DE102004049291A1 - Neue Oxadiazinon-Derivate und ihre Verwendung - Google Patents

Neue Oxadiazinon-Derivate und ihre Verwendung Download PDF

Info

Publication number
DE102004049291A1
DE102004049291A1 DE102004049291A DE102004049291A DE102004049291A1 DE 102004049291 A1 DE102004049291 A1 DE 102004049291A1 DE 102004049291 A DE102004049291 A DE 102004049291A DE 102004049291 A DE102004049291 A DE 102004049291A DE 102004049291 A1 DE102004049291 A1 DE 102004049291A1
Authority
DE
Germany
Prior art keywords
formula
alkyl
hydrogen
compound
phenyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102004049291A
Other languages
English (en)
Inventor
Elke Dr. Dittrich-Wengenroth
Lars Dr. Bärfacker
Axel Dr. Kretschmer
Claudia Dr. Hirth-Dietrich
Peter Dr. Ellinghaus
Martin Dr. Raabe
Hilmar Dr. Bischoff
Christian Dr. Pilger
Ulrich Dr. Rosentreter
Stephan Dr. Bartel
Klemens Dr. Lustig
Armin Dr. Kern
Dieter Dr. Lang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer Healthcare AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Healthcare AG filed Critical Bayer Healthcare AG
Priority to DE102004049291A priority Critical patent/DE102004049291A1/de
Priority to JP2007535055A priority patent/JP2008515827A/ja
Priority to CA002583302A priority patent/CA2583302A1/en
Priority to PCT/EP2005/010404 priority patent/WO2006040002A1/de
Priority to EP05786857A priority patent/EP1802594A1/de
Publication of DE102004049291A1 publication Critical patent/DE102004049291A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D273/00Heterocyclic compounds containing rings having nitrogen and oxygen atoms as the only ring hetero atoms, not provided for by groups C07D261/00 - C07D271/00
    • C07D273/02Heterocyclic compounds containing rings having nitrogen and oxygen atoms as the only ring hetero atoms, not provided for by groups C07D261/00 - C07D271/00 having two nitrogen atoms and only one oxygen atom
    • C07D273/04Six-membered rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Diabetes (AREA)
  • Urology & Nephrology (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

Die vorliegende Anmeldung betrifft neue 1,3,4-Oxadiazin-5-on-Derivate, Verfahren zu ihrer Herstellung, ihre Verwendung zur Behandlung und/oder Prophylaxe von Krankheiten sowie ihre Verwendung zur Herstellung von Arzneimitteln zur Behandlung und/oder Prophylaxe von Krankheiten, vorzugsweise zur Behandlung und/oder Prävention kardiovaskulärer Erkrankungen, insbesondere von Dyslipidämien und Arteriosklerose.

Description

  • Die vorliegende Anmeldung betrifft neue 1,3,4-Oxadiazin-5-on-Derivate, Verfahren zu ihrer Herstellung, ihre Verwendung zur Behandlung und/oder Prophylaxe von Krankheiten sowie ihre Verwendung zur Herstellung von Arzneimitteln zur Behandlung und/oder Prophylaxe von Krankheiten, vorzugsweise zur Behandlung und/oder Prävention kardiovaskulärer Erkrankungen, insbesondere von Dyslipidämien und Arteriosklerose.
  • Trotz vielfacher Therapieerfolge bleiben kardiovaskuläre Erkrankungen ein ernstes Problem der öffentlichen Gesundheit. Während die Behandlung mit Statinen durch Hemmung der HMG-CoA-Reduktase sehr erfolgreich sowohl die Plasmakonzentrationen von LDL-Cholesterin (LDL-C) als auch die Mortalität von Risikopatienten senken, so fehlen heute überzeugende Behandlungsstrategien zur Therapie von Patienten mit ungünstigem HDL-C/LDL-C-Verhältnis oder der Hypertriglyceridämie.
  • Fibrate stellen neben Niacin bisher die einzige Therapieoption für Patienten dieser Risikogruppen dar. Sie senken erhöhte Triglyceride um 20-50%, erniedrigen LDL-C um 10-15%, verändern die LDL-Partikelgröße von atherogenem LDL geringer Dichte zu normal dichtem und weniger atherogenem LDL und erhöhen die HDL-Konzentration um 10-15%.
  • Fibrate wirken als schwache Agonisten des Peroxisom-Proliferator-aktivierten Rezeptors (PPAR)-alpha (Nature 1990, 347, 645-50). PPAR-alpha ist ein nukleärer Rezeptor, der die Expression von Zielgenen durch Bindung an DNA-Sequenzen im Promoter-Bereich dieser Gene [auch PPAR Response-Elemente (PPRE) genannt] reguliert. PPREs sind in einer Reihe von Genen identifiziert worden, welche für Proteine kodieren, die den Lipid-Metabolismus regulieren. PPAR-alpha ist hoch in der Leber exprimiert und seine Aktivierung führt unter anderem zu einer gesenkten VLDL-Produktion/-Sekretion sowie zu einer reduzierten Apolipoprotein CIII (ApoCIII)-Synthese. Im Gegensatz dazu wird die Synthese von Apolipoprotein Al (ApoAl) gesteigert.
  • Ein Nachteil von bisher zugelassenen Fibraten ist ihre nur schwache Interaktion mit dem Rezeptor (EC50 im μM-Bereich), was wiederum zu den oben beschriebenen relativ geringen pharmakologischen Effekten führt.
  • Aufgabe der vorliegenden Erfindung war die Bereitstellung neuer Verbindungen, die als PPAR-alpha-Modulatoren zur Behandlung und/oder Prävention insbesondere kardiovaskulärer Erkrankungen eingesetzt werden können.
  • PPAR-alpha-Agonisten mit 1,2,4-Triazol-3-on-Partialstruktur werden in WO 02/38553 beschrieben. 1,3,4-Oxadiazol-2-on-Derivate als PPAR-alpha-Agonisten werden in WO 03/043997 offenbart.
  • Gegenstand der vorliegenden Erfindung sind Verbindungen der allgemeinen Formel (I)
    Figure 00020001
    in welcher
    Y und Z unabhängig voneinander jeweils für O oder S stehen,
    m für die Zahl 0, 1 oder 2 steht,
    n für die Zahl 1 oder 2 steht,
    R1 für (C6-C10)-Aryl oder 5- bis 10-gliedriges Heteroaryl steht, welche jeweils bis zu vierfach, gleich oder verschieden, mit Substituenten ausgewählt aus der Reihe Halogen, Nitro, Cyano, (C1-C6)-Alkyl, das seinerseits mit Hydroxy substituiert sein kann, (C3-C8)-Cycloalkyl, Phenyl, Hydroxy, (C1-C6)-Alkoxy, Trifluormethyl, Trifluormethoxy, Amino, Mono- und Di-(C1-C6)-alkylamino, R8-C(O)-NH-, R9-C(O)-, R10R11N-C(O)-NH- und R12R13N-C(O)- substituiert sein können, worin
    R8 Wasserstoff, (C1-C6)-Alkyl, (C3-C8)-Cycloalkyl, Phenyl oder (C1-C6)-Alkoxy bedeutet,
    R9 Wasserstoff, (C1-C6)-Alkyl, (C3-C8)-Cycloalkyl, Phenyl, Hydroxy oder (C1-C6)-Alkoxy bedeutet
    und
    R10, R11, R12 und R13 gleich oder verschieden sind und unabhängig voneinander Wasserstoff, (C1-C6)-Alkyl, (C3-C8)-Cycloalkyl oder Phenyl bedeuten,
    R2 für Wasserstoff, (C6-C10)-Aryl, (C2-C6)-Alkyl, (C2-C6)-Alkenyl oder (C2-C6)-Alkinyl steht, worin Alkyl, Alkenyl und Alkinyl jeweils mit Trifluormethyl, (C1-C6)-Alkoxy, Trifluor methoxy, Fluor, Cyano, (C6-C10)-Aryl oder 5- oder 6-gliedrigem Heteroaryl substituiert sein können, wobei alle genannten Aryl- und Heteroaryl-Gruppen ihrerseits jeweils bis zu dreifach, gleich oder verschieden, mit Substituenten ausgewählt aus der Reihe Halogen, Nitro, Cyano, (C1-C6)-Alkyl, Hydroxy, (C1-C6)-Alkoxy, Trifluormethyl und Trifluormethoxy substituiert sein können,
    R3 und R4 gleich oder verschieden sind und unabhängig voneinander für Wasserstoff, (C1-C6)-Alkyl, (C2-C6)-Alkenyl, (C1-C6)-Alkoxy, Trifluormethyl, Trifluormethoxy oder Halogen stehen,
    R5 und R6 gleich oder verschieden sind und unabhängig voneinander für Wasserstoff, (C1-C6)-Alkyl, (C1-C6)-Alkoxy oder Phenoxy stehen oder gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen (C3-C8)-Cycloalkylring bilden,
    und
    R7 für eine Gruppe der Formel -NHR14 oder -OR15 steht, worin
    R14 Wasserstoff, (C1-C6)-Alkyl oder (C1-C6)-Alkylsulfonyl bedeutet
    und
    R15 Wasserstoff bedeutet oder für eine hydrolysierbare Gruppe steht, die in die entsprechende Carbonsäure umgewandelt werden kann,
    sowie ihre Salze, Solvate und Solvate der Salze.
  • Im Rahmen der Erfindung bedeutet in der Definition von R15 eine hydrolysierbare Gruppe eine Gruppe, die insbesondere im Körper zu einer Umwandlung der -C(O)OR15-Gruppierung in die entsprechende Carbonsäure (R15 = Wasserstoff) führt. Solche Gruppen sind beispielhaft und vorzugsweise Benzyl, (C1-C6)-Alkyl oder (C3-C8)-Cycloalkyl, die jeweils gegebenenfalls ein- oder mehrfach, gleich oder verschieden, mit Halogen, Hydroxy, Amino, (C1-C6)-Alkoxy, Carboxyl, (C1-C6)-Alkoxycarbonyl, (C1-C6)-Alkoxycarbonylamino oder (C1-C6)-Alkanoyloxy substituiert sind, oder insbesondere (C1-C4)-Alkyl, das gegebenenfalls ein- oder mehrfach, gleich oder verschieden, mit Halogen, Hydroxy, Amino, (C1-C4)-Alkoxy, Carboxyl, (C1-C4)-Alkoxycarbonyl, (C1-C4)-Alkoxycarbonylamino oder (C1-C4)-Alkanoyloxy substituiert ist.
  • Erfindungsgemäße Verbindungen sind die Verbindungen der Formel (I) und deren Salze, Solvate und Solvate der Salze, die von Formel (I) umfassten Verbindungen der nachfolgend genannten Formeln und deren Salze, Solvate und Solvate der Salze sowie die von Formel (I) umfassten, nach folgend als Ausführungsbeispiele genannten Verbindungen und deren Salze, Solvate und Solvate der Salze, soweit es sich bei den von Formel (I) umfassten, nachfolgend genannten Verbindungen nicht bereits um Salze, Solvate und Solvate der Salze handelt.
  • Die erfindungsgemäßen Verbindungen können in Abhängigkeit von ihrer Struktur in stereoisomeren Formen (Enantiomere, Diastereomere) existieren. Die Erfindung umfasst deshalb die Enantiomeren oder Diastereomeren und ihre jeweiligen Mischungen. Aus solchen Mischungen von Enantiomeren und/oder Diastereomeren lassen sich die stereoisomer einheitlichen Bestandteile in bekannter Weise isolieren.
  • Sofern die erfindungsgemäßen Verbindungen in tautomeren Formen vorkommen können, umfasst die vorliegende Erfindung sämtliche tautomere Formen.
  • Als Salze sind im Rahmen der vorliegenden Erfindung physiologisch unbedenkliche Salze der erfindungsgemäßen Verbindungen bevorzugt. Umfasst sind auch Salze, die für pharmazeutische Anwendungen selbst nicht geeignet sind, jedoch beispielsweise für die Isolierung oder Reinigung der erfindungsgemäßen Verbindungen verwendet werden können.
  • Physiologisch unbedenkliche Salze der erfindungsgemäßen Verbindungen umfassen Säureadditionssalze von Mineralsäuren, Carbonsäuren und Sulfonsäuren, z.B. Salze der Chlorwasserstoffsäure, Bromwasserstoffsäure, Schwefelsäure, Phosphorsäure, Methansulfonsäure, Ethansulfonsäure, Toluolsulfonsäure, Benzolsulfonsäure, Naphthalindisulfonsäure, Essigsäure, Trifluoressigsäure, Propionsäure, Milchsäure, Weinsäure, Äpfelsäure, Zitronensäure, Fumarsäure, Maleinsäure und Benzoesäure.
  • Physiologisch unbedenkliche Salze der erfindungsgemäßen Verbindungen umfassen auch Salze üblicher Basen, wie beispielhaft und vorzugsweise Alkalimetallsalze (z.B. Natrium- und Kaliumsalze), Erdalkalisalze (z.B. Calcium- und Magnesiumsalze) und Ammoniumsalze, abgeleitet von Ammoniak oder organischen Aminen mit 1 bis 16 C-Atomen, wie beispielhaft und vorzugsweise Ethylamin, Diethylamin, Triethylamin, Ethyldiisopropylamin, Monoethanolamin, Diethanolamin, Triethanolamin, Dicyclohexylamin, Dimethylaminoethanol, Prokain, Dibenzylamin, N-Methylmorpholin, Arginin, Lysin, Ethylendiamin und N-Methylpiperidin.
  • Als Solvate werden im Rahmen der Erfindung solche Formen der erfindungsgemäßen Verbindungen bezeichnet, welche in festem oder flüssigem Zustand durch Koordination mit Lösungsmittelmolekülen einen Komplex bilden. Hydrate sind eine spezielle Form der Solvate, bei denen die Koordination mit Wasser erfolgt. Als Solvate sind im Rahmen der vorliegenden Erfindung Hydrate bevorzugt.
  • Außerdem umfasst die vorliegende Erfindung auch Prodrugs der erfindungsgemäßen Verbindungen. Der Begriff "Prodrugs" umfasst Verbindungen, welche selbst biologisch aktiv oder inaktiv sein können, jedoch während ihrer Verweilzeit im Körper zu erfindungsgemäßen Verbindungen umgesetzt werden (beispielsweise metabolisch oder hydrolytisch).
  • Im Rahmen der vorliegenden Erfindung haben die Substituenten, soweit nicht anders spezifiziert, die folgende Bedeutung:
    (C1-C6)-Alkyl und (C1-C4)-Alkyl stehen im Rahmen der Erfindung für einen geradkettigen oder verzweigten Alkylrest mit 1 bis 6 bzw. 1 bis 4 Kohlenstoffatomen. Bevorzugt ist ein geradkettiger oder verzweigter Alkylrest mit 1 bis 4 Kohlenstoffatomen. Beispielhaft und vorzugsweise seien genannt: Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, iso-Butyl, sec.-Butyl, tert.-Butyl, 1-Ethylpropyl, n-Pentyl und n-Hexyl.
  • (C2-C6)-Alkenyl und (C2-C4)-Alkenyl stehen im Rahmen der Erfindung für einen geradkettigen oder verzweigten Alkenylrest mit 2 bis 6 bzw. 2 bis 4 Kohlenstoffatomen. Bevorzugt ist ein geradkettiger oder verzweigter Alkenylrest mit 2 bis 4 Kohlenstoffatomen. Beispielhaft und vorzugsweise seien genannt: Vinyl, Allyl, Isopropenyl, n-But-2-en-1-yl und 2-Methyl-2-propen-1-yl.
  • (C2-C6)-Alkinyl und (C2-C4)-Alkinyl stehen im Rahmen der Erfindung für einen geradkettigen oder verzweigten Alkinylrest mit 2 bis 6 bzw. 2 bis 4 Kohlenstoffatomen. Bevorzugt ist ein geradkettiger oder verzweigter Alkinylrest mit 2 bis 4 Kohlenstoffatomen. Beispielhaft und vorzugsweise seien genannt: Ethinyl, n-Prop-2-in-1-yl, n-But-2-in-1-yl und n-But-3-in-1-yl.
  • (C3-C8)-Cycloalkyl und (C3-C6)-Cycloalkyl stehen im Rahmen der Erfindung für eine monocyclische Cycloalkylgruppe mit 3 bis 8 bzw. 3 bis 6 Kohlenstoffatomen. Bevorzugt ist ein Cycloalkylrest mit 3 bis 6 Kohlenstoffatomen. Beispielhaft und vorzugsweise seien genannt: Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl und Cycloheptyl.
  • (C6-C10)-Aryl steht im Rahmen der Erfindung für einen aromatischen Rest mit vorzugsweise 6 bis 10 Kohlenstoffatomen. Bevorzugte Arylreste sind Phenyl und Naphthyl.
  • (C1-C6)-Alkoxy und (C1-C4)-Alkoxy stehen im Rahmen der Erfindung für einen geradkettigen oder verzweigten Alkoxyrest mit 1 bis 6 bzw. 1 bis 4 Kohlenstoffatomen. Bevorzugt ist ein geradkettiger oder verzweigter Alkoxyrest mit 1 bis 4 Kohlenstoffatomen. Beispielhaft und vorzugsweise seien genannt: Methoxy, Ethoxy, n-Propoxy, Isopropoxy und tert.-Butoxy.
  • (C1-C6)-Alkoxycarbonyl und (C1-C4)-Alkoxycarbonyl stehen im Rahmen der Erfindung für einen geradkettigen oder verzweigten Alkoxyrest mit 1 bis 6 bzw. 1 bis 4 Kohlenstoffatomen, der über eine Carbonylgruppe verknüpft ist. Bevorzugt ist ein geradkettiger oder verzweigter Alkoxycarbonylrest mit 1 bis 4 Kohlenstoffatomen in der Alkoxy-Gruppe. Beispielhaft und vorzugsweise seien genannt: Methoxycarbonyl, Ethoxycarbonyl, n-Propoxycarbonyl, Isopropoxycarbonyl und tert.-Butoxycarbonyl.
  • (C1-C6)-Alkylsulfonyl steht im Rahmen der Erfindung für einen geradkettigen oder verzweigten Alkylsulfonyl-Rest mit 1 bis 6 Kohlenstoffatomen. Bevorzugt ist ein geradkettiger oder verzweigter Alkylsulfonyl-Rest mit 1 bis 4 Kohlenstoffatomen. Beispielhaft und vorzugsweise seien genannt: Methylsulfonyl, Ethylsulfonyl, n-Propylsulfonyl, Isopropylsulfonyl, n-Butylsulfonyl und tert.-Butylsulfonyl.
  • Mono-(C1-C6)-Alkylamino und Mono-(C1-C4)-Alkylamino stehen im Rahmen der Erfindung für eine Amino-Gruppe mit einem geradkettigen oder verzweigten Alkylsubstituenten, der 1 bis 6 bzw. 1 bis 4 Kohlenstoffatome aufweist. Bevorzugt ist ein geradkettiger oder verzweigter Monoalkylamino-Rest mit 1 bis 4 Kohlenstoffatomen. Beispielhaft und vorzugsweise seien genannt: Methylamino, Ethylamino, n-Propylamino, Isopropylamino und tert.-Butylamino.
  • Di-(C1-C6)-Alkylamino und Di-(C1-C4)-Alkylamino stehen im Rahmen der Erfindung für eine Amino-Gruppe mit zwei gleichen oder verschiedenen geradkettigen oder verzweigten Alkylsubstituenten, die jeweils 1 bis 6 bzw. 1 bis 4 Kohlenstoffatome aufweisen. Bevorzugt sind geradkettige oder verzweigte Dialkylamino-Reste mit jeweils 1 bis 4 Kohlenstoffatomen. Beispielhaft und vorzugsweise seien genannt: N,N-Dimethylamino, N,N-Diethylamino, N-Ethyl-N-methylamino, N-Methyl-N-n-propylamino, N-Isopropyl-N-n-propylamino, N-tert.-Butyl-N-methylamino, N-Ethyl-N-n-pentylamino und N-n-Hexyl-N-methylamino.
  • (C1-C6)-Alkoxycarbonylamino und (C1-C4)-Alkoxycarbonylamino stehen im Rahmen der Erfindung für eine Amino-Gruppe mit einem geradkettigen oder verzweigten Alkoxycarbonyl-Substituenten, der im Alkoxyrest 1 bis 6 bzw. 1 bis 4 Kohlenstoffatome aufweist und über die Carbonylgruppe mit dem Stickstoffatom verknüpft ist. Bevorzugt ist ein Alkoxycarbonylamino-Rest mit 1 bis 4 Kohlenstoffatomen. Beispielhaft und vorzugsweise seien genannt: Methoxycarbonylamino, Ethoxycarbonylamino, n-Propoxycarbonylamino, Isopropoxycarbonylamino und tert.-Butoxycarbonylamino.
  • (C1-C6)-Alkanoyloxy und (C1-C4)-Alkanoyloxy stehen im Rahmen der Erfindung für einen geradkettigen oder verzweigten Alkyl-Rest mit 1 bis 6 bzw. 1 bis 4 Kohlenstoffatomen, der in der 1-Position ein doppelt gebundenes Sauerstoffatom trägt und in der 1-Position über ein weiteres Sauerstoffatom verknüpft ist. Bevorzugt ist ein Alkanoyloxy-Rest mit 1 bis 4 Kohlenstoffatomen.
  • Beispielhaft und vorzugsweise seien genannt: Acetoxy, Propionoxy, n-Butyroxy, i-Butyroxy, Pivaloyloxy und n-Hexanoyloxy.
  • 5- bis 10-gliedriges Heteroaryl steht im Rahmen der Erfindung für einen mono- oder gegebenenfalls bicyclischen aromatischen Heterocyclus (Heteroaromaten) mit bis zu vier gleichen oder verschiedenen Heteroatomen aus der Reihe N, O und/oder S, der über ein Ringkohlenstoffatom oder gegebenenfalls über ein Ringstickstoffatom des Heteroaromaten verknüpft ist. Beispielhaft seien genannt: Furyl, Pyrrolyl, Thienyl, Pyrazolyl, Imidazolyl, Thiazolyl, Oxazolyl, Isoxazolyl, Isothiazolyl, Triazolyl, Oxadiazolyl, Thiadiazolyl, Tetrazolyl, Pyridyl, Pyrimidinyl, Pyridazinyl, Pyrazinyl, Triazinyl, Benzofuranyl, Benzothienyl, Benzimidazolyl, Benzoxazolyl, Benzothiazolyl, Benzotriazolyl, Indolyl, Indazolyl, Chinolinyl, Isochinolinyl, Naphthyridinyl, Chinazolinyl, Chinoxalinyl. Bevorzugt sind monocyclische 5- oder 6-gliedrige Heteroaryl-Reste mit bis zu drei Heteroatomen aus der Reihe N, O und/oder S wie beispielsweise Furyl, Thienyl, Thiazolyl, Oxazolyl, Isothiazolyl, Isoxazolyl, Pyrazolyl, Imidazolyl, Triazolyl, Oxadiazolyl, Thiadiazolyl, Pyridyl, Pyrimidinyl, Pyridazinyl, Pyrazinyl, Triazinyl.
  • Halogen schließt im Rahmen der Erfindung Fluor, Chlor, Brom und Iod ein. Bevorzugt sind Chlor oder Fluor.
  • Wenn Reste in den erfindungsgemäßen Verbindungen substituiert sind, können die Reste, soweit nicht anders spezifiziert, ein- oder mehrfach substituiert sein. Im Rahmen der vorliegenden Erfindung gilt, dass für alle Reste, die mehrfach auftreten, deren Bedeutung unabhängig voneinander ist. Eine Substitution mit ein, zwei oder drei gleichen oder verschiedenen Substituenten ist bevorzugt. Ganz besonders bevorzugt ist die Substitution mit einem Substituenten.
  • Bevorzugt im Rahmen der vorliegenden Erfindung sind Verbindungen der Formel (I), in welcher
    Y für O steht,
    Z für S steht,
    m für die Zahl 0, 1 oder 2 steht,
    n für die Zahl 1 oder 2 steht,
    R1 für Phenyl oder 5- oder 6-gliedriges Heteroaryl steht, welche jeweils bis zu vierfach, gleich oder verschieden, mit Substituenten ausgewählt aus der Reihe Halogen, Nitro, Cyano, (C1-C4)-Alkyl, das seinerseits mit Hydroxy substituiert sein kann, (C3-C6)-Cycloalkyl, Phenyl, Hydroxy, (C1-C4)-Alkoxy, Trifluormethyl, Trifluormethoxy, Amino, Mono- und Di-(C1-C4)-alkylamino, R8-C(O)-NH-, R9-C(O)-, R10R11N-C(O)-NH- und R12R13N-C(O)- substituiert sein können, worin
    R8 Wasserstoff, (C1-C4)-Alkyl, (C3-C6)-Cycloalkyl, Phenyl oder (C1-C4)-Alkoxy bedeutet,
    R9 Wasserstoff, (C1-C4)-Alkyl, (C3-C6)-Cycloalkyl, Phenyl, Hydroxy oder (C1-C4)-Alkoxy bedeutet
    und
    R10, R11, R12 und R13 gleich oder verschieden sind und unabhängig voneinander Wasserstoff, (C1-C4)-Alkyl, (C3-C6)-Cycloalkyl oder Phenyl bedeuten,
    R2 für Wasserstoff, Phenyl, (C1-C4)-Alkyl, (C2-C4)-Alkenyl oder (C2-C4)-Alkinyl steht, worin Alkyl, Alkenyl und Alkinyl jeweils mit Trifluormethyl, Fluor, Cyano, (C1-C4)-Alkoxy, Phenyl oder 5- oder 6-gliedrigem Heteroaryl substituiert sein können, wobei alle genannten Phenyl- und Heteroaryl-Gruppen ihrerseits jeweils bis zu dreifach, gleich oder verschieden, mit Substituenten ausgewählt aus der Reihe Halogen, Nitro, Cyano, (C1-C4)-Alkyl, Hydroxy, (C1-C4)-Alkoxy, Trifluormethyl und Trifluormethoxy substituiert sein können,
    R3 und R4 gleich oder verschieden sind und unabhängig voneinander für Wasserstoff, (C1-C4)-Alkyl, (C1-C4)-Alkoxy, Trifluormethyl, Trifluormethoxy oder Halogen stehen,
    R5 und R6 gleich oder verschieden sind und unabhängig voneinander für Wasserstoff, Methyl, Ethyl, Methoxy, Ethoxy oder Phenoxy stehen oder gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen (C3-C6)-Cycloalkylring bilden,
    und
    R7 für eine Gruppe der Formel -NHR14 oder -OR15 steht, worin
    R14 Wasserstoff oder (C1-C4)-Alkyl bedeutet
    und
    R15 Wasserstoff bedeutet oder für eine hydrolysierbare Gruppe steht, die in die entsprechende Carbonsäure umgewandelt werden kann,
    sowie ihre Salze, Solvate und Solvate der Salze.
  • Besonders bevorzugt im Rahmen der vorliegenden Erfindung sind Verbindungen der Formel (I), in welcher
    Y für O steht,
    Z für S steht,
    m für die Zahl 0 oder 1 steht,
    n für die Zahl 1 oder 2 steht,
    R1 für Phenyl oder Pyridyl steht, welche jeweils ein- oder zweifach, gleich oder verschieden, mit Substituenten ausgewählt aus der Reihe Fluor, Chlor, Nitro, Methyl, Methoxy, Trifluormethyl und Trifluormethoxy substituiert sein können,
    R2 für Wasserstoff, Propargyl oder für (C1-C4)-Alkyl steht, welches mit Fluor, Cyano, (C1-C4)-Alkoxy, Phenyl, Furyl, Thienyl, Oxazolyl, Thiazolyl, Oxadiazolyl oder Thiadiazolyl substituiert sein kann, wobei Phenyl und alle genannten heteroaromatischen Ringe ihrerseits jeweils ein- oder zweifach, gleich oder verschieden, mit Substituenten ausgewählt aus der Reihe Fluor, Chlor, Methyl, Ethyl, Isopropyl, tert.-Butyl, Methoxy, Ethoxy, Trifluormethyl und Trifluormethoxy substituiert sein können,
    R3 und R4 gleich oder verschieden sind und unabhängig voneinander für Wasserstoff, Methyl, Methoxy, Fluor oder Chlor stehen,
    R5 und R6 gleich oder verschieden sind und für Wasserstoff oder Methyl stehen,
    und
    R7 für -OH, -NH2 oder -NHCH3 steht,
    sowie ihre Salze, Solvate und Solvate der Salze.
  • Von besonderer Bedeutung sind Verbindungen der Formel (I-A)
    Figure 00090001
    in welcher
    R1, R2, m und n jeweils die oben angegebenen Bedeutungen haben.
  • Die in den jeweiligen Kombinationen bzw. bevorzugten Kombinationen von Resten im einzelnen angegebenen Reste-Definitionen werden unabhängig von den jeweiligen angegebenen Kombinationen der Reste beliebig auch durch Reste-Definitionen anderer Kombinationen ersetzt.
  • Ganz besonders bevorzugt sind Kombinationen von zwei oder mehreren der oben genannten Vorzugsbereiche.
  • Weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung der erfindungsgemäßen Verbindungen der Formel (I) bzw. (I-A), dadurch gekennzeichnet, dass man Verbindungen der Formel (II)
    Figure 00100001
    in welcher R2, R3, R4, R5, R6 und Z jeweils die oben angegebenen Bedeutungen haben
    und
    T1 für (C1-C4)-Alkyl, vorzugsweise tert.-Butyl, oder für Benzyl steht,
    zunächst in einem inerten Lösungsmittel in Gegenwart einer Base mit einer Verbindung der Formel (III)
    Figure 00100002
    in welcher n die oben angegebene Bedeutung hat und
    T2 für (C1-C4)-Alkyl, vorzugsweise Methyl oder Ethyl,
    und
    Q1 für eine geeignete Fluchtgruppe wie beispielsweise Halogen, Mesylat, Tosylat oder Triflat steht,
    zu Verbindungen der Formel (IV)
    Figure 00110001
    in welcher n, T1, T2, R2, R3, R4, R5, R6 und Z jeweils die oben angegebenen Bedeutungen haben,
    umsetzt, anschließend unter geeigneten Reaktionsbedingungen selektiv zu Carbonsäuren der Formel (V)
    Figure 00110002
    in welcher n, T1, R2, R3, R4, R5, R6 und Z jeweils die oben angegebenen Bedeutungen haben,
    hydrolysiert, sodann in einem inerten Lösungsmittel in Gegenwart eines Kondensationsmittels und einer Base mit einer Verbindung der Formel (VI)
    Figure 00110003
    in welcher R1 und m jeweils die oben angegebenen Bedeutungen haben,
    in Verbindungen der Formel (VII)
    Figure 00110004
    in welcher m, n, T1, R1, R2, R3, R4, R5, R6 und Z jeweils die oben angegebenen Bedeutungen haben,
    überführt, diese dann mit Chloracetylchlorid in Gegenwart einer Base unter Cyclisierung zu Verbindungen der Formel (I-B)
    Figure 00120001
    in welcher m, n, T1, R1, R2, R3, R4, R5, R6 und Z jeweils die oben angegebenen Bedeutungen haben,
    umsetzt, nachfolgend durch basische oder saure Hydrolyse oder im Falle, dass T1 für Benzyl steht, auch hydrogenolytisch in Carbonsäuren der Formel (I-C)
    Figure 00120002
    in welcher m, n, R1, R2, R3, R4, R5, R6 und Z jeweils die oben angegebenen Bedeutungen haben,
    überführt und gegebenenfalls anschließend nach literaturbekannten Methoden zur Veresterung bzw. Amidierung zu den Verbindungen der Formel (I) umsetzt
    und die Verbindungen der Formel (I) gegebenenfalls mit den entsprechenden (i) Lösungsmitteln und/oder (ii) Basen oder Säuren zu ihren Solvaten, Salzen und/oder Solvaten der Salze umsetzt.
    Verbindungen der Formel (I-D)
    Figure 00120003
    in welcher m, R1, R2, R3, R4, R5, R6, R7 und Z jeweils die oben angegebenen Bedeutungen haben, können auch hergestellt werden, indem man Verbindungen der Formel (II) in einem inerten Lösungsmittel in Gegenwart einer Base mit einer Verbindung der Formel (VIII)
    Figure 00130001
    in welcher m und R1 jeweils die oben angegebenen Bedeutungen haben und
    Q2 für eine geeignete Fluchtgruppe wie beispielsweise Halogen steht,
    zu Verbindungen der Formel (I-E)
    Figure 00130002
    in welcher m, T1, R1, R2, R3, R4, R5, R6 und Z jeweils die oben angegebenen Bedeutungen haben,
    umsetzt, nachfolgend durch basische oder saure Hydrolyse oder im Falle, dass T1 für Benzyl steht, auch hydrogenolytisch in Carbonsäuren der Formel (I-F)
    Figure 00130003
    in welcher m, R1, R2, R3, R4, R5, R6 und Z jeweils die oben angegebenen Bedeutungen haben,
    überführt und gegebenenfalls anschließend nach literaturbekannten Methoden zur Veresterung bzw. Amidierung zu den Verbindungen der Formel (I-D) umsetzt.
  • Die Verbindungen der Formel (II) und ihre Herstellung sind in WO 02/28821 beschrieben oder können in Analogie zu den dort beschriebenen Verfahren hergestellt werden. Verbindungen der Formel (II), in welcher Z für S steht, können auch hergestellt werden, indem man Verbindungen der Formel (IX)
    Figure 00140001
    in welcher R3 und R4 jeweils die oben angegebenen Bedeutungen haben,
    zunächst in einem inerten Lösungsmittel mit Natriumsulfid in Verbindungen der Formel (X)
    Figure 00140002
    in welcher R3 und R4 jeweils die oben angegebenen Bedeutungen haben,
    überführt, diese anschließend, mit oder ohne zwischenzeitliche Isolierung, mit einer Verbindung der Formel (XI)
    Figure 00140003
    in welcher T1, R5 und R6 jeweils die oben angegebenen Bedeutungen haben
    und
    Q3 für eine geeignete Fluchtgruppe wie beispielsweise Halogen, Mesylat, Tosylat oder Triflat steht,
    zu Verbindungen der Formel (XII)
    Figure 00150001
    in welcher T1, R3, R4, R5 und R6 jeweils die oben angegebenen Bedeutungen haben,
    umsetzt, dann mit einem geeigneten Reduktionsmittel, wie vorzugsweise Boran oder Boran-Komplexen (z.B. Diethylanilin-, Dimethylsulfid- oder Tetrahydrofuran-Komplexen) oder auch mit Natriumborhydrid in Kombination mit Aluminiumchlorid, zu Verbindungen der Formel (II-A)
    Figure 00150002
    in welcher T1, R3, R4, R5 und R6 jeweils die oben angegebenen Bedeutungen haben,
    reduziert und diese gegebenenfalls abschließend in Gegenwart einer Base mit einer Verbindung der Formel (XIII) R2*-Q4 (XIII),in welcher
    R2* die oben angegebene Bedeutung von R2 hat, jedoch nicht für Wasserstoff steht,
    und
    Q4 für eine geeignete Fluchtgruppe wie beispielsweise Halogen, Mesylat, Tosylat oder Triflat steht,
    umsetzt.
  • Die Verbindungen der Formel (VIII) können hergestellt werden, indem man Verbindungen der Formel (VI) in einem inerten Lösungsmittel in Gegenwart einer Base mit zwei Äquivalenten einer Verbindung der Formel (XIV)
    Figure 00160001
    in welcher Q2 die oben angegebene Bedeutung hat,
    umsetzt.
  • Inerte Lösungsmittel für die Verfahrensschritte (II) + (III) → (IV), (II) + (VIII) → (I-E) und (II-A) + (XIII) → (II) sind beispielsweise Halogenkohlenwasserstoffe wie Dichlormethan, Trichlormethan, Tetrachlormethan, Trichlorethan, Tetrachlorethan, 1,2-Dichlorethan oder Trichlorethylen, Ether wie Diethylether, Dioxan, Tetrahydrofuran, Glykoldimethylether oder Diethylenglykoldimethylether, Kohlenwasserstoffe wie Benzol, Xylol, Toluol, Hexan, Cyclohexan oder Erdölfraktionen, oder andere Lösungsmittel wie Ethylacetat, Aceton, Dimethylformamid, Dimethylsulfoxid, N,N'-Dimethylpropylenharnstoff (DMPU), N-Methylpyrrolidon (NMP), Pyridin oder Acetonitril. Ebenso ist es möglich, Gemische der genannten Lösungsmittel einzusetzen. Bevorzugt sind Tetrahydrofuran und Dimethylformamid.
  • Als Basen für die Verfahrensschritte (II) + (III) → (IV), (II) + (VIII) → (I-E) und (II-A) + (XIII) → (II) eignen sich die üblichen anorganischen oder organischen Basen. Hierzu gehören bevorzugt Alkalihydroxide wie beispielsweise Lithium-, Natrium- oder Kaliumhydroxid, Alkali- oder Erdalkalicarbonate wie Lithium-, Natrium-, Kalium-, Calcium- oder Cäsiumcarbonat, Alkali-Alkoholate wie Natrium- oder Kaliummethanolat, Natrium- oder Kaliumethanolat oder Kalium-tert.-butylat, Alkalihydride wie Natriumhydrid, Amide wie Natriumamid, Lithium- oder Kalium-bis(trimethylsilyl)amid oder Lithiumdiisopropylamid, oder organische Amine wie Triethylamin, N-Methylmorpholin, N-Methylpiperidin, N,N-Diisopropylethylamin, Pyridin, 1,5-Diazabicyclo[4.3.0]non-5-en (DBN), 1,4-Diazabicyclo[2.2.2]octan (DABCO®) oder 1,8-Diazabicyclo[5.4.0]undec-7-en (DBU). Bevorzugt sind N,N-Diisopropylethylamin, Triethylamin, Kaliumcarbonat oder Cäsiumcarbonat.
  • Die Base wird bei diesen Verfahrensschritten jeweils in einer Menge von 1 bis 5 Mol, bevorzugt in einer Menge von 1 bis 2.5 Mol, bezogen auf 1 Mol der Verbindung der Formel (II) / (II-A) bzw. dessen Hydrochlorid, eingesetzt. In manchen Fällen hat es sich als vorteilhaft erwiesen, die Reaktion in Gegenwart eines Alkylierungskatalysators, wie beispielsweise Tetra-N-butylammoniumbromid oder -iodid, durchzuführen.
  • Die Reaktion erfolgt im Allgemeinen in einem Temperaturbereich von 0°C bis +150°C, bevorzugt von +20°C bis +100°C. Die Umsetzung kann bei normalem, erhöhtem oder bei erniedrigtem Druck durchgeführt werden (z.B. von 0.5 bis 5 bar). Im Allgemeinen arbeitet man bei Normaldruck.
  • Die Hydrolyse der Carbonsäureester in den Verfahrensschritten (IV) → (V), (I-B) → (I-C) und (I-E) → (I-F) erfolgt nach üblichen Methoden, indem man die Ester in inerten Lösungsmitteln mit Basen behandelt, wobei die zunächst entstehenden Salze durch Behandeln mit Säure in die freien Carbonsäuren überführt werden. Im Falle der tert.-Butylester erfolgt die Esterspaltung bevorzugt mit Säuren.
  • Als inerte Lösungsmittel eignen sich für die Hydrolyse der Carbonsäureester Wasser oder die für eine Esterspaltung üblichen organischen Lösungsmittel. Hierzu gehören bevorzugt Alkohole wie Methanol, Ethanol, n-Propanol, Isopropanol, n-Butanol oder tert.-Butanol, oder Ether wie Diethylether, Tetrahydrofuran, Dioxan oder Glykoldimethylether, oder andere Lösungsmittel wie Aceton, Acetonitril, Dichlormethan, Dimethylformamid oder Dimethylsulfoxid. Ebenso ist es möglich, Gemische der genannten Lösemittel einzusetzen. Im Falle einer basischen Ester-Hydrolyse werden bevorzugt Gemische von Wasser mit Dioxan, Tetrahydrofuran, Methanol und/oder Ethanol eingesetzt. Im Falle der Umsetzung mit Trifluoressigsäure wird bevorzugt Dichlormethan und im Falle der Umsetzung mit Chlorwasserstoff bevorzugt Tetrahydrofuran, Diethylether, Dioxan oder Wasser verwendet.
  • Als Basen eignen sich für die Ester-Hydrolyse die üblichen anorganischen Basen. Hierzu gehören bevorzugt Alkali- oder Erdalkalihydroxide wie beispielsweise Natrium-, Lithium-, Kalium- oder Bariumhydroxid, oder Alkali- oder Erdalkalicarbonate wie Natrium-, Kalium- oder Calciumcarbonat. Besonders bevorzugt werden Natriumhydroxid oder Lithiumhydroxid eingesetzt.
  • Als Säuren eignen sich für die Esterspaltung im Allgemeinen Schwefelsäure, Chlorwasserstoff/Salzsäure, Bromwasserstoff/Bromwasserstoffsäure, Phosphorsäure, Essigsäure, Trifluoressigsäure, Toluolsulfonsäure, Methansulfonsäure oder Trifluormethansulfonsäure oder deren Gemische gegebenenfalls unter Zusatz von Wasser. Bevorzugt sind Chlorwasserstoff oder Trifluoressigsäure im Falle der tert.-Butylester und Salzsäure im Falle der Methylester.
  • Die Esterspaltung erfolgt im Allgemeinen in einem Temperaturbereich von -20°C bis +100°C, bevorzugt von 0°C bis +50°C. Die Umsetzung kann bei normalem, erhöhtem oder bei erniedrigtem Druck durchgeführt werden (z.B. von 0.5 bis 5 bar). Im Allgemeinen arbeitet man bei Normaldruck.
  • Die Verfahrensschritte (I-C) → (I), (I-F) → (I-D) und (V) + (VI) → (VII) werden nach literaturbekannten Methoden zur Veresterung bzw. Amidierung (Amid-Bildung) von Carbonsäuren durchgeführt.
  • Inerte Lösungsmittel für diese Verfahrensschritte sind beispielsweise Ether wie Diethylether, Dioxan, Tetrahydrofuran, Glykoldimethylether oder Diethylenglykoldimethylether, Kohlenwasserstoffe wie Benzol, Toluol, Xylol, Hexan, Cyclohexan oder Erdölfraktionen, Halogenkohlenwasserstoffe wie Dichlormethan, Trichlormethan, Tetrachlormethan, 1,2-Dichlorethan, Trichlorethylen oder Chlorbenzol, oder andere Lösungsmittel wie Ethylacetat, Pyridin, Dimethylsulfoxid, Dimethylformamid, N,N'-Dimethylpropylenharnstoff (DMPU), N-Methylpyrrolidon (NMP), Acetonitril oder Aceton. Ebenso ist es möglich, Gemische der genannten Lösungsmittel zu verwenden. Bevorzugt sind Dichlormethan, Tetrahydrofuran, Dimethylformamid oder Gemische dieser Lösungsmittel.
  • Als Kondensationsmittel für eine Veresterung oder Amidbildung in den Verfahrensschritten (I-C) → (I), (I-F) → (I-D) bzw. (V) + (VI) → (VII) eignen sich beispielsweise Carbodiimide wie N,N'-Diethyl-, N,N'-Dipropyl-, N,N'-Diisopropyl-, N,N'-Dicyclohexylcarbodiimid (DCC), N-(3-Dimethylaminoisopropyl)-N'-ethylcarbodiimid-Hydrochlorid (EDC), oder Phosgen-Derivate wie N,N'-Carbonyldiimidazol, oder 1,2-Oxazoliumverbindungen wie 2-Ethyl-5-phenyl-1,2-oxazolium-3-sulfat oder 2-tert.-Butyl-5-methyl-isoxazolium-perchlorat, oder Acylaminoverbindungen wie 2-Ethoxy-1-ethoxycarbonyl-1,2-dihydrochinolin, oder Isobutylchlorformiat, Propanphosphonsäureanhydrid, Cyanophosphonsäurediethylester, Bis-(2-oxo-3-oxazolidinyl)-phosphorylchlorid, Benzotriazol-1-yloxy-tris(dimethylamino)phosphonium-hexafluorophosphat, Benzotriazol-1-yloxy-tris(pyrrolidino)phosphonium-hexafluorophosphat (PyBOP), O-(Benzotriazol-1-yl)-N,N,N;N'-tetramethyluronium-hexafluorophosphat (HBTU), 2-(2-Oxo-1-(2H)-pyridyl)-1,1,3,3-tetramethyluronium-tetrafluoroborat (TPTU), O-(7-Azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium-hexafluorophosphat (HATU) oder O-(1H-6-Chlorbenzotriazol-1-yl)-1,1,3,3-tetramethyluronium-tetrafluoroborat (TCTU), gegebenenfalls in Kombination mit weiteren Hilfsstoffen wie 1-Hydroxybenzotriazol (HOBt) oder N-Hydroxysuccinimid (HOSu), sowie als Basen Alkalicarbonate, z.B. Natrium- oder Kaliumcarbonat oder -hydrogencarbonat, oder organische Basen wie Trialkylamine, z.B. Triethylamin, N-Methylmorpholin, N-Methylpiperidin oder N,N-Diisopropylethylamin. Bevorzugt werden HATU oder TCTU in Kombination mit N,N-Diisopropylethylamin verwendet.
  • Die Verfahrensschritte (I-C) → (I), (I-F) → (I-D) und (V) + (VI) → (VII) werden im Allgemeinen in einem Temperaturbereich von -20°C bis +60°C, bevorzugt von -10°C bis +40°C, durchgeführt.
  • Die Umsetzung kann bei normalem, erhöhtem oder bei erniedrigtem Druck durchgeführt werden (z.B. von 0.5 bis 5 bar). Im Allgemeinen arbeitet man bei Normaldruck.
  • Im Verfahrensschritt (VII) → (I-B) wird die Umsetzung der Verbindung der Formel (VII) mit Chloracetylchlorid bevorzugt in DMF bei 0°C bis +30°C oder in Chloroform bei +20°C bis +70°C durchgeführt. Die Cyclisierung des so erhaltenen Intermediats erfolgt in Gegenwart einer Base, vorzugsweise Kaliumcarbonat, in DMF oder einem alkoholischen Lösungsmittel, insbesondere Ethanol, bei erhöhter Temperatur, insbesondere in einem Temperaturbereich von +50°C bis +80°C.
  • Der Verfahrenschritt (VI) + (XIV) → (VIII) wird bevorzugt unter Verwendung von N,N-Diisopropylethylamin als Base im mindestens dreifachen Molverhältnis, bezogen auf die Verbindung der Formel (VI), in DMF in einem Temperaturbereich von +20°C bis +80°C durchgeführt.
  • Die Verbindungen der Formeln (III), (VI), (IX), (XI), (XIII) und (XIV) sind kommerziell erhältlich, literaturbekannt oder können in Analogie zu literaturbekannten Verfahren hergestellt werden.
  • Die Herstellung der erfindungsgemäßen Verbindungen kann durch die folgenden Syntheseschemata veranschaulicht werden: Schema 1
    Figure 00200001
    [a): Kupplungsreaktion mittels HATU oder TCTU und DIEA in THF oder DMF; b): 1. Chloracetylchlorid in DMF oder Chloroform, 2. Kaliumcarbonat in DMF oder Ethanol, 70°C; c): Chlorwasserstoff in Dioxan]. Schema 2
    Figure 00210001
    [a): N-Alkylierung mittels Triethylamin in DMF (X = Halogen); b): DIEA in DMF; c): N-Alkylierung mittels Triethylamin, DIEA und TBAI in THF; d): Chlorwasserstoff in Dioxan]. Schema 3
    Figure 00220001
    [a): N-Alkylierung mittels Triethylamin und DIEA in THF; b): N-Alkylierung mittels Triethylamin, DIEA und TBAI in THF (X = Halogen); c): Chlorwasserstoff in Dioxan].
  • Die erfindungsgemäßen Verbindungen besitzen wertvolle pharmakologische Eigenschaften und können zur Vorbeugung und Behandlung von Erkrankungen bei Menschen und Tieren verwendet werden.
  • Die erfindungsgemäßen Verbindungen sind hochwirksame PPAR-alpha-Modulatoren und eignen sich als solche insbesondere zur Behandlung von kardiovaskulären Erkrankungen. Diese umfassen Dyslipidämien (Hypercholesterolämie, Hypertriglyceridämie, Hypoalphalipoproteinämie, kombinierte Hyperlipidämien), Arteriosklerose sowie metabolische Erkrankungen (Metabolisches Syndrom, Nicht-Insulin-abhängiger Diabetes, Insulin-abhängiger Diabetes, Hyperinsulinämie, Glukose-Intoleranz, Fettsucht, Fettleibigkeit und diabetische Spätfolgen wie Retinopathie, Nephropathie und Neuropathie). Weitere unabhängige Risikofaktoren für kardiovaskuläre Erkrankungen, welche sich durch die erfindungsgemäßen Verbindungen behandeln lassen, sind Bluthochdruck, Ischämie, Myokardinfarkt, erhöhte Spiegel von Fibrinogen und von LDL geringer Dichte als auch erhöhte Konzentrationen von Plasminogenaktivator-Inhibitoren 1 (PAI-1). Darüber hinaus können die erfindungsgemäßen Verbindungen auch zur Behandlung oder Prophylaxe von Krebs, Erkrankungen des Zentralnervensystems (Schlaganfall, Alzheimer'sche Krankheit, Demenz), Immunerkrankungen (Morbus Crohn, Colitis Ulcerosa) sowie von Nierenerkrankungen, Schilddrüsenerkrankungen, Leberfibrose, Psoriasis und Osteoporose eingesetzt werden.
  • Die Wirksamkeit der erfindungsgemäßen Verbindungen lässt sich z.B. in vitro durch den im Beispielteil beschriebenen Transaktivierungsassay prüfen.
  • Die Wirksamkeit der erfindungsgemäßen Verbindungen in vivo lässt sich z.B. durch die im Beispielteil beschriebenen Untersuchungen prüfen.
  • Weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung der erfindungsgemäßen Verbindungen zur Behandlung und/oder Prophylaxe von Erkrankungen, insbesondere der zuvor genannten Erkrankungen.
  • Weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung der erfindungsgemäßen Verbindungen zur Herstellung eines Arzneimittels zur Behandlung und/oder Prophylaxe von Erkrankungen, insbesondere der zuvor genannten Erkrankungen.
  • Weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Behandlung und/oder Prophylaxe von Erkrankungen, insbesondere der zuvor genannten Erkrankungen, unter Verwendung einer wirksamen Menge von mindestens einer der erfindungsgemäßen Verbindungen.
  • Die erfindungsgemäßen Verbindungen können allein oder bei Bedarf in Kombination mit anderen Wirkstoffen eingesetzt werden. Weiterer Gegenstand der vorliegenden Erfindung sind Arzneimittel, enthaltend mindestens eine erfindungsgemäße Verbindung und mindestens einen oder mehrere weitere Wirkstoffe, insbesondere zur Behandlung und/oder Prophylaxe der zuvor genannten Erkrankungen. Als geeignete Kombinationswirkstoffe seien beispielhaft und vorzugsweise genannt: Lipid-Modulatoren (CETP-Inhibitoren, Inhibitoren der HMG-CoA-Reduktase, Inhibitoren der HMG-CoA-Reduktase-Expression, Squalensynthese-Inhibitoren, ACAT-Inhibitoren, Cholesterin-Absorptionshemmer, Gallensäure-Absorptionshemmer, MTP-Inhibitoren, Fibrate, Niacin, Lipase-Inhibitoren, PPAR-γ- und/oder PPAR-δ-Agonisten), Blutdruck-Senker (Calcium-Antagonisten, Angiotensin-II-Rezeptorantagonisten), durchblutungsfördernde Mittel (Thrombozytenaggregationshemmer, Antikoagulantien) sowie Antidiabetika, Antioxidantien, Thyroidhormone und/oder Thyroidmimetika, Aldose-Reduktase-Inhibitoren und Anorektika.
  • Weiterer Gegenstand der vorliegenden Erfindung sind Arzneimittel, die mindestens eine erfindungsgemäße Verbindung, üblicherweise zusammen mit einem oder mehreren inerten, nichttoxischen, pharmazeutisch geeigneten Hilfsstoffen enthalten, sowie deren Verwendung zu den zuvor genannten Zwecken.
  • Die erfindungsgemäßen Verbindungen können systemisch und/oder lokal wirken. Zu diesem Zweck können sie auf geeignete Weise appliziert werden, wie z.B. oral, parenteral, pulmonal, nasal, sublingual, lingual, buccal, rectal, dermal, transdermal, conjunctival, otisch oder als Implantat bzw. Stent.
  • Für diese Applikationswege können die erfindungsgemäßen Verbindungen in geeigneten Applikationsformen verabreicht werden.
  • Für die orale Applikation eignen sich nach dem Stand der Technik funktionierende, die erfindungsgemäßen Verbindungen schnell und/oder modifiziert abgebende Applikationsformen, die die erfindungsgemäßen Verbindungen in kristalliner und/oder amorphisierter und/oder gelöster Form enthalten, wie z.B. Tabletten (nicht-überzogene oder überzogene Tabletten, beispielsweise mit magensaftresistenten oder sich verzögert auflösenden oder unlöslichen Überzügen, die die Freisetzung der erfindungsgemäßen Verbindung kontrollieren), in der Mundhöhle schnell zerfallende Tabletten oder Filme/Oblaten, Filme/Lyophylisate, Kapseln (beispielsweise Hart- oder Weichgelatinekapseln), Dragees, Granulate, Pellets, Pulver, Emulsionen, Suspensionen, Aerosole oder Lösungen.
  • Die parenterale Applikation kann unter Umgehung eines Resorptionsschrittes geschehen (z.B. intravenös, intraarteriell, intrakardial, intraspinal oder intralumbal) oder unter Einschaltung einer Resorption (z.B. intramuskulär, subcutan, intracutan, percutan oder intraperitoneal). Für die parenterale Applikation eignen sich als Applikationsformen u.a. Injektions- und Infusionszubereitungen in Form von Lösungen, Suspensionen, Emulsionen, Lyophilisaten oder sterilen Pulvern.
  • Für die sonstigen Applikationswege eignen sich z.B. Inhalationsarzneiformen (u.a. Pulverinhalatoren, Nebulizer), Nasentropfen, -lösungen oder -sprays, lingual, sublingual oder buccal zu applizierende Tabletten, Filme/Oblaten oder Kapseln, Suppositorien, Ohren- oder Augenpräparationen, Vaginalkapseln, wässrige Suspensionen (Lotionen, Schüttelmixturen), lipophile Suspensionen, Salben, Cremes, transdermale therapeutische Systeme (z.B. Pflaster), Milch, Pasten, Schäume, Streupuder, Implantate oder Stents.
  • Bevorzugt sind die orale oder parenterale Applikation, insbesondere die orale Applikation.
  • Die erfindungsgemäßen Verbindungen können in die angeführten Applikationsformen überführt werden. Dies kann in an sich bekannter Weise durch Mischen mit inerten, nichttoxischen, pharmazeutisch geeigneten Hilfsstoffen geschehen. Zu diesen Hilfsstoffen zählen u.a. Trägerstoffe (beispielsweise mikrokristalline Cellulose, Lactose, Mannitol), Lösungsmittel (z.B. flüssige Polyethylenglycole), Emulgatoren und Dispergier- oder Netzmittel (beispielsweise Natriumdodecylsulfat, Polyoxysorbitanoleat), Bindemittel (beispielsweise Polyvinylpyrrolidon), synthetische und natürliche Polymere (beispielsweise Albumin), Stabilisatoren (z.B. Antioxidantien wie beispielsweise Ascorbinsäure), Farbstoffe (z.B. anorganische Pigmente wie beispielsweise Eisenoxide) und Geschmacks- und/oder Geruchskorrigentien.
  • Im Allgemeinen hat es sich als vorteilhaft erwiesen, bei parenteraler Applikation Mengen von etwa 0.001 bis 1 mg/kg, vorzugsweise etwa 0.01 bis 0.5 mg/kg Körpergewicht zur Erzielung wirksamer Ergebnisse zu verabreichen. Bei oraler Applikation beträgt die Dosierung etwa 0.01 bis 100 mg/kg, vorzugsweise etwa 0.01 bis 20 mg/kg und ganz besonders bevorzugt 0.1 bis 10 mg/kg Körpergewicht.
  • Trotzdem kann es gegebenenfalls erforderlich sein, von den genannten Mengen abzuweichen, und zwar in Abhängigkeit von Körpergewicht, Applikationsweg, individuellem Verhalten gegenüber dem Wirkstoff, Art der Zubereitung und Zeitpunkt bzw. Intervall, zu welchem die Applikation erfolgt. So kann es in einigen Fällen ausreichend sein, mit weniger als der vorgenannten Mindestmenge auszukommen, während in anderen Fällen die genannte obere Grenze überschritten werden muss. Im Falle der Applikation größerer Mengen kann es empfehlenswert sein, diese in mehreren Einzelgaben über den Tag zu verteilen.
  • Die nachfolgenden Ausführungsbeispiele erläutern die Erfindung. Die Erfindung ist nicht auf die Beispiele beschränkt.
  • Die Prozentangaben in den folgenden Tests und Beispielen sind, sofern nicht anders angegeben, Gewichtsprozente; Teile sind Gewichtsteile. Lösungsmittelverhältnisse, Verdünnungsverhältnisse und Konzentrationsangaben von flüssig/flüssig-Lösungen beziehen sich jeweils auf das Volumen.
  • A. Beispiele
  • Abkürzungen:
    • abs.
      Absolut
      DCI
      direkte chemische Ionisation (bei MS)
      DIEA
      N,N-Diisopropylethylamin
      DMF
      Dimethylformamid
      DMSO
      Dimethylsulfoxid
      d.
      Th. der Theorie (bei Ausbeute)
      eq.
      Äquivalent(e)
      EDCI
      1-(3-Dimethylaminopropyl)-3-ethylcarbodiimid-Hydrochlorid
      ESI
      Elektrospray-Ionisation (bei MS)
      EtOAc
      Essigsäureethylester
      h
      Stunde(n)
      HATU
      O-(7-Azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium-hexafluorophosphat
      HOBt
      1-Hydroxy-1H-benzotriazol-Hydrat
      HPLC
      Hochdruck-, Hochleistungsflüssigchromatographie
      LC/MS
      Flüssigchromatographie-gekoppelte Massenspektroskopie
      min
      Minute(n)
      MS
      Massenspektroskopie
      MTBE
      Methyl-tert-butylether
      NMP
      N-Methylpyrrolidinon
      NMR
      Kernresonanzspektroskopie
      RT
      Raumtemperatur
      Rt
      Retentionszeit (bei HPLC)
      sbr
      breites Singulett (bei NMR)
      TBAI
      Tetra-N-butylammoniumiodid
      TCTU
      O-(1H-6-Chlorbenzotriazol-1-yl)-1,1,3,3-tetramethyluronium-tetrafluoroborat
      THF
      Tetrahydrofuran
      UV
      Ultraviolett-Spektroskopie
      *
      unerwartete Multiplizität von Signalen, z. B. hervorgerufen durch zufällige Isochronie (bei NMR)
  • LC/MS- und HPLC-Methoden:
  • Methode 1 (LC/MS):
  • Gerätetyp MS: Micromass ZQ; Gerätetyp HPLC: HP 1100 Series; UV DAD; Säule: Phenomenex Synergi 2μ Hydro-RP Mercury 20 mm × 4 mm; Eluent A: 1 l Wasser + 0.5 ml 50%-ige Ameisen-5 säure, Eluent B: 1 l Acetonitril + 0.5 ml 50%-ige Ameisensäure; Gradient: 0.0 min 90% A → 2.5 min 30% A → 3.0 min 5% A → 4.5 min 5% A; Fluss: 0.0 min 1 ml/min → 2.5 min/3.0 min/4.5 min 2 ml/min; Ofen: 50°C; UV-Detektion: 210 nm.
  • Methode 2 (LC/MS):
  • Gerätetyp MS: Micromass ZQ; Gerätetyp HPLC: Waters Alliance 2795; Säule: Phenomenex 0 Synergi 2μ Hydro-RP Mercury 20 mm × 4 mm; Eluent A: 1 l Wasser + 0.5 ml 50%-ige Ameisensäure, Eluent B: 1 l Acetonitril + 0.5 ml 50%-ige Ameisensäure; Gradient: 0.0 min 90% A → 2.5 min 30% A → 3.0 min 5% A → 4.5 min 5% A; Fluss: 0.0 min 1 ml/min → 2.5 min/3.0 min/4.5 min 2 ml/min; Ofen: 50°C; UV-Detektion: 210 nm.
  • Methode 3 (LC/MS):
  • Instrument: Micromass Platform LCZ mit HPLC Agilent Serie 1100; Säule: Phenomenex Synergi 2μ Hydro-RP Mercury 20 mm × 4 mm; Eluent A: 1 l Wasser + 0.5 ml 50%-ige Ameisensäure, Eluent B: 1 l Acetonitril + 0.5 ml 50%-ige Ameisensäure; Gradient: 0.0 min 90% A → 2.5 min 30% A → 3.0 min 5% A → 4.5 min 5% A; Fluss: 0.0 min 1 ml/min → 2.5 min/3.0 min/4.5 min 2 ml/min; Ofen: 50°C; UV-Detektion: 210 nm.
  • Methode 4 (LC/MS):
  • Instrument: Micromass Quattro LCZ mit HPLC Agilent Serie 1100; Säule: Phenomenex Synergi 2μ Hydro-RP Mercury 20 mm × 4 mm; Eluent A: 1 l Wasser + 0.5 ml 50%-ige Ameisensäure, Eluent B: 1 l Acetonitril + 0.5 ml 50%-ige Ameisensäure; Gradient: 0.0 min 90% A → 2.5 min 30% A → 3.0 min 5% A → 4.5 min 5% A; Fluss: 0.0 min 1 ml/min → 2.5 min/3.0 min/4.5 min 2 5 ml/min; Ofen: 50°C; UV-Detektion: 208-400 nm.
  • Ausgangsverbindungen und Intermediate:
  • Beispiel 1A
  • 2-[(4-{[(2-Furylmethyl)(2-ethoxy-2-oxoethyl)amino]methyl}phenyl)thio]-2-methyl-propionsäure-tert.-butylester
    Figure 00280001
  • 3.00 g 2-[(4-{[(2-Furylmethyl)amino]methyl}phenyl)thio]-2-methyl-propionsäure-tert.-butylester-Hydrochlorid (7.46 mmol) [WO 02/28821, Beispiel II-3] werden in 30 ml DMF suspendiert und mit 4.86 g Cäsiumcarbonat (14.91 mmol) sowie 1.25 g Bromessigsäureethylester (7.46 mmol) versetzt. Die Reaktionsmischung wird über Nacht bei Raumtemperatur gerührt. Es werden 100 ml Wasser zugegeben und die Mischung dreimal mit Dichlormethan extrahiert. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet und das Lösungsmittel am Rotationsverdampfer entfernt. Der Rückstand wird durch Chromatographie an Kieselgel (Laufmittel: Cyclohexan/Essigsäureethylester 10:1) gereinigt. Es werden 1.87 g (56% d. Th.) der Titelverbindung erhalten.
    1H-NMR (400 MHz, CDCl3): δ = 1.26 (t, J = 7.2, 3H), 1.41 (s, 9H), 1.43 (s, 6H), 3.32 (s, 2H), 3.80 (s, 2H), 3.84 (s, 2H), 4.16 (q, J = 7.2, 2H), 6.19-6.20 (m, 1H), 6.31 (dd, J = 3.0, J = 1.9, 1H), 7.32-7.35 (m, 2H), 7.38 (dd, J = 1.9, J = 0.8, 1H), 7.44-7.47 (m, 2H).
    LC/MS (Methode 2): Rt = 3.06 min.; MS (ESIpos): m/z = 448 [M+H]+.
  • Beispiel 2A
  • N-{4-[(2-tert.-Butoxy-1,1-dimethyl-2-oxoethyl)thio]benzyl}-N-(2-furylmethyl)glycin
    Figure 00290001
  • 1.00 g der Verbindung aus Beispiel 1A (2.23 mmol) werden in 7 ml Dioxan/Wasser (2:1) gelöst und mit 3.37 ml 1 N Natronlauge (3.37 mmol) versetzt. Die Reaktionsmischung wird 16 h bei Raumtemperatur gerührt. Es wird mit 2 N Salzsäure auf pH 2 angesäuert und die Mischung dreimal mit Dichlormethan extrahiert. Die vereinigten organischen Phasen werden mit Natriumsulfat getrocknet und am Rotationsverdampfer eingeengt. Es werden 0.832 g (89% d. Th.) der Titelverbindung erhalten.
    LC/MS (Methode 1): Rt = 2.18 min.; MS (ESIpos): m/z = 420 [M+H]+.
    1H-NMR (400 MHz, CDCl3): δ [ppm] = 1.42 (s, 9H), 1.44 (s, 6H), 3.32 (s, 2H), 3.76 (s, 2H), 3.77 (s, 2H), 6.26-6.27 (m, 1H), 6.36 (m, 1H), 7.26-7.28 (m, 2H), 7.43-7.44 (m, 1H), 7.49-7.51 (m, 2H).
  • Beispiel 3A
  • tert.-Butyl-2-[(4-{[{2-[2-(2,4-dimethylphenyl)hydrazino]-2-oxoethyl}(2-furylmethyl)amino]-methyl}phenyl)thio]-2-methylpropanoat
    Figure 00290002
  • 1.00 g der Verbindung aus Beispiel 2A (2.38 mmol) werden in 20 ml THF gelöst und mit 997 mg TCTU (2.80 mmol), 0.81 ml DIEA (4.67 mmol) und 403 mg 2,4-Dimethylphenylhydrazin (2.34 mmol) versetzt. Es wird über Nacht bei RT gerührt. Der Ansatz wird eingeengt, der Rückstand in Wasser aufgenommen und mit Ethylacetat extrahiert. Die organische Phase wird mit gesättigter Natriumchlorid-Lösung gewaschen, mit Natriumsulfat getrocknet und das Lösungsmittel unter vermindertem Druck abdestilliert. Anschließend wird chromatographisch aufgereinigt (Kieselgel, Cyclohexan/Ethylacetat 1:1). Es werden 1.01 g (Reinheit: 90% nach LC/MS; 72% d. Th.) der Titelverbindung erhalten. Die Substanz wird ohne weitere Aufreinigungsschritte weiter umgesetzt.
    1H-NMR (400 MHz, DMSO-d6): δ [ppm] = 1.34 (s, 9H), 1.38 (s, 6H), 2.12 (s, 3H), 2.15 (s, 3H), 3.18 (s, 2H), 3.73 (s, 2H), 3.76 (s, 2H), 6.36 (d, 1H), 6.42-6.51 (m, 2H), 6.72-6.89 (m, 3H), 7.45 (s*, 4H), 7.63 (dd, 1H), 9.60 (s, 1H).
    LC/MS (Methode 2): Rt = 2.96 min.; MS (ESIpos): m/z = 538 [M+H]+.
  • Beispiel 4A
  • tert.-Butyl-2-[(4-{[{[4-(2,4-dimethylphenyl)-5-oxo-5,6-dihydro-4H-1,3,4-oxadiazin-2-yl]methyl}(2-furylmethyl)amino]methyl}phenyl)thio]-2-methylpropanoat
    Figure 00300001
  • 1.00 g der Verbindung aus Beispiel 3A (1.67 mmol) werden in 20 ml abs. DMF gelöst. Anschließend werden 227 mg Chloracetylchlorid (0.16 ml, 2.01 mmol) als Lösung in 5 ml abs. DMF über 30 min zugetropft. Nach dreißigminütiger Reaktionszeit bei RT werden 578 mg Kaliumcarbonat (4.18 mmol) hinzugefügt und die Mischung über Nacht bei 70°C gerührt. Das Lösungsmittel wird in vacuo abdestilliert, der Rückstand in Wasser aufgenommen und mit Ethylacetat extrahiert. Nach dem Trocknen mit Natriumsulfat wird das Lösungsmittel abdestilliert und der Rückstand mittels präparativer HPLC aufgereinigt (Eluent: Acetonitril/Wasser mit 0.1% Ameisensäure, Gradient 20:80 → 95:5). Es werden 70 mg (25% d. Th.) der Titelverbindung erhalten.
    1H-NMR (400 MHz, DMSO-d6): δ [ppm] = 1.33 (s, 9H), 1.36 (s, 6H), 2.08 (s, 3H), 2.30 (s, 3H), 3.27 (s, 2H), 3.72 (s, 2H), 3.74 (s, 2H), 4.75 (s, 2H), 6.31 (d, 1H), 6.41 (dd, 1H), 7.04-7.14 (m, 3H), 7.36 (d, 2H), 7.42 (d, 2H), 7.6 (m, 1H).
    MS (ESIpos): m/z = 578 [M+H]+.
  • Beispiel 5A
  • tert.-Butyl-2-({4-[((2-furylmethyl){2-[2-(2-methylphenyl)hydrazino]-2-oxoethyl}amino)methyl]phenyl}thio)-2-methylpropanoat
    Figure 00310001
  • 1.00 g der Verbindung aus Beispiel 2A (2.38 mmol), 378 mg 2-Tolylhydrazin-Hydrochlorid (2.38 mmol), 387 mg HOBt (2.86 mmol) und 913 mg EDCI (4.77 mmol) werden in 5 ml DMF gelöst. Anschließend wird unter Eiskühlung tropfenweise mit 0.26 ml 4-Methylmorpholin (2.38 mmol) versetzt. Es wird über Nacht bei RT gerührt. Der Ansatz wird auf gekühlte 1 N Salzsäure gegeben und mit Ethylacetat extrahiert. Die organische Phase wird mit gesättigter Natriumchlorid-Lösung gewaschen, mit Natriumsulfat getrocknet und das Lösungsmittel unter vermindertem Druck abdestilliert. Anschließend wird säulenchromatographisch aufgereinigt (Kieselgel, Dichlormethan → Dichlormethan/Isopropanol 10:1). Es werden 900 mg (Reinheit: 80% nach LC/MS; 58% d. Th.) der Titelverbindung erhalten. Die Substanz wird ohne weitere Aufreinigungssschritte weiter umgesetzt.
    LC/MS (Methode 3): Rt = 3.11 min.; MS (ESIpos): m/z = 524 [M+H]+.
  • Beispiel 6A
  • tert.-Butyl-2-({4-[((2-furylmethyl){[4-(2-methylphenyl)-5-oxo-5,6-dihydro-4H-1,3,4-oxadiazin-2-yl]methyl}amino)methyl]phenyl}thio)-2-methylpropanoat
    Figure 00310002
  • 300 mg der Verbindung aus Beispiel 5A (0.47 mmol) werden in 10 ml Chloroform gelöst, mit 116 mg Chloracetylchlorid (0.08 ml, 1.03 mmol) versetzt und über Nacht unter Rückfluss erhitzt. Anschließend wird das Lösungsmittel abdestilliert, der Rückstand in 10 ml Ethanol aufgenommen, mit 285 mg Kaliumcarbonat (2.06 mmol) versetzt und über Nacht bei Rückflußtemperatur gerührt. Das Lösungsmittel wird in vacuo abdestilliert, der Rückstand in Wasser aufgenommen und mit Ethylacetat extrahiert. Nach dem Trocknen mit Natriumsulfat wird das Lösungsmittel unter vermindertem Druck abdestilliert und der Rückstand mittels präparativer HPLC aufgereinigt (Eluent: Acetonitril/Wasser mit 0.1% Ameisensäure, Gradient 20:80 → 95:5). Es werden 36 mg (12% d. Th.) der Titelverbindung erhalten.
    LC/MS (Methode 4): Rt = 3.26 min.; MS (ESIpos): m/z = 564 [M+H]+.
  • Beispiel 7A
  • tert.-Butyl-2-({4-[((2-furylmethyl){2-[2-(3-methylphenyl)hydrazino]-2-oxoethyl}amino)methyl]phenyl}thio)-2-methylpropanoat
    Figure 00320001
  • 1.06 g der Verbindung aus Beispiel 2A (2.52 mmol), 400 mg 3-Tolylhydrazin-Hydrochlorid (2.52 mmol), 408 mg HOBt (3.03 mmol) und 966 mg EDCI (5.04 mmol) werden in 5 ml DMF gelöst. Anschließend wird unter Eiskühlung tropfenweise mit 0.28 ml 4-Methylmorpholin (2.52 mmol) versetzt. Es wird über Nacht bei RT gerührt. Der Ansatz wird auf gekühlte 1 N Salzsäure gegeben und mit Ethylacetat extrahiert. Die organische Phase wird mit gesättigter Natriumchlorid-Lösung gewaschen, mit Natriumsulfat getrocknet und das Lösungsmittel unter vermindertem Druck abdestilliert. Anschließend wird säulenchromatographisch aufgereinigt (Kieselgel, Dichlormethan → Dichlormethan/Isopropanol 20:1). Es werden 489 mg (58% d. Th.) der Titelverbindung erhalten.
    1H-NMR (400 MHz, DMSO-d6): δ [ppm] = 1.34 (s, 9H), 1.37 (s, 6H), 2.16 (s, 3H), 3.16 (s, 2H), 3.72 (s, 2H), 3.75 (s, 2H), 6.35 (d, 1H), 6.42-6.55 (m, 4H), 6.98 (t, 1H), 7.45 (s*, 4H), 7.58-7.66 (m, 2H), 9.58 (s, 1H).
    LC/MS (Methode 1): Rt = 3.07 min.; MS (ESIpos): m/z = 524 [M+H]+.
  • Beispiel 8A
  • tert.-Butyl-2-({4-[((2-furylmethyl){[4-(3-methylphenyl)-5-oxo-5,6-dihydro-4H-1,3,4-oxadiazin-2-yl]methyl}amino)methyl]phenyl}thio)-2-methylpropanoat
    Figure 00330001
  • 200 mg der Verbindung aus Beispiel 7A (0.29 mmol) werden in 10 ml Chloroform gelöst, mit 86 mg Chloracetylchlorid (0.06 ml, 0.76 mmol) versetzt und über Nacht unter Rückfluss erhitzt. Anschließend wird das Lösungsmittel abdestilliert, der Rückstand in 10 ml Ethanol aufgenommen, mit 211 mg Kaliumcarbonat (1.53 mmol) versetzt und über Nacht bei Rückflusstemperatur gerührt. Das Lösungsmittel wird in vacuo abdestilliert, der Rückstand in Wasser aufgenommen und mit Ethylacetat extrahiert. Nach dem Trocknen mit Natriumsulfat wird das Lösungsmittel abdestilliert und der Rückstand mittels präparativer HPLC aufgereinigt (Eluent: Acetonitril/Wasser mit 0.1% Ameisensäure, Gradient 20:80 → 95:5). Es werden 40 mg (19% d. Th.) der Titelverbindung erhalten.
    1H-NMR (400 MHz, DMSO-d6): δ [ppm] = 1.33 (s, 9H), 1.36 (s, 6H), 2.33 (s, 3H), 3.76 (s, 2H), 3.77 (s, 2H), 4.74 (s, 2H), 6.34 (d, 1H), 6.42 (dd, 1H), 7.09 (d, 1H), 7.31-7.48 (m, 7H), 7.62 (m, 1H).
    LC/MS (Methode 4): Rt = 3.34 min.; MS (ESIpos): m/z = 564 [M+H]+.
  • Beispiel 9A
  • tert.-Butyl-2-({4-[((2-furylmethyl){2-[2-(4-methylphenyl)hydrazino]-2-oxoethyl}amino)methyl]phenyl}thio)-2-methylpropanoat
    Figure 00340001
  • 1.00 g der Verbindung aus Beispiel 2A (2.38 mmol), 378 mg 4-Tolylhydrazin-Hydrochlorid (2.38 mmol), 387 mg HOBt (2.86 mmol) und 913 mg EDCI (4.77 mmol) werden in 5 ml DMF gelöst. Anschließend wird unter Eiskühlung tropfenweise mit 0.26 ml 4-Methylmorpholin (2.38 mmol) versetzt. Es wird über Nacht bei RT gerührt. Der Ansatz wird auf gekühlte 1 N Salzsäure gegeben und mit Ethylacetat extrahiert. Die organische Phase wird mit gesättigter Natriumchlorid-Lösung gewaschen, mit Natriumsulfat getrocknet und das Lösungsmittel unter vermindertem Druck abdestilliert. Anschließend wird säulenchromatographisch aufgereinigt (Kieselgel, Dichlormethan → Dichlormethan/Isopropanol 20:1). Es werden 500 mg (40% d. Th., Reinheit 75%) der Titelverbindung erhalten.
    LC/MS (Methode 3): Rt = 3.08 min.; MS (ESIpos): m/z = 524 [M+H]+.
  • Beispiel 10A
  • tert.-Butyl-2-({4-[((2-furylmethyl){[4-(4-methylphenyl)-5-oxo-5,6-dihydro-4H-1,3,4-oxadiazin-2-yl]methyl}amino)methyl]phenyl}thio)-2-methylpropanoat
    Figure 00340002
  • 200 mg der Verbindung aus Beispiel 9A (0.29 mmol) werden in 10 ml Chloroform gelöst, mit 64 mg Chloracetylchlorid (0.05 ml, 0.57 mmol) versetzt und über Nacht unter Rückfluss erhitzt. Anschließend wird das Lösungsmittel abdestilliert, der Rückstand in 10 ml Ethanol aufgenommen, mit 158 mg Kaliumcarbonat (1.15 mmol) versetzt und über Nacht bei Rückflußtemperatur gerührt. Das Lösungsmittel wird in vacuo abdestilliert, der Rückstand in Wasser aufgenommen und mit Ethylacetat extrahiert. Nach dem Trocknen mit Natriumsulfat wird das Lösungsmittel abdestilliert und der Rückstand mittels präparativer HPLC aufgereinigt (Eluent: Acetonitril/Wasser mit 0.1 % Ameisensäure, Gradient 20:80 → 95:5). Es werden 11 mg (6.4% d. Th.) der Titelverbindung erhalten.
    LC/MS (Methode 4): Rt = 3.33 min.; MS (ESIpos): m/z = 564 [M+H]+.
  • Beispiel 11A
  • 2-(4-Cyanophenylsulfanyl)-2-methyl-propionsäure-tert.-butylester
    Figure 00350001
  • In einem 26 Liter-Kessel werden 2473 g (19.01 mol) Natriumsulfid (wasserhaltig) in 14.4 Liter NMP suspendiert. Anschließend werden 5.1 Liter des Lösungsmittels bei 125-130°C und 110 mbar wieder abdestilliert. Bei einer Innentemperatur von 130-140°C wird dann innerhalb einer Stunde eine Lösung von 2110 g (15.33 mol) 4-Chlorbenzonitril in 3.84 Liter NMP zugetropft. Die Temperatur wird auf 155-160°C erhöht und es wird 6 h lang nachgerührt. Bei 40-45°C werden 3761 g (16.86 mol) Bromisobuttersäure-tert.-butylester innerhalb von 45 min zudosiert. Danach werden bei 97°C und 24 mbar 13.0 Liter des Lösungsmittels abdestilliert, der Ansatz wird auf 90°C abgekühlt, und es werden 5.8 Liter Methylcyclohexan zugegeben. Man kühlt auf 15-20°C ab, versetzt mit 7.70 Liter Wasser und 288 g Kieselgur und rührt 15 min bei 20°C nach. Anschließend wird über eine Porzellannutsche mit einer Seitz-Filterplatte (K800) filtriert, das Filtrat in eine 40 Liter-Scheidebirne überführt und die Phasen getrennt. Die organische Phase (9.1 Liter) wird zweimal mit je 5.8 Liter Wasser verrührt und die organische Phase am Rotationsverdampfer bei 55-60°C / 1 mbar eingeengt. Als Rückstand erhält man 3788 g (89% d. Th.) eines Öls, das bei Lagerung bei Raumtemperatur erstarrt (Reinheit 93% laut GC). Der Rückstand wird ohne weitere Aufreinigung in der nächsten Stufe eingesetzt.
    1H-NMR (500 MHz, DMSO-d6): δ = 1.37 (s, 9H), 1.45 (s, 6H), 7.60 (d, 2H), 7.85 (d, 2H).
  • Beispiel 12A
  • 2-[4-(Aminomethyl)phenylsulfanyl]-2-methyl-propionsäure-tert.-butylester-Hydrochlorid
    Figure 00360001
  • In einem 26 Liter-Kessel wird zu einer Lösung von 3000 g (10.74 mol) 2-(4-Cyanophenylsulfanyl)-2-methyl-propionsäure-tert.-butylester (Beispiel 11A) in 5.5 Liter THF bei 72°C eine Lösung von 2627 g (16.11 mol) Boran-N,N-Diethylanilin-Komplex innerhalb von 2 h tropfenweise zudosiert. Es wird 1 h bei 72°C nachgerührt, dann auf RT abgekühlt und innerhalb von 1 h 2.33 Liter Methanol zudosiert. Anschließend wird mit 5.81 Liter 6 M Salzsäure versetzt und über Nacht bei RT gerührt. Es wird in eine 40 Liter-Trennbirne überführt und der Kessel mit 3.88 Liter Wasser und 7.75 Liter Methylcyclohexan nachgespült. Die organische Phase wird zweimal mit je 3.8 Liter Wasser verrührt. Die vereinigten wässrigen Phasen werden mit 3.88 Liter Methylcyclohexan ausgerührt und anschließend mit konzentrierter Natronlauge auf pH 10.5 gestellt (Verbrauch: 2.5 Liter). Die wässrig-ölige Phase wird zweimal mit je 3.88 Liter Methylcyclohexan verrührt und die vereinigten organischen Phasen werden mit 5.81 Liter Wasser gewaschen. Die organische Phase (14.5 Liter) wird am Rotationsverdampfer bei 75°C / 45 mbar aufkonzentriert. Man erhält 4.45 kg einer Rohlösung, die das gewünschte Produkt im Gemisch mit Diethylanilin enthält.
  • Diese Rohlösung wird mit einem vorherigen Ansatz gleicher Größe vereinigt und das Diethylanilin wird in zwei Schritten über einen Dünnschichtverdampfer weitgehend abdestilliert (1. Destillation: Produkteinspeisung 458 g/h, Einspeisungstemperatur 80-85°C, Druck 2.7 mbar, Kopftemperatur 67°C, Sumpftemperatur 37°C; 2. Destillation: identische Bedingungen bei 1.0 mbar). Der Destillationsrückstand (3664 g) wird in einem Emaillekessel in 7.8 Liter MTBE aufgenommen und tropfenweise innerhalb von 20 min mit einer 5-6 molaren Lösung von Chlorwasserstoff in Isopropanol versetzt. Die Innentemperatur steigt dabei auf 47°C. Die Suspension wird auf RT abgekühlt und 2 h lang nachgerührt. Es wird über eine Seitz-Filterplatte abgesaugt und viermal mit je 2.6 Liter MTBE nachgewaschen. Das Feuchtprodukt (5.33 kg) wird im Vakuum bei 40°C und Stickstoff-Überlagerung bis zur Massenkonstanz getrocknet. Man erhält für die beiden vereinigten Ansätze 2780 g (41% d. Th.) der Titelverbindung als weißes Kristallisat.
    1H-NMR (400 MHz, DMSO-d6): = 1.39 (m, 15H), 4.04 (s, 2H), 7.49 (m, 4H), 8.48 (sbr, 3H).
    MS (DCI / NH3): m/z = 282 [M+H]+, 299 [M+NH4]+.
  • Beispiel 13A
  • tert.-Butyl-2-[(4-{[(2-methoxyethyl)amino]methyl}phenyl)thio]-2-methylpropanoat
    Figure 00370001
  • 5.00 g der Verbindung aus Beispiel 12A (15.73 mmol) werden in 15 ml DMF vorgelegt und bei RT mit 1.97 g 2-Bromethylmethylether (14.16 mmol) und 5.48 ml Triethylamin (39.32 mmol) versetzt. Es wird über Nacht bei RT gerührt und anschließend am Rotationsverdampfer eingeengt. Der Rückstand wird mit Wasser versetzt, zweimal mit Ethylacetat extrahiert, mit Natriumsulfat getrocknet und das Lösungsmittel unter vermindertem Druck abdestilliert. Die Aufreinigung erfolgt flashchromatographisch an Kieselgel (Eluent: Dichlormethan/Isopropanol 5:1). Es werden 2.56 g (48% d. Th.) der Titelverbindung erhalten.
    LC/MS (Methode 2): Rt = 1.49 min.; MS (ESIpos): m/z = 340 [M+H]+.
    1H-NMR (400 MHz, DMSO-d6): δ [ppm] = 1.38 (s*, 15H), 3.09 (t, 2H), 3.30 (s, 3H), 3.58 (t, 2H), 4.18 (s, 2H), 7.51 (s*, 4H), 8.92 (sbr, 1H).
  • Beispiel 14A
  • 2-(Chlormethyl)-4-(3-methylphenyl)-4H-1,3,4-oxadiazin-5(6H)-on
    Figure 00370002
  • 2.46 g 3-Methylphenylhydrazin (20.14 mmol) und 1 g Molekularsieb (4Å) werden in 30 ml abs. DMF vorgelegt. Anschließend werden 1.60 ml Chloracetylchlorid (20.14 mmol) als Lösung in 10 ml abs. DMF über einen Zeitraum von 30 min zugetropft. Nach vollständiger Umsetzung (Kon trolle über analytische HPLC) wird ein weiteres Äquivalent Chloracetylchlorid zugegeben und 3.51 ml DIEA (20.14 mmol) als Lösung in 10 ml abs. DMF langsam über ca. 30 min zugetropft. Nach erneuter HPLC-Kontrolle werden weitere 7.01 ml DIEA (40.27 mmol) zugegeben. Anschließend wird über Nacht bei 70°C gerührt. Nach dem Abkühlen wird das Lösungsmittel bei vermindertem Druck abdestilliert, der Rückstand in Wasser aufgenommen und dreimal mit Ethylacetat extrahiert. Es wird mit Wasser gewaschen, mit Natriumsulfat getrocknet und anschließend das Lösungsmittel am Rotationsverdampfer entfernt. Die Aufreinigung erfolgt flashchromatographisch an Kieselgel (Eluent: Cyclohexan/Ethylacetat 5:1). Es werden 3.11 g (63% d. Th.) der Titelverbindung erhalten.
    LC/MS (Methode 4): Rt = 2.24 min.; MS (ESIpos): m/z = 239 [M+H]+.
    1H-NMR (400 MHz, DMSO-d6): δ [ppm] = 2.33 (s, 3H), 4.40 (s, 2H), 4.90 (s, 2H), 7.12 (m, 1H), 7.29-7.36 (m, 3H).
  • Beispiel 15A
  • tert.-Butyl-2-({4-[((2-methoxyethyl){[4-(3-methylphenyl)-5-oxo-5,6-dihydro-4H-1,3,4-oxadiazin-2-yl]methyl}amino)methyl]phenyl}thio)-2-methylpropanoat
    Figure 00380001
  • 150 mg der Verbindung aus Beispiel 13A (0.44 mmol), 116 mg der Verbindung aus Beispiel 14A (0.49 mmol), 0.15 ml Triethylamin (1.10 mmol) und 33 mg TBAI (0.09 mmol) werden in 3 m1 THF gelöst und über Nacht bei 100°C in einem druckbeständigen Gefäß umgesetzt. Das Lösungsmittel wird anschließend unter vermindertem Druck entfernt und der Rückstand in Wasser aufgenommen. Nach zweimaliger Extraktion mit Ethylacetat wird mit Natriumsulfat getrocknet und das Lösungsmittel am Rotationsverdampfer abgetrennt. Die Aufreinigung erfolgt mittels präparativer HPLC (Eluent: Acetonitril/Wasser mit 0.1% Ameisensäure, Gradient 20:80 → 95:5). Es werden 116 mg (48% d. Th.) der Titelverbindung erhalten.
    LC/MS (Methode 2): Rt = 2.87 min.; MS (ESIpos): m/z = 542 [M+H]+.
    1H-NMR (400 MHz, DMSO-d6): δ [ppm] = 1.34 (s, 9H), 1.36 (s, 6H), 2.33 (s, 3H), 2.76 (t, 2H), 3.21 (s, 3H), 3.39 (s, 2H), 3.44 (t, 2H), 3.80 (s, 2H), 4.76 (s, 2H), 7.09 (d, 1H), 7.25-7.45 (m, 7H).
  • Beispiel 16A
  • tert.-Butyl-2-methyl-2-({4-[({[4-(3-methylphenyl)-5-oxo-5,6-dihydro-4H-1,3,4-oxadiazin-2-yl]methyl}amino)methyl]phenyl}thio)propanoat
    Figure 00390001
  • 1.31 g der Verbindung aus Beispiel 12A (4.11 mmol) werden in 20 ml THF vorgelegt und mit 0.72 ml DIEA (4.11 mmol) versetzt. Nach fünfminütigem Rühren werden 1.00 g der Verbindung aus Beispiel 14A (4.11 mmol), 0.86 ml Triethylamin (6.16 mmol) und 0.30 g TBAI (0.82 mmol) hinzugefügt und das Reaktionsgemisch über Nacht bei RT gerührt. Danach wird am Rotationsverdampfer eingeengt und der Rückstand mit Wasser aufgenommen. Nach zweimaliger Extraktion mit Ethylacetat wird mit Natriumsulfat getrocknet und das Lösungsmittel unter vermindertem Druck abdestilliert. Die Aufreinigung erfolgt flashchromatographisch an Kieselgel (Eluent: Cyclohexan/Ethylacetat 1:1). Es werden 350 mg (18% d. Th.) der Titelverbindung erhalten.
    LC/MS (Methode 2): Rt = 1.78 min.; MS (ESIpos): m/z = 484 [M+H]+.
    1H-NMR (400 MHz, DMSO-d6): δ [ppm] = 1.35 (s*, 15H), 2.33 (s, 3H), 2.68 (sbr, 1H), 3.35 (s, 2H), 3.79 (s, 2H), 4.76 (s, 2H), 7.09 (d, 1H), 7.29 (t, 1H), 7.33-7.43 (m, 6H).
  • Beispiel 17A
  • tert.-Butyl-2-methyl-2-({4-[(methyl{[4-(3-methylphenyl)-5-oxo-5,6-dihydro-4H-1,3,4-oxadiazin-2-yl]methyl}amino)methyl]phenyl}thio)propanoat
    Figure 00390002
  • 135 mg der Verbindung aus Beispiel 16A (0.28 mmol), 0.02 ml Methyliodid (0.33 mmol), 0.10 ml Triethylamin (0.70 mmol) und 0.05 ml DIEA (0.28 mmol) werden in 4 ml THF gelöst und in einem druckbeständigen Gefäß über Nacht bei 100°C umgesetzt. Das Reaktionsgemisch wird am Rotationsverdampfer eingeengt und der Rückstand mit Wasser aufgenommen. Nach zweimaliger Extraktion mit Ethylacetat wird mit Natriumsulfat getrocknet und das Lösungsmittel unter vermindertem Druck abdestilliert. Die Aufreinigung erfolgt mittels präparativer HPLC (Eluent: Acetonitril/Wasser mit 0.1% Ameisensäure, Gradient 20:80 → 95:5). Es werden 73 mg (51% d. Th.) der Titelverbindung erhalten.
    LC/MS (Methode 2): Rt = 2.32 min.; MS (ESIpos): m/z = 498 [M+H]+.
    1H-NMR (400 MHz, DMSO-d6): δ [ppm] = 1.34 (s, 9H), 1.36 (s, 6H), 2.26 (s, 3H), 2.33 (s, 3H), 3.28 (s, 2H), 3.66 (s, 2H), 4.80 (s, 2H), 7.09 (d, 1H), 7.24-7.38 (m, 5H), 7.42 (d, 2H).
  • Beispiel 18A
  • 2-(Chlormethyl)-4-(3-chlorphenyl)-4H-1,3,4-oxadiazin-5(6H)-on
    Figure 00400001
  • 13.00 g 3-Chlorphenylhydrazin (91.17 mmol) und 5 g Molekularsieb (4Å) werden in 200 ml abs. DMF vorgelegt. Anschließend werden 7.26 ml Chloracetylchlorid (91.17 mmol) als Lösung in 100 ml abs. DMF über einen Zeitraum von 30 min zugetropft. Nach vollständiger Umsetzung (Kontrolle mittels analytischer HPLC) wird ein weiteres Äquivalent Chloracetylchlorid zugegeben und 15.88 ml DIEA (91.17 mmol) als Lösung in 100 ml abs. DMF langsam über ca. 30 min zugetropft. Nach erneuter HPLC-Kontrolle werden weitere 31.76 ml DIEA (182.34 mmol) zugegeben. Anschließend wird über Nacht bei 70°C gerührt. Nach dem Abkühlen wird das Lösungsmittel bei vermindertem Druck abdestilliert, der Rückstand in Wasser aufgenommen und dreimal mit Ethylacetat extrahiert. Es wird mit Wasser gewaschen, mit Natriumsulfat getrocknet und anschließend das Lösungsmittel am Rotationsverdampfer entfernt. Die Aufreinigung erfolgt flashchromatographisch an Kieselgel (Eluent: Cyclohexan/Ethylacetat 5:1). Es werden 10.00 g (42% d. Th.) der Titelverbindung erhalten.
    LC/MS (Methode 2): Rt = 2.16 min.; MS (ESIpos): m/z = 259 [M+H]+.
    1H-NMR (400 MHz, DMSO-d6): δ [ppm] = 4.43 (s, 2H), 4.92 (s, 2H), 7.37 (d, 1H), 7.47 (t, 1H), 7.59 (d, 1H), 7.67 (t, 1H).
  • Beispiel 19A
  • tert.-Butyl-2-({4-[((2-methoxyethyl){[4-(3-chlorphenyl)-5-oxo-5,6-dihydro-4H-1,3,4-oxadiazin-2-yl]methyl}amino)methyl]phenyl}thio)-2-methylpropanoat
    Figure 00410001
  • 250 mg der Verbindung aus Beispiel 13A (0.74 mmol), 209 mg der Verbindung aus Beispiel 18A (0.81 mmol), 0.26 ml Triethylamin (1.84 mmol) und 54 mg TBAI (0.15 mmol) werden in 3 ml THF gelöst und über Nacht bei 100°C in einem druckbeständigen Gefäß umgesetzt. Das Lösungsmittel wird anschließend unter vermindertem Druck entfernt und der Rückstand in Wasser aufgenommen. Nach zweimaliger Extraktion mit Ethylacetat wird mit Natriumsulfat getrocknet und das Lösungsmittel am Rotationsverdampfer abgetrennt. Die Aufreinigung erfolgt mittels präparativer HPLC (Eluent: Acetonitril/Wasser mit 0.1% Ameisensäure, Gradient 20:80 → 95:5). Es werden 276 mg (67% d. Th.) der Titelverbindung erhalten.
    LC/MS (Methode 1): Rt = 3.17 min.; MS (ESIpos): m/z = 562 [M+H]+.
    1H-NMR (400 MHz, DMSO-d6): δ [ppm] = 1.33 (s, 9H), 1.35 (s, 6H), 2.77 (t, 2H), 3.21 (s, 3H), 3.41 (s, 2H), 3.45 (t, 2H), 3.81 (s, 2H), 4.79 (s, 2H), 7.31-7.50 (m, 6H), 7.61 (m, 1H), 7.68 (t, 1H).
  • Beispiel 20A
  • tert.-Butyl-2-[(4-{[(cyanomethyl)amino]methyl}phenyl)thio]-2-methylpropanoat
    Figure 00420001
  • 5.00 g der Verbindung aus Beispiel 12A (15.73 mmol) werden in 50 ml DMF vorgelegt und bei RT mit 1.89 g Bromacetonitril (15.73 mmol) und 5.48 ml Triethylamin (39.32 mmol) versetzt. Es wird über Nacht bei RT gerührt und anschließend am Rotationsverdampfer eingeengt. Der Rückstand wird mit Wasser versetzt, zweimal mit Ethylacetat extrahiert, mit Natriumsulfat getrocknet und das Lösungsmittel unter vermindertem Druck abdestilliert. Die Aufreinigung erfolgt flashchromatographisch an Kieselgel (Eluent: Cyclohexan/Ethylacetat 7:3). Es werden 4.55 g (90% d. Th.) der Titelverbindung erhalten.
    LC/MS (Methode 1): Rt = 2.55 min.; MS (ESIpos): m/z = 641 [2M+H]+.
    1H-NMR (400 MHz, DMSO-d6): δ [ppm] = 1.36 (s*, 15H), 3.09 (dt, 1H), 3.58 (d, 2H), 3.77 (d, 2H), 7.34 (d, 2H), 7.42 (d, 2H).
  • Beispiel 21A
  • tert.-Butyl-2-({4-[((cyanomethyl){[4-(3-methylphenyl)-5-oxo-5,6-dihydro-4H-1,3,4-oxadiazin-2-yl]methyl}amino)methyl]phenyl}thio)-2-methylpropanoat
    Figure 00420002
  • 150 mg der Verbindung aus Beispiel 20A (0.47 mmol), 134 mg der Verbindung aus Beispiel 14A (0.33 mmol), 0.16 ml Triethylamin (1.17 mmol) und 35 mg TBAI (0.09 mmol) werden in 4 ml THF gelöst und in einem druckbeständigen Gefäß über Nacht bei 100°C umgesetzt. Das Reaktionsgemisch wird am Rotationsverdampfer eingeengt und der Rückstand in Wasser aufgenommen. Nach zweimaliger Extraktion mit Ethylacetat wird mit Natriumsulfat getrocknet und das Lösungsmittel unter vermindertem Druck abdestilliert. Die Aufreinigung erfolgt mittels präpara tiver HPLC (Eluent: Acetonitril/Wasser mit 0.1% Ameisensäure, Gradient 20:80 → 95:5). Es werden 70 mg (29% d. Th.) der Titelverbindung erhalten.
    LC/MS (Methode 4): Rt = 3.10 min.; MS (ESIpos): m/z = 523 [M+H]+.
    1H-NMR (400 MHz, DMSO-d6): δ [ppm] = 1.34 (s, 9H), 1.37 (s, 6H), 2.33 (s, 3H), 3.40 (s, 2H), 3.82 (s*, 4H), 4.79 (s, 2H), 7.10 (d, 1H), 7.27-7.41 (m, 5H), 7.45 (d, 2H).
  • Beispiel 22A
  • tert.-Butyl-2-methyl-2-({4-[(prop-2-in-1-ylamino)methyl]phenyl}thio)propanoat
    Figure 00430001
  • 5.00 g der Verbindung aus Beispiel 12A (15.73 mmol) werden in 50 ml DMF vorgelegt und bei RT mit 1.87 g Propargylbromid (15.73 mmol) und 5.48 ml Triethylamin (39.32 mmol) versetzt. Es wird über Nacht bei RT gerührt und anschließend am Rotationsverdampfer eingeengt. Der Rückstand wird mit Wasser versetzt, zweimal mit Ethylacetat extrahiert, mit Natriumsulfat getrocknet und das Lösungsmittel unter vermindertem Druck abdestilliert. Die Aufreinigung erfolgt flashchromatographisch an Kieselgel (Eluent: Cyclohexan/Ethylacetat 6:4). Es werden 1.70 g (34% d. Th.) der Titelverbindung erhalten.
    LC/MS (Methode 4): Rt = 1.84 min.; MS (ESIpos): m/z = 320 [M+H]+.
    1H-NMR (400 MHz, DMSO-d6): → [ppm] = 1.35 (s*, 15H), 2.56 (br. s, 1H), 3.09 (t, 1H), 3.26 (d, 2H), 3.75 (s, 2H), 7.33 (d, 2H), 7.40 (d, 2H).
  • Beispiel 23A
  • tert.-Butyl-2-methyl-2-[(4-{[{[4-(3-methylphenyl)-5-oxo-5,6-dihydro-4H-1,3,4-oxadiazin-2-yl]methyl}(prop-2-in-1-yl)amino]methyl}phenyl)thio]propanoat
    Figure 00440001
  • 134 mg der Verbindung aus Beispiel 22A (0.42 mmol), 120 mg der Verbindung aus Beispiel 14A (0.50 mmol), 0.18 ml DIEA (1.05 mmol) und 31 mg TBAI (0.08 mmol) werden in 2 m1 THF gelöst und in einem druckbeständigen Gefäß über Nacht bei 100°C umgesetzt. Das Reaktionsgemisch wird am Rotationsverdampfer eingeengt und der Rückstand in Wasser aufgenommen. Nach zweimaliger Extraktion mit Ethylacetat wird mit Natriumsulfat getrocknet und das Lösungsmittel unter vermindertem Druck abdestilliert. Die Aufreinigung erfolgt mittels präparativer HPLC (Eluent: Acetonitril/Wasser mit 0.1% Ameisensäure, Gradient 20:80 → 95:5). Es werden 193 mg (88% d. Th.) der Titelverbindung erhalten.
    LC/MS (Methode 1): Rt = 3.24 min.; MS (ESIpos): m/z = 522 [M+H]+.
    1H-NMR (400 MHz, DMSO-d6): δ [ppm] = 1.34 (s, 9H), 1.36 (s, 6H), 2.33 (s, 3H), 3.28 (t, 1H), 3.37 (s, 2H), 3.41 (d, 2H), 3.76 (s, 2H), 4.78 (s, 2H), 7.09 (d, 1H), 7.25-7.40 (m, 5H), 7.43 (d, 2H).
  • Beispiel 24A
  • tert.-Butyl-2-({4-[((2-fluorethyl){[4-(3-methylphenyl)-5-oxo-5,6-dihydro-4H-1,3,4-oxadiazin-2-yl]methyl}amino)methyl]phenyl}thio)-2-methylpropanoat
    Figure 00440002
  • 100 mg der Verbindung aus Beispiel 16A (0.21 mmol), 40 mg 1-Brom-2-fluorethan (0.31 mmol), 0.09 ml DIEA (0.52 mmol) und 13 mg TBAI (0.04 mmol) werden in 1 ml THF gelöst und in einem druckbeständigen Gefäß über Nacht bei 100°C umgesetzt. Das Reaktionsgemisch wird am Rotationsverdampfer eingeengt und der Rückstand in Wasser aufgenommen. Nach zweimaliger Ex traktion mit Ethylacetat wird mit Natriumsulfat getrocknet und das Lösungsmittel unter vermindertem Druck abdestilliert. Die Aufreinigung erfolgt mittels präparativer HPLC (Eluent: Acetonitril/Wasser mit 0.1% Ameisensäure, Gradient 20:80 → 95:5). Es werden 87 mg (79% d. Th.) der Titelverbindung erhalten.
    LC/MS (Methode 4): Rt = 3.19 min.; MS (ESIpos): m/z = 530 [M+H]+.
  • Ausführungsbeispiele:
  • Beispiel 1
  • 2-[(4-{[{[4-(2,4-Dimethylphenyl)-5-oxo-5,6-dihydro-4H-1,3,4-oxadiazin-2-yl]methyl}(2-furylmethyl)amino]methyl}phenyl)thio]-2-methylpropansäure
    Figure 00450001
  • 100 mg der Verbindung aus Beispiel 4A (0.173 mmol) werden mit 5 ml einer 4 M Lösung von Chlorwasserstoff in Dioxan versetzt und bei RT über Nacht gerührt. Anschließend wird das Lösungsmittel unter vermindertem Druck abdestilliert und das verbleibende Hydrochlorid per LC/MS charakterisiert. Es werden 90 mg (93% d. Th., Reinheit 90%) des Hydrochlorid-Salzes erhalten.
    LC/MS (Methode 4): Rt = 2.69 min.; MS (ESIpos): m/z = 522 [M+H]+ (freie Base).
  • Die Titelverbindung wird nach weiterer Aufreinigung mittels präparativer HPLC erhalten (Eluent: Acetonitril/Wasser mit 0.1% Ameisensäure, Gradient 20:80 → 95:5).
    1H-NMR (400 MHz, DMSO-d6): δ [ppm] = 1.37 (s, 6H), 2.10 (s, 3H), 2.30 (s, 3H), 3.40 (s, 2H), 3.87 (s, 2H), 3.91 (s, 2H), 4.77 (s, 2H), 6.41 (m, 1H), 6.44 (m, 1H), 7.05-7.15 (m, 3H), 7.39 (d, 2H), 7.43 (d, 2H), 7.66 (s, 1H).
  • Beispiel 2
  • 2-[(4-{[{[4-(2-Methylphenyl)-5-oxo-5,6-dihydro-4H-1,3,4-oxadiazin-2-yl]methyl}(2-furylmethyl)amino]methyl}phenyl)thio]-2-methylpropansäure
    Figure 00460001
  • 36 mg der Verbindung aus Beispiel 6A (0.064 mmol) werden mit 5 ml einer 4 M Lösung von Chlorwasserstoff in Dioxan versetzt und bei RT über Nacht gerührt. Anschließend wird das Lösungsmittel unter vermindertem Druck abdestilliert und das verbleibende Hydrochlorid per LC/MS charakterisiert. Es werden 25 mg (93% d. Th., Reinheit 85%) des Hydrochlorid-Salzes erhalten.
    LC/MS (Methode 2): Rt = 2.38 min.; MS (ESIpos): m/z = 508 [M+H]+ (freie Base).
  • Die Titelverbindung wird nach weiterer Aufreinigung mittels präparativer HPLC erhalten (Eluent: Acetonitril/Wasser mit 0.1% Ameisensäure, Gradient 20:80 → 95:5).
    1H-NMR (400 MHz, DMSO-d6): δ [ppm] = 1.35 (s, 6H), 2.14 (s, 3H), 3.28 (s, 2H), 3.72 (s, 2H), 3.75 (s, 2H), 4.75 (s, 2H), 6.32 (d, 1H), 6.41 (dd, 1H), 7.21-7.45 (m, 8H), 7.62 (d, 1H).
  • Beispiel 3
  • 2-[(4-{[{[4-(3-Methylphenyl)-5-oxo-5,6-dihydro-4H-1,3,4-oxadiazin-2-yl]methyl}(2-furylmethyl)amino]methyl}phenyl)thio]-2-methylpropansäure
    Figure 00460002
  • 900 mg der Verbindung aus Beispiel 8A (1.56 mmol) werden mit 15 ml einer 4 M Lösung von Chlorwasserstoff in Dioxan versetzt und 3 h bei 50°C gerührt. Anschließend wird das Lösungsmittel unter vermindertem Druck abdestilliert und der Rückstand mittels präparativer HPLC aufgereinigt (Eluent: Acetonitril/Wasser mit 0.1% Ameisensäure, Gradient 20:80 → 95:5). Es werden 520 mg (64% d. Th.) der Titelverbindung erhalten.
    LC/MS (Methode 2): Rt = 2.49 min.; MS (ESIpos): m/z = 508 [M+H]+.
    1H-NMR (400 MHz, DMSO-d6): δ [ppm] = 1.37 (s, 6H), 2.33 (s, 3H), 3.43 (s, 2H), 3.87 (s, 2H), 3.89 (s, 2H), 4.75 (s, 2H), 6.41 (d, 1H), 6.45 (dd, 1H), 7.10 (d, 1H), 7.27-7.48 (m, 7H) 7.66 (d, 1H).
  • Beispiel 4
  • 2-[(4-{[{[4-(4-Methylphenyl)-5-oxo-5,6-dihydro-4H-1,3,4-oxadiazin-2-yl]methyl}(2-furylmethyl)amino]methyl}phenyl)thio]-2-methylpropansäure
    Figure 00470001
  • 11 mg der Verbindung aus Beispiel 10A (0.020 mmol) werden mit 3 ml einer 4 M Lösung von Chlorwasserstoff in Dioxan versetzt und über Nacht bei RT gerührt. Anschließend wird das Lösungsmittel unter vermindertem Druck abdestilliert und das verbleibende Hydrochlorid per LC/MS charakterisiert. Es werden 9 mg (72% d. Th., Reinheit 85%) des Hydrochlorid-Salzes erhalten.
    LC/MS (Methode 4): Rt = 2.69 min.; MS (ESIpos): m/z = 508 [M+H]+ (freie Base).
  • Die freie Base wird nach weiterer Aufreinigung mittels präparativer HPLC erhalten (Eluent: Acetonitril/Wasser mit 0.1% Ameisensäure, Gradient 20:80 → 95:5).
    1H-NMR (400 MHz, DMSO-d6): δ [ppm] = 1.36 (s, 6H), 2.31 (s, 3H), 3.31 (s, 2H), 3.75 (s, 2H), 3.77 (s, 2H), 4.72 (s, 2H), 6.34 (s*, 1H), 6.41 (s*, 1H), 7.22 (d, 2H), 7.33-7.45 (m, 6H), 7.62 (s, 1H), 12.59 (br. s, 1H).
  • Beispiel 5
  • 2-({4-[((2-Methoxyethyl){[4-(3-methylphenyl)-5-oxo-5,6-dihydro-4H-1,3,4-oxadiazin-2-yl]methyl}amino)methyl]phenyl}thio)-2-methylpropansäure-Hydrochlorid
    Figure 00480001
  • 116 mg der Verbindung aus Beispiel 15A (0.21 mmol) werden mit 5 ml einer 4 M Lösung von Chlorwasserstoff in Dioxan versetzt und 3 h bei 40°C gerührt. Anschließend wird das Lösungsmittel unter vermindertem Druck abdestilliert. Es werden 115 mg (99% d. Th.) der Titelverbindung erhalten.
    LC/MS (Methode 2): Rt = 2.02 min.; MS (ESIpos): m/z = 486 [M+H]+ (freie Base).
    1H-NMR (400 MHz, DMSO-d6): δ [ppm] = 1.39 (s, 6H), 2.35 (s, 3H), 3.27 (s, 3H), 3.44-3.75 (m, 4H), 3.95 (sbr, 2H), 4.43 (sbr, 2H), 4.88 (s, 2H), 7.13 (d, 1H), 7.28-7.42 (m, 3H), 7.44-7.53 (m, 2H), 7.54-7.66 (m, 2).
  • Beispiel 6
  • 2-Methyl-2-({4-[({[4-(3-methylphenyl)-5-oxo-5,6-dihydro-4H-1,3,4-oxadiazin-2-yl]methyl}amino)methyl]phenyl}thio)propansäure-Hydrochlorid
    Figure 00480002
  • 100 mg der Verbindung aus Beispiel 16A (0.21 mmol) werden mit 5 ml einer 4 M Lösung von Chlorwasserstoff in Dioxan versetzt und 3 h bei 40°C gerührt. Anschließend wird das Lösungsmittel unter vermindertem Druck abdestilliert. Es werden 90 mg (93% d. Th.) der Titelverbindung erhalten.
    LC/MS (Methode 2): Rt = 1.51 min.; MS (ESIpos): m/z = 428 [M+H]+ (freie Base).
    1H-NMR (400 MHz, CDCl3): δ [ppm] = 1.49 (s, 6H), 2.36 (s, 3H), 3.50-3.85 (m, 2H), 4.23 (sbr, 2H), 4.79 (s, 2H), 7.06 (d, 1H), 7.26 (1H), 7.35-7.64 (m, 6H), 10.22 (sbr, 1H).
  • Beispiel 7
  • 2-Methyl-2-({4-[(methyl{[4-(3-methylphenyl)-5-oxo-5,6-dihydro-4H-1,3,4-oxadiazin-2-yl]methyl}amino)methyl]phenyl}thio)propansäure
    Figure 00490001
  • 11.77 g der Verbindung aus Beispiel 17A (0.23 mmol) werden in 30 ml Dichlormethan vorgelegt und bei 0°C mit 30 ml Trifluoressigsäure versetzt. Nach einstündigem Rühren bei RT wird der Ansatz eingeengt und der Rückstand in 20%-iger Natriumacetat-Lösung aufgenommen. Es wird mit Ethylacetat extrahiert, die vereinigten organischen Phasen mit Wasser und konzentrierter Natriumchlorid-Lösung gewaschen und mit Natriumsulfat getrocknet. Das Lösungsmittel wird unter vermindertem Druck abdestilliert und der Rückstand anschließend im Hochvakuum getrocknet. Es werden 9.58 g (92% d. Th.) der Titelverbindung erhalten.
    LC/MS (Methode 2): Rt = 1.58 min.; MS (ESIpos): m/z = 442 [M+H]+.
    1H-NMR (400 MHz, DMSO-d6): δ [ppm] = 1.37 (s, 6H), 2.26 (s, 3H), 2.33 (s, 3H), 3.29 (s, 2H), 3.66 (s, 2H), 4.80 (s, 2H), 7.10 (d, 1H), 7.27-7.38 (m, 5H), 7.41 (d, 2H), 12.49 (br. s, 1H).
  • Beispiel 8
  • 2-({4-[((2-Methoxyethyl){[4-(3-chlorphenyl)-5-oxo-5,6-dihydro-4H-1,3,4-oxadiazin-2-yl]methyl}amino)methyl]phenyl}thio)-2-methylpropansäure-Hydrochlorid
    Figure 00500001
  • 276 mg der Verbindung aus Beispiel 19A (0.49 mmol) werden mit 10 ml einer 4 M Lösung von Chlorwasserstoff in Dioxan versetzt und 3 h bei 40°C gerührt. Anschließend wird das Lösungsmittel unter vermindertem Druck abdestilliert. Es werden 249 mg (94% d. Th.) der Titelverbindung erhalten.
    LC/MS (Methode 4): Rt = 2.33 min.; MS (ESIpos): m/z = 506 [M+H]+ (freie Base).
    1H-NMR (400 MHz, DMSO-d6): δ [ppm] = 1.38 (s, 6H), 3.27 (s, 3H), 3.44-3.74 (m, 4H), 3.97 (sbr, 2H), 4.42 (sbr, 2H), 4.89 (s, 2H), 7.38 (d, 1H), 7.44-7.67 (m, 6H), 7.71 (t, 1H).
  • Beispiel 9
  • 2-({4-[((Cyanomethyl){[4-(3-methylphenyl)-5-oxo-5,6-dihydro-4H-1,3,4-oxadiazin-2-yl]methyl}amino)methyl]phenyl}thio)-2-methylpropansäure
    Figure 00500002
  • 70 mg der Verbindung aus Beispiel 21A (0.13 mmol) werden mit 5 ml einer 4 M Lösung von Chlorwasserstoff in Dioxan versetzt und 3 h bei 40°C gerührt. Anschließend wird das Lösungsmittel unter vermindertem Druck abdestilliert und der Rückstand mittels präparativer HPLC aufgereinigt (Eluent: Acetonitril/Wasser mit 0.1% Ameisensäure, Gradient 20:80 → 95:5). Es werden 40 mg (64% d. Th.) der Titelverbindung erhalten.
    LC/MS (Methode 1): Rt = 2.51 min.; MS (ESIpos): m/z = 467 [M+H]+.
    1H-NMR (400 MHz, DMSO-d6): δ [ppm] = 1.37 (s, 6H), 2.33 (s, 3H), 3.41 (s, 2H), 3.82 (s*, 4H), 4.79 (s, 2H), 7.10 (d, 1H), 7.27-7.39 (m, 5H), 7.44 (d, 2H).
  • Beispiel 10
  • 2-Methyl-2-[(4-{[{[4-(3-methylphenyl)-5-oxo-5,6-dihydro-4H-1,3,4-oxadiazin-2-yl]methyl}(prop-2-in-1-yl)amino]methyl}phenyl)thio]propansäure
    Figure 00510001
  • 120 mg der Verbindung aus Beispiel 23A (0.23 mmol) werden in 3 ml Dichlormethan vorgelegt und bei 0°C mit 3 ml Trifluoressigsäure versetzt. Nach einstündigem Rühren bei RT wird der Ansatz eingeengt, der Rückstand mit Chloroform versetzt und das Lösungsmittel erneut unter vermindertem Druck abdestilliert. Der Rückstand wird mittels präparativer HPLC aufgereinigt (Eluent: Acetonitril/Wasser mit 0.1% Ameisensäure, Gradient 20:80 → 95:5). Es werden 80 mg (75% d. Th.) der Titelverbindung erhalten.
    LC/MS (Methode 4): Rt = 2.58 min.; MS (ESIpos): m/z = 466 [M+H]+.
    1H-NMR (400 MHz, DMSO-d6): δ [ppm] = 1.36 (s, 6H), 2.33 (s, 3H), 3.28 (t, 1H), 3.37 (s, 2H), 3.41 (d, 2H), 3.75 (s, 2H), 4.77 (s, 2H), 7.09 (d, 1H), 7.26-7.38 (m, 5H), 7.42 (d, 2H), 12.58 (br. s, 1H).
  • Beispiel 11
  • 2-({4-[((2-Fluorethyl){[4-(3-methylphenyl)-5-oxo-5,6-dihydro-4H-1,3,4-oxadiazin-2-yl]methyl}amino)methyl]phenyl}thio)-2-methylpropansäure
    Figure 00520001
  • 87 mg der Verbindung aus Beispiel 24A (0.16 mmol) werden in 3 ml Dichlormethan vorgelegt und bei 0°C mit 3 ml Trifluoressigsäure versetzt. Nach einstündigem Rühren bei RT wird der Ansatz eingeengt und der Rückstand in gesättigter Natriumhydrogencarbonat-Lösung aufgenommen. Es wird zweimal mit Dichlormethan extrahiert, die organischen Phasen vereinigt und mit Natriumsulfat getrocknet. Das Lösungsmittel wird unter vermindertem Druck abdestilliert und der Rückstand im Hochvakuum getrocknet. Es werden 76 mg (98% d. Th.) der Titelverbindung erhalten.
    LC/MS (Methode 2): Rt = 2.35 min.; MS (ESIpos): m/z = 474 [M+H]+.
    1H-NMR (400 MHz, DMSO-d6): δ [ppm] = 1.36 (s, 6H), 2.33 (s, 3H), 2.94 (dt, 2H), 3.42 (s, 2H), 3.84 (s, 2H), 4.53 (dt, 2H), 4.75 (s, 2H), 7.09 (d, 1H), 7.27-7.43 (m, 7H), 12.57 (br. s, 1H).
  • B. Bewertung der pharmakologischen Wirksamkeit
  • Die pharmakologische Wirkung der erfindungsgemäßen Verbindungen kann in folgenden Assays gezeigt werden:
  • 1. Zellulärer Transaktivierungs-Assay:
  • a) Testprinzip:
  • Ein zellulärer Assay wird eingesetzt zur Identifizierung von Aktivatoren des Peroxisom-Proliferator-aktivierten Rezeptors alpha (PPAR-alpha).
  • Da Säugetierzellen verschiedene endogene nukleäre Rezeptoren enthalten, die eine eindeutige Interpretation der Ergebnisse komplizieren könnten, wird ein etabliertes Chimärensystem eingesetzt, in dem die Liganden-Bindungsdomäne des humanen PPARα-Rezeptors an die DNA-Bindungsdomäne des Hefe-Transkriptionsfaktors GAL4 fusioniert wird. Die so entstehende GAL4-PPARα-Chimäre wird in CHO-Zellen mit einem Reporterkonstrukt co-transfiziert und stabil exprimiert.
  • b) Klonierung:
  • Das GAL4-PPARα-Expressions-Konstrukt enthält die Ligandenbindungsdomäne von PPARα (Aminosäuren 167-468), welche PCR-amplifiziert wird und in den Vektor pcDNA3.1 hineinkloniert wird. Dieser Vektor enthält bereits die GAL4-DNA-Bindungsdomäne (Aminosäuren 1-147) des Vektors pFC2-dbd (Stratagene). Das Reporterkonstrukt, welches fünf Kopien der GAL4-Bindestelle, vorgeschaltet vor einem Thymidinkinase-Promoter enthält, führt zur Expression der Firefly-Luciferase (Photinus pyralis) nach Aktivierung und Bindung von GAL4-PPARα.
  • c) Transaktivierungs-Assay (Luciferase-Reporter):
  • CHO (chinese hamster ovary)-Zellen werden in DMEM/F12-Medium (Bio Whittaker), supplementiert mit 10% fötalem Kälberserum, 1% Penicillin/Streptomycin (GIBCO), mit einer Zelldichte von 2 × 103 Zellen pro well in einer 384 well-Platte (Greiner) ausgesät. Nach Kultivierung über 48 h bei 37°C werden die Zellen stimuliert. Dazu werden die zu prüfenden Substanzen in CHO-A-SFM-Medium (GIBCO), supplementiert mit 10% fötalem Kälberserum, 1% Penicillin/Streptomycin (GIBCO), aufgenommen und zu den Zellen hinzugegeben. Nach einer Stimulationszeit von 24 Stunden wird die Luciferaseaktivität mit Hilfe einer Videokamera gemessen. Die gemessenen relativen Lichteinheiten ergeben in Abhängigkeit von der Substanzkonzentration eine sigmoide Stimulationskurve. Die Berechnung der EC50-Werte erfolgt mit Hilfe des Computerprogramms GraphPad PRISM (Version 3.02).
  • Die erfindungsgemäßen Verbindungen zeigen in diesem Test EC50-Werte von 1 μM bis 10 nM.
  • 2. Fibrinogenbestimmung:
  • Zur Bestimmung der Wirkung auf die Plasma-Fibrinogen-Konzentration werden männliche Wistar-Ratten oder NMRI-Mäuse für einen Zeitraum von 4-9 Tagen per Schlundsonden-Applikation oder über Futterbeimischung mit der zu untersuchenden Substanz behandelt. Anschließend wird in Terminalnarkose Citratblut durch Herzpunktion gewonnen. Die Plasma-Fibrinogen-Spiegel werden nach der Clauss-Methode [A. Clauss, Acta Haematol. 17, 237-46 (1957)] durch Messung der Thrombinzeit mit humanem Fibrinogen als Standard bestimmt.
  • 3. Testbeschreibung zur Auffindung von pharmakologisch wirksamen Substanzen, die das Apoprotein Al (ApoAl) und das HDL-Cholesterin (HDL-C) im Serum von transegnen Mäusen, die mit dem humanen ApoAl-Gen (hApoAl) transfiziert sind, erhöhen bzw. die Serumtriglyzeride (TG) senken:
  • Die Substanzen, die auf ihre HDL-C erhöhende Wirkung in vivo untersucht werden sollen, werden männlichen transgenen hApoAl-Mäusen oral verabreicht. Die Tiere werden einen Tag vor Versuchsbeginn randomisiert Gruppen mit gleicher Tierzahl, in der Regel n = 7-10, zugeordnet. Während des gesamten Versuches steht den Tieren Trinkwasser und Futter ad libitum zur Verfügung. Die Substanzen werden einmal täglich 7 Tage lang oral verabreicht. Zu diesem Zweck werden die Testsubstanzen in einer Lösung aus Solutol HS 15 + Ethanol + Kochsalzlösung (0.9%) im Verhältnis 1+1+8 oder in einer Lösung aus Solutol HS 15 + Kochsalzlösung (0.9%) im Verhältnis 2+8 gelöst. Die Applikation der gelösten Substanzen erfolgt in einem Volumen von 10 ml/kg Körpergewicht mit einer Schlundsonde. Als Kontrollgruppe dienen Tiere, die genauso behandelt werden, aber nur das Lösungsmittel (10 ml/kg Körpergewicht) ohne Testsubstanz erhalten.
  • Vor der ersten Substanzapplikation wird jeder Maus zur Bestimmung von ApoAl, Serumcholesterin, HDL-C und Serumtriglyzeriden (TG) Blut durch Punktion des retroorbitalen Venenplexus entnommen (Vorwert). Anschließend wird den Tieren mit einer Schlundsonde die Testsubstanz zum ersten Mal verabreicht. 24 Stunden nach der letzten Substanzapplikation (am 8. Tag nach Behandlungsbeginn) wird jedem Tier zur Bestimmung der gleichen Parameter erneut Blut durch Punktion des retroorbitalen Venenplexus entnommen. Die Blutproben werden zentrifugiert und nach Gewinnung des Serums werden TG, Cholesterin, HDL-C und humanes ApoAl mit einem Cobas Integra 400 plus-Gerät (Cobas Integra, Fa. Roche Diagnostics GmbH, Mannheim) unter Verwendung der jeweiligen Kassetten (TRIGL, CHOL2, HDL-C und APOAT) bestimmt. HDL-C wird durch Gelfiltration und Nachsäulenderivatisierung mit MEGA Cholesterol-Reagens (Fa. Merck KGaA) analog zur Methode von Garber et al. [J. Lipid Res. 41, 1020-1026 (2000)] bestimmt.
  • Die Wirkung der Testsubstanzen auf die HDL-C-, hApoAl- bzw. TG-Konzentrationen wird durch Subtraktion des Messwertes der 1. Blutentnahme (Vorwert) von dem Messwert der 2. Blutentnahme (nach Behandlung) bestimmt. Es werden die Differenzen aller HDL-C-, hApoAl- bzw. TG-Werte einer Gruppe gemittelt und mit dem Mittelwert der Differenzen der Kontrollgruppe verglichen. Die statistische Auswertung erfolgt mit Student's t-Test nach vorheriger Überprüfung der Varianzen auf Homogenität.
  • Substanzen, die das HDL-C der behandelten Tiere, verglichen mit dem der Kontrollgruppe, statistisch signifikant (p<0.05) um mindestens 20% erhöhen oder die TG statistisch signifikant (p<0.05) um mindestens 25% senken, werden als pharmakologisch wirksam angesehen.
  • C. Ausführungsbeispiele für pharmazeutische Zusammensetzungen
  • Die erfindungsgemäßen Verbindungen können folgendermaßen in pharmazeutische Zubereitungen überführt werden:
  • Tablette:
  • Zusammensetzung:
  • 100 mg der erfindungsgemäßen Verbindung, 50 mg Lactose (Monohydrat), 50 mg Maisstärke (nativ), 10 mg Polyvinylpyrrolidon (PVP 25) (Fa. BASF, Ludwigshafen, Deutschland) und 2 mg Magnesiumstearat.
    Tablettengewicht 212 mg. Durchmesser 8 mm, Wölbungsradius 12 mm.
  • Herstellung:
  • Die Mischung aus erfindungsgemäßer Verbindung, Lactose und Stärke wird mit einer 5%-igen Lösung (m/m) des PVPs in Wasser granuliert. Das Granulat wird nach dem Trocknen mit dem Magnesiumstearat 5 Minuten gemischt. Diese Mischung wird mit einer üblichen Tablettenpresse verpresst (Format der Tablette siehe oben). Als Richtwert für die Verpressung wird eine Presskraft von 15 kN verwendet.
  • Oral applizierbare Suspension:
  • Zusammensetzung:
  • 1000 mg der erfindungsgemäßen Verbindung, 1000 mg Ethanol (96%), 400 mg Rhodigel® (Xanthan gum der Firma FMC, Pennsylvania, USA) und 99 g Wasser.
  • Einer Einzeldosis von 100 mg der erfindungsgemäßen Verbindung entsprechen 10 ml orale Suspension.
  • Herstellung:
  • Das Rhodigel wird in Ethanol suspendiert, die erfindungsgemäße Verbindung wird der Suspension zugefügt. Unter Rühren erfolgt die Zugabe des Wassers. Bis zum Abschluß der Quellung des Rhodigels wird ca. 6 h gerührt.
  • Oral applizierbare Lösung:
  • Zusammensetzung:
  • 500 mg der erfindungsgemäßen Verbindung; 2.5 g Polysorbat und 97 g Polyethylenglycol 400. Einer Einzeldosis von 100 mg der erfindungsgemäßen Verbindung entsprechen 20 g orale Lösung.
  • Herstellung:
  • Die erfindungsgemäße Verbindung wird in der Mischung aus Polyethylenglycol und Polysorbat unter Rühren suspendiert. Der Rührvorgang wird bis zur vollständigen Auflösung der erfindungsgemäßen Verbindung fortgesetzt.
  • i.v.-Lösung:
  • Die erfindungsgemäße Verbindung wird in einer Konzentration unterhalb der Sättigungslöslichkeit in einem physiologisch verträglichen Lösungsmittel (z.B. isotonische Kochsalzlösung, Glucoselösung 5% und/oder PEG 400-Lösung 30%) gelöst. Die Lösung wird steril filtriert und in sterile und pyrogenfreie Injektionsbehältnisse abgefüllt.

Claims (12)

  1. Verbindung der Formel (I)
    Figure 00580001
    in welcher Y und Z unabhängig voneinander jeweils für O oder S stehen, m für die Zahl 0, 1 oder 2 steht, n für die Zahl 1 oder 2 steht, R1 für (C6-C10)-Aryl oder 5- bis 10-gliedriges Heteroaryl steht, welche jeweils bis zu vierfach, gleich oder verschieden, mit Substituenten ausgewählt aus der Reihe Halogen, Nitro, Cyano, (C1-C6)-Alkyl, das seinerseits mit Hydroxy substituiert sein kann, (C3-C8)-Cycloalkyl, Phenyl, Hydroxy, (C1-C6)-Alkoxy, Trifluormethyl, Trifluormethoxy, Amino, Mono- und Di-(C1-C6)-alkylamino, R8-C(O)-NH-, R9-C(O)-, R10R11N-C(O)-NH- und R12R13N-C(O)- substituiert sein können, worin R8 Wasserstoff, (C1-C6)-Alkyl, (C3-C8)-Cycloalkyl, Phenyl oder (C1-C6)-Alkoxy bedeutet, R9 Wasserstoff, (C1-C6)-Alkyl, (C3-C8)-Cycloalkyl, Phenyl, Hydroxy oder (C1-C6)-Alkoxy bedeutet und R10, R11, R12 und R13 gleich oder verschieden sind und unabhängig voneinander Wasserstoff, (C1-C6)-Alkyl, (C3-C8)-Cycloalkyl oder Phenyl bedeuten, R2 für Wasserstoff, (C6-C10)-Aryl, (C1-C6)-Alkyl, (C2-C6)-Alkenyl oder (C2-C6)-Alkinyl steht, worin Alkyl, Alkenyl und Alkinyl jeweils mit Trifluormethyl, (C1-C6)-Alkoxy, Trifluormethoxy, Fluor, Cyano, (C6-C10)-Aryl oder 5- oder 6-gliedri gem Heteroaryl substituiert sein können, wobei alle genannten Aryl- und Heteroaryl-Gruppen ihrerseits jeweils bis zu dreifach, gleich oder verschieden, mit Substituenten ausgewählt aus der Reihe Halogen, Nitro, Cyano, (C1-C6)-Alkyl, Hydroxy, (C1-C6)-Alkoxy, Trifluormethyl und Trifluormethoxy substituiert sein können, R3 und R4 gleich oder verschieden sind und unabhängig voneinander für Wasserstoff, (C1-C6)-Alkyl, (C2-C6)-Alkenyl, (C1-C6)-Alkoxy, Trifluormethyl, Trifluormethoxy oder Halogen stehen, R5 und R6 gleich oder verschieden sind und unabhängig voneinander für Wasserstoff, (C1-C6)-Alkyl, (C1-C6)-Alkoxy oder Phenoxy stehen oder gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen (C3-C8)-Cycloalkylring bilden, und R7 für eine Gruppe der Formel -NHR14 oder -OR15 steht, worin R14 Wasserstoff, (C1-C6)-Alkyl oder (C1-C6)-Alkylsulfonyl bedeutet und R15 Wasserstoff bedeutet oder für eine hydrolysierbare Gruppe steht, die in die entsprechende Carbonsäure umgewandelt werden kann, sowie ihre Salze, Solvate und Solvate der Salze.
  2. Verbindung der Formel (I) nach Anspruch 1, in welcher Y für O steht, Z für S steht, m für die Zahl 0, 1 oder 2 steht, n für die Zahl 1 oder 2 steht, R1 für Phenyl oder 5- oder 6-gliedriges Heteroaryl steht, welche jeweils bis zu vierfach, gleich oder verschieden, mit Substituenten ausgewählt aus der Reihe Halogen, Nitro, Cyano, (C1-C4)-Alkyl, das seinerseits mit Hydroxy substituiert sein kann, (C3-C6)-Cycloalkyl, Phenyl, Hydroxy, (C1-C4)-Alkoxy, Trifluormethyl, Tri fluormethoxy, Amino, Mono- und Di-(C1-C4)-alkylamino, R8-C(O)-NH-, R9-C(O)-, R10R11N-C(O)-NH- und R12R13N-C(O)- substituiert sein können, worin R8 Wasserstoff, (C1-C4)-Alkyl, (C3-C6)-Cycloalkyl, Phenyl oder (C1-C4)-Alkoxy bedeutet, R9 Wasserstoff, (C1-C4)-Alkyl, (C3-C6)-Cycloalkyl, Phenyl, Hydroxy oder (C1-C4)-Alkoxy bedeutet und R10, R11 R12 und R13 gleich oder verschieden sind und unabhängig voneinander Wasserstoff, (C1-C4)-Alkyl, (C3-C6)-Cycloalkyl oder Phenyl bedeuten, R2 für Wasserstoff, Phenyl, (C1-C4)-Alkyl, (C2-C4)-Alkenyl oder (C2-C4)-Alkinyl steht, worin Alkyl, Alkenyl und Alkinyl jeweils mit Trifluormethyl, Fluor, Cyano, (C1-C4)-Alkoxy, Phenyl oder 5- oder 6-gliedrigem Heteroaryl substituiert sein können, wobei alle genannten Phenyl- und Heteroaryl-Gruppen ihrerseits jeweils bis zu dreifach, gleich oder verschieden, mit Substituenten ausgewählt aus der Reihe Halogen, Nitro, Cyano, (C1-C4)-Alkyl, Hydroxy, (C1-C4)-Alkoxy, Trifluormethyl und Trifluormethoxy substituiert sein können, R3 und R4 gleich oder verschieden sind und unabhängig voneinander für Wasserstoff, (C1-C4)-Alkyl, (C1-C4)-Alkoxy, Trifluormethyl, Trifluormethoxy oder Halogen stehen, R5 und R6 gleich oder verschieden sind und unabhängig voneinander für Wasserstoff, Methyl, Ethyl, Methoxy, Ethoxy oder Phenoxy stehen oder gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen (C3-C6)-Cycloalkylring bilden, und R7 für eine Gruppe der Formel -NHR14 oder -OR15 steht, worin R14 Wasserstoff oder (C1-C4)-Alkyl bedeutet und R15 Wasserstoff bedeutet oder für eine hydrolysierbare Gruppe steht, die in die entsprechende Carbonsäure umgewandelt werden kann, sowie ihre Salze, Solvate und Solvate der Salze.
  3. Verbindung der Formel (I) nach Anspruch 1 oder 2, in welcher Y für O steht, Z für S steht, m für die Zahl 0 oder 1 steht, n für die Zahl 1 oder 2 steht, R1 für Phenyl oder Pyridyl steht, welche jeweils ein- oder zweifach, gleich oder verschieden, mit Substituenten ausgewählt aus der Reihe Fluor, Chlor, Nitro, Methyl, Methoxy, Trifluormethyl und Trifluormethoxy substituiert sein können, R2 für Wasserstoff, Propargyl oder für (C1-C4)-Alkyl steht, welches mit Fluor, Cyano, (C1-C4)-Alkoxy, Phenyl, Furyl, Thienyl, Oxazolyl, Thiazolyl, Oxadiazolyl oder Thiadiazolyl substituiert sein kann, wobei Phenyl und alle genannten heteroaromatischen Ringe ihrerseits jeweils ein- oder zweifach, gleich oder verschieden, mit Substituenten ausgewählt aus der Reihe Fluor, Chlor, Methyl, Ethyl, Isopropyl, tert.-Butyl, Methoxy, Ethoxy, Trifluormethyl und Trifluormethoxy substituiert sein können, R3 und R4 gleich oder verschieden sind und unabhängig voneinander für Wasserstoff, Methyl, Methoxy, Fluor oder Chlor stehen, R5 und R6 gleich oder verschieden sind und für Wasserstoff oder Methyl stehen, und R7 für -OH, -NH2 oder -NHCH3 steht, sowie ihre Salze, Solvate und Solvate der Salze.
  4. Verbindung der Formel (I-A)
    Figure 00610001
    in welcher R1, R2, m und n jeweils die in den Ansprüchen 1 bis 3 angegebenen Bedeutungen haben, sowie ihre Salze, Solvate und Solvate der Salze.
  5. Verfahren zur Herstellung einer Verbindung der Formel (I) bzw. (I-A), wie in den Ansprüchen 1 bis 4 definiert, dadurch gekennzeichnet, dass man Verbindungen der Formel (II)
    Figure 00620001
    in welcher R2, R3, R4, R5, R6 und Z jeweils die in den Ansprüchen 1 bis 4 angegebenen Bedeutungen haben und T1 für (C1-C4)-Alkyl, vorzugsweise tert.-Butyl, oder für Benzyl steht, zunächst in einem inerten Lösungsmittel in Gegenwart einer Base mit einer Verbindung der Formel (III)
    Figure 00620002
    in welcher n die in den Ansprüchen 1 bis 4 angegebene Bedeutung hat und T2 für (C1-C4)-Alkyl, vorzugsweise Methyl oder Ethyl, und Q1 für eine geeignete Fluchtgruppe wie beispielsweise Halogen, Mesylat, Tosylat oder Triflat steht, zu Verbindungen der Formel (IV)
    Figure 00630001
    in welcher n, T1, T2, R2, R3, R4, R5, R6 und Z jeweils die oben angegebenen Bedeutungen haben, umsetzt, anschließend unter geeigneten Reaktionsbedingungen selektiv zu Carbonsäuren der Formel (V)
    Figure 00630002
    in welcher n, T1, R2, R3, R4, R5, R6 und Z jeweils die oben angegebenen Bedeutungen haben, hydrolysiert, sodann in einem inerten Lösungsmittel in Gegenwart eines Kondensationsmittels und einer Base mit einer Verbindung der Formel (VI)
    Figure 00630003
    in welcher R1 und m jeweils die in den Ansprüchen 1 bis 4 angegebenen Bedeutungen haben, in Verbindungen der Formel (VII)
    Figure 00630004
    in welcher m, n, T1, R1, R2, R3, R4, R5, R6 und Z jeweils die oben angegebenen Bedeutungen haben, überführt, diese dann mit Chloracetylchlorid in Gegenwart einer Base unter Cyclisierung zu Verbindungen der Formel (I-B)
    Figure 00640001
    in welcher m, n, T1, R1, R2, R3, R4, R5, R6 und Z jeweils die oben angegebenen Bedeutungen haben, umsetzt, nachfolgend durch basische oder saure Hydrolyse oder im Falle, dass T1 für Benzyl steht, auch hydrogenolytisch in Carbonsäuren der Formel (I-C)
    Figure 00640002
    in welcher m, n, R1, R2, R3, R4, R5, R6 und Z jeweils die oben angegebenen Bedeutungen haben, überführt und gegebenenfalls anschließend nach literaturbekannten Methoden zur Veresterung bzw. Amidierung zu den Verbindungen der Formel (I) umsetzt und die Verbindungen der Formel (I) gegebenenfalls mit den entsprechenden (i) Lösungsmitteln und/oder (ii) Basen oder Säuren zu ihren Solvaten, Salzen und/oder Solvaten der Salze umsetzt.
  6. Verfahren zur Herstellung einer Verbindung der Formel (I-D)
    Figure 00650001
    in welcher m, R1, R2, R3, R4, R5, R6, R7 und Z jeweils die in den Ansprüchen 1 bis 4 angegebenen Bedeutungen haben, dadurch gekennzeichnet, dass man Verbindungen der Formel (II), wie in Anspruch 5 definiert, zunächst in einem inerten Lösungsmittel in Gegenwart einer Base mit einer Verbindung der Formel (VIII)
    Figure 00650002
    in welcher m und R1 jeweils die in den Ansprüchen 1 bis 4 angegebenen Bedeutungen haben und Q2 für eine geeignete Fluchtgruppe wie beispielsweise Halogen steht, zu Verbindungen der Formel (I-E)
    Figure 00650003
    in welcher m, T1, R1, R2, R3, R4, R5, R6 und Z jeweils die oben angegebenen Bedeutungen haben, umsetzt, nachfolgend durch basische oder saure Hydrolyse oder im Falle, dass T1 für Benzyl steht, auch hydrogenolytisch in Carbonsäuren der Formel (I-F)
    Figure 00660001
    in welcher m, R1, R2, R3, R4, R5, R6 und Z jeweils die oben angegebenen Bedeutungen haben, überführt und gegebenenfalls anschließend nach literaturbekannten Methoden zur Veresterung bzw. Amidierung zu den Verbindungen der Formel (I-D) umsetzt.
  7. Verbindung, wie in einem der Ansprüche 1 bis 4 definiert, zur Behandlung und/oder Prophylaxe von Krankheiten.
  8. Verwendung einer Verbindung, wie in einem der Ansprüche 1 bis 4 definiert, zur Herstellung eines Arzneimittels zur Behandlung und/oder Prävention von Dyslipidämien und Arteriosklerose.
  9. Arzneimittel enthaltend eine Verbindung, wie in einem der Ansprüche 1 bis 4 definiert, in Kombination mit einem inerten, nicht-toxischen, pharmazeutisch geeigneten Hilfsstoff.
  10. Arzneimittel enthaltend eine Verbindung, wie in einem der Ansprüche 1 bis 4 definiert, in Kombination mit einem weiteren Wirkstoff ausgewählt aus der Gruppe bestehend aus CETP-Inhibitoren, Inhibitoren der HMG-CoA-Reduktase, Inhibitoren der HMG-CoA-Reduktase-Expression, Squalensynthese-Inhibitoren, ACAT-Inhibitoren, Cholesterin-Absorptionshemmer, MTP-Inhibitoren, Fibrate, Niacin, Lipase-Inhibitoren, PPAR-γ- und/oder PPAR-δ-Agonisten, Calcium-Antagonisten, Angiotensin-II-Rezeptorantagonisten, Thrombozytenaggregationshemmer, Antikoagulantien, Antidiabetika, Antioxidantien, Thyroidhormone und/oder Thyroidmimetika, Aldose-Reduktase-Inhibitoren und Anorektika.
  11. Arzneimittel nach Anspruch 9 oder 10 zur Behandlung und/oder Prävention von Dyslipidämien und Arteriosklerose.
  12. Verfahren zur Behandlung und/oder Prävention von Dyslipidämien und Arteriosklerose in Menschen und Tieren durch Verabreichung einer wirksamen Menge mindestens einer Verbindung, wie in einem der Ansprüche 1 bis 4 definiert, oder eines Arzneimittels, wie in einem der Ansprüche 9 bis 11 definiert.
DE102004049291A 2004-10-09 2004-10-09 Neue Oxadiazinon-Derivate und ihre Verwendung Withdrawn DE102004049291A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE102004049291A DE102004049291A1 (de) 2004-10-09 2004-10-09 Neue Oxadiazinon-Derivate und ihre Verwendung
JP2007535055A JP2008515827A (ja) 2004-10-09 2005-09-27 新規オキサジアジノン誘導体およびそれらの使用
CA002583302A CA2583302A1 (en) 2004-10-09 2005-09-27 Novel oxadiazinone derivatives and use thereof as ppar-alpha modulators
PCT/EP2005/010404 WO2006040002A1 (de) 2004-10-09 2005-09-27 Neue oxadiazinon-derivate und ihre verwendung als ppar-alpha-modulatoren
EP05786857A EP1802594A1 (de) 2004-10-09 2005-09-27 Neue oxadiazinon-derivate und ihre verwendung als ppar-alpha-modulatoren

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102004049291A DE102004049291A1 (de) 2004-10-09 2004-10-09 Neue Oxadiazinon-Derivate und ihre Verwendung

Publications (1)

Publication Number Publication Date
DE102004049291A1 true DE102004049291A1 (de) 2006-04-13

Family

ID=35207839

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102004049291A Withdrawn DE102004049291A1 (de) 2004-10-09 2004-10-09 Neue Oxadiazinon-Derivate und ihre Verwendung

Country Status (5)

Country Link
EP (1) EP1802594A1 (de)
JP (1) JP2008515827A (de)
CA (1) CA2583302A1 (de)
DE (1) DE102004049291A1 (de)
WO (1) WO2006040002A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2612669A4 (de) 2010-08-31 2014-05-14 Snu R&Db Foundation Verwendung der fötalen neuprogrammierung eines ppar-agonisten

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002347985A1 (en) * 2001-11-15 2003-06-10 Eli Lilly And Company Peroxisome proliferator activated receptor alpha agonists

Also Published As

Publication number Publication date
WO2006040002A1 (de) 2006-04-20
CA2583302A1 (en) 2006-04-20
EP1802594A1 (de) 2007-07-04
JP2008515827A (ja) 2008-05-15

Similar Documents

Publication Publication Date Title
EP1716118B1 (de) Tetrahydrobenzo (d) azepin-2-on derivate und ihre verwendung zur behandlung von kardiovaskulären krankheiten
DE60309913T2 (de) BICYCLISCHE BENZAMIDVERBINDUNGEN ALS FüR DIE BEHANDLUNG NEUROLOGISCHER KRANKHEITEN GEEIGNETE HISTAMIN-H3-REZEPTORLIGANDEN
AU2008293542B2 (en) Therapeutic isoxazole compounds
DE102008018675A1 (de) Oxo-heterocyclisch substituierte Carbonsäure-Derivate und ihre Verwendung
KR101738866B1 (ko) 안드로겐 수용체 길항제, 항암제로서 사이클릭 n,n&#39;-다이아릴티오우레아 및 n,n&#39;-다이아릴우레아, 이의 제조방법 및 이의 용도
EP1797045A1 (de) Neue pyrimidin-derivate und ihre verwendung als ppar-alpha-modulatoren
DE102009012314A1 (de) Oxo-heterocyclisch substituierte Alkylcarbonsäuren und ihre Verwendung
DE102005027150A1 (de) Pyrimidincarbonsäure-Derivate und ihre Verwendung
KR20140096322A (ko) 아미노 알킬 치환 n-티에닐벤즈아미드 유도체
DE10300099A1 (de) Indol-Phenylsulfonamid-Derivate
DE102007061757A1 (de) Substituierte 2-Phenylpyrimidin-5-carbonsäuren und ihre Verwendung
DE102007061756A1 (de) Substituierte 4-Aminopyrimidin-5-carbonsäuren und ihre Verwendung
WO1996034856A1 (en) 2-ureido-benzamide derivatives
JP2023500263A (ja) アドレナリン受容体adrac2の阻害剤
DE102004016845A1 (de) Phenylthioessigsäure-Derivate und ihre Verwendung
EP1644353A1 (de) Amid-substituierte 1, 2, 4-triazin-5 (2h) - one zur behandlung von chronisch inflammatorischen krankheiten
DE4129742A1 (de) Heterocyclisch substituierte chinolylmethoxy-phenylacetamide
DD228547A5 (de) Verfahren zur herstellung von neuen amid-verbindungen
EP1654227A1 (de) Bicyclische indolinsulfonamid-derivate
DE102004049291A1 (de) Neue Oxadiazinon-Derivate und ihre Verwendung
DE102004001871A1 (de) Tricyclische Benzazepin-Derivate und ihre Verwendung
DE69402058T2 (de) Perhydroisoindol-derivate, deren herstellung und die sie behaltende pharmazeutische zusammenfassungen
TW201404772A (zh) 噁唑烷酮類衍生物、其製備方法及其在醫藥上的應用
DE10337839A1 (de) Indolin-Derivate
WO2003000665A1 (de) Antibakterielle uracilderivate.

Legal Events

Date Code Title Description
8130 Withdrawal