid, ...-N,N-methyl-isopropylamid, ...-N,N-ethyl-n-propylamid,. ethyl-isopropylamid, usw..
  • Unter den genannten Verbindungen sind einige im Rahmen der vorliegenden Erfindung besonders bevorzugt. Diese sind nachfolgend aufgeführt: 2E,6Z,8E-Decatriensäure-N-isobutylamid (N-Isobutyl-2E,6Z,8E-decatrienamid, auch Spilanthol oder Affinin genannt):
    Figure 00480001
    2E,4E,8Z-Decatriensäure-N-isobutylamid (N-Isobutyl-2E,4E,8Z-decatrienamid, auch Isoaffinin genannt):
    Figure 00480002
    2E,7Z,9E-Undecatriensäure-N-isobutylamid (N-Isobutyl-2E,7Z,9E-undecatrienamid):
    Figure 00490001
    2E,4Z-Decadiensäure-N-isobutylamid (cis-Pellitorin):
    Figure 00490002
    2E,4E-Decadiensäure-N-isobutylamid (trans-Pellitorin):
    Figure 00490003
    Ferulasäureamide, beispielsweise Ferulasäure-N-Vanillylamid:
    Figure 00490004
    N-[2-(4-Hydroxy-3-methoxyphenyl)ethyl]-3-(4-hydroxy-3-methoxy-phenyl)-(2E)-propensäureamid (trans-Feruloylmethoxytyramin):
    Figure 00490005
    N-[2-(4-Hydroxy-3-methoxyphenyl)ethyl]-3-(4-hydroxy-3-methoxy-phenyl)-(2Z)-propensäureamid (cis-Feruloylmethoxytyramin):
    Figure 00500001
    N-[2-(4-Hydroxy-3-methoxyphenyl)ethyl]-3-(4-hydroxy-3-methoxy-phenyl)-propansäureamid (Dihydroferuloylmethoxytyramin):
    Figure 00500002
    N-[2-(3,4-Dihydroxyphenyl)ethyl]-3-(4-hydroxy-3-methoxy-phenyl)-(2E)-propensäureamid(trans-Feruloyldopamin):
    Figure 00500003
    N-[2-(3,4-Dihydroxyphenyl)ethyl]-3-(4-hydroxy-3-methoxy-phenyl)-(2Z)-propensäureamid (cis-Feruloyldopamin):
    Figure 00510001
    N-[2-(4-Hydroxyphenyl)ethyl]-3-(3,4-dihydroxyphenyl)-(2E)-propensäureamid (trans-Caffeoyltyramin):
    Figure 00510002
    N-[2-(4-Hydroxyphenyl)ethyl]-3-(3,4-dihydroxyphenyl)-(2Z)-propensäureamid (cis-Caffeoyltyramin):
    Figure 00510003
    N-[2-(3,4-Dimethoxyphenyl)ethyl]-3-(3,4-dimethoxyphenyl)-(2E)-propensäureamid (trans-Rubenamin):
    Figure 00510004
    N-[2-(3,4-dimethoxyphenyl)ethyl]-3-(3,4-dimethoxy-phenyl)-(2Z)-propensäureamid (cis-Rubenamin):
    Figure 00520001
  • Weitere im Rahmen der vorliegenden Erfindung mit besonderem Vorzug einsetzbare Scharfstoffe sind beispielsweise Extrakte aus Naturpflanzen. Scharf schmeckende pflanzliche Extrakte können alle physiologisch unbedenklichen pflanzlichen Extrakte sein, die einen scharfen oder warmen sensorischen Eindruck hervorrufen. Bevorzugt als scharf schmeckende pflanzliche Extrakte sind beispielsweise Pfefferextrakt (Piper ssp., insbesondere Piper nigrum), Wasserpfefferextrakt (Polygonum ssp., insbesondere Polygonum hydropiper), Extrakte aus Allium ssp. (insbesondere Zwiebel und Knoblauchextrakte), Extrakte aus Rettich (Raphanus ssp.), Meerrettichextrakte (Cochlearia armoracia), Extrakte aus schwarzem (Brassica nigra), wildem oder gelbem Senf (Sinapis ssp., insbesondere Sinapis arvensis und Sinapis alba), Bertramwurzel-Extrakte (Anacyclus ssp., insbesondere Anacyclus pyrethrumL.), Sonnenhutextrakte (Echinaceae ssp.), Extrakten aus Szechuan-Pfeffer (Zanthoxylum ssp., insbesondere Zanthoxylum piperitum), Spilanthesextrakt (Spilanthes ssp., insbesondere Spilanthes acmella), Chiliextrakt (Capsicum ssp., insbesondere Capsicum frutescens), Paradieskörner-Extrakt (Aframomum ssp., insbesondere Aframomum melegueta[Rose] K. Schum.), Ingwerextrakt (Zingiber ssp., insbesondere Zingiber officinale) und Galangaextrakt (Kaempferia galanga oder Alpinia galanga).
  • Eine besonders geeignete Substanz ist das aus dem Ingwerextrakt stammende Gingerol:
    Figure 00520002
  • Einsetzbar ist auch N-Ethyl-p-menthan-3-carboxamid (N-Ethyl-5-Methyl-2-isopropylcyclohexancarboxamid):
    Figure 00530001
  • Andere scharf schmeckende oder ein Gefühl von Wärme erzeugende Substanzen können z. B. sein Capsaicin, Dihydrocapsaicin, Gingerol, Paradol, Shogaol, Piperin, Carbonsäure-N-vanillylamide, insbesondere Nonansäure-N-vanillylamid, 2-Alkensäureamide, insbesondere 2-Nonensäure-N-isobutylamid, 2-Nonensäure-N-4-hydroxy-3-methoxyphenylamid, Alkylether von 4-Hydroxy-3-methoxybenzylalkohol, insbesonders 4-Hydroxy-3-methoxybenzyl-n-butylether, Alkylether von 3-Hydroxy-4-methoxybenzylalkohol, Alkylether von 3,4-Dimethoxybenzylalkohol, Alkylether von 3-Ethoxy-4-hydroxybenzylalkohol, Alkylether von 3,4-Methylendioxybenzylalkohol, Nicotinaldehyd, Methylnicotinat, Propylnicotinat, 2-Butoxyethylnicotinat, Benzylnicotinat, 1-Acetoxychavicol, Polygodial oder Isodrimeninol.
  • Bevorzugte erfindungsgemäße Mund und Zahnpflege- und -reinigungsmittel sind dadurch gekennzeichnet, daß sie mindestens einen Scharfstoff aus der Gruppe der N-Alkyl-substituierte Amide von ungesättigten Carbonsäuren, vorzugsweise
    • a. 2E,6Z,8E-Decatriensäure-N-isobutylamid (Spilanthol) und/oder
    • b. 2E,4E,8Z-Decatriensäure-N-isobutylamid und/oder
    • c. 2E,7Z,9E-Undecatriensäure-N-isobutylamid und/oder
    • d. 2E,4Z-Decadiensäure-N-isobutylamid (cis-Pellitorin) und/oder
    • e. 2E,4E-Decadiensäure-N-isobutylamid (trans-Pellitorin) und/oder
    • f. Ferulasäure-N-Vanillylamid und/oder
    • g. N-[2-(4-Hydroxy-3-methoxyphenyl)ethyl]-3-(4-hydroxy-3-methoxy-phenyl)-(2E)-propensäureamid (trans-Feruloylmethoxytyramin) und/oder
    • h. N-[2-(4-Hydroxy-3-methoxyphenyl)ethyl]-3-(4-hydroxy-3-methoxy-phenyl)-(2Z)-propensäureamid (cis-Feruloylmethoxytyramin) und/oder
    • i. N-[2-(4-Hydroxy-3-methoxyphenyl)ethyl]-3-(4-hydroxy-3-methoxy-phenyl)-propansäureamid (Dihydroferuloylmethoxytyramin) und/oder
    • j. N-[2-(3,4-Dihydroxyphenyl)ethyl]-3-(4-hydroxy-3-methoxy-phenyl)-(2E)-propensäureamid (trans-Feruloyldopamin) und/oder
    • k. N-[2-(3,4-Dihydroxyphenyl) ethyl]-3-(4-hydroxy-3-methoxy-phenyl)-(2Z)-propensäureamid (cis-Feruloyldopamin) und/oder
    • l. N-[2-(4-Hydroxyphenyl)ethyl]-3-(3,4-dihydroxyphenyl)-(2E)-propensäureamid (trans-Caffeoyltyramin) und/oder
    • m. N-[2-(4-Hydroxyphenyl)ethyl]-3-(3,4-dihydroxyphenyl)-(2Z)-propensäureamid (cis-Caffeoyltyramin) und/oder
    • n. N-[2-(3,4-Dimethoxyphenyl) ethyl]-3-(3,4-dimethoxyphenyl)-(2E)-propensäureamid (trans-Rubenamin) und/oder
    • o. N-[2-(3,4-dimethoxyphenyl)ethyl]-3-(3,4-dimethoxy-phenyl)-(2Z)-propensäureamid (cis-Rubenamin)
    enthalten.
  • Zusätzlich zu den genannten Scharfstoffen oder an ihrer Stelle können auch weitere scharf schmeckende und/oder ein Gefühl von Wärme erzeugende Substanzen in die erfindungsgemäßen Erzeugnisse eingearbeitet werden.
  • Als besonders geeignet haben sich im Rahmen der vorliegenden Erfindung alkylsubstituierte Dioxane der Formel
    Figure 00540001
    erwiesen, in der R1 und R2 unabhängig voneinander ausgewählt sind aus -H, -CH3, -CH2CH3 und R3 und R4 unabhängig voneinander ausgewählt sind aus -H, -CH3, -CH2CH3, -CH2CH2CH3, -CH(CH3)2.
  • Als weiterhin besonders geeignet haben sich im Rahmen der vorliegenden Erfindung Phenylester der Formel
    Figure 00540002
    erwiesen, in der R5 für -CH3 oder einen geradkettigen oder verzweigten Alkyl- oder Alkenylrest mit 2 bis 8 Kohlenstoffatomen und R6 für -CH3 oder einen geradkettigen oder verzweigten Alkyl- oder Alkenylrest mit 2 bis 8 Kohlenstoffatomen oder eine Alkoxygruppe mit 1 bis 3 Kohlenstoffatomen steht
  • Als weiterhin besonders geeignet haben sich im Rahmen der vorliegenden Erfindung Carvonacetale der Formel
    Figure 00550001
    erwiesen, in der R7 bis R12 unabhängig voneinander ausgewählt sind aus -H, -CH3, -CH2CH3, -CH2CH2CH3, -CH(CH3)2, -CH2CH2CH2CH3, -CH2CH(CH3)2, -CH(CH3)CH2CH3, -C(CH3)3 oder R9 und R10 zusammen eine chemische Bindung oder eine Gruppe -(CR13R14)x bedeuten, worin x für die Werte 1 oder 2 steht und R13 und R14 unabhängig voneinander ausgewählt sind aus -H, -CH3, -CH2CH3, -CH2CH2CH3, -CH(CH3)2, -CH2CH2CH2CH3, -CH2CH(CH3)2, -CH(CH3)CH2CH3, -C(CH3)3
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • - DE 19930335 A1 [0008]
    • - DE 10340543 A1 [0008]
    • - DE 3929973 A [0078]
    • - DE 19502167 C1 [0089]
    • - DE 19502168 C1 [0089]
  • Zitierte Nicht-Patentliteratur
    • - CTFA International Cosmetic Ingredient Dictionary and Handbook, 5th Edition, The Cosmetic, Toiletry and Fragrance Association, Washington, 1997 [0080]
    • - K. Drauz und H. Waldmann, Enzyme Catalysis in Organic Synthesis, VCH-Verlag, Weinheim 1975 [0088]
    • - G. Schuster und A. Domsch in Seifen Öle Fette Wachse 108, (1982) 177 bzw. Cosm.Toil. 99, (1984) 63 [0089]
    • - H. W. Steisslinger in Parf.Kosm. 72, (1991) 556 und F. Aurich et al. in Tens.Surf.Det. 29, (1992) 389 [0089]
    • - CTFA 1997 International Buyers' Guide, John A. Wenninger et al. (Ed.), The Cosmetic, Toiletry, and Fragrance Association, Washington DC 1997, 686–688 [0091]

Claims (13)

  1. Suspension mindestens eines Kompositmaterials, enthaltend – bezogen auf das Gewicht der Suspension – d) 60 bis 90 Gew.-% Wasser, e) 0,02 bis 30 Gew.-% mindestens eines Kompositmaterials aus b1) 0,01 bis 15 Gew.-% mindestens eines wasserlöslichen Tensids und/oder mindestens eines wasserlöslichen polymeren Schutzkolloids; b2) 0,01 bis 15 Gew.-% eines bzw. mehrerer Calciumsalze(s) in Form von stäbchenförmigen und/oder plättchenförmigen Partikeln mit einer Dicke im Bereich von 2 bis 50 nm und einer Länge im Bereich von 10 bis 150 nm, f) 0,01 bis 20 Gew.-% mindestens eines Salzes.
  2. Suspension nach Anspruch 1, dadurch gekennzeichnet, daß sie – bezogen auf das Gewicht der Suspension – 65 bis 85 Gew.-%, vorzugsweise 67,5 bis 80 Gew.-% und insbesondere 70 bis 76 Gew.-% Wasser enthält.
  3. Suspension nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß sie 0,2 bis 20 Gew.-%, vorzugsweise 1 bis 15 Gew.-% und insbesondere 5 bis 11 Gew.-% mindestens eines Kompositmaterials aus b1) 0,01 bis 15 Gew.-%, vorzugsweise 0,1 bis 10 Gew.-% und insbesondere 0,5 bis 7,5 Gew.-% mindestens eines wasserlöslichen Tensids und/oder mindestens eines wasserlöslichen polymeren Schutzkolloids; b2) 0,01 bis 15 Gew.-%, vorzugsweise 0,1 bis 10 Gew.-% und insbesondere 0,5 bis 7,5 Gew.-% eines bzw. mehrerer Calciumsalze(s) in Form von stäbchenförmigen und/oder plättchenförmigen Partikeln mit einer Dicke im Bereich von 2 bis 50 nm und einer Länge im Bereich von 10 bis 150 nm, enthält.
  4. Suspension nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das wasserlösliche polymere Schutzkolloid ausgewählt ist aus Proteinen, Proteinhydrolysaten und Proteinhydrolysat-Derivaten, wobei bevorzugte Verbindungen ausgewählt sind aus Kollagen, Gelatine, Keratin, Casein, Weizenprotein, Reisprotein, Sojaprotein, Mandelprotein und deren Hydrolysaten und Hydrolysat-Derivaten.
  5. Suspension nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Calciumsalz des/der Kompositmaterialien ausgewählt ist aus der Gruppe Hydroxylapatit und Fluorapatit.
  6. Suspension nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß sie 0,05 bis 15 Gew.-%, vorzugsweise 0,1 bis 10 Gew.-%, weiter bevorzugt 0,25 bis 7,5 Gew.-% und insbesondere 0,5 bis 5 Gew.-% mindestens eines Salzes enthält.
  7. Suspension nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß sie mindestens ein Salz des Typs AB, vorzugsweise aus der Gruppe der Halogenide und/oder der Nitrate von Ammonium- und/oder Alkalimetallen und/oder der Sulfate von Erdalkalimetallen, insbesondere aus der Gruppe NH4Cl, NaCl, KCl, NaBr, KBr, NaNO3, KNO3, MgSO4, enthalten.
  8. Suspension nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß sie Tenside, vorzugsweise aus der Gruppe der anionischen und/oder der zwitterionischen Tenside und insbesondere aus der Gruppe der Fettalkoholsulfate und/oder der Fettalkoholethersulfate und/oder der Amidopropylbetaine enthält.
  9. Suspension nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß sie zusätzlich 5 bis 25 Gew.-%, vorzugsweise 7,5 bis 22,5 Gew.-%, weiter bevorzugt 10 bis 20 Gew.-% und insbesondere 12,5 bis 17,5 Gew.-% mindestens eines mehrwertigen Alkohols aus der Gruppe Sorbit und/oder Glycerin und/oder 1,2-Propylenglycol.-%, jeweils bezogen auf das Gewichts des gesamten Mittels, enthält.
  10. Suspension nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß sie bei 20°C eine Viskosität (gemessen mit Brookfield Synchro-Lectric Viskosimeter, Typ RVT mit Helipath-Stativ, Spindel 3 und 20 U/min) von 1 bis 500 Pas (1.000 bis 500.000 mPas), vorzugsweise von 2 bis 250 Pas (2.000 bis 250.000 mPas), weiter bevorzugt von 5 bis 50 Pas (5.000 bis 50.000 mPas) und insbesondere von 10 bis 35 Pas (10.000 bis 35.000 mPas) aufweist.
  11. Verwendung der Suspensionen nach einem der Ansprüche 1 bis 10 als remineralisierende Komponenten in Zusammensetzungen zur Reinigung und/oder Pflege der Zähne.
  12. Verwendung der Suspensionen nach einem der Ansprüche 1 bis 10 als die Biomineralisation induzierende oder fördernde Komponente in Zusammensetzungen für die Behandlung von Zahn- oder Knochendefekten.
  13. Mund und Zahnpflege- und -reinigungsmittel, enthaltend – bezogen auf sein Gewicht – 0,01 bis 5 Gew.-%, vorzugsweise 0,05 bis 2,5 Gew.-% und insbesondere 0,1 bis 1 Gew.-% mindestens einer Suspension nach einem der Ansprüche 1 bis 10.
DE200610060910 2006-12-20 2006-12-20 Suspensionen von Kompositmaterialien Withdrawn DE102006060910A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE200610060910 DE102006060910A1 (de) 2006-12-20 2006-12-20 Suspensionen von Kompositmaterialien
PCT/EP2007/063216 WO2008074626A2 (de) 2006-12-20 2007-12-04 Suspensionen von kompositmaterialien

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200610060910 DE102006060910A1 (de) 2006-12-20 2006-12-20 Suspensionen von Kompositmaterialien

Publications (1)

Publication Number Publication Date
DE102006060910A1 true DE102006060910A1 (de) 2008-07-03

Family

ID=39078573

Family Applications (1)

Application Number Title Priority Date Filing Date
DE200610060910 Withdrawn DE102006060910A1 (de) 2006-12-20 2006-12-20 Suspensionen von Kompositmaterialien

Country Status (2)

Country Link
DE (1) DE102006060910A1 (de)
WO (1) WO2008074626A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011110128B3 (de) * 2011-08-15 2013-01-03 Aap Biomaterials Gmbh Hydroxylapatithaltige Substanz sowie Verfahren zu deren Herstellung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3929973A1 (de) 1989-09-08 1991-03-14 Henkel Kgaa Haarpflegemittel
DE19502168C1 (de) 1995-01-25 1996-06-27 Henkel Kgaa Verfahren zur Herstellung von Weizenproteinhydrolysaten
DE19930335A1 (de) 1999-07-02 2001-01-18 Henkel Kgaa Kompositmaterialien aus Calciumverbindungen und Proteinkomponenten
DE10340543A1 (de) 2003-09-01 2005-03-24 Henkel Kgaa Mund- und Zahnpflegemittel

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5320844A (en) * 1992-03-12 1994-06-14 Liu Sung Tsuen Composite materials for hard tissue replacement
JP2775386B2 (ja) * 1993-10-04 1998-07-16 科学技術庁無機材質研究所長 アパタイト・有機物複合体とその製造法
DE10260958A1 (de) * 2002-12-20 2004-07-08 Sustech Gmbh & Co. Kg Kompositmaterialien aus Calciumverbindungen und Glucuronsäure- und/oder Iduronsäurehaltigen Polysacchariden
DE10340542A1 (de) * 2003-09-01 2005-03-24 Henkel Kgaa Mund- und Zahnpflegemittel
DE102006009825A1 (de) * 2005-10-31 2007-09-06 Sus Tech Gmbh & Co. Kg Kompositmaterialien aus Calciumverbindungen und ampholytische Polymerkomponenten
DE102006039632A1 (de) * 2006-08-24 2008-03-13 Henkel Kgaa Zusammensetzung enthaltend schwer wasserlösliche Calciumsalze und/oder deren Kompositmaterialien in einer Menge von 1 bis 99 Gew.-%

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3929973A1 (de) 1989-09-08 1991-03-14 Henkel Kgaa Haarpflegemittel
DE19502168C1 (de) 1995-01-25 1996-06-27 Henkel Kgaa Verfahren zur Herstellung von Weizenproteinhydrolysaten
DE19930335A1 (de) 1999-07-02 2001-01-18 Henkel Kgaa Kompositmaterialien aus Calciumverbindungen und Proteinkomponenten
DE10340543A1 (de) 2003-09-01 2005-03-24 Henkel Kgaa Mund- und Zahnpflegemittel

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CTFA 1997 International Buyers' Guide, John A. Wenninger et al. (Ed.), The Cosmetic, Toiletry, and Fragrance Association, Washington DC 1997, 686-688
CTFA International Cosmetic Ingredient Dictionary and Handbook, 5th Edition, The Cosmetic, Toiletry and Fragrance Association, Washington, 1997
G. Schuster und A. Domsch in Seifen Öle Fette Wachse 108, (1982) 177 bzw. Cosm.Toil. 99, (1984) 63
H. W. Steisslinger in Parf.Kosm. 72, (1991) 556 und F. Aurich et al. in Tens.Surf.Det. 29, (1992) 389
K. Drauz und H. Waldmann, Enzyme Catalysis in Organic Synthesis, VCH-Verlag, Weinheim 1975

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011110128B3 (de) * 2011-08-15 2013-01-03 Aap Biomaterials Gmbh Hydroxylapatithaltige Substanz sowie Verfahren zu deren Herstellung

Also Published As

Publication number Publication date
WO2008074626A3 (de) 2010-04-08
WO2008074626A2 (de) 2008-06-26

Similar Documents

Publication Publication Date Title
DE60023652T2 (de) Behandlung der Dentinempfindlichkeit mit einer wässrigen Dispersion von hydrophob-CO-hydrophilen Copolymeren
EP1660015B1 (de) Mund-und zahnpflegemittel
DE10340542A1 (de) Mund- und Zahnpflegemittel
WO2006133747A1 (de) Remineralisierende mund- und zahnpflege- und -reinigungsmittel
EP1942989A1 (de) Viskose remineralisierende mund- und zahnpflege- und -reinigungsmittel
DE102006060910A1 (de) Suspensionen von Kompositmaterialien
DE102005052400A1 (de) Remineralisierende Mund- und Zahnpflege und -reinigungsmittel mit Tensid(en)
WO2014191121A1 (de) Mund- und zahnpflege- und reinigungsmittel mit gesteigerter antibakterieller wirkung
DE102008017721A1 (de) Stabile Suspensionen von Kompositmaterialien
DE102008033105A1 (de) Optisch differenzierte Mund- und Zahnpflege- und -reinigungsmittel
EP1942990A1 (de) Remineralisierende mund- und zahnpflege- und -reinigungsmittel mit silikat(en)
DE102006009780A1 (de) Viskose remineralisierende Mund- und Zahnpflege- und -reinigungsmittel
DE102006009826A1 (de) Remineralisierende Mund- und Zahnpflege- und -reinigungsmittel mit Tensid(en)
DE102010003280A1 (de) Mund- und Zahnpflege- und -reinigungsmittel mit pflanzlichen Peptiden
DE102005052410A1 (de) Viskose remineralisierende Mund- und Zahnpflege- und -reinigungsmittel
DE102014223525A1 (de) Mund- und Zahnpflege- und -reinigungsmittel für überempfindliche Zähne
DE102005052372A1 (de) Remineralisierende Mund- und Zahnpflege- und -reinigungsmittel mit Silikat(en)
EP1942991A1 (de) Remineralisierende mund- und zahnpflege- und -reinigungsmittel mit tensid(en)
DE102006009800A1 (de) Remineralisierende Mund- und Zahnpflege- und -reinigungsmittel mit Silikat(en)
WO2007068403A2 (de) Remineraliserende erzeugnisse
EP3003498A1 (de) Zahncreme enthaltend fluorid und polymilchsäurepartikel
DE102004057858A1 (de) Kosmetische Zusammensetzungen zur Mund- und Zahnhygiene
WO2014191120A1 (de) Mund- und zahnpflege- und -reinigungsmittel für sensitive zähne
WO2007101511A2 (de) Verfahren zur mund- und zahnreinigung und/oder remineralisierung
DE102007038259A1 (de) Desensibilisierende Mund- und Zahnpflege- und reinigungsmittel

Legal Events

Date Code Title Description
8127 New person/name/address of the applicant

Owner name: HENKEL AG & CO. KGAA, 40589 DUESSELDORF, DE

8139 Disposal/non-payment of the annual fee