DE102006022170A1 - Verfahren zur Ermittlung des Fahrwiderstands eines Kraftfahrzeugs - Google Patents

Verfahren zur Ermittlung des Fahrwiderstands eines Kraftfahrzeugs Download PDF

Info

Publication number
DE102006022170A1
DE102006022170A1 DE102006022170A DE102006022170A DE102006022170A1 DE 102006022170 A1 DE102006022170 A1 DE 102006022170A1 DE 102006022170 A DE102006022170 A DE 102006022170A DE 102006022170 A DE102006022170 A DE 102006022170A DE 102006022170 A1 DE102006022170 A1 DE 102006022170A1
Authority
DE
Germany
Prior art keywords
circuit
driving resistance
acceleration
torque
resistance value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102006022170A
Other languages
English (en)
Inventor
Werner Wolfgang
Maik Dr. Würthner
Ingo Sauter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZF Friedrichshafen AG
Original Assignee
ZF Friedrichshafen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZF Friedrichshafen AG filed Critical ZF Friedrichshafen AG
Priority to DE102006022170A priority Critical patent/DE102006022170A1/de
Priority to EP07728470A priority patent/EP2018496B1/de
Priority to RU2008148821/11A priority patent/RU2422705C2/ru
Priority to PCT/EP2007/054014 priority patent/WO2007131861A1/de
Priority to CN200780017305.1A priority patent/CN101443580B/zh
Priority to JP2009508314A priority patent/JP5156002B2/ja
Priority to US12/299,818 priority patent/US8068964B2/en
Publication of DE102006022170A1 publication Critical patent/DE102006022170A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0213Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H2059/142Inputs being a function of torque or torque demand of driving resistance calculated from weight, slope, or the like

Abstract

Die Erfindung betrifft ein Verfahren zur Ermittlung des Fahrwiderstands eines Kraftfahrzeugs, das in Verbindung mit einer Schaltung eines automatisierten Schaltgetriebes von einem Lastgang in einen Zielgang durchgeführt wird, wobei ein erster Fahrwiderstandswert F_fw_1 vor Beginn der Schaltung und ein zweiter Fahrwiderstandswert F_fw_2 zu einem späteren Zeitpunkt ermittelt wird, um bei einer größeren Änderung des Fahrwiderstands DeltaF_fw = F_fw_2 - F_fw_1 eine Korrektur der Schaltung vorzunehmen. Zur führzeitigen Ermittlung einer Änderung des Fahrwiderstands F_fw während einer Schaltung ist vorgesehen, dass der zweite Fahrwiderstandswert F_fw_2 während der Schaltung ermittelt wird, indem über eine Zeitspanne Deltat, welche die zugkraftfreie Phase der Schaltung beinhaltet, mehrere diskrete Wert a_i der aktuellen Beschleunigung a des Kraftfahrzeugs erfasst werden, aus diesen Beschleunigungswerten a_i bei einer Zugschaltung das Beschleunigungsminium a_min und bei einer Schubschaltung das Beschleunigungsmaximum a_max bestimmt wird und mit diesem Extremwert der Beschleunigung (a_min oder a_max) und der Fahrzeugmasse m der zweite Fahrwiderstandswert (Fahrwiderstand während der Schaltung) F_fw_2 nach der Formel F_fw_2 = m . a_min beziehungsweise F_fw_2 = m . a_max berechnet wird.

Description

  • Die Erfindung betrifft ein Verfahren zur Ermittlung des Fahrwiderstands eines Kraftfahrzeugs, das in Verbindung mit einer Schaltung eines automatisierten Schaltgetriebes von einem Lastgang in einen Zielgang durchgeführt wird, wobei ein erster Fahrwiderstandswert F_fw_1 vor Beginn der Schaltung und ein zweiter Fahrwiderstandswert F_fw_2 zu einem späteren Zeitpunkt bestimmt wird, um bei einer größeren Änderung des Fahrwiderstands ΔF_fw = F_fw_2 – F_fw_1 eine Korrektur der Schaltung vorzunehmen.
  • Die Kenntnis des Fahrwiderstands eines Kraftfahrzeugs ist von elementarer Bedeutung, um das Schaltverhalten eines automatisierten Schaltgetriebes optimal, also der jeweiligen Fahrsituation angepasst, steuern zu können. So wird die Bestimmung der Schaltdrehzahl, bei welcher der aktuell eingelegte Lastgang durch eine Schaltung verlassen wird, und die Bestimmung des Zielgangs, in den durch die Schaltung gewechselt wird, wesentlich von dem aktuellen Fahrwiderstand des Kraftfahrzeugs beeinflusst.
  • Unter dem Fahrwiderstand F_fw eines Fahrzeugs wird bekanntermaßen die Summe aus dem Steigungswiderstand F_steig, dem Rollwiderstand F_roll und dem Luftwiderstand F_luft verstanden, also F_fw = F_steig + F_roll + F_luft. Über die allgemein bekannte Fahrwiderstandsgleichung F_zug = F_steig + F_roll + F_luft + F_träg = F_fw + F_trägsteht der Fahrwiderstand in Beziehung zu der auf die Antriebsräder des Kraftfahrzeugs bezogenen Zugkraft F_zug des Antriebsmotors und der Massenträgheitskraft F_träg des Kraftfahrzeugs, die sich aus dem Produkt der aktuellen Fahrzeugmasse m und der aktuellen Fahrzeugbeschleunigung a durch die Gleichung F_träg = m·a ergibt. Der Fahrwiderstand F_fw kann damit wie folgt angegeben werden: F_fw = F_zug – m·a.
  • Während die Ermittlung des Fahrwiderstands F_fw vor und nach einer Schaltung, also bei eingelegtem Gang und geschlossener Motorkupplung, kein Problem darstellt und in bekannter Weise über die Berechnung der Zugkraft F_zug aus dem Drehmoment des Antriebsmotors und der Übersetzung des eingelegten Gangs sowie mittels der Berechnung der Massenträgheitskraft F_träg aus der aktuellen Masse m und der aktuellen Beschleunigung a des Kraftfahrzeugs erfolgen kann, ist die Ermittlung des Fahrwiderstands F_fw während einer Schaltung schwierig, da in dieser Phase weitgehend unbekannte und nur schwer messbare Kräfte bzw. Drehmomente auf den abtriebsseitigen Antriebsstrang einwirken.
  • So ist es weitgehend unbekannt, wie schnell der Antriebsmotor während einer Schaltung sein Drehmoment abbaut und wieder aufbaut, welcher Drehmomentanteil über die Synchronisierung des Zielgangs verloren geht, und wie sich Drehschwingungen, die durch den Schaltvorgang, wie durch das Öffnen und Schließen der Motorkupplung, durch das Auslegen des Lastgangs und durch das Synchronisieren und Einlegen des Zielgangs, oder durch Fahrbahnunebenheiten angeregt werden können, auf die Fahrdynamik des Kraftfahrzeugs, also auf die aktuelle Beschleunigung, auswirken. Aufgrund dieser Problematik wird bei bisherigen Verfahren zur Steuerung einer Getriebeschaltung auf die Bestimmung des Fahrwiderstands während einer Schaltung verzichtet.
  • Bei weitgehend konstantem Fahrwiderstand vor, während und nach einer Schaltung ist dies völlig unproblematisch, da der ausgewählte Soll-Gang von dem Schaltprogramm unter der Annahme eines näherungsweise konstan ten Fahrwiderstands F_fw im Allgemeinen optimal an die vorliegende Fahrsituation angepasst ist.
  • Wenn sich der Fahrwiderstand F_fw aber während einer Schaltung stark ändert, kann dies zu Problemen führen, da das Schaltprogramm des Getriebesteuergerätes zunächst von einem falschen Fahrwiderstand F_fw ausgeht, und der geänderte richtige Fahrwiderstand F_fw erst mit zeitlicher Verzögerung nach dem Abschluss der Schaltung ermittelt werden kann.
  • Fährt das Kraftfahrzeug beispielsweise während einer Hochschaltung aus der Ebene in eine größere Steigung ein, so sollte nach Abschluss der Hochschaltung aufgrund des angestiegenen Fahrwiderstands F_fw sofort in einen kleineren Gang zurückgeschaltet werden. Wenn diese Rückschaltung aufgrund einer verzögerten Ermittlung des neuen erhöhten Fahrwiderstands F_fw aber zu spät erfolgt, kann das Kraftfahrzeug unter Umständen zum Stillstand kommen, wenn das durch den momentan eingelegten Gang gewandelte Drehmoment des Antriebsmotors für eine ausreichend hohe Zugkraft F_zug nicht mehr ausreicht.
  • Diese problematische Situation kann außer durch eine sofortige Rückschaltung auch durch eine Änderung des Zielgangs während der Hochschaltung in einen kleineren Gang, wie in einen zwischen dem Lastgang und dem Zielgang liegenden Gang (Hochschaltung in kleineren Gang), in den ursprünglichen Lastgang (Zielgang = Lastgang, kein Übersetzungswechsel), oder in einen unter dem Lastgang liegenden Gang (Hochschaltung wird zu Rückschaltung), vermieden werden. Derartige Reaktionen erfordern allerdings eine frühzeitige Kenntnis des geänderten, im vorgenannten Beispiel erhöhten Fahrwiderstands F_fw.
  • Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zur Ermittlung des Fahrwiderstands F_fw anzugeben, mit dem eine Änderung des Fahrwiderstands F_fw während einer Schaltung frühzeitig ermittelbar ist, um eine gegebenenfalls erforderliche Korrektur der Schaltung rechtzeitig durchführen zu können.
  • Die Lösung dieser Aufgabe gelingt durch ein Verfahren zur Ermittlung des Fahrwiderstands eines Kraftfahrzeugs, das in Verbindung mit einer Schaltung eines automatisierten Schaltgetriebes von einem Lastgang in einen Zielgang durchgeführt wird, wobei ein erster Fahrwiderstandswert F_fw_1 vor Beginn der Schaltung und ein zweiter Fahrwiderstandswert F_fw_2 zu einem späteren Zeitpunkt ermittelt wird, um bei einer größeren Änderung des Fahrwiderstands ΔF_fw = F_fw_2 – F_fw_1 eine Korrektur der Schaltung vorzunehmen.
  • Dabei ist vorgesehen, dass der zweite Fahrwiderstandswert F_fw_2 während der Schaltung ermittelt wird, indem über eine Zeitspanne Δt, welche die zugkraftfreie Phase der Schaltung beinhaltet, mehrere diskrete Werte a_i der aktuellen Beschleunigung a des Kraftfahrzeugs erfasst werden, aus diesen Beschleunigungswerten a_i bei einer Zugschaltung das Beschleunigungsminimum a_min und bei einer Schubschaltung das Beschleunigungsmaximum a_max bestimmt wird, und mit diesem Extremwert der Beschleunigung (a_min oder a_max) und der Fahrzeugmasse m der zweite Fahrwiderstandswert (Fahrwiderstand während der Schaltung) F_fw_2 nach der Formel F_fw_2 = –m·a_min bzw. F_fw_2 = –m·a_maxberechnet wird.
  • Da die Zeitspanne Δt, in der die Beschleunigungswerte a_i erfasst werden, die zugkraftfreie Phase der Schaltung beinhaltet, entspricht bei ausreichender zeitlicher Auflösung mindestens einer der Beschleunigungswerte a_i derjenigen Fahrzeugbeschleunigung a, die alleine durch den Fahrwider stand F_fw hervorgerufen wird, da aufgrund des geöffneten Antriebsstrangs keine Zugkraft des Antriebsmotors wirkt (F_zug = 0).
  • Dieser Beschleunigungswert a_i entspricht bei einer Zugschaltung eindeutig dem Minimalwert der Beschleunigungswerte a_i, also dem Beschleunigungsminimum a_min, und bei einer Schubschaltung eindeutig dem Maximalwert der Beschleunigungswerte a_i, also dem Beschleunigungsmaximum a_max. Somit wird mit dem jeweiligen Extremwert der Beschleunigung (a_min oder a_max) und mit der Fahrzeugmasse m nach den Formeln F_fw_2 = –m·a_min beziehungsweise F_fw_2 = –m·a_maxein relativ genauer Wert des Fahrwiderstands F_fw während der Schaltung berechnet, der zeitlich in etwa der Mitte der Schaltung zuzuordnen ist. Damit wird eine Änderung des Fahrwiderstands ΔF_fw = F_fw_2 = F_fw_1 frühzeitig erkannt, so dass bei einer größeren Änderung des Fahrwiderstands ΔF_fw die aktuelle Schaltung rechtzeitig korrigiert werden kann.
  • Die während der Schaltung, also in der zugkraftfreien Phase der Schaltung, durch den Extremwert der Beschleunigungswerte (a_min oder a_max) ermittelte Beschleunigung a des Kraftfahrzeugs kann ebenfalls zur Bestimmung der Fahrzeugmasse m genutzt werden. Da dies aber ein anderes Verfahren betreffen würde, wird die Fahrzeugmasse m vorliegend als bekannte Größe angesehen.
  • Wenn nach dem erfindungsgemäßen Verfahren während oder unmittelbar nach einer Schaltung eine größere Änderung des Fahrwiderstands ΔF_fw festgestellt wird, so kann die Reaktion darauf im Sinne einer Korrektur der aktuellen Schaltung beispielsweise wie folgt aussehen:
  • 1. Fahrsituation:
  • Zug-Hochschaltung beim Einfahren aus der Ebene in eine Steigung:
    • – nach der Hochschaltung sofortige Rückschaltung (schnelle Folgeschaltung);
    • – während der Schaltung Korrektur des Zielgangs in den zuvor eingelegten Lastgang (kein Übersetzungswechsel);
    • – während der Schaltung Korrektur des Zielgangs in einen kleineren Gang (Hochschaltung wird zu Rückschaltung).
  • 2. Fahrsituation:
  • Zug-Rückschaltung beim Einfahren aus einer Steigung in die Ebene:
    • – nach der Rückschaltung sofortige Hochschaltung (schnelle Folgeschaltung);
    • – während der Schaltung Korrektur des Zielgangs in den zuvor eingelegten Lastgang (kein Übersetzungswechsel);
    • – während der Schaltung Korrektur des Zielgangs in einen größeren Gang (Rückschaltung wird zu Hochschaltung).
  • 3. Fahrsituation:
  • Schub-Rückschaltung beim Einfahren aus einem Gefälle in die Ebene:
    • – während der Schaltung Korrektur des Zielgangs in den zuvor eingelegten Lastgang (kein Übersetzungswechsel).
  • Vorteilhafte Ausgestaltungen des erfindungsgemäßen Verfahrens sind Gegenstand der Ansprüche 2 bis 10.
  • Zur Erfassung eines optimalen Extremwertes der Beschleunigung (a_min oder a_max) ist vorgesehen, dass die Beschleunigungswerte a_i jeweils bevorzugt in einem zeitlichen Abstand von maximal 10 ms ermittelt werden. Hierdurch ist erfahrungsgemäß sichergestellt, dass zumindest einer der Beschleunigungswerte a_i dem alleine durch den Fahrwiderstand F_fw beeinflussten Extremwert (a_min oder a_max) entspricht.
  • Zur Eliminierung von Messfehlern und Störungen bei der Erfassung der Beschleunigungswerte a_i werden diese zweckmäßig vor der Bestimmung des Extremwertes der Beschleunigung (a_min oder a_max) gefiltert, wozu allgemein bekannte numerische Verfahren zur Anwendung kommen können.
  • Die Zeitspanne Δt zur Erfassung der Beschleunigungswerte a_i kann mit dem Beginn des Öffnens der Motorkupplung beginnen und mit dem Ende des Schließens der Motorkupplung enden. Hierbei sind zwar die Anfangs- und Endwerte der Beschleunigungswerte a_i aufgrund der noch nicht vollständig geöffneten oder teilweise schon wieder geschlossenen Motorkupplung und der somit wirksamen Zug- bzw. Schubkraft des Antriebsmotors stark verfälscht. Diese Beschleunigungswerte a_i fallen aber bei der Ermittlung des Extremwertes (a_min bzw. a_max) ohnehin heraus und beeinflussen die Bestimmung der Beschleunigung während der Schaltung, also in der Rollphase der Schaltung, somit nicht negativ. Die Zeitspanne Δt zur Erfassung der Beschleunigungswerte a_i kann aber auch kürzer gefasst werden und mit dem Beginn des Auslegens des Lastgangs beginnen sowie mit dem Ende des Einlegens des Zielgangs enden.
  • Das erfindungsgemäße Verfahren ist bevorzugt nur dann anwendbar, wenn während der Schaltung ein eindeutiges Beschleunigungsminimum a_min oder ein eindeutiges Beschleunigungsmaximum a_max vorliegt. Dies ist aber nur bei einer reinen Zugschaltung (Zugbetrieb vor und nach der Schaltung) bzw. bei einer reinen Schubschaltung (Schubbetrieb vor und nach der Schaltung) der Fall.
  • Es ist daher zweckmäßig, wenn vor der Ermittlung des Fahrwiderstands während der Schaltung F_fw_2 bzw. der Ermittlung des Extremwertes (a_min oder a_max) aus den Beschleunigungswerten a_i zunächst geprüft wird, ob es sich bei der aktuellen Schaltung um eine reine Zugschaltung oder um eine reine Schubschaltung handelt, und dass die Ermittlung des zweiten Fahrwiderstandswertes (Fahrwiderstand während der Schaltung) F_fw_2 nur erfolgt, wenn eine reine Zugschaltung oder eine reine Schubschaltung vorliegt.
  • Zur Feststellung der Schaltungsart wird bevorzugt das Drehmoment des Antriebsmotors vor Beginn der Schaltung M_vS und nach Abschluss der Schaltung M_nS ermittelt, wobei eine reine Zugschaltung dann vorliegt, wenn beide Drehmomentwerte M_vS, M_nS größer als Null sind (M_vS > 0 und M_nS > 0), und eine reine Schubschaltung dann vorliegt, wenn beide Drehmomentwerte M_vS, M_nS kleiner als Null sind (M_vS < 0 und M_nS < 0).
  • Das Drehmoment des Antriebsmotors vor der Schaltung M_vS geht in die Bestimmung des ersten Fahrwiderstandswertes F_fw_1 ein, wobei die Ermittlung dieses Drehmomentwertes bei absolut kleinem Drehmoment M_vS relativ ungenau ist. Außerdem ist bei absolut kleinem Drehmoment M_vS des Antriebsmotors vor der Schaltung die Beschleunigungsdifferenz zwischen Zugbetrieb bzw. Schubbetrieb vor der Schaltung sowie dem Rollen in der zugkraftfreien Phase während der Schaltung relativ gering, so dass sich Störungen und Messfehler in diesem Fall überproportional auswirken können. Demzufolge wäre dann auch die Ermittlung der Änderung des Fahrwiderstands ΔF_fw = F_fw_2 – F_fw_1 vergleichsweise ungenau, was unter Umständen zu einer falschen Reaktion der Getriebesteuerung führen könnte.
  • Zur Vermeidung einer fehlerhaften Bestimmung des Fahrwiderstands F_fw ist daher zweckmäßig vorgesehen, dass zunächst das Drehmoment des Antriebsmotors vor Beginn der Schaltung M_vS ermittelt und bei Vorliegen einer reinen Zugschaltung mit einem vorab festgelegten Mindestmoment M_Zmin verglichen wird, und dass die Ermittlung des zweiten Fahrwiderstandswertes (Fahrwiderstand während der Schaltung) F_fw_2 nur erfolgt, wenn das Drehmoment des Antriebsmotors größer gleich dem Mindestmoment ist (M_vS >= M_Zmin).
  • Entsprechend wird dann bei Vorliegen einer reinen Schubschaltung das Drehmoment des Antriebsmotors vor Beginn der Schaltung M_vS mit einem vorab festgelegten Maximalmoment M_Smax verglichen, und die Ermittlung des zweiten Fahrwiderstandswertes (Fahrwiderstand während der Schaltung) F_fw_2 erfolgt nur dann, wenn das Drehmoment des Antriebsmotors kleiner gleich dem Maximalmoment ist (M_vS <= M_Smax).
  • Ebenfalls würde die Betätigung von Verzögerungseinrichtungen, wie der Betriebsbremse, der Feststellbremse oder eines Retarders, während der Schaltung zur Ermittlung eines fehlerhaften Extremwertes der Beschleunigung (a_min oder a_max) und damit des zweiten Fahrwiderstandswertes F_fw_2 führen, da das Kraftfahrzeug dann in der zugkraftfreien Phase nicht frei rollt. Dabei kann beispielsweise die Betätigung der Betriebsbremse, also der Radbremsen, sowohl durch den Fahrer über das Bremspedal als auch durch eine Steuerungseinrichtung, wie ESP oder ASR, automatisch erfolgen. Zur Vermeidung einer diesbezüglichen Fehlbestimmung des Fahrwiderstands F_fw wird zweckmäßig während der Schaltung der Betätigungszustand der Verzögerungseinrichtungen des Kraftfahrzeugs erfasst, und bei einer Betätigung mindestens einer der Verzögerungseinrichtungen die Ermittlung des zweiten Fahrwiderstandswertes (Fahrwiderstand während der Schaltung) F_fw_2 abgebrochen.
  • Zur Verdeutlichung der Erfindung ist der Beschreibung eine Zeichnung beigefügt.
  • In diesen zeigt:
  • 1 einen gemessenen Zeitverlauf der Fahrzeugbeschleunigung a über mehrere Zugschaltungen und
  • 2 die vereinfachten Zeitverläufe der Zugkraft F_zug und der Beschleunigung a über eine einzige Zug-Hochschaltung.
  • Bei dem Verfahren gemäß der Erfindung beruht die Ermittlung einer Änderung des Fahrwiderstands F_fw während einer Gangschaltung auf der exakten Erfassung der Beschleunigung a des Kraftfahrzeugs in der zugkraftfreien Rollphase der Schaltung. Die Ermittlung dieses Beschleunigungswertes ist beispielhaft in dem Diagramm von 1 veranschaulicht, in dem der Zeitverlauf der Beschleunigung a eines Kraftfahrzeugs über mehrere mit einer Unterbrechung der Zugkraft verbundene Schaltungen dargestellt ist. Darin gibt die durchgezogene Linie die gefilterten Werte a_fzg_filt kontinuierlich, also in einem festgelegten Zeitintervall von etwa 10–20 ms, ermittelter Beschleunigungswerte a_i wieder. Bei den Schaltungen handelt es sich jeweils um eine Zugschaltung.
  • Demzufolge führt jede der Schaltungen zu einem Einbruch der Beschleunigung a, die während der Schaltungen jeweils negative Werte < 0 m/s annimmt. Das Kraftfahrzeug wird also jeweils während der Schaltung durch den wirksamen Fahrwiderstand F_fw abgebremst, da der Triebstrang zeitweise geöffnet ist und dann kein Antriebsmoment in Form einer Zugkraft auf die Antriebsräder übertragen wird (F_zug = 0).
  • Zur Ermittlung der Beschleunigung a in der zugkraftfreien Phase der Schaltung wird nun bei jeder der Schaltungen jeweils in einer Zeitspanne Δt, welche die zugkraftfreie Phase beinhaltet, ein Extremwert der in diesem Zeitraum erfassten Beschleunigungswerte a_i ermittelt. Da es sich vorliegend um Zugschaltungen handelt, wird jeweils das Beschleunigungsminimum a_min festgestellt.
  • Der Verlauf dieses Extremwertes a_roll_peak ist in 1 jeweils durch die unterbrochene Linie dargestellt. Hierdurch wird deutlich, dass durch das Verfahren trotz starker Störungen zu Beginn und zum Ende der jeweiligen Schaltung das jeweilige Beschleunigungsminimum a_min sicher ermittelt wird. Diesem Beschleunigungsminimum a_min ist jeweils der momentane Fahrwiderstand F_fw_2 eindeutig zuzuordnen, so dass hiermit eine relativ genaue Berechnung des Fahrwiderstands während der Schaltung F_fw_2 möglich ist.
  • In den Bereichen des zeitlichen Verlaufs t, in denen der Verlauf von a_roll_peak nicht von a_fzg_filt zu unterscheiden ist, insbesondere außerhalb der Bereiche Δt, überdecken sich die beiden Verläufe von a_roll_peak und a_fzg_filt.
  • Zur weiteren Veranschaulichung des Verfahrens ist in 2 eine Zug-Hochschaltung mit vereinfachten Zeitverläufen der Beschleunigung a und der auf die Antriebsräder bezogenen Zugkraft F_zug des Antriebsmotors mit größerer zeitlicher Auflösung dargestellt. Die Schaltung beginnt zum Zeitpunkt t1 und endet im Zeitpunkt t4. Zwischen dem Zeitpunkt t1 und t2 wird die Motorkupplung geöffnet und das Drehmoment des Antriebsmotors abgebaut; gegebenenfalls auch schon der eingelegte Lastgang ausgelegt. Unmittelbar vor dem Zeitpunkt t3 wird der einzulegende Zielgang synchronisiert und nachfolgend eingelegt. Das Schließen der Motorkupplung und der Aufbau des Drehmomentes des Antriebsmotors erfolgt zwischen dem Zeitpunkt t3 und dem Zeitpunkt t4.
  • Die zugkraftfreie Phase der Schaltung erstreckt sich somit in etwa zwischen dem Zeitpunkt t2 und dem Zeitpunkt t3, wobei aber zu Beginn und zum Ende dieses Zeitraums bekanntlich noch starke Störungseinflüsse wirksam sein können. In der Mitte der zugkraftfreien Phase ist die Beschleunigung a jedoch weitgehend störungsfrei und entspricht dem gesuchten Minimalwert a_min.
  • Zur sicheren Ermittlung des Beschleunigungsminimums a_min wird die Zeitspanne Δt, in der aus den aktuellen Beschleunigungswerten a_i bzw. a_fzg_filt das Beschleunigungsminimum a_min bestimmt wird, so gewählt, dass die zugkraftfreie Phase sicher enthalten ist. Die Zeitspanne Δt kann sich beispielsweise, wie in dem oberen Teil von 2 eingezeichnet, von dem Zeitpunkt t1 bis zum Zeitpunkt t4 oder, wie in dem unteren Teil von 2 eingezeichnet, von dem Zeitpunkt t2 bis zum Zeitpunkt t3 erstrecken.
  • a
    Beschleunigung, Längsbeschleunigung
    a_fzg_filt
    gefilterter Beschleunigungswert
    a_i
    diskreter Beschleunigungswert
    a_max
    Maximalwert von a_i, Beschleunigungsmaximum
    a_min
    Minimalwert von a_i, Beschleunigungsminimum
    a_roll_peak
    Extremwert der Beschleunigung
    F_fw
    Fahrwiderstand
    F_fw_1
    erster Fahrwiderstandswert, F_fw vor Schaltung
    F_fw_2
    zweiter Fahrwiderstandswert, F_fw während Schaltung
    F_luft
    Luftwiderstand
    F_roll
    Rollwiderstand
    F_steig
    Steigungswiderstand
    F_träg
    Massenträgheitskraft
    F_zug
    Zugkraft
    ⧋F_fw
    Änderung des Fahrwiderstands
    m
    Masse, Gesamtmasse
    M
    Drehmoment
    M_nS
    Drehmoment nach Schaltung
    M_Smax
    Maximalmoment für Schubschaltung
    M_vS
    Drehmoment vor Schaltung
    M_Zmin
    Minimalmoment für Zugschaltung
    t
    Zeit
    t1
    Zeitpunkt
    t2
    Zeitpunkt
    t3
    Zeitpunkt
    t4
    Zeitpunkt
    ⧋t
    Zeitspanne

Claims (10)

  1. Verfahren zur Ermittlung des Fahrwiderstands eines Kraftfahrzeugs, das in Verbindung mit einer Schaltung eines automatisierten Schaltgetriebes von einem Lastgang in einen Zielgang durchgeführt wird, wobei ein erster Fahrwiderstandswert F_fw_1 vor Beginn der Schaltung und ein zweiter Fahrwiderstandswert F_fw_2 zu einem späteren Zeitpunkt ermittelt wird, um bei einer größeren Änderung des Fahrwiderstands ΔF_fw = F_fw_2 – F_fw_1 eine Korrektur der Schaltung vorzunehmen, dadurch gekennzeichnet, dass der zweite Fahrwiderstandswert F_fw_2 während der Schaltung ermittelt wird, indem über eine Zeitspanne Δt, welche die zugkraftfreie Phase der Schaltung beinhaltet, mehrere diskrete Werte a_i der aktuellen Beschleunigung a des Kraftfahrzeugs erfasst werden, aus diesen Beschleunigungswerten a_i bei einer Zugschaltung das Beschleunigungsminimum a_min und bei einer Schubschaltung das Beschleunigungsmaximum a_max bestimmt wird, und mit diesem Extremwert der Beschleunigung (a_min oder a_max) und der Fahrzeugmasse m der zweite Fahrwiderstandswert (Fahrwiderstand während der Schaltung) F_fw_2 nach der Formel F_fw_2 = –m·a_min bzw. F_fw_2 = –m·a_max berechnet wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Beschleunigungswerte a_i zur Erfassung eines optimalen Extremwertes der Beschleunigung (a_min oder a_max) jeweils in einem zeitlichen Abstand von maximal 10 ms ermittelt werden.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Beschleunigungswerte a_i zur Eliminierung von Messfehlern und Störungen vor der Bestimmung des Extremwertes der Beschleunigung (a_min oder a_max) gefiltert werden.
  4. Verfahren nach zumindest einem der Ansprüche 1 bis 3, dadurch gekennzeichnet , dass die Zeitspanne Δt zur Erfassung der Beschleunigungswerte a_i mit dem Beginn (t1) des Öffnens der Motorkupplung beginnt und mit dem Ende (t4) des Schließens der Motorkupplung endet.
  5. Verfahren nach zumindest einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Zeitspanne Δt zur Erfassung der Beschleunigungswerte a_i mit dem Beginn (t2) des Auslegens des Lastgangs beginnt und mit dem Ende (t3) des Einlegens des Zielgangs endet.
  6. Verfahren nach zumindest einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass zunächst geprüft wird, ob es sich bei der Schaltung um eine reine Zugschaltung oder um eine reine Schubschaltung handelt, und dass die Ermittlung des zweiten Fahrwiderstandswertes (Fahrwiderstand während der Schaltung) F_fw_2 nur erfolgt, wenn eine reine Zugschaltung oder eine reine Schubschaltung vorliegt.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass zur Feststellung der Schaltungsart das Drehmoment des Antriebsmotors vor Beginn der Schaltung M_vS und nach Abschluss der Schaltung M_nS ermittelt wird, und dass eine reine Zugschaltung vorliegt, wenn beide Drehmomentwerte M_vS, M_nS größer als Null sind (M_vS > 0 und M_nS > 0), sowie eine reine Schubschaltung vorliegt, wenn beide Drehmomentwerte M_vS, M_nS kleiner als Null sind (M_vS < 0 und M_nS < 0).
  8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass zunächst das Drehmoment des Antriebsmotors vor Beginn der Schaltung M_vS ermittelt und bei Vorliegen einer reinen Zugschaltung mit einem vorab festgelegten Mindestmoment M_Zmin verglichen wird, und dass die Ermittlung des zweiten Fahrwiderstandswertes (Fahrwiderstand während der Schaltung) F_fw_2 nur erfolgt, wenn das Drehmoment des Antriebsmotors größer gleich dem Mindestmoment ist (M_vS >= M_Zmin).
  9. Verfahren nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass das Drehmoment des Antriebsmotors vor Beginn der Schaltung M_vS ermittelt und bei Vorliegen einer reinen Schubschaltung mit einem vorab festgelegten Maximalmoment M_Smax verglichen wird, und dass die Ermittlung des zweiten Fahrwiderstandswertes (Fahrwiderstand während der Schaltung) F_fw_2 nur erfolgt, wenn das Drehmoment des Antriebsmotors kleiner gleich dem Maximalmoment ist (M_vS <= M_Smax).
  10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass während der Schaltung der Betätigungszustand der Verzögerungseinrichtungen des Kraftfahrzeugs erfasst wird, und dass bei einer Betätigung mindestens einer der Verzögerungseinrichtungen die Ermittlung des zweiten Fahrwiderstandswertes (Fahrwiderstand während der Schaltung) F_fw_2 abgebrochen wird.
DE102006022170A 2006-05-12 2006-05-12 Verfahren zur Ermittlung des Fahrwiderstands eines Kraftfahrzeugs Withdrawn DE102006022170A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE102006022170A DE102006022170A1 (de) 2006-05-12 2006-05-12 Verfahren zur Ermittlung des Fahrwiderstands eines Kraftfahrzeugs
EP07728470A EP2018496B1 (de) 2006-05-12 2007-04-25 Verfahren zur ermittlung des fahrwiderstands eines kraftfahrzeugs
RU2008148821/11A RU2422705C2 (ru) 2006-05-12 2007-04-25 Способ определения сопротивления движению транспортного средства
PCT/EP2007/054014 WO2007131861A1 (de) 2006-05-12 2007-04-25 Verfahren zur ermittlung des fahrwiderstands eines kraftfahrzeugs
CN200780017305.1A CN101443580B (zh) 2006-05-12 2007-04-25 用于测定汽车行驶阻力的方法
JP2009508314A JP5156002B2 (ja) 2006-05-12 2007-04-25 自動車の走行抵抗を検出する方法
US12/299,818 US8068964B2 (en) 2006-05-12 2007-04-25 Method for determining the driving resistance of a motor vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006022170A DE102006022170A1 (de) 2006-05-12 2006-05-12 Verfahren zur Ermittlung des Fahrwiderstands eines Kraftfahrzeugs

Publications (1)

Publication Number Publication Date
DE102006022170A1 true DE102006022170A1 (de) 2008-01-31

Family

ID=38255777

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102006022170A Withdrawn DE102006022170A1 (de) 2006-05-12 2006-05-12 Verfahren zur Ermittlung des Fahrwiderstands eines Kraftfahrzeugs

Country Status (7)

Country Link
US (1) US8068964B2 (de)
EP (1) EP2018496B1 (de)
JP (1) JP5156002B2 (de)
CN (1) CN101443580B (de)
DE (1) DE102006022170A1 (de)
RU (1) RU2422705C2 (de)
WO (1) WO2007131861A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012119621A1 (de) 2011-03-04 2012-09-13 Audi Ag Verfahren zur bestimmung des fahrwiderstands eines fahrzeugs
DE102011080850A1 (de) 2011-08-11 2013-02-14 Zf Friedrichshafen Ag Verfahren zur Schaltsteuerung eines automatisierten Schaltgetriebes
DE102011088853A1 (de) 2011-12-16 2013-06-20 Zf Friedrichshafen Ag Verfahren zur Steuerung einer Wandlerschaltkupplung
DE102011088855A1 (de) 2011-12-16 2013-06-20 Zf Friedrichshafen Ag Verfahren zur Steuerung einer Wandlerschaltkupplung

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011076818A1 (de) * 2011-05-31 2012-12-06 Zf Friedrichshafen Ag Verfahren zur Ermittlung einer Zieldrehzahl für eine Schaltung
US10166980B2 (en) 2013-02-28 2019-01-01 Ford Global Technologies, Llc Vehicle mass computation
US10400891B2 (en) 2016-12-15 2019-09-03 Caterpillar Inc. System, method and apparatus to control machine acceleration when exiting a grade
DE112018002821A5 (de) * 2017-06-01 2020-02-13 Schaeffler Technologies AG & Co. KG Verfahren zur Erkennung einer durchgeführten Selbstnachstellung einer automatisierten unbetätigt geschlossenen Kupplung eines Fahrzeuges, vorzugsweise einer Hybridtrennkupplung eines Hybridfahrzeuges

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3311254A1 (de) * 1983-03-28 1984-10-04 Wabco Westinghouse Fahrzeugbremsen GmbH, 3000 Hannover Kontrolleinrichtung fuer ein fahrzeug zur steuerung der zur verfuegung stehenden leistung bei aenderung der getriebeuebersetzung
DE3314800A1 (de) * 1983-03-28 1984-10-04 Wabco Westinghouse Fahrzeugbremsen GmbH, 3000 Hannover Kontrolleinrichtung fuer ein von einer antriebsmaschine ueber ein abgestuftes getriebe angetriebenes fahrzeug
EP0126201B1 (de) * 1983-04-23 1987-08-05 WABCO Westinghouse Fahrzeugbremsen GmbH Kontrolleinrichtung für ein von einer Antriebsmaschine über ein abgestuftes Getriebe angetriebenes Fahrzeug
JPS6237549A (ja) * 1985-08-11 1987-02-18 Hino Motors Ltd 自動トランスミツシヨン
DE3843818C1 (de) 1988-12-24 1990-05-10 Daimler-Benz Aktiengesellschaft, 7000 Stuttgart, De
JPH0461A (ja) * 1990-04-17 1992-01-06 Mitsubishi Electric Corp 自動変速機制御装置
DE4326182A1 (de) 1992-08-10 1994-02-17 Volkswagen Ag Verfahren und Einrichtung zur Erzeugung eines Anzeigesignals oder eines Steuersignals für ein sinnvolles Hochschalten eines Stufengetriebes eines Kraftfahrzeugs mit Verbrennungsmotor
DE4228413A1 (de) 1992-08-26 1994-03-03 Bosch Gmbh Robert Verfahren und Vorrichtung zur Bestimmung von Fahrzeugmasse und Fahrwiderstand
US5490063A (en) 1994-02-07 1996-02-06 Eaton Corporation Control method/system including determination of an updated value indicative of gross combination weight of vehicles
US5491630A (en) * 1994-08-03 1996-02-13 Eaton Corporation Method/system for resetting the value of a control parameter indicative of gross combined weight of vehicles to a default value thereof
DE19600914A1 (de) 1996-01-12 1997-07-17 Opel Adam Ag Verfahren zur Steuerung des Hochschaltvorganges eines Kraftfahrzeug-Automatikgetriebes
US5610372A (en) * 1996-03-14 1997-03-11 The Airsport Corp. System for measuring total weight and weight distribution of a vehicle
DE19728867A1 (de) * 1997-07-05 1999-01-07 Bosch Gmbh Robert Verfahren und Vorrichtung zur Ermittlung der Fahrzeugmasse
DE19837380A1 (de) * 1998-08-18 2000-02-24 Zahnradfabrik Friedrichshafen Verfahren und Einrichtung zur Ermittlung der Masse eines Fahrzeuges
DE19931785B4 (de) * 1999-07-08 2012-04-19 Zf Friedrichshafen Ag Gangwahl für automatisierte Getriebe
JP4180752B2 (ja) * 1999-10-27 2008-11-12 三菱ふそうトラック・バス株式会社 路面勾配に基づくエンジン出力制御装置
JP3578046B2 (ja) * 2000-05-16 2004-10-20 日産自動車株式会社 車速制御装置
DE10106935B4 (de) * 2001-02-15 2012-05-24 GM Global Technology Operations LLC Verfahren zum Auslösen eines Rückschalt- bzw. eines Hochschaltvorganges bei einem automatischen Getriebe
JP2004360657A (ja) * 2003-06-09 2004-12-24 Miyama Kk 自動車の経済運転評価装置
US7200476B2 (en) * 2003-10-14 2007-04-03 General Motors Corporation Optimal selection of input torque considering battery utilization for a hybrid electric vehicle
US7351183B2 (en) * 2004-12-16 2008-04-01 Ford Global Technologies, Llc Ratio shift control for a multiple ratio automatic transmission
JP4453649B2 (ja) * 2005-11-21 2010-04-21 トヨタ自動車株式会社 無段変速機の制御装置
JP4306713B2 (ja) * 2006-10-20 2009-08-05 トヨタ自動車株式会社 車両の制御装置、制御方法、その制御方法をコンピュータで実現するプログラムおよびそのプログラムを記録した記録媒体

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012119621A1 (de) 2011-03-04 2012-09-13 Audi Ag Verfahren zur bestimmung des fahrwiderstands eines fahrzeugs
US8768536B2 (en) 2011-03-04 2014-07-01 Audi Ag Method for determining the driving resistance of a vehicle
DE102011080850A1 (de) 2011-08-11 2013-02-14 Zf Friedrichshafen Ag Verfahren zur Schaltsteuerung eines automatisierten Schaltgetriebes
DE102011080850B4 (de) 2011-08-11 2022-01-13 Zf Friedrichshafen Ag Verfahren zur Schaltsteuerung eines automatisierten Schaltgetriebes
DE102011088853A1 (de) 2011-12-16 2013-06-20 Zf Friedrichshafen Ag Verfahren zur Steuerung einer Wandlerschaltkupplung
DE102011088855A1 (de) 2011-12-16 2013-06-20 Zf Friedrichshafen Ag Verfahren zur Steuerung einer Wandlerschaltkupplung
DE102011088853B4 (de) 2011-12-16 2021-08-26 Zf Friedrichshafen Ag Verfahren zur Steuerung einer Wandlerschaltkupplung
DE102011088855B4 (de) 2011-12-16 2021-10-21 Zf Friedrichshafen Ag Verfahren zur Steuerung einer Wandlerschaltkupplung

Also Published As

Publication number Publication date
US8068964B2 (en) 2011-11-29
RU2422705C2 (ru) 2011-06-27
EP2018496B1 (de) 2012-10-03
WO2007131861A1 (de) 2007-11-22
US20090198404A1 (en) 2009-08-06
EP2018496A1 (de) 2009-01-28
CN101443580A (zh) 2009-05-27
CN101443580B (zh) 2013-03-27
RU2008148821A (ru) 2010-06-20
JP2009536997A (ja) 2009-10-22
JP5156002B2 (ja) 2013-03-06

Similar Documents

Publication Publication Date Title
EP2018496B1 (de) Verfahren zur ermittlung des fahrwiderstands eines kraftfahrzeugs
EP2021745B1 (de) Verfahren zur ermittlung der masse eines kraftfahrzeugs
DE102008039452B3 (de) Verfahren zum Steuern eines automatisierten Schaltgetriebes
DE102005031764A1 (de) Verfahren zum Steuern eines Antriebsstranges eines Fahrzeugs mit einer Antriebsmaschine und mit einem Getriebe
DE102010043250B4 (de) Verfahren zum Freischaukeln eines Fahrzeugs
EP0471102A1 (de) Getriebesteuerung für ein Kraftfahrzeug
EP0588896A1 (de) Verfahren zur steuerung eines automatisch betätigten getriebes eines kraftfahrzeugs.
EP1105702A1 (de) Verfahren und einrichtung zur ermittlung der masse eines fahrzeuges
DE19931160A1 (de) Verfahren und Vorrichtung zur Kupplungskennlinienadaption und zur Bestimmung eines kupplungsabhängigen Drehzahlgradienten
EP2652365B1 (de) Verfahren zum betreiben einer getriebevorrichtung eines fahrzeugantriebsstranges mit wenigstens einem formschlüssigen schaltelement und mit mehreren reibschlüssigen schaltelementen
DE102006010934A1 (de) Verfahren zur Synchronisierung in einem automatisierten Schaltgetriebe
DE102009052227B4 (de) Verfahren zum Betreiben eines Kraftfahrzeugs
EP2083198A2 (de) Verfahren und Steuergerät zur Steuerung eines Triebstrangs, der ein Doppelkupplungsgetriebe aufweist
DE102012200172A1 (de) Verfahren zum Betreiben einer Getriebevorrichtung eines Fahrzeugantriebsstranges mit einer Antriebsmaschine
DE102007024363A1 (de) Verfahren zur Steuerung eines Antriebsstrangs eines Kraftfahrzeugs
DE102010040455A1 (de) Verfahren zum Betreiben eines Antriebsstrangs
DE102004022667B4 (de) Verfahren zur Steuerung einer Schubrückschaltung
DE10232229A1 (de) Verfahren zur Durchführung eines Anfahrvorgangs bei einem eine Doppel- oder Mehrfach-Kupplungseinrichtung aufweisenden Kraftfahrzeug-Antriebssystem
EP1194686B1 (de) Verfahren und vorrichtung zur steuerung der antriebseinheit eines fahrzeugs
DE102008046849A1 (de) Verfahren und Steuereinrichtung zur Steuerung eines Verbrennungsmotors eines Triebstrangs eines Kraftfahrzeugs
DE19833838A1 (de) Verfahren und Vorrichtung zur Steuerung der Geschwindigkeit eines Fahrzeugs
WO2008064733A1 (de) Verfahren zum steuern einer reibungskupplung eines fahrzeuges
DE102008027150B4 (de) Verfahren zur Steuerung des Triebstrangs eines Kraftfahrzeugs
WO2017088855A1 (de) Verfahren zur abtriebsneutralen lastschaltung von automatgetrieben
DE102010008936A1 (de) Verfahren zum Betrieb eines Automatikgetriebes

Legal Events

Date Code Title Description
OR8 Request for search as to paragraph 43 lit. 1 sentence 1 patent law
8105 Search report available
R012 Request for examination validly filed

Effective date: 20130125

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee

Effective date: 20141202