DE102004036580A1 - Verfahren und Vorrichtung zur Objektdetektion bei einem Fahrzeug - Google Patents

Verfahren und Vorrichtung zur Objektdetektion bei einem Fahrzeug Download PDF

Info

Publication number
DE102004036580A1
DE102004036580A1 DE102004036580A DE102004036580A DE102004036580A1 DE 102004036580 A1 DE102004036580 A1 DE 102004036580A1 DE 102004036580 A DE102004036580 A DE 102004036580A DE 102004036580 A DE102004036580 A DE 102004036580A DE 102004036580 A1 DE102004036580 A1 DE 102004036580A1
Authority
DE
Germany
Prior art keywords
reflection
indirect
roadway
vehicle
objects
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE102004036580A
Other languages
English (en)
Inventor
Peter Haag
Ruediger Jordan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to DE102004036580A priority Critical patent/DE102004036580A1/de
Priority to JP2007523046A priority patent/JP4814231B2/ja
Priority to US11/658,982 priority patent/US7791527B2/en
Priority to PCT/EP2005/052503 priority patent/WO2006010662A1/de
Priority to EP05754541A priority patent/EP1789814B1/de
Publication of DE102004036580A1 publication Critical patent/DE102004036580A1/de
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems
    • G01S13/72Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar
    • G01S13/723Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar by using numerical data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/46Indirect determination of position data
    • G01S2013/462Indirect determination of position data using multipath signals
    • G01S2013/464Indirect determination of position data using multipath signals using only the non-line-of-sight signal(s), e.g. to enable survey of scene 'behind' the target only the indirect signal is evaluated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/93185Controlling the brakes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9319Controlling the accelerator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/932Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles using own vehicle data, e.g. ground speed, steering wheel direction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9321Velocity regulation, e.g. cruise control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9325Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles for inter-vehicle distance regulation, e.g. navigating in platoons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93271Sensor installation details in the front of the vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9329Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles cooperating with reflectors or transponders

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Verfahren und Vorrichtung zur Objektdetektion bei einem Fahrzeug, das mit einem Objektdetektionssystem ausgestattet ist, wobei das Objektdetektionssystem elektromagnetische Wellen aussendet und an Objekten innerhalb des Detektionsbereichs reflektierte Wellen empfängt, und die an einem erkannten Objekt reflektierten Wellen, die zusätzlich an einem entlang der Fahrbahn ausgedehnten Gegenstand reflektiert wurden, ausgewertet werden. Die Auswertung besteht dabei aus einer Plausibilisierung, bei der mit den indirekten Objektreflexionen die direkt gemessenen Objektreflexionen verifiziert werden, oder darin, dass die Auswertung darin besteht, dass, wenn von einem zuvor detektierten Objekt keine Reflexion mehr messbar ist, die indirekte Objektreflexion zur weiteren Objektdetektion herangezogen wird.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren und eine Vorrichtung zur Objektdetektion bei einem Fahrzeug, das mit einem Objektdetektionssystem ausgestattet ist, wobei das Objektdetektionssystem elektromagnetische Wellen aussendet und an Objekten innerhalb des Detektionsbereichs reflektierte Wellen empfängt, und die an einem erkannten Objekt reflektierten Wellen, die zusätzlich an einem entlang der Fahrbahn ausgedehnten Gegenstand reflektiert wurden, ausgewertet werden. Die Auswertung besteht dabei aus einer Plausibilisierung, bei der mit den indirekten Objektreflexionen, die direkt gemessenen Objektreflexionen verifiziert werden oder darin, dass die Auswertung darin besteht, dass wenn von einem zuvor detektierten Objekt keine Reflexion mehr messbar ist, die indirekte Objektreflexion zur weiteren Objektdetektion herangezogen wird.
  • Aus der Veröffentlichung „Adaptive Fahrgeschwindigkeitsregelung ACC", herausgegeben von der Robert Bosch GmbH, Stuttgart im April 2002 (ISBN-3-7782-2034-9) ist ein adaptiver Abstands- und Geschwindigkeitsregler bekannt, der mittels ausgesandter Mikrowellenstrahlung vorherfahrende Fahrzeuge erkennt und in die Antriebs- und Verzögerungseinrichtungen des Fahrzeugs derart eingreift, dass bei einem erkannten, vorausfahrenden Fahrzeug eine Geschwindigkeitsregelung im Sinne einer Abstandskonstantregelung durchgeführt wird und bei Nichtvorhandensein eines vorherfahrenden Fahrzeugs eine Geschwindigkeitsregelung im Sinne einer Geschwindigkeitskonstantregelung durchgeführt wird. Hierzu wird Mikrowellenstrahlung, die FMCW-moduliert wird, ausgestrahlt und Teilwellen der ausgesandten Strahlung, die an den Objekten im Sensorerfassungsbereich reflektiert wurde, vom Abstandssensor wieder empfangen und ausgewertet.
  • Kern und Vorteile der Erfindung
  • Der Kern der vorliegenden Erfindung ist es, ein Verfahren und eine Vorrichtung anzugeben, mittels der die Objektdetektion bei einem Fahrzeug mit einem Objektdetektionssystem und einem adaptiven Abstands- und Geschwindigkeitsregler verbessert wird, indem Objektreflexionen, die zusätzlich an einem entlang der Fahrbahn ausgedehnten Gegenstand wie beispielsweise einer Leitplanke reflektiert werden, zur Objektverifikation benutzt werden oder bei Nichtvorhandensein einer direkten Objektreflexion, also einer Mikrowellenreflexion am vorherfahrenden Fahrzeug ohne Leitplankenspiegelung, die indirekte Reflexion, also die Mikrowellenreflexion am vorherfahrenden Fahrzeug mit zusätzlicher Reflexion an der Leitplanke ersetzt wird und die indirekte Objektreflexion zum weiteren Objekttracking, herangezogen wird.
  • Erfindungsgemäß wird dieses durch die Merkmale der unabhängigen Ansprüche gelöst. Vorteilhafte Weiterbildungen und Ausgestaltungen ergeben sich aus den Unteransprüchen. Da Leitplanken gute Radarreflektoren sind, kann es bei Verwendung eines Radarsensors zur Fahrzeugsteuerung zu Spiegelungen an Leitplanken kommen, bei denen Reflexionen der Radarstrahlung des Objektsensors an realen Objekten zusätzlich an der Leitplanke gespiegelt werden und hierdurch ein Scheinobjekt entsteht, das sich beispielsweise außerhalb der Straße bewegt. Dieses Scheinobjekt kann von dem realen Objekt nur schwer unterschieden werden, da bei Objekten, die etwa den gleichen Abstand und die gleiche Relativgeschwindigkeit aufweisen, in diesem Fall eine Objekttrennung mittels des empfangenen Azimutwinkels nicht möglich ist, selbst wenn der Radarsensor normalerweise den Azimutwinkel auflösen kann. Die Ursache dessen ist, dass sich die Reflexionsanteile der Spiegelung und des realen Objektes überlagern, wobei der stärkere Anteil dominiert und die Spiegelung eine wesentliche höhere Signalstärke als die direkte Reflexion am realen Objekt haben kann, da der Radarrückstreuquerschnitt sehr stark vom Ansichtswinkel des Objekts abhängt und somit nur der Azimutwinkel des Objektes gemessen wird, das die höhere Signalstärke aufweist. Es ist daher der Kern der vorliegenden Erfindung, Abrisse beim Objekttracking sowie Scheinziele aufgrund von Leitplankenspiegelungen zu vermeiden.
  • Vorteilhafterweise ist, dass die Auswertung eine Plausibilisierung ist, bei der mit den indirekten Objektreflexionen, die zusätzlich an einem entlang der Fahrbahn ausgedehnten Gegenstand reflektiert wurden, die direkt gemessenen Objektreflexionen, die nicht an einem entlang der Fahrbahn ausgedehnten Gegenstand reflektiert wurden, verifiziert werden.
  • Weiterhin ist es vorteilhaft, dass die Auswertung darin besteht, dass wenn von einem zuvor direkt detektierten Objekt keine Reflexion mehr messbar ist, die indirekte Objektreflexion, die an einem entlang der Fahrbahn ausgedehnten Gegenstand reflektiert wurde, zur weiteren Objektdetektion herangezogen wird.
  • Weiterhin ist es vorteilhaft, dass die entlang der Fahrbahn ausgedehnten Gegenstände, Leitplanken, Tunnelwände, Lärmschutzwände Begrenzungsmauern oder in regelmäßigen Abständen angeordnete Leitpfosten sind.
  • Weiterhin ist es vorteilhaft, dass zur Auswertung die indirekte Objektreflexion in eine angenommene, direkte Objektreflexion umgerechnet wird.
  • Besonders vorteilhaft ist es, dass zur Umrechnung der indirekten Objektreflexion in eine angenommene, direkte Objektreflexion die Position des entlang der Fahrbahn ausgedehnten Gegenstandes geschätzt wird.
  • Weiterhin ist es vorteilhaft, dass die Umrechnung derart geschieht, dass der gemessene Objektaufenthaltsort, der durch die indirekte Messung detektiert wurde, an dem entlang der Fahrbahn ausgedehnten Gegenstand gespiegelt wird.
  • Von besonderer Bedeutung ist die Realisierung des erfindungsgemäßen Verfahrens in der Form eines Steuerelements, das für ein Steuergerät einer adaptiven Abstands- bzw. Geschwindigkeitsregelung eines Kraftfahrzeugs vorgesehen ist. Dabei ist auf dem Steuerelement ein Programm gespeichert, das auf einem Rechengerät, insbesondere auf einem Mikroprozessor oder Signalprozessor, ablauffähig und zur Ausführung des erfindungsgemäßen Verfahrens geeignet ist. In diesem Fall wird also die Erfindung durch ein auf dem Steuerelement abgespeichertes Programm realisiert, so dass dieses mit dem Programm versehene Steuerelement in gleicher Weise die Erfindung darstellt wie das Verfahren, zu dessen Ausführung das Programm geeignet ist. Als Steuerelement kann insbesondere ein elektrisches Speichermedium zur Anwendung kommen, beispielsweise ein Read-Only-Memory.
  • Weitere Merkmale, Anwendungsmöglichkeiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen der Erfindung, die in den Figuren der Zeichnung dargestellt sind. Dabei bilden alle beschriebenen oder dargestellten Merkmale für sich oder in beliebiger Kombination den Gegenstand der Erfindung, unabhängig von ihrer Zusammenfassung in den Patentansprüchen oder deren Rückbeziehung sowie unabhängig von ihrer Formulierung bzw. Darstellung in der Beschreibung bzw. in den Zeichnungen.
  • Zeichnungen
  • Nachfolgend werden Ausführungsbeispiele der Erfindung anhand von Zeichnungen erläutert. Es zeigen
  • 1 ein schematisches Blockschaltbild einer Ausführungsform der erfindungsgemäßen Vorrichtung,
  • 2 eine Darstellung zur Erläuterung des erfindungsgemäßen Verfahrens und
  • 3 ein Ablaufdiagramm einer Ausführungsform des erfindungsgemäßen Verfahrens.
  • Beschreibung von Ausführungsbeispielen
  • In 1 ist ein schematisches Blockschaltbild einer Ausführungsform der erfindungsgemäßen Vorrichtung dargestellt. Zu erkennen ist ein adaptiver Abstands- und Geschwindigkeitsregler 1, der unter anderem eine Eingangsschaltung 2 aufweist. Mittels dieser Eingangsschaltung 2 sind dem Abstands- und Geschwindigkeitsregler 1 Eingangssignale zuführbar. Als Eingangssignale werden dem Abstands- und Geschwindigkeitsregler 1 unter anderem Signale einer Objektsensorik 3 zugeführt. Diese Objektsensorik 3 kann beispielsweise als Radarsensor, als Lasersensor, als Videosensor oder als eine Kombination aus diesen Sensorarten ausgeführt sein und hier bei einen oder mehrere Einzelsensoren umfassen. Besonders vorteilhaft ist die Objektsensorik 3 derart ausgeführt, dass elektromagnetische Strahlung ausgesandt wird, an den Objekten im Sensorerfassungsbereich reflektiert wird und die reflektierten Teilwellen von der Objektsensorik 3 wieder empfangen und wieder ausgewertet werden. Die Auswertung ermittelt aus den Messwerten insbesondere den Abstand sowie die Relativgeschwindigkeit der erkannten Objekte sowie den Azimutwinkel der erkannten Objekte, unter dem die Objekte bezüglich der verlängerten Fahrzeuglängsachse des eigenen Fahrzeugs positioniert sind. Weiterhin wird der Eingangsschaltung 2 des Abstands- und Geschwindigkeitsreglers 1 ein Geschwindigkeitssignal V eines Geschwindigkeitssensors 4 zugeführt, das die Geschwindigkeit des eigenen Fahrzeugs repräsentiert. Hierdurch ist es möglich, die relativen Messwerte, die die Objektsensorik 3 zur Verfügung stellt, in Absolutwerte umzurechnen und damit beispielsweise stehende Ziele von bewegten Zielen zu unterscheiden. Weiterhin werden der Eingangsschaltung 2 Signale einer fahrerbetätigbaren Bedieneinrichtung 5 zugeführt, mittels der der Abstands- und Geschwindigkeitsregler 1 einschaltbar, ausschaltbar sowie in seinen Regelparametern und Einstellungen fahrerspezifisch einstellbar ist. Weiterhin wird der Eingangsschaltung 2 das Signal ψ • eines Gierratensensors 6 zugeführt, der die Drehung des Fahrzeugs um die Fahrzeughochachse misst und dem Abstands- und Geschwindigkeitsregler 1 zuführt.
  • Mittels dieses Gierratensignals ψ • kann erkannt werden, ob sich das eigene Fahrzeug momentan in einer Kurvendurchfahrt befindet oder auf gerader Straße fortbewegt wird. Alternativ kann der Gierradensensor 6 auch durch einen Lenkwinkelsensor ersetzt werden, so dass aus der Betätigung des Lenkrads auf die momentan durchfahrene Kurvenkrümmung geschlossen werden kann. Die der Eingangsschaltung 2 zugeführten Eingangssignale werden mittels einer Datenaustauscheinrichtung 7 innerhalb des Abstands- und Geschwindigkeitsreglers 1 an eine Berechnungseinrichtung 8 weitergegeben, in der in Abhängigkeit der zugeführten Eingangsdaten Stellsignale für nachgeordnete Stellelemente berechnet werden. In der Berechnungseinrichtung 8 werden die relativen Positionen der erkannten Objekte ausgewertet und ein geeignetes Zielobjekt ausgewählt, in dessen Abhängigkeit die Antriebseinrichtung sowie die Verzögerungseinrichtungen des Fahrzeugs angesteuert werden. Dieses Zielobjekt ist vorteilhafterweise das Fahrzeug, das in der gleichen Fahrspur wie das eigene Fahrzeug direkt vor dem eigenen vorherfährt. In Abhängigkeit der Geschwindigkeit und des Abstandes dieses Fahrzeugs werden die nachgeordneten Stellelemente angesteuert. Hierzu werden Stellsignale ermittelt, die von der Berechnungseinrichtung 8 mittels des Datenaustauschsystems 7 an eine Ausgangsschaltung 9 weitergegeben werden. Die Ausgangsschaltung 9 gibt die Stellsignale an nachgeordnete Stellelemente aus, die das Fahrzeug beschleunigen bzw. verzögern. Als Stellelement ist zum einen ein leistungsbestimmendes Stellelement 10 der Antriebseinrichtung vorgesehen, das beispielsweise eine elektrisch betätigbare Drosselklappe oder eine Kraftstoffmengenzumesseinrichtung eines Kraftstoffeinspritzsystems sein kann.
  • Weiterhin werden Stellsignale von der Ausgangsschaltung 9 an die Verzögerungseinrichtungen 11 des Fahrzeugs ausgegeben, wobei die Ansteuerung der Verzögerungseinrichtungen 11 eine Bremskraft oder ein Bremsdruck aufbaut. Diese Bremskraft oder dieser Bremsdruck wird durch die Fahrzeugbremsen in eine Fahrzeugverzögerung entsprechend dem Verzögerungsanforderungssignal umgesetzt.
  • In 2 ist eine Verkehrssituation dargestellt, in der das erfindungsgemäße Verfahren verwendbar ist. Zu erkennen ist die Objektsensorik 3, die vorteilhafterweise an der Vorderseite des eigenen Fahrzeugs angebracht ist, wobei sich das eigene Fahrzeug momentan während einer Kurvenfahrt befindet und sich auf dem zukünftigen Fahrzeugkurs 13 fortbewegen wird. Diese Kurvenfahrt wurde beispielsweise durch Auswertung der Gierrate ψ • des Gierratensensors 6 ermittelt, und aus der Gierrate ein Kurvenradius r ermittelt. Die Objektsensorik 3 hat im Objekterfassungsbereich Objekte erkannt, so z. B. ein stehendes Objekt 15 am Fahrbahnrand, ein Objekt innerhalb der Fahrspur 16 sowie ein Objekt außerhalb der Fahrspur 17. Das stehende Objekt 15 kann durch den Vergleich der eigenen Geschwindigkeit v sowie der Auswertung der Relativgeschwindigkeit des Objekts 15 vrel ermittelt werden und kann beispielsweise ein Schild am Straßenrand, eine Leitplanke, ein Leitpfosten am Straßenrand oder ein anderer, feststehender Gegenstand am Fahrbahnrand sein. Das bewegte Objekt 16, das ebenfalls durch die Objektsensorik 3 detektiert wurde, ist beispielsweise ein vorausfahrendes Fahrzeug, das sich mit einem Abstands dr sowie einer Relativgeschwindigkeit vrel in die gleiche Richtung fortbewegt, wie das eigene Fahrzeug. Dieses Objekt 16 wurde mittels einer direkten Objektreflexion gemessen, dies bedeutet, dass die von der Objektsensorik 3 ausgesandte Mikrowellenstrahlung am Objekt 16 reflektiert wurde und unmittelbar von der Objektsensorik 3 wieder empfangen wurde. Weiterhin ist in der dargestellten Situation ein entlang der Fahrbahn ausgedehnter Gegenstand 14 vorhanden, der beispielsweise als Leitplanke, als Tunnelwand, als Lärmschutzmauer oder als regelmäßig angeordnete Leitpfosten am Fahrbahnrand angeordnet ist. An diesem, entlang der Fahrbahn ausgedehnten Gegenstands 14 findet eine weitere Reflexion der Messstrahlung statt, so dass ein Scheinziel 17 gemessen wird. Dieses Scheinziel 17 basiert auf einer indirekten Objektreflexion, bei der die von der Objektsensorik 3 ausgesandte Messstrahlung am vorherfahrenden Fahrzeug 16 reflektiert wurde, in Richtung des Gegenstands am Fahrbahnrand zurückgestrahlt wurde und an dem Gegenstand 14, der entlang der Fahrbahn ausgedehnt ist, nochmals im Punkt 18 reflektiert und somit als indirekte Objektreflexion von der Objektsensorik 3 empfangen wurde. Diese indirekte Objektreflexion wird von der Objektsensorik 3 als Scheinziel 17 erkannt, das eine Objektposition 17 angibt, die jenseits der Leitplanke, also außerhalb der Fahrbahn ist. Dieses Scheinziel 17 bewegt sich mit betragsmäßig der gleichen Geschwindigkeit vrel wie das Objekt 16, weist jedoch den Abstand ds auf. Um zu erkennen, ob sich ein gemessenes Objekt diesseits oder jenseits des Gegenstands 14, der entlang des Fahrbahnrandes ausgedehnt ist, befindet, wird der Fahrbahnrand 14 geschätzt oder gemessen. Hierzu werden stehende Ziele 15 ausgewertet, die am Fahrbahnrand angeordnet sind, beispielsweise Verkehrsschilder, Leitplanken oder ähnliche, reflektierende Gegenstände. Sollten derartige, stehende Objekte 15 nicht erkannt werden, so ist es weiterhin möglich, den Fahrbahnrand 14 zu schätzen, indem ein Querversatz b des Fahrbahnrandes zur Objektsensorik 3 angenommen wird und der Fahrbahnrand einen Krümmungsradius 12 aufweist, der dem Krümmungsradius r+b entspricht, wobei r der Krümmungsradius des eigenen Fahrzeugkurses 13 ist, der mittels des Gierratensensors 6 ermittelt wurde und b der laterale Querversatz der Objektsensorik zum geschätzten Fahrbahnrand ist. Anhand dieses gemessenen oder geschätzten Fahrbahnrandes, kann der Reflexionspunkt 18 berechnet werden, an dem die direkte Objektreflexion des vorherfahrenden Fahrzeugs 16 nochmals reflektiert wird und somit das Scheinziel 17 bildet. Da erkannt wird, dass das Objekt 17 jenseits der Leitplanke 14 ist, kann davon ausgegangen werden, dass es sich hierbei um ein Scheinziel handelt und bei Kenntnis des Reflexionspunkts 18 der Messstrahlung an der Leitplanke 14 sowie dem Krümmungsradius r des eigenen Fahrzeugskurses 3 und dem lateralen Querversatz b sowie unter Zuhilfenahme der Messwerte dr und ds, der Strahl zwischen der Objektsensorik 3 und dem Scheinziel 17 an der Leitplanke 14 im Refexionspunkt 18 gespiegelt werden, so dass sich eine scheinbar reale Objektposition errechnen läßt. Aus dem Vergleich der berechneten, scheinbar realen Objektposition und des real gemessenen Objektaufenthaltsortes des Objektes 16 kann die Messung zur Plausibilisierung der Messwerte herangezogen werden, da der berechnete, scheinbar reale Aufenthaltsort des Scheinziels 17 in etwa dem Aufenthaltsort des bewegten Objektes 16 entspricht sowie beide Objekte die gleiche Relativgeschwindigkeit vrel bezüglich der Objektsensorik 3 aufweisen. Da beim Auftreten von Scheinzielen der indirekte Objektreflexionsstrahl ds von der Intensität her stärker sein kann, als der direkte Objektreflexionsstrahl dr ist es möglich, dass mittels der Objektsensorik 3 das bewegte Objekt 16 nicht mehr erfasst wird, sondern nur noch das Scheinziel 17 erkannt wird. In diesem Fall verschwindet das vorausbefindliche, bewegte Objekt 16 und es kann kein Objekttracking bezüglich dieses Objektes mehr durchgeführt werden. Im Falle eines derartigen Objekttrackingabrisses ist es möglich, ein vorher verifiziertes, reales Objekt, das mittels eines Scheinziels 17 plausibilisiert wurde, unter Zuhilfenahme des indirekten Objektreflexionsstrahls ds weiterzuverfolgen. Hierzu wird der scheinbar reale Objektaufenthaltsort, der durch den Scheinzielaufenthaltsort 17 sowie den Reflexionspunkt 18 berechenbar ist, ermittelt und dieser berechnete, scheinbar reale Objektaufenthaltsort für das weitere Objekttracking weiter benutzt. Hierdurch kann mittels der Erfassung der indirekten Objektreflexionen das bewegte Objekt 16 weiterverfolgt werden, bis das bewegte Objekt 16 wieder mittels direkter Objektreflexion messbar ist und somit ein Verfahren angegeben werden, mit dem die Objektdetektion, insbesondere für ein Objekttracking des Abstands- und Geschwindigkeitsreglers 1 gegen Scheinziele abgesichert werden kann.
  • In 3 ist ein Ablaufdiagramm einer Ausführungsform des erfindungsgemäßen Verfahrens dargestellt. Das Verfahren beginnt in Block 19, beispielsweise wenn der adaptive Abstands- und Geschwindigkeitsregler 1 durch das fahrerbetätigbare Bedienelement 5 in Betrieb genommen wird oder nachdem der Fahrer die Zündung des Fahrzeugs eingeschaltet hat. Im weiteren Verlauf werden die Sensordaten gemäß Schritt 20 von der Objektsensorik 3, vom Gierratensensor 6 sowie vom Geschwindigkeitssensor 4 in den Abstands- und Geschwindigkeitsregler 1 eingelesen. Im folgenden Schritt 21 wird der momentane Kurvenradius r des eigenen zukünftigen Fahrzeugkurses 13 berechnet, indem die Gierrate ψ • des Gierratensensors 6 ausgewertet wird. Danach wird im darauffolgenden Schritt 22 der Leitplankenabstand b ermittelt, indem beispielsweise stehende Objekte 15 am Fahrbahnrand ausgewertet werden oder indem der Fahrbahnrand 14 geschätzt wird, da keine stehenden Objekte gemessen wurden und der laterale Querabstand b des Fahrbahnrandes geschätzt wird. In Schritt 23 werden die bewegten Objekte 17, die sich jenseits der Leitplanke, also außerhalb der Fahrbahn aufhalten identifiziert. Hierzu wird deren Aufenthaltsort mit dem gemessenen oder geschätzten Fahrbahnrandverlauf 14 verglichen und ermittelt, ob die Objektposition 17 diesseits oder jenseits der Leitplanke 14 liegt. Im darauffolgenden Schritt 24 wird für die bewegten Objekte, die in Schritt 23 als jenseits der Leitplanke identifiziert wurden, der scheinbar reale Aufenthaltsort berechnet, indem aus dem Schnittpunkt der Fahrbahnrands 14 mit der direkten Verbindungsgeraden ds, die die Aufenthaltsposition des Scheinziels 17 mit der Position der Objektsensorik 3 verbindet, berechnet wird und als Reflexionspunkt 18 ermittelt wird. Aus der Kenntnis des Reflexionspunktes 18 an der Leitplanke 14 sowie dem Krümmungsradius 12 des Fahrbahnrandes 14, der aus dem Krümmungsradius r des eigenen Fahrkurses und dem lateralen Querversatz b zwischen der Objektsensorik 3 und dem Fahrbahnrand 14 bestimmt wird, kann der scheinbar reale Aufenthaltsort des Objektes ermittelt werden. Im folgenden Schritt 25 wird eine Plausibilisierung der indirekten Objektreflexionen mit den direkten Objektreflexionen durchgeführt, indem überprüft wird, ob die Scheinzielposition 17, die mittels des Reflexionspunktes in einen scheinbar realen Objektaufenthaltsort umgerechnet wurde, mit einem tatsächlich gemessenen, realen Objektaufenthaltsort 16 in etwa übereinstimmt, wobei hierzu die Koordinaten dieser beiden Punkte verglichen werden sowie deren Relativgeschwindigkeiten vrel betragsmäßig in etwa die gleichen sein müssen. Stimmen die Aufenthaltsorte des direkt gemessenen, bewegten Objektes 16 sowie des mittels des Reflexionspunktes 18 umgerechneten, scheinbar realen Objektsaufenthaltsortes des Scheinziels 17 in etwa überein, so kann das direkt gemessene, reale Objekt 16 plausibilisiert werden und Schritt 25 verzweigt nach ja, so dass in Schritt 26 das Objekttracking des Objektes 16 mit den direkt gemessenen Reflexionsdaten durchgeführt werden kann. Stimmen die Werte der Plausibilisierung in Schritt 25 nicht ausreichend überein, so verzweigt Schritt 25 nach nein und wird in Schritt 27 fortgeführt, in dem geprüft wird, ob das mittels direkter Objektreflexion gemessene Objekt 16 Messaussetzer aufweist. Diese Messaussetzer können detektiert werden, indem der Objekttrack des Objektes 16 aus vorherigen Messungen extrapoliert wird und geprüft wird, ob die direkte Objektreflexion des bewegten Objektes 16 zum extrapolierten Kursverlauf des in vorherigen Messzyklen errechneten Kursverlaufs passt. Wird festgestellt, dass das reale Objekt 16 keine Messaussetzer aufweist, dass also für das Objekt 16, Objektpositionen und eine Relativgeschwindigkeit ermittelt wurden, die zu den vorher gemessenen Werten passt, so wird in Schritt 27 nach nein verzweigt und in Schritt 26 das Objekttracking für das Objekt 16 mit den Objektdaten aus der direkten Objektreflexionsmessung fortgeführt. Wurde in Schritt 27 erkannt, dass Messaussetzer vorhanden sind, dass also für das Objekt 16 keine Objektpositionen festgestellt werden konnten, da diese beispielsweise durch die indirekte Reflexion überdeckt wurden, so verzweigt Schritt 27 nach ja und es wird in Schritt 28 ein Objekttracking durchgeführt mit den Objektpositionsdaten und Relativgeschwindigkeitsdaten, die mittels der Scheinzielposition 17 sowie dem Reflexionspunkt 18 in scheinbar reale Objektdaten umgerechnet werden. Hierdurch ist es möglich, auch bei einem Objekttrackingabriss des vorausfahrenden Fahrzeugs 16 ein Objekttracking fortzuführen, beispielsweise zur Regelung des leistungsbestimmenden Stellelementes 10 sowie den Verzögerungseinrichtungen 11 des Fahrzeugs bis wieder direkt gemessene Objektwerte für das vorausfahrende Fahrzeug 16 gemessen werden.

Claims (8)

  1. Verfahren zur Objektdetektion bei einem Fahrzeug, das mit einem Objektdetektionssystem (3) ausgestattet ist, wobei das Objektdetektionssystem elektromagnetische Wellen aussendet und an Objekten (15, 16, 17) innerhalb des Detektionsbereichs reflektierte Wellen empfängt, dadurch gekennzeichnet, dass die an einem erkannten Objekt (15, 16) reflektierten Wellen, die zusätzlich an einem entlang der Fahrbahn ausgedehnten Gegenstand (15) reflektiert wurden, ausgewertet werden.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Auswertung eine Plausibilisierung ist, bei der mit den indirekten Objektreflexionen (17), die zusätzlich an einem entlang der Fahrbahn ausgedehnten Gegenstand (14) reflektiert wurden, die direkt gemessenen Objektreflexionen (16), die nicht an einem entlang der Fahrbahn ausgedehnten Gegenstand (14) reflektiert wurden, verifiziert werden.
  3. Verfahren nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, dass die Auswertung darin besteht, dass wenn von einem zuvor direkt detektierten Objekt (16) keine Reflexion mehr messbar ist, die indirekte Objektreflexion (17), die an einem entlang der Fahrbahn ausgedehnten Gegenstand (14) reflektiert wurde, zur weiteren Objektdetektion herangezogen wird.
  4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die entlang der Fahrbahn ausgedehnten Gegenstände (14) Leitplanken, Tunnelwände, Begrenzungsmauern oder Lärmschutzwände sind.
  5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur Auswertung die indirekte Objektreflexion (17) in eine angenommene, direkte Objektreflexion (16) umgerechnet wird.
  6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur Umrechnung der indirekten Objektreflexion (17) in eine angenommene, direkte Objektreflexion (16) die Position des entlang der Fahrbahn ausgedehnten Gegenstandes (14) geschätzt wird.
  7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Umrechnung derart geschieht, dass der gemessene Objektaufenthaltsort (17), der durch die indirekte Messung detektiert wurde, an dem entlang der Fahrbahn ausgedehnten Gegenstand (14) gespiegelt wird.
  8. Vorrichtung zur Objektdetektion bei einem Fahrzeug, das mit einem Objektdetektionssystem (3) ausgestattet ist, wobei das Objektdetektionssystem elektromagnetische Wellen aussendet und an Objekten (15, 16, 17) innerhalb des Detektionsbereichs reflektierte Wellen empfängt, dadurch gekennzeichnet, dass die Vorrichtung ein Berechnungmittel (8) aufweist, das gemessene Objektaufenthaltspositionen (15, 16, 17), die außerhalb der Fahrbahn liegen, als indirekte Objektreflexionen (17) erkennt, Positionen entlang dem Fahrbahnrand ausgedehnter Gegenstände schätzt (14) und die Objektaufenthaltspositionen der indirekten Objektreflexionen (17) an dem geschätzten, entlang dem Fahrbahnrand ausgedehnten Gegenstand (14) spiegelt.
DE102004036580A 2004-07-28 2004-07-28 Verfahren und Vorrichtung zur Objektdetektion bei einem Fahrzeug Ceased DE102004036580A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE102004036580A DE102004036580A1 (de) 2004-07-28 2004-07-28 Verfahren und Vorrichtung zur Objektdetektion bei einem Fahrzeug
JP2007523046A JP4814231B2 (ja) 2004-07-28 2005-06-01 車両における対象検出方法および対象検出装置
US11/658,982 US7791527B2 (en) 2004-07-28 2005-06-01 Method and device for object detection in the case of a vehicle
PCT/EP2005/052503 WO2006010662A1 (de) 2004-07-28 2005-06-01 Verfahren und vorrichtung zur objektdetektion bei einem fahrzeug
EP05754541A EP1789814B1 (de) 2004-07-28 2005-06-01 Verfahren und vorrichtung zur objektdetektion bei einem fahrzeug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102004036580A DE102004036580A1 (de) 2004-07-28 2004-07-28 Verfahren und Vorrichtung zur Objektdetektion bei einem Fahrzeug

Publications (1)

Publication Number Publication Date
DE102004036580A1 true DE102004036580A1 (de) 2006-03-16

Family

ID=34970775

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102004036580A Ceased DE102004036580A1 (de) 2004-07-28 2004-07-28 Verfahren und Vorrichtung zur Objektdetektion bei einem Fahrzeug

Country Status (5)

Country Link
US (1) US7791527B2 (de)
EP (1) EP1789814B1 (de)
JP (1) JP4814231B2 (de)
DE (1) DE102004036580A1 (de)
WO (1) WO2006010662A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007035026A1 (de) * 2007-07-26 2009-01-29 Adc Automotive Distance Control Systems Gmbh Fahrerassistenzsystem und Verfahren zum Betreiben eines Fahrerassistenzsystems
EP2667219A1 (de) 2012-05-25 2013-11-27 Robert Bosch Gmbh Detektion von Radarobjekten mit einem Radarsensor eines Kraftfahrzeugs
DE102016215509A1 (de) * 2016-08-18 2018-02-22 Conti Temic Microelectronic Gmbh Spiegelzielerkennung bei einem Radarsystem in einem Fahrzeug
WO2021078335A1 (de) * 2019-10-24 2021-04-29 Conti Temic Microelectronic Gmbh Verfahren zur erfassung eines zielobjekts
US11536838B2 (en) 2016-09-29 2022-12-27 Valeo Schalter Und Sensoren Gmbh Detection device for a motor vehicle, driver assistance system, motor vehicle, and method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004036580A1 (de) * 2004-07-28 2006-03-16 Robert Bosch Gmbh Verfahren und Vorrichtung zur Objektdetektion bei einem Fahrzeug
US7999923B2 (en) * 2009-02-19 2011-08-16 Northrop Grumman Systems Corporation Systems and methods for detecting and analyzing objects
DE102009002082A1 (de) 2009-04-01 2010-10-07 Robert Bosch Gmbh Mehrstrahlradarsensorvorrichtung und Verfahren zum Bestimmen eines Abstandes
JP5488518B2 (ja) * 2010-07-05 2014-05-14 株式会社デンソー 道路端検出装置、運転者支援装置、および道路端検出方法
RU2463622C1 (ru) * 2011-06-08 2012-10-10 Открытое акционерное общество "НИИ измерительных приборов - Новосибирский завод имени Коминтерна" (ОАО "НПО НИИИП-НЗиК") Способ сопровождения траектории цели
RU2530544C1 (ru) * 2013-07-31 2014-10-10 Открытое акционерное общество "Научно-исследовательский институт приборостроения имени В.В. Тихомирова" Способ моделирования сигнала, отраженного от земной поверхности, в режиме картографирования реальным лучом
US9810782B2 (en) 2015-03-20 2017-11-07 Delphi Technologies, Inc. Vehicle radar system with image reflection detection
RU2661889C1 (ru) * 2015-12-18 2018-07-20 Акционерное общество "Федеральный научно-производственный центр "Нижегородский научно-исследовательский институт радиотехники" Способ радиолокационного сопровождения объектов и рлс для его реализации
EP3640919A4 (de) * 2017-06-15 2021-01-27 Veoneer Sweden AB Fahrhilfevorrichtung, fahrhilfeverfahren und computerprogramm
RU2682718C1 (ru) * 2018-05-25 2019-03-21 Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр "Красноярский научный центр Сибирского отделения Российской академии наук" (ФИЦ КНЦ СО РАН, КНЦ СО РАН) Способ определения коэффициентов погонного ослабления сигналов навигационных космических аппаратов в лесном массиве с координатной привязкой
WO2020240813A1 (ja) * 2019-05-31 2020-12-03 三菱電機株式会社 物体検知システムおよび物体検知方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3831174A (en) 1973-02-05 1974-08-20 Hughes Aircraft Co Automatic target acquisition in mti radar system
US4005421A (en) 1973-05-30 1977-01-25 Westinghouse Electric Corporation Monopulse radar system and method for improved low elevation tracking
US4472718A (en) 1980-02-29 1984-09-18 Mitsubishi Denki Kabushiki Kaisha Tracking radar system
US4595925A (en) 1983-03-28 1986-06-17 The United States Of America As Represented By The Secretary Of The Navy Altitude determining radar using multipath discrimination
JPS63311513A (ja) * 1987-06-15 1988-12-20 Sanyo Electric Co Ltd 自走式作業車
US4916450A (en) * 1988-05-12 1990-04-10 Radar Control Systems Corporation Radar system for headway control of a vehicle
US7049945B2 (en) * 2000-05-08 2006-05-23 Automotive Technologies International, Inc. Vehicular blind spot identification and monitoring system
US5635844A (en) * 1995-04-25 1997-06-03 Isuzu Motors Limited Object sensing apparatus using predicting means for Determining if the object is a guardrail
AUPN722695A0 (en) * 1995-12-19 1996-03-14 Commonwealth Of Australia, The A tracking method for a radar system
JPH09222477A (ja) * 1996-02-19 1997-08-26 Toyota Motor Corp 車載用レーダ装置
JPH09318726A (ja) * 1996-05-31 1997-12-12 Mitsubishi Heavy Ind Ltd 追尾装置
SE511061C2 (sv) * 1997-11-21 1999-07-26 Celsiustech Electronics Ab Förfarande för klassificering av upphöjda objekt
DE19801617A1 (de) 1998-01-17 1999-07-22 Daimler Chrysler Ag Radarsignal-Verarbeitungsverfahren
JP3608991B2 (ja) * 1999-10-22 2005-01-12 富士通テン株式会社 車間距離センサ
JP3750102B2 (ja) * 1999-11-24 2006-03-01 富士通テン株式会社 車載レーダ装置
JP3639191B2 (ja) * 2000-07-10 2005-04-20 株式会社デンソー 物体認識方法及び装置、記録媒体
JP3639190B2 (ja) * 2000-07-10 2005-04-20 株式会社デンソー 物体認識装置、記録媒体
JP2002156450A (ja) * 2000-11-21 2002-05-31 Natl Inst For Land & Infrastructure Management Mlit 障害物識別方法
JP3645177B2 (ja) * 2000-11-29 2005-05-11 三菱電機株式会社 車両周辺監視装置
JP3675758B2 (ja) * 2001-12-11 2005-07-27 富士通テン株式会社 ミリ波レーダ用データ処理装置
WO2003104833A2 (en) * 2002-06-06 2003-12-18 Roadeye Flr General Partnership Forward-looking radar system
JP3862015B2 (ja) * 2002-10-25 2006-12-27 オムロン株式会社 車載用レーダ装置
JP3960228B2 (ja) * 2003-01-20 2007-08-15 株式会社デンソー レーダ装置,プログラム
DE10302052A1 (de) * 2003-01-21 2004-07-29 Robert Bosch Gmbh Vorrichtung und Verfahren zum Überwachen der Umgebung eines Kraftfahrzeugs
DE10324217A1 (de) * 2003-05-28 2004-12-16 Robert Bosch Gmbh Vorrichtung zur Klassifizierung von wenigstens einem Objekt mit einer Umfeldsensorik
DE102004036580A1 (de) * 2004-07-28 2006-03-16 Robert Bosch Gmbh Verfahren und Vorrichtung zur Objektdetektion bei einem Fahrzeug
JP3936713B2 (ja) * 2004-09-24 2007-06-27 三菱電機株式会社 車両用後側方警報装置
US7447592B2 (en) * 2004-10-18 2008-11-04 Ford Global Technologies Llc Path estimation and confidence level determination system for a vehicle

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007035026A1 (de) * 2007-07-26 2009-01-29 Adc Automotive Distance Control Systems Gmbh Fahrerassistenzsystem und Verfahren zum Betreiben eines Fahrerassistenzsystems
DE102007035026B4 (de) * 2007-07-26 2021-05-12 Adc Automotive Distance Control Systems Gmbh Fahrerassistenzsystem und Verfahren zum Betreiben eines Fahrerassistenzsystems
EP2667219A1 (de) 2012-05-25 2013-11-27 Robert Bosch Gmbh Detektion von Radarobjekten mit einem Radarsensor eines Kraftfahrzeugs
DE102012208852A1 (de) 2012-05-25 2013-11-28 Robert Bosch Gmbh Detektion von Radarobjekten mit einem Radarsensor eines Kraftfahrzeugs
US9229098B2 (en) 2012-05-25 2016-01-05 Robert Bosch Gmbh Detection of radar objects with the aid of a radar sensor of a motor vehicle
DE102016215509A1 (de) * 2016-08-18 2018-02-22 Conti Temic Microelectronic Gmbh Spiegelzielerkennung bei einem Radarsystem in einem Fahrzeug
US11536838B2 (en) 2016-09-29 2022-12-27 Valeo Schalter Und Sensoren Gmbh Detection device for a motor vehicle, driver assistance system, motor vehicle, and method
WO2021078335A1 (de) * 2019-10-24 2021-04-29 Conti Temic Microelectronic Gmbh Verfahren zur erfassung eines zielobjekts
DE102019216373A1 (de) * 2019-10-24 2021-04-29 Conti Temic Microelectronic Gmbh Verfahren zur Erfassung eines Zielobjekts

Also Published As

Publication number Publication date
US20090079986A1 (en) 2009-03-26
JP4814231B2 (ja) 2011-11-16
JP2008507706A (ja) 2008-03-13
US7791527B2 (en) 2010-09-07
EP1789814A1 (de) 2007-05-30
EP1789814B1 (de) 2012-08-15
WO2006010662A1 (de) 2006-02-02

Similar Documents

Publication Publication Date Title
EP1789814B1 (de) Verfahren und vorrichtung zur objektdetektion bei einem fahrzeug
EP2097770B1 (de) Vertikale ausrichtung eines lidar-sensors
DE102005024716B4 (de) Verfahren und Vorrichtung zur Erkennung und Klassifizierung von Objekten
DE102006027678B4 (de) Fahrzeug-Radarvorrichtung und Fahrzeugsteuerungssystem
EP1625979B1 (de) Verfahren und Vorrichtung zur Auslösung einer Notbremsung
DE102012107444B3 (de) Verfahren zur Klassifizierung von fahrenden Fahrzeugen durch Verfolgung einer Positionsgröße des Fahrzeuges
DE102006019848B4 (de) Vorrichtung zum Reduzieren einer Auswirkung eines Fahrzeugzusammenstosses
EP1610196B1 (de) Verfahren und Vorrichtung zur Vorhersage des Straßenverlaufs für Kraftfahrzeuge
EP1990654B1 (de) Verfahren und Vorrichtung zur Ermittlung der Fahrzeugklasse von Fahrzeugen
EP2046619B1 (de) Fahrerassistenzsystem
DE2623643A1 (de) Verfahren zum autarken regeln des sicherheitsabstandes eines fahrzeuges zu vorausfahrenden fahrzeugen und vorrichtung zur durchfuehrung dieses verfahrens
EP1606650A1 (de) Verfahren und vorrichtung zur ansteuerung mindestens einer verzögerungseinrichtung und/oder eines leistungsbestimmenden stellelementes einer fahrzeugantriebseinrichtung
DE102012108023B4 (de) Radarbasierte Erkennung von Straßenrandbebauung durch Ausnutzung von Mehrwegausbreitung
EP2804014B1 (de) Vorrichtung und Verfahren zum Bestimmen eines Fahrzeugmerkmals
DE19536000B4 (de) Niveaueinstellung für Abstandsmessgeräte in Fahrzeugen
DE102016213369A1 (de) Verfahren und Vorrichtung zur Überwachung eines Totwinkelbereichs eines Fahrzeugs
DE102004046873A1 (de) Radarsensor und Verfahren zur Abstands- und Geschwindigkeitsregelung
EP1520745B1 (de) Verfahren und Vorrichtung zur Erkennung und Einstellung von Links- oder Rechtsverkehr
WO2017080787A1 (de) Seitliche leitplankenerkennung über einen abstandssensor im kfz
DE102010003375B4 (de) Umfeldbewertungssystem in einem Fahrzeug mit Sensormitteln zur Erfassung von Objekten im Umfeld des Fahrzeuges
EP2221640A2 (de) Verfahren zur Messung der Geschwindigkeit eines Fahrzeuges und sichtbaren Zuordnung in einer Dokumentation
DE102009055787A1 (de) Verfahren zur Distanzregelung eines Fahrzeugs und Fahrzeug mit einer Vorrichtung zur Distanzregelung
DE10349210B4 (de) System und Verfahren zum vorausschauenden Detektieren eines potentiellen Unfallobjektes im Kraftfahrzeugbereich
WO2007071484A1 (de) Vorrichtung zur detektion eines objekts
DE10337845B4 (de) Steuerungsanordnung für ein Kraftfahrzeug und Verfahren zur Ermittlung einer Fahrposition auf einer Fahrbahn

Legal Events

Date Code Title Description
R012 Request for examination validly filed

Effective date: 20110420

R002 Refusal decision in examination/registration proceedings
R003 Refusal decision now final
R003 Refusal decision now final

Effective date: 20141106