DE102004059775A1 - Kautschukmischung sowie Fahrzeugluftreifen und Notlaufstützring mit einer solchen Mischung - Google Patents

Kautschukmischung sowie Fahrzeugluftreifen und Notlaufstützring mit einer solchen Mischung Download PDF

Info

Publication number
DE102004059775A1
DE102004059775A1 DE102004059775A DE102004059775A DE102004059775A1 DE 102004059775 A1 DE102004059775 A1 DE 102004059775A1 DE 102004059775 A DE102004059775 A DE 102004059775A DE 102004059775 A DE102004059775 A DE 102004059775A DE 102004059775 A1 DE102004059775 A1 DE 102004059775A1
Authority
DE
Germany
Prior art keywords
polyisocyanate
rubber mixture
blocked
rubber
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE102004059775A
Other languages
English (en)
Other versions
DE102004059775B4 (de
Inventor
Carla Dr. Recker
Steffi Meissner
Danka Dr. Katrakova
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Reifen Deutschland GmbH
Original Assignee
Continental AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental AG filed Critical Continental AG
Priority to DE102004059775.8A priority Critical patent/DE102004059775B4/de
Publication of DE102004059775A1 publication Critical patent/DE102004059775A1/de
Application granted granted Critical
Publication of DE102004059775B4 publication Critical patent/DE102004059775B4/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4288Polycondensates having carboxylic or carbonic ester groups in the main chain modified by higher fatty oils or their acids or by resin acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/69Polymers of conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7621Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring being toluene diisocyanate including isomer mixtures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Die Erfindung betrifft eine mit Schwefel vulkanisierbare Kautschukmischung. Ferner betrifft die Erfindung einen Fahrzeugluftreifen, dessen Notlaufeinlage im Seitenwandbereich, dessen Apex und/oder dessen Humpstreifen aus der mit Schwefel vulkanisierten Kautschukmischung besteht, und einen Notlaufstützring für Fahrzeugluftreifen, dessen den Kontakt zur Felge herstellende Füße aus einer mit Schwefel vulkanisierten Kautschukmischung bestehen. DOLLAR A Für hohe Härte und Steifigkeit im Einsatzfall enthält die Kautschukmischung DOLLAR A - mindestens ein Dienelastomer, DOLLAR A - zumindest einen Füllstoff, DOLLAR A - zumindest ein als Weichmacher wirkendes Polymer, welches mit einem Di- oder Polyisocyanat zu Polyurethan vernetzt werden kann, und DOLLAR A - zumindest ein geblocktes Di- oder Polyisocyanat, welches erst bei Temperaturen von > 140 DEG C zurückgespalten wird.

Description

  • Die Erfindung betrifft eine mit Schwefel vulkanisierbare Kautschukmischung. Ferner betrifft die Erfindung einen Fahrzeugluftreifen, dessen Notlaufeinlage im Seitenwandbereich, dessen Apex und/oder dessen Humpstreifen aus der mit Schwefel vulkanisierten Kautschukmischung besteht, und einen Notlaufstüzring für Fahrzeugluftreifen, dessen den Kontakt zur Felge herstellende Füße aus der mit Schwefel vulkanisierten Kautschukmischung bestehen.
  • Kautschukmischungen und deren Vulkanisate weisen für unterschiedliche Anwendungen unterschiedlichste Eigenschaftsprofile auf. Die Eigenschaften von Mischung und Vulkanisat lassen sich durch die Mischungszusammensetzung und die Verwendung von Zuschlagstoffen beeinflussen. Zu diesen Zuschlagstoffen zählen z. B. Alterungsschutzmittel, Vulkanisationschemikalien, Füllstoffe und Weichmacher.
  • Den Weichmachern kommt unter den Zuschlagstoffen neben den Füllstoffen bei der Herstellung von Kautschukmischungen mengenmäßig die größte Bedeutung zu, wobei sie der Mischung zugesetzt werden, um die Fließfähigkeit der Kautschukmischung für die Verarbeitung zu verbessern (Herabsetzung der Mischungsviskosität), die Füllstoffverteilung zu verbessern, gewisse physikalische Eigenschaften der Vulkanisate zu beeinflussen und die Mischung zu verbilligen.
  • Durch den Zusatz von Weichmachern weisen die aus der Mischung hergestellten Vulkanisate in der Regel eine geringe Härte auf, die für einige Anwendung nicht erwünscht ist. So gibt es im Fahrzeugluftreifen einige Bereiche, die aus Vulkanisaten mit möglichst großer Härte bestehen sollen. Zu diesen Bereichen zählen z. B. der Apex (Kernreiter), der Humpstreifen (Felgengummi) oder auch die einen Notlaufstützring auf der Felge positionierenden Füße. Andere Bereiche des Reifens, wie die mondsichelförmige Notlaufeinlage im Seitenwandbereich (SSR-Insert), sollen im Normallauf des Reifens eine übliche Härte und Steifigkeit (Modul) aufweisen, damit Fahrkomfort, Handling und Rollwiderstand nicht negativ beeinflusst werden, im Pannenfall – also beim Fahren mit stark vermindertem Luftdruck – soll der Bereich aber über eine möglichst große Härte verfügen, damit der Reifen nicht auf der Felge läuft und dadurch vollständig zerstört wird.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, Kautschukmischungen bereit zu stellen, die sich gut und mit geringem Energieverbrauch verarbeiten, d. h. mischen und extrudieren, lassen und eine gute Füllstoffverteilung aufweisen, aber gleichzeitig im gewünschten Einsatzfall eine hohe Härte und eine hohe Steifigkeit (hoher Spannungswert bei Dehnung, hoher Modul) aufweisen.
  • Gelöst wird diese Aufgabe erfindungsgemäß dadurch, dass die mit Schwefel vulkanisierbare Kautschukmischung
    • – zumindest ein Dienelastomer,
    • – zumindest einen Füllstoff,
    • – zumindest ein als Weichmacher wirkendes Polymer, welches mit einem Di- oder Polyisocyanat zu Polyurethan vernetzt werden kann, und
    • – zumindest ein geblocktes Di- oder Polyisocyanat, welches erst bei Temperaturen von > 140 °C zurückgespalten wird, enthält.
  • Der Grundgedanke der Erfindung ist darin zu sehen, dass sich die Mischung durch den zudosierten Weichmacher zunächst gut verarbeiten und extrudieren lässt und eine gute Füllstoffverteilung aufweist, da die Verarbeitung einer Kautschukmischung bei Temperaturen von weniger als 140 °C stattfindet. Ist die Mischung aber zum Zwischenprodukt verarbeitet, so bildet sich später, wenn das Produkt auf Temperaturen über 140 °C erhitzt wird, z. B. bei der Vulkanisation oder im Pannenfall in der Notlaufeinlage, zusätzlich zum Schwefelnetzwerk ein weiteres interpenetrierendes Netzwerk aus Polyurethan aus. Das Di- oder Polyisocyanat wird dann aufgespalten und reagiert mit den dem als Weichmacher wirkenden Polymer. Dieses zusätzliche Netzwerk erhöht die Härte und Steifigkeit des Vulkanisates. Die gesamte Netzwerkdichte ist im Vergleich zum reinen Schwefelnetzwerk erhöht.
  • Die Bildung des zusätzlichen Netzwerkes kann je nach verwendetem geblockten Di- oder Polyisocyanat und dessen Spaltungstemperatur bereits bei der Vulkanisation erfolgen, so dass man harte Vulkanisate erhält. Dies ist z. B. vorteilhaft für Mischungen für den Apex und/oder den Humpstreifen von Fahrzeugluftreifen oder für die Mischung eines Notlaufstützringes, die die im Pannenfall mit der unter dem Laufstreifen liegenden Innenseite des Reifens in Berührung kommt.
  • Es ist aber auch möglich, dass das geblockte Di- oder Polyisocyanat sich erst bei Temperaturen oberhalb der Vulkanisationstemperatur spaltet, so dass die Bildung des zusätzlichen Netzwerkes und damit die Verhärtung des Vulkanisates erst bei höheren Temperaturen stattfindet. Dies ist z. B. bevorzugt, wenn die Mischung für die Notlaufeinlage eines Fahrzeugluftreifens eingesetzt wird. Erst im Pannenfall, wo durch das Walken der Seitenwand Temperaturen von mehr als 180 °C in der Reifenseitenwand gemessen werden, härtet die Einlage durch Bildung des Polyurethannetzwerkes nach und stützt den Reifen, während im normalen Fahrbetrieb die Mischung eine für Seitenwände normale Härte für guten Komfort und gutes Handling aufweist.
  • Die schwefelvernetzbare Kautschukmischung enthält zumindest einen Dienkautschuk. Zu den Dienkautschuken zählen alle Kautschuke mit einer ungesättigten Kohlenstoffkette, die sich zumindest teilweise von konjugierten Dienen ableiten. Besonders bevorzugt ist, wenn der Dienkautschuk oder die Dienkautschuke ausgewählt ist bzw. sind aus der Gruppe, bestehend aus Naturkautschuk (NR), synthetischem Polyisopren (IR), Polybutadien (BR) und Styrol-Butadien-Copolymer (SBR). Diese Dienelastomere lassen sich gut zu der erfindungsgemäßen Kautschukmischung verarbeiten und ergeben in den vulkanisierten Reifen gute Reifeneigenschaften.
  • Die Kautschukmischung kann als Dienkautschuk Polyisopren (IR, NR) enthalten. Dabei kann es sich sowohl um cis-1,4-Polyisopren als auch um 3,4-Polyisopren handeln. Bevorzugt ist allerdings die Verwendung von cis-1,4-Polyisoprenen mit einem cis-1,4-Anteil > 90 Gew.-%. Zum einen kann solch ein Polyisopren durch stereospezifische Polymerisation in Lösung mit Ziegler-Natta-Katalysatoren oder unter Verwendung von fein verteilten Lithiumalkylen erhalten werden. Zum anderen handelt es sich bei Naturkautschuk (NR) um ein solches cis-1,4 Polyisopren, der cis-1,4-Anteil im Naturkautschuk ist größer 99 Gew.-%.
  • Enthält die Kautschukmischung als Dienkautschuk Polybutadien (BR), kann es sich dabei sowohl um cis-1,4- als auch um 1,2-Polybutadien (sowohl in syndiotaktischer als auch in ataktischer Form) handeln. Bevorzugt ist die Verwendung von cis-1,4-Polybutadien mit einem cis-1,4-Anteil größer 90 Gew.-%, welches z. B. durch Lösungspolymerisation in Anwesenheit von Katalysatoren vom Typ der seltenen Erden hergestellt werden kann.
  • Bei dem Styrol-Butadien-Copolymer kann es sich um lösungspolymerisiertes Styrol-Butadien-Copolymer (S-SBR) mit einem Styrolgehalt, bezogen auf das Polymer, von ca. 10 bis 45 Gew.-% und einem Vinylgehalt (Gehalt an 1,2-gebundenem Butadien, bezogen auf das gesamte Polymer) von 10 bis 70 Gew.-% handeln, welches zum Beispiel unter Verwendung von Lithiumalkylen in organischem Lösungsmittel hergestellt werden kann. Die S-SBR können auch gekoppelt und endgruppenmodifiziert sein. Es können aber auch emulsionspolymerisiertes Styrol-Butadien-Copolymer (E-SBR) sowie Mischungen aus E-SBR und S-SBR eingesetzt werden. Der Styrolgehalt des E-SBR beträgt ca. 15 bis 50 Gew.-% und es können die aus dem Stand der Technik bekannten Typen, die durch Copolymerisation von Styrol und 1,3-Butadien in wässriger Emulsion erhalten wurden, verwendet werden.
  • Zusätzlich zu den genannten Dienkautschuken kann die Mischung aber auch noch andere Kautschuktypen, wie z. B. Styrol-Isopren-Butadien-Terpolymer, Isopren-Butadien-Kautschuk, Butylkautschuk, Halobutylkautschuk oder Ethylen-Propylen-Dien-Kautschuk (EPDM), enthalten.
  • Die erfindungsgemäße Kautschukmischung enthält zumindest einen Füllstoff in üblichen Mengen. Es kann sich dabei z. B. um Ruß, Kieselsäure, Aluminiumoxide, Alumosilicate, Aluminiumhydroxid, Schichtsilikate, Kreide, Stärke, Magnesiumoxid, Titandioxid und/oder Kautschukgele in den Fachmann bekannten Mengen handeln. Zur Verbesserung der Verarbeitbarkeit und zur Anbindung eines polaren Füllstoffes kann die Mischung geeignete Kupplungsagenzien, wie z. B. Silan-Kupplungsagenzien, enthalten.
  • Bei dem in der Kautschukmischung enthaltenen Polymer, welches mit einem Di- oder Polyisocyanat zu Polyurethan vernetzt werden kann, kann es sich um Di- oder Polyole, z. B. um flüssiges, mit OH-Gruppen-modifizertes Polybutadien oder Polyester- oder Polyetherpolyole, handeln.
  • Als geblockte Di- oder Polyisocyanate können z. B. solche auf der Basis von Toluylen-diisocyanat (TDI), Hexemethylen-diisocyanat (HDI) oder Methylendiphenylen-diisocyanat (MDI) eingesetzt werden, die aus der Polyurethanchemie bekannt sind.
  • Gemäß einer vorteilhaften Weiterbildung der Erfindung wird das als Weichmacher wirkende Polymer, welches mit einem Di- oder Polyisocyanat zu Polyurethan vernetzt werden kann, in einer Menge von 2 bis 30 phr, vorzugsweise 4 bis 15 phr, in der Kautschukmischung eingesetzt. Hinsichtlich der Weichmacherwirkung ergeben sich so die besten Effekte, ohne dass andere Eigenschaften der Mischung und der Vulkanisate wesentlich verändert werden.
  • Die in dieser Schrift verwendete Angabe phr (parts per hundred parts of rubber by weight) ist dabei die in der Kautschukindustrie übliche Mengenangabe für Mischungsrezepturen. Die Dosierung der Gewichtsteile der einzelnen Substanzen wird dabei stets auf 100 Gewichtsteile der gesamten Masse aller in der Mischung vorhandenen Kautschuke bezogen.
  • Das als Weichmacher wirkende Polymer, welches mit einem Di- oder Polyisocyanat zu Polyurethan vernetzt werden kann, weist bevorzugt ein mittleres Molekulargewicht von 500 bis 5000 g/mol, besonders bevorzugt eines von 1000 bis 2500 g/mol, auf. Ab einem Molekulargewicht von mehr als 500 g/mol ist die Diffusion des Weichmachers in den Vulkanisaten gehemmt und der Weichmacher kann nicht hinausdiffundieren, so dass die Eigenschaften der Vulkanisate, bevor sich das zusätzliche Netzwerk bildet, konstant sind. Bei Molekulargewichten von mehr als 5000 g/mol bildet sich aufgrund der geringeren Zahl der Vernetzungsstellen kein ausgeprägtes zusätzliches Netzwerk.
  • Als besonders geeignet im Hinblick auf die Bildung eines zusätzlichen Netzwerkes aus Polyurethan in der Kautschukmischung haben sich Polyesterpolyole erwiesen. Es können beispielsweise Polyesterpolyole aus dimerisierten Fettsäuren mit mehr als 18 Kohlenstoffatomen und kurzkettigen Diolen verwendet werden (Hydroxyl-Zahl > 30). Diese Polyesterpolyole lassen sich einfach einmischen, sind kommerziell in großen Mengen erhältlich (z. B. die Produktgruppe PRIPLAST®, Uniqema, Niederlande).
  • Spaltet sich das geblockte Di- oder Polyisocyanat bei Temperaturen, die oberhalb der Verarbeitungstemperatur der Kautschukmischung aber unterhalb der Vulkanisationstemperatur von Fahrzeugluftreifen von ca. 160 °C liegen, so lassen sich die Mischungen gut verarbeiten, nach Vulkanisation sind die Vulkanisate dann aber hart, da sich das zusätzliche Netzwerk bei der Vulkanisation bereits gebildet hat. Mischungen mit solchen Isocyanaten können z. B. für den Apex oder den Humpstreifen von Fahrzeugluftreifen eingesetzt werden.
  • Spaltet sich das geblockte Di- oder Polyisocyanat jedoch erst bei Temperaturen > 180 °C, also bei Temperaturen, die über der herkömmlichen Vulkanisationstemperatur von Fahrzeugluftreifen liegen, liegen nach der Vulkanisation im Reifen noch unvernetztes Polyol und Di- oder Polyisocyanat vor. Wird der Reifen dann auf mehr als 180 °C erwärmt bildet sich das zusätzlich Netzwerk und das Vulkanisat härtet nach. Geblockte Di- oder Polyisocyanate mit Spaltungstemperaturen von > 180 °C werden bevorzugt in Mischungen für die Notlaufeinlagen im Seitenwandbereich von Fahrzeugluftreifert eingesetzt, da das zusätzliche Netzwerk sich erst im Pannenlauf bildet, wenn der Reifen sich auf Temperaturen über 200 °C erwärmt.
  • Das Di- oder Polyisocyanat wird bevorzugt in einer solchen Menge eingesetzt, dass das zu Polyurethan vernetzende Polymer zum größten Teil mit dem Isocyanat abreagiert, da dann das Polymer nicht mehr als Weichmacher wirken kann. Da Di- oder Polyisocyanat wird daher mit einer Kennzahl von 95 bis 110, vorzugsweise von 100 bis 105, eingesetzt, wobei die Kennzahl das Verhältnis der effektiv eingesetzten zur stöchiometrisch errechneten Isocyanatmenge wiedergibt.
  • Die erfindungsgemäße Kautschukmischung des weiteren übliche Zusatzstoffe in üblichen Gewichtsteilen enthalten. Zu diesen Zusatzstoffen zählen weitere Weichmacher, Alterungsschutzmittel, wie z. B. N-Phenyl-N'-(1,3-dimethylbutyl)-p-phenylendiamin (6PPD), N-Isopropyl-N'-phenyl-p-phenylendiamin (IPPD), 2,2,4-Trimethyl-1,2-dihydrochinolin (TMQ) und andere Substanzen, wie sie beispielsweise aus J. Schnetger, Lexikon der Kautschuktechnik, 2. Auflage, Hüthig Buch Verlag, Heidelberg, 1991, S. 42-48 bekannt sind, Aktivatoren, wie z. B. Zinkoxid und Fettsäuren (z. B. Stearinsäure), Wachse, Harze und Mastikationshilfsmittel, wie z. B. 2,2'-Dibenzamidodiphenyldisulfid (DBD).
  • Die Vulkanisation wird in Anwesenheit von Schwefel oder Schwefelspendern durchgeführt, wobei einige Schwefelspender zugleich als Vulkanisationsbeschleuniger wirken können. Schwefel oder Schwefelspender werden im letzten Mischungsschritt in den vom Fachmann gebräuchlichen Mengen der Kautschukmischung zugesetzt.
  • Des Weiteren kann die Kautschukmischung vulkanisationsbeeinflussende Substanzen wie Vulkanisationsbeschleuniger, Vulkanisationsverzögerer und Vulkanisationsaktivatoren in üblichen Mengen enthalten, um die erforderliche Zeit und/oder die erforderliche Temperatur der Vulkanisation zu kontrollieren und die Vulkanisateigenschaften zu verbessern. Die Vulkanisationsbeschleuniger können dabei zum Beispiel ausgewählt sein aus folgenden Beschleunigergruppen: Thiazolbeschleuniger wie z. B. 2-Mercaptobenzothiazol, Sulfenamidbeschleuniger wie z. B. Benzothiazyl-2-cyclohexylsulfenamid (CBS), Guanidinbeschleuniger wie z. B. N,N'-Diphenylguanidin (DPG), Dithiocarbamatbeschleuniger wie z. B. Zinkdibenzyldithiocarbamat, Disulfiden, Thiophosphaten oder Thiurambeschleunigern. Die Beschleuniger können auch in Kombination miteinander eingesetzt werden, wobei sich synergistische Effekte ergeben können.
  • Bildet sich das Polyurethannetzwerk bereits bei der Vulkanisation aus, ist es bei gleichbleibenden Vulkanisateigenschaften möglich, die Menge des Vulkanisationssystems aus Schwefel und vulkanisationsbeeinflussender Substanz zu reduzieren.
  • Die Herstellung der erfindungsgemäßen Kautschukmischung erfolgt auf herkömmliche An und Weise, wobei zunächst in der Regel eine Grundmischung, die sämtliche Bestandteile mit Ausnahme des Vulkanisationssystems (Schwefel und vulkanisationsbeeinflussende Stoffe) enthält, in ein oder mehreren Mischstufen hergestellt wird und im Anschluss durch Zugabe des Vulkanisationssystems die Fertigmischung erzeugt wird. Das als Weichmacher wirkende Polymer, welches mit einem Di- oder Polyisocyanat zu Polyurethan vernetzt werden kann, wird der Grundmischung zu dosiert. Das geblockte Di- oder Polyisocyanat kann der Grundmischung bevorzugt aber der Fertigmischung zudosiert werden.
  • Anschließend wird die Mischung weiterverarbeitet, z. B. durch einen Extrusionsvorgang, und in die entsprechende Form, z. B. einer Notlaufeinlage oder eines Apex gebracht. Ein so erzeugtes Bauteil wird bei der Herstellung des Fahrzeugluftreifenrohlings oder eines Notlaufstützringes, wie bekannt, verbaut.
  • Fahrzeugluftreifen, die deren Apex oder Humpstreifen auf der erfindungsgemäßen Mischung basieren, zeichnen sich durch eine gute Haltbarkeit aus. Besitzen Fahrzeugluftreifen im Seitenwandbereich eine Notlaufeinlage, die auf der erfindungsgemäßen Mischung mit geblockten Di-oder Polyisocyanaten, die erst bei Temperaturen von > 180 °C zurückspalten, basiert, weist der Reifen im normalen Fahrbetrieb einen guten Komfort und ein gutes Handlingverhalten auf. Im Pannenfall gewährleistet dann die sich verhärtende Einlage einen optimalen Pannenlauf über weite Strecken.
  • Notlaufstützringe, deren im Pannenfall mit der unter dem Laufstreifen liegenden Innenseite des Reifens in Berührung kommende Flächen Lagen aus der mit Schwefel vulkanisierten Kautschukmischung aufweisen, gewährleisten im Pannenfall gute Notlaufeigenschaften.
  • Die Erfindung soll nun anhand von Vergleichs- und Ausführungsbeispielen, die in den Tabellen 1 und 2 zusammengefasst sind, näher erläutert werden.
  • Bei sämtlichen in der Tabelle 1 enthaltenen Mischungsbeispielen sind die angegebenen Mengenangaben Gewichtsteile, die auf 100 Gewichtsteile Gesamtkautschuk bezogen sind (phr). Die Vergleichsmischungen sind mit V gekennzeichnet, die erfindungsgemäßen Mischungen sind mit E gekennzeichnet.
  • Die Mischungsherstellung erfolgte unter üblichen Bedingungen in zwei Stufen in einem Labortangentialmischer. Das als Weichmacher wirkende Polymer wurde in die Grundmischung, das geblockte Diisocyanat wurde in die Fertigmischung eingemischt. Die Mooney-Viskositäten der Mischungen wurden gemäß DIN 53523 mit einem Scherscheibenviskosimeter bei 100 °C bestimmt. Aus sämtlichen Mischungen wurden Prüfkörper durch 5-minütige Vulkanisation unter Druck bei 160 °C hergestellt und mit diesen Prüfkörpern für die Kautschukindustrie typische Materialeigenschaften bestimmt, die in der Tabelle 2 aufgelistet sind. Die gleichen Eigenschaften wurden auch nach 2-stündiger Alterung in Luft bei 210 °C als Simulation des Pannenfalls gemessen. Für die Tests an Prüfkörpern wurden folgende Testverfahren angewandt:
    • • Shore-A-Härte bei Raumtemperatur gemäß DIN 53 505
    • • Zugfestigkeit bei Raumtemperatur gemäß DIN 53 504
    • • Reißdehnung bei Raumtemperatur gemäß DIN 53 504
    • • Spannungswerte bei 50 % statischer Dehnung bei Raumtemperatur gemäß DIN 53 504
    • • dynamischer Speichermodul E' bei 55 °C gemäß DIN 53 513 aus Messung mit Variation der dynamischen Verformungsamplitude von 0,2 % bis 10 % Verformung in Kompression mit 10 Hz dynamischer Verformungsfrequenz bei 55 °C und einer Vorkompression von 20 %
    Tabelle 1
    Figure 00100001
    • aHigh-cis Polybutadien vom Nd-Typ
    • bPolyester aus dimerisierter C18-Fettsäure und niedermolekularem Diol, MG 1300 g/mol, Hydroxyl-Zahl 88, TG ca. –50 °C, Smp. –20 °C, Sdp. > 200 °C, Fp. 230 °C, Priplast 3198, Uniqema, Niederlande
    • c Polyester aus dimerisierter C18-Fettsäure und niedermolekularem Diol, MG 2000 g/mol, Hydroxyl-Zahl 60, TG–55 °C, Smp. < –20 °C, Sdp. > 200 °C, Fp. 300 °C, Priplast 3190, Uniqema, Niederlande
    • d geblocktes Diisocyanat der Basis von MDI mit einer Spaltungstemperatur > 140 °C, Novor® 950, Elgem Technology, UK
    • egeblocktes Diisocyanat der Basis von TDI mit einer Spaltungstemperatur > 180 °C, Desmodur® BL 1100, Bayer, Deutschland
  • Tabelle 2
    Figure 00110001
  • Aus der Tabelle 2 wird ersichtlich, dass die Mischungen sich gut verarbeiten lassen und nach der Vulkanisation (3E) bzw. nach Alterung bei 210 °C (5E) eine hohe Härte und einen hohen Modul bei 50 % Dehnung aufweisen. Bildet sich das zusätzliche Polyurethannetzwerk bereits bei der Vulkanisation, kann die Menge an Schwefel im Vergleich zur herkömmlichen Mischung 1V reduziert werden, ohne dass die Härte reduziert wird. Die Mischung 5E zeichnet sich besonders dadurch aus, dass die Vulkanisate zunächst die gleiche Härte wie bei der Vergleichsmischung 4V aufweisen, nach der Alterung, die den Pannenlauf simuliert, jedoch eine deutlich höhere Härte als die 4V zeigen, da bei der 5E das Polyurethannetzwerk erst bei Temperaturen, die höher als die Vulkanisationstemperatur liegen und wie sie im Pannenlauf auftauchen, gebildet wird.

Claims (8)

  1. Mit Schwefel vulkanisierbare Kautschukmischung, enthaltend – zumindest ein Dienelastomer, – zumindest einen Füllstoff, – zumindest ein als Weichmacher wirkendes Polymer, welches mit einem Di- oder Polyisocyanat zu Polyurethan vernetzt werden kann, und – zumindest ein geblocktes Di- oder Polyisocyanat, welches erst bei Temperaturen von > 140 °C zurückgespalten wird.
  2. Kautschukmischung nach Anspruch 1, dadurch gekennzeichnet, dass sie 2 bis 30 phr, vorzugsweise 4 bis 15 phr, des Polymers, welches mit einem Di- oder Polyisocyanat zu Polyurethan vernetzt werden kann, enthält.
  3. Kautschukmischung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Polymer, welches mit einem Di- oder Polyisocyanat zu Polyurethan vernetzt werden kann, ein mittleres Molekulargewicht von 500 bis 5000 g/mol aufweist.
  4. Kautschukmischung nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Polymer, welches mit einem Di- oder Polyisocyanat zu Polyurethan vernetzt werden kann, ein Polyesterpolyol ist.
  5. Kautschukmischung nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das geblockte Di- oder Polyisocyanat erst bei Temperaturen von > 180 °C zurückgespalten wird.
  6. Kautschukmischung nach zumindest einem der Ansprüche , dadurch gekennzeichnet, dass das Di- oder Polyisocyanat mit einer Kennzahl von 95 bis 110, vorzugsweise 100 bis 105, vorliegt.
  7. Fahrzeugluftreifen, dessen Notlaufeinlage im Seitenwandbereich, dessen Apex und/oder dessen Humpstreifen aus einer mit Schwefel vulkanisierten Kautschukmischung nach zumindest einem der Ansprüche 1 bis 6 besteht.
  8. Notlaufstützring für Fahrzeugluftreifen, dessen den Kontakt zur Felge herstellende Füße aus einer mit Schwefel vulkanisierten Kautschukmischung nach zumindest einem der Ansprüche 1 bis 6 bestehen.
DE102004059775.8A 2004-12-11 2004-12-11 Kautschukmischung sowie deren Verwendung für Fahrzeugluftreifen Expired - Fee Related DE102004059775B4 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102004059775.8A DE102004059775B4 (de) 2004-12-11 2004-12-11 Kautschukmischung sowie deren Verwendung für Fahrzeugluftreifen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102004059775.8A DE102004059775B4 (de) 2004-12-11 2004-12-11 Kautschukmischung sowie deren Verwendung für Fahrzeugluftreifen

Publications (2)

Publication Number Publication Date
DE102004059775A1 true DE102004059775A1 (de) 2006-06-14
DE102004059775B4 DE102004059775B4 (de) 2015-06-25

Family

ID=36500230

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102004059775.8A Expired - Fee Related DE102004059775B4 (de) 2004-12-11 2004-12-11 Kautschukmischung sowie deren Verwendung für Fahrzeugluftreifen

Country Status (1)

Country Link
DE (1) DE102004059775B4 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2657281A1 (de) * 2012-04-27 2013-10-30 Cytec Surface Specialties Germany GmbH Gummizusammensetzungen
CN104558710A (zh) * 2015-01-23 2015-04-29 孟红琳 一种用于轮胎三角胶的橡胶材料的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4567093A (en) * 1983-04-25 1986-01-28 Achilles Corporation Rubber coated fabric
DE60019271T2 (de) * 1999-02-18 2006-02-09 Bridgestone Corp. Elastomere zusammensetzungen für dämpfung
DE10108165C1 (de) * 2001-02-20 2003-01-30 Contitech Antriebssysteme Gmbh Zusammensetzung für eine antistatische Schicht auf der Oberfläche von Produkten aus Gummi

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2657281A1 (de) * 2012-04-27 2013-10-30 Cytec Surface Specialties Germany GmbH Gummizusammensetzungen
WO2013160482A1 (en) * 2012-04-27 2013-10-31 Cytec Surface Specialties Germany Gmbh Rubber compositions
CN104245814A (zh) * 2012-04-27 2014-12-24 湛新德国有限公司 橡胶组合物
CN104245814B (zh) * 2012-04-27 2016-11-09 湛新德国有限公司 橡胶组合物
TWI582155B (zh) * 2012-04-27 2017-05-11 湛新德國有限公司 在調合期間減少橡膠混合物黏度的方法
EA031554B1 (ru) * 2012-04-27 2019-01-31 Аллнэкс Джермани Гмбх Резиновые композиции
CN104558710A (zh) * 2015-01-23 2015-04-29 孟红琳 一种用于轮胎三角胶的橡胶材料的制备方法
CN104558710B (zh) * 2015-01-23 2016-06-29 银川博聚工业产品设计有限公司 一种用于轮胎三角胶的橡胶材料的制备方法

Also Published As

Publication number Publication date
DE102004059775B4 (de) 2015-06-25

Similar Documents

Publication Publication Date Title
DE69914033T2 (de) Reifen mit durch Kieselsäure verstärkter Lauffläche oder Seitenwandkomponente
DE60011010T2 (de) Reifen mit durch Kieselsäure verstärkter Lauffläche, die aus trans 1,4-Polybutadien, Lösungs-SBR, Polyisopren und definierten Mengen Russ und amorpher Kieselsäure besteht
EP1808456B1 (de) Kautschukmischung und Reifen
EP2092013B1 (de) Kautschukmischung und reifen
DE602004008519T2 (de) Reifen mit einer Lauffläche aus einer naturgummireichen Gummimischung
EP1777260B1 (de) Kautschukmischung und Reifen
EP2065221B1 (de) Kautschukmischung und Reifen
EP2743301A1 (de) Schwefelvernetzbare Kautschukmischung
EP2082899B1 (de) Kautschukmischung mit verbesserter Tieftemperaturflexibilität
DE10228537A1 (de) Gummizusammensetzung
EP1893677B1 (de) Kautschukmischung und reifen
DE69928035T2 (de) Elastomermischung und ihre Verwendung in Reifen
EP2662402B1 (de) Kautschukmischung
EP1526002B1 (de) Fahrzeugluftreifen
DE102004059775B4 (de) Kautschukmischung sowie deren Verwendung für Fahrzeugluftreifen
EP3219510B1 (de) Mit schwefel vernetzbare gummierungsmischung
EP1589068B1 (de) Kautschukmischung enthaltender Reifen
DE60200048T2 (de) Kautschukzusammensetzung enthaltend ein aromatisches Pentaerythritolderivat sowie daraus hergestellte Reifenkomponten
EP2080782A1 (de) Kautschukmischung mit verbesserter Steifigkeit
EP1439205B1 (de) Kautschukmischung und Reifen
EP2236315B1 (de) Kautschukmischung
EP1253167A1 (de) Kautschukmischung für Laufstreifen von Reifen
EP1529803B1 (de) Gummierungsmischung für metallische Festigkeitsträger und Fahrzeugluftreifen mit einer solchen Gummierungsmischung
WO2020043407A1 (de) Fahrzeugluftreifen
DE102009044871A1 (de) Kautschukmischung

Legal Events

Date Code Title Description
8127 New person/name/address of the applicant

Owner name: CONTINENTAL REIFEN DEUTSCHLAND GMBH, 30165 HAN, DE

8110 Request for examination paragraph 44
R016 Response to examination communication
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee