JP3750102B2 - 車載レーダ装置 - Google Patents

車載レーダ装置 Download PDF

Info

Publication number
JP3750102B2
JP3750102B2 JP33305899A JP33305899A JP3750102B2 JP 3750102 B2 JP3750102 B2 JP 3750102B2 JP 33305899 A JP33305899 A JP 33305899A JP 33305899 A JP33305899 A JP 33305899A JP 3750102 B2 JP3750102 B2 JP 3750102B2
Authority
JP
Japan
Prior art keywords
target
distance
reflected signal
antenna
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33305899A
Other languages
English (en)
Other versions
JP2001153946A (ja
Inventor
正幸 岸田
大作 小野
博文 東田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Ten Ltd
Original Assignee
Denso Ten Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Ten Ltd filed Critical Denso Ten Ltd
Priority to JP33305899A priority Critical patent/JP3750102B2/ja
Priority to US09/717,153 priority patent/US6429804B1/en
Publication of JP2001153946A publication Critical patent/JP2001153946A/ja
Application granted granted Critical
Publication of JP3750102B2 publication Critical patent/JP3750102B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • G01S13/426Scanning radar, e.g. 3D radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/536Discriminating between fixed and moving objects or between objects moving at different speeds using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/46Indirect determination of position data
    • G01S2013/462Indirect determination of position data using multipath signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/93185Controlling the brakes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/932Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles using own vehicle data, e.g. ground speed, steering wheel direction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9321Velocity regulation, e.g. cruise control

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、車両に搭載され、車両の周囲で、たとえば前方を走行中の他の車両などの障害物をターゲットとして探査し、走行の安全などを図るために用いられる車載レーダ装置に関する。
【0002】
【従来の技術】
従来から、車両の走行方向などの障害物を探査する車載レーダ装置が開発されている。車載レーダ装置としては、三角波を変調信号として周波数変調された持続送信波である探査波と、目標からの反射波とによって生じる周波数のうなり成分をビート信号を取出し、ビート信号の周波数に基づいて目標との相対速度や相対距離を求めるFM−CW方式が用いられている。FM−CW方式のレーダに関連する先行技術は、たとえば特開昭52−111395、特開平7−120549、特開平9−80148および特開平9−145824などに開示されている。特に特開平7−120549には、車載レーダ装置から送信されるビーム状の電波の照射方向を変更可能とし、たとえば曲線走行時などで斜め前方を走行している車両などのターゲットを適確に探査しようとする構成が開示されている。
【0003】
図16は、従来からのFM−CW方式の車載レーダ装置1の概略的な構成を示す。車載レーダ装置1では、ターゲット2を探査し、ターゲット2までの距離とターゲット2との間の相対速度を算出するためにアンテナ3から探査用の電波を送信する。アンテナ3は、ターゲット2で反射した反射電波を受信する。アンテナ3は、利得が高い範囲が鋭いビーム形状となるように形成されているので、走査機構4によってビーム方向を変化させる走査を行い、ターゲット2からの反射信号を受信するときのビーム方向からターゲット2の方向を検知することもできる。ターゲット2までの距離と方向とが解ると、ターゲット2の位置を自車を基準として相対的に求めることができる。
【0004】
FM−CW方式の探査では、送信回路5から三角波で周波数変調している探査信号をアンテナ3に与えて送信させ、アンテナ3に受信する反射信号を受信回路6で増幅や周波数変換を行い、アナログ/デジタル変換(以下、「A/D」と略称する)回路7でデジタル信号に変換して、高速フーリエ変換(以下、「FFT」と略称する)回路8で周波数成分に変換する。目標検出回路9は、FFT回路8からの周波数成分に基づいて、ターゲット2までの距離Rや相対速度Vなどを算出する。
【0005】
図17は、図16に示す目標検出回路9が、FM−CW方式でターゲット2の探査と、距離Rおよび相対速度Vの算出を行う原理を示す。図16のアンテナ3からは、一定の変化速度で三角波上に周波数が連続的に変化するようにFM変調された連続波(CW)の探査信号10が送信される。探査信号10がターゲット2で反射して、アンテナ3に受信される反射信号11は、図17(a)に示すように、探査信号10に比較して、距離Rに対応する時間だけ遅れるので、周波数が変化している探査信号10に対して、周波数に差が生じる。また、ターゲット2との間には相対速度Vが生じるので、反射信号11にはドップラシフト効果も生じ、探査信号10との間で周波数が異なってくる原因となる。
【0006】
FM−CW方式では、周波数変調の周波数変移量が増大する周波数上昇区間でのビート信号であるアップビート信号12と、周波数変移量が減少する下降区間でのビート信号であるダウンビート信号13とに、図17(b)に示すように、ドップラシフト効果による周波数の変化分が異なって反映される。このため、アップビート信号12の周波数fubとダウンビート信号13の周波数fdbとは、標準的なビート信号の周波数であるレンジ周波数frおよびドップラシフト周波数fdを用いて、次の式1および式2のように表すことができる。
fub = fr − fd …(1)
fdb = fr + fd …(2)
【0007】
ここでレンジ周波数frは、ターゲット2までの距離Rに比例し、FM−CW方式の探査信号10の三角波としての周波数変移の振幅をΔf、三角波としての変調周波数fm、光速をCとすると、次の式3で表される。また、ドップラシフト周波数fdは、ターゲット2との相対速度をV、探査信号10の波長をλとすると、次の式4で表される。式3および式4の関係を用いて、レンジ周波数frおよびドップラシフト周波数fdから、距離Rおよび相対速度Vをそれぞれ算出することもできる。
【0008】
【数1】
Figure 0003750102
【0009】
なお、図16に示すように、アンテナ3のビーム方向の走査を行う車載レーダ装置に関する先行技術は、たとえば特開平11−64499、特開平11−72651、特開平11−84001、あるいは特開平11−231053などに開示されている。また、特開平8−82679には、ターゲットを探査するレンジを近距離用と遠距離用とを切換える構成が開示されている。特開平10−282220には、飛翔体などのレーダで、レーダ探査時に得られるデータの一部を利用して目標の特定を行う先行技術が開示されている。特開平11−38141には、車載用のレーダを用いて障害物を3次元的に認識する先行技術が開示されている。
【0010】
【発明が解決しようとする課題】
アンテナのビーム方向を走査する先行技術のうち、たとえば特開平11−84001や特開平11−231053には、1回の走査期間に、複数回の探査を行い、ビーム方向の変化に対応して得られる反射信号レベルのピークから、ターゲットの方向を推定する考え方が示されている。これらの先行技術のような考え方で、ターゲットの方向についての探査精度を上げるためには、1回の走査内での探査方向を細かくして、探査を行う回数を多くする必要がある。しかるに、このような方法では、演算処理などの負荷が高くなり、高速に処理するためには高速な信号処理のためのハードウエアが必要となる。信号処理の高速化は、コストは勿論発熱などの問題が生じ、円滑に使用するためにはそれなりの回路規模が必要となり、システム構成が大きくなってしまう。
【0011】
また、ターゲットが存在する特定区間で探査を行う角度範囲を狭くする方法もあるけれども、ハードウエアの構成が複雑になり、コスト面でのメリットも多くない。
【0012】
また、ターゲットの認識では、ガードレールやトンネル、防音壁などからの反射信号も受信される場合に、真のターゲットを抽出するために複雑なロジックを組む必要が出てくる。たとえばガードレールの場合、FM−CW方式での周波数上昇区間と周波数下降区間との周波数を組合せるペアリングの処理を行ったあとで算出される相対速度は、決して自車速と同じ値にならず、静止している物体ではなく移動している物体のように見える。また、距離の移動量は、その相対速度から求められる値とは一致しないので、これらに基づいてガードレールであると判定することができる。しかしながら、探査の頻度が高くなると、データの更新レートが早くなり、距離の移動量が少なくなるので、距離移動量から相対速度を求めても精度が粗くなり、相対速度の比較が困難になる。
【0013】
さらにFM−CW方式の場合、周波数上昇区間と下降区間とを組合せることによって距離および相対速度を算出しているけれども、高い相対速度で近付く物体については、ドップラシフト効果が大きく生じるために、上昇区間と下降区間とでの周波数差が大きくなってしまう。また、近付くターゲットの場合には、周波数上昇区間でのビート信号が低い周波数側にずれ、あまり低いビート信号については処理が困難となるので、静止状態に比べ、ターゲットを検知可能な最小距離が遠くなってしまう。その結果、接近したターゲットについての追跡を行うことができず、そのまま接近しているのか、方向がそれるのかなどについての情報が得られなくなってしまう。
【0014】
また、走行中に検出されるターゲットが静止物体であると判断されるときには、車両が踏み越えたりくぐり抜けたりすることができる物体も含まれている。従来は、これらの物体については特に判断基準がなく、踏み越えることができる物体であっても、警報や減速制御の対象としてしまう。これらについては、静止物体をターゲットとして判定せずに、制御対象から除外する方法を取ることも考えられるけれども、踏み越えられたりくぐり抜けられたりすることができない物体の場合には、制御対象から除外する方法を取ることはできない。
【0015】
本発明の目的は、ターゲットの位置や性質などについて、適確に認識することができる車載レーダ装置を提供することである。
【0016】
【課題を解決するための手段】
本発明は、車両に搭載され、車両の周囲のターゲットを探査する車載レーダ装置において、
所定のビーム方向で利得が高くなるように形成され、該ビーム方向に探査信号を送信し、探査信号に対するターゲットからの反射信号を受信するアンテナと、
アンテナのビーム方向を水平面内で所定の範囲で変化させる走査を行う走査手段と、
走査手段によって変化するアンテナのビーム方向を検出する方向検出手段と、
走査手段によって、アンテナのビーム方向を、該所定の範囲内で繰返して走査させ、繰返される走査間では、方向検出手段によって検出されるビーム方向が異なる角度となる複数の方向で、ターゲット探査を行うように制御する探査制御手段と、
アンテナに受信されるターゲットからの反射信号およびアンテナから送信される探査信号に基づいて、ターゲットまでの距離を算出し、距離および方向検出手段によって検出されるアンテナのビーム方向に基づいて、ターゲットが静止物であるか否かを判断し、静止物であればある一定の距離までは距離が近付くほどパワーが大きくなる点に基づき踏み越え可能か否かを判断してターゲットの認識を行うターゲット認識手段とを含むことを特徴とする車載レーダ装置である。
【0017】
本発明に従えば、車両に搭載されて車両の周囲のターゲットを探査する車載レーダ装置は、アンテナから探査信号を所定のビーム方向に送信し、ターゲットからの反射信号を受信する。アンテナのビーム方向は走査手段によって水平面内で所定の範囲で変化させる走査が行われ、方向検出手段によって検出される。走査制御手段は、アンテナのビーム方向を所定の範囲内で繰返して走査させ、繰返される走査間では、方向検出手段によって検出されるビーム方向が異なる複数の方向でターゲットの探査を行うように制御する。ターゲット認識手段は、アンテナに受信されるターゲットからの反射信号およびアンテナから送信される探査信号に基づいて、探査信号までの距離を算出する。算出された距離および方向検出手段によって検出されるアンテナのビーム方向に基づいて、ターゲットが静止物であるか否かを判断する。ターゲットが静止物であればある一定の距離までは距離が近付くほどパワーが大きくなる点に基づき踏み越え可能か否かを判断してターゲットの認識が行われる。ターゲットを探査するビーム方向は、走査制御手段によって、アンテナの走査毎に異なる複数の方向となるように得られるので、複数の走査によって得られる探査結果を組合せれば、より細かい角度の違い毎に探査を行って得られる結果と同等な精度の高い探査を行うことができる。1回の走査での探査間の角度は、最終的な角度ほど細かくしないでもよいので、処理速度を高速にしたと同様の精度でターゲットの方向を求めることができる。
【0018】
また本発明で、前記ターゲット認識手段は、前記走査毎の複数のビーム方向に対する探査結果に基づいてターゲットの認識を行い、反射信号が受信されるビーム方向の数が予め定める基準値よりも小さいとき、予め定める複数の走査によって得られる探査結果の組合せに基づいてターゲットの認識を行うことを特徴とする。
【0019】
本発明に従えば、1回の走査で充分な数の探査結果が得られないときには、複数回の走査で得られる探査結果に基づいてターゲットの認識を行うことができるので、ターゲットの認識精度を向上させることができる。
【0020】
また本発明で、前記ターゲット認識手段は、前記複数の走査によって得られる探査結果に対して、ターゲットの移動に伴う相対速度差からドップラシフト周波数を算出し、ターゲット認識のために組合せる反射信号を算出結果に応じて変化させることを特徴とする。
【0021】
本発明に従えば、複数の走査間での時間的なずれを考慮して、対象となる探査結果を組合せて、精度の高い認識を行うことができる。
【0022】
また本発明で、前記ターゲット認識手段は、前記探査結果のうち、前記算出結果に応じての組合せの対象から外れる周波数の反射信号を、不要反射物からの反射信号として認識し、ターゲットからの反射信号として扱わないことを特徴とする。
【0023】
本発明に従えば、複数の探査結果のうち組合せることができない周波数の反射信号は、不要反射物として認識し、ターゲットからの反射信号として扱わないので、実際に注意する必要がないターゲットに処理の負荷を割かないようにして、注意する必要があるターゲットに対しての重点的な処理を行わせることができる。
【0024】
また本発明で、前記ターゲットの探査は、FM−CW方式で行われ、
前記ターゲット認識手段は、前記探査結果のうち、ペアリング処理を行い、ペアリング処理が可能でないときに、前記ドップラシフト周波数の算出でターゲット認識のために組合せる反射信号を変化させることを特徴とする。
【0025】
本発明に従えば、ペアリング処理が可能でない探査結果に対し、ドップラシフト周波数を算出して、ターゲット認識のために組合せる反射信号を変化させるので、探査対象の位置を有効に求めることができる。
【0026】
また本発明で、前記ターゲット認識手段は、前記不要反射物からの反射信号と認識すると、距離と方向とから不要反射物が集まる位置を求め、その位置を路肩と判断することを特徴とする。
【0027】
本発明に従えば、組合せることができなかった探査結果に基づく算出結果を不要反射物についてのデータと認識し、不要反射物が集まる位置を路肩と判断するので、路肩およびその外方にある物体は、注意の対象から除外して、処理負担を軽減することができる。
【0054】
【発明の実施の形態】
図1は、本発明の実施の各形態で用いられる車載レーダ装置21の概略的な電気的構成を示す。車載レーダ装置21は、ターゲット22の探査を行うためのアンテナ23を有する。アンテナ23は、走査機構24によってビーム方向23aが、水平面内で変更可能である。走査機構24は、アンテナ23のビーム方向23aを、進行方向に対して一定の角度範囲内で振らせることができる。
【0055】
アンテナ23からは、送信回路25によって生成されるFM−CW方式の電波が探査信号として送信される。探査信号がターゲット22に当たると、ターゲット22の表面で反射して反射信号となる。反射信号がアンテナ23に受信されると、探査信号との間で生じるビート信号が受信回路26で電気的に処理され、A/D回路27でデジタル信号に変換され、FFT回路28で周波数成分が抽出される。目標検出回路29は、FFT回路28によって抽出された周波数成分に基づいて、ターゲット22に対応する目標を検出する。目標認識回路30は、1回の走査内での複数の探査方向での目標の検出結果や、さらに複数回の走査から得られる目標の検出結果を元に、ターゲット22の認識を行う。1回の走査での複数回の探査結果や、複数回の走査での探査結果は、メモリ31に記憶される。
【0056】
車載レーダ装置21は、車両32に搭載され、アンテナ23の位置は、車両32が走行する路面33よりも高い位置となっている。車載レーダ装置21の目標認識回路30が認識した結果は、警報装置34やクルーズコントロール装置35に与えられる。警報装置34は、ターゲット22までの距離が所定の距離よりも短くなって、衝突の危険などが生じるときに警報を発生する。クルーズコントロール装置35は、ターゲット22までの距離が相対速度も考慮して短いと判断されるようなときに、車両32に対して制動をかけ、走行速度を低下させるような制御を行う。制動が不要であれば、予め設定される速度での走行を続けるように制御する。アンテナ23のビーム方向23aは、方向検出装置36によって検出することができる。
【0057】
図2は、本発明の実施の第1形態としての目標認識回路30の処理手順を示す。ターゲットが認識されると、ステップa1からの手順が開始される。ステップa2では、走査機構24によるアンテナ23の走査であるスキャンが1スキャン分終了しているか否かを判断する。終了していると判断されるときには、ステップa3で、アンテナ23のビーム方向23aが1つの方向を向いて探査信号を送信している状態であるビームが3つ以上で、ターゲット22からの反射信号が検出されているか否かを判断する。3ビーム以上で検出されていないと判断されるときには、ステップa4で、前回のスキャンで認識したターゲットが検出されているか否かを判断する。検出されていないときには、ステップa2に戻る。ステップa4で、前回のスキャンでも検出されたターゲット22が認識されていると判断されるときは、ステップa5で、前回と今回の2つのスキャンのデータから角度の算出を行う。ステップa3で、3ビーム以上で検出されていると判断されるときには、ステップa6で、1回のスキャンデータから角度の算出を行う。
【0058】
ステップa5またはステップa6の算出処理が終了すると、ステップa7でペアリング処理を行う。ペアリング処理では、FM−CW方式の周波数上昇期間と周波数下降期間とを組合せる。ステップa8では、ステップa7でペアリング処理が可能であったか否かを判断する。ペアリング処理が可能でないと判断されるときには、ステップa9で周波数データのシフトを行い、ステップa10で特定区間毎にデータを分け、ステップa11で各区間での位置を計算し、ステップa12で路肩位置の判定を行う。ステップa8でペアリングが可能であったデータに関しては、ステップa9からステップa12までの処理は行わない。また、ステップa9からステップa12までの各処理の内容については後述する。
【0059】
ステップa13では、路肩より外側にターゲットがあるか否かを判断する。ターゲットがあると判断されるときには、ステップa14で、路肩よりも外側となるターゲットを削除する。ステップa13で路肩より外側にターゲットがないと判断されるとき、またはステップa14が終了すると、ステップa15で静止状態の静止物ターゲットがあるか否かを判断する。静止物ターゲットが無いと判断されるときには、ステップa16でターゲットの認識結果を表す信号を出力する。
【0060】
ステップa15で、静止物ターゲットが有ると判断されるときには、ステップa17以下で、静止物ターゲットが踏み越え可能である確率の算出を行う。ステップa17では、確率値を零に初期化する。ステップa18で、静止物ターゲットの遠距離での受信強度であるパワーが大きいか否かを判断する。パワーが大であると判断されるときには、ステップa19で、確率値を50に設定する。遠距離でのパワーが大きければ、静止物ターゲットは路面からの高さが高いと判断され、そのまま走行すれば乗り越えることができない可能性が高くなるので、確率値を50に設定する。ステップa18で遠距離でのパワーが大きくないと判断されるとき、またはステップa19が終了すると、ステップa20で、比較的遠距離のうちにパワーが急激に低下するか否かを判断する。低下すると判断されるときには、静止物ターゲットは看板など、比較的高い位置に存在する確率が高くなり、踏み越えることができない可能性も低下するので、ステップa21で、確率値を30小さくする。
【0061】
ステップa20で遠距離でのパワーが急低下しないと判断されるとき、またはステップa21が終了すると、ステップa22に移る。ステップa22では、受信する信号強度としてのパワーが、距離が接近するにつれて変動し、1つの区間Aの最大値が次の区間Bでの最小値よりも大きいか否かを判断する。静止物ターゲットに関し、マルチパスの現象によって受信信号レベルが変動しているときには、変動の周期を反映して、ステップa22のような関係が成立し、ステップa23に移る。ステップa23では、確率値を20増加させる。ステップa22で、関係が成立しないと判断されるとき、またはステップa23が終了すると、ステップa24に移る。ステップa24では、ステップa22で判断した次の区間Cと、さらに次の区間Dとで、区間Cの最大値が区間Dの最小値よりも大きいか否かを判断する。ステップa24の条件が成立していると判断されるときには、ステップa25で、確率値を20増加させる。ステップa24で条件が成立しないと判断されるとき、またはステップa25が終了すると、ステップa16に移り、算出された確率値を図1の警報装置34やクルーズコントロール装置35などに出力する。
【0062】
なお、隣接する区間での「最大値」と「最小値」との比較で判断すると同様に、「最大ばらつき幅」や「平均値からのずれ量」などに従っても、同様にパワーの急低下の判断を行うことができる。
【0063】
ステップa16でのターゲット出力後、またはステップa2で1スキャンが終了していないと判断されるときには、ステップa26に移って、手順を終了する。ステップa2で1スキャンが終了していないと判断されるときは、1回のスキャンが終了するまでターゲットの探査を行い、反射信号が検出されれば、ターゲットを認識する。次のスキャンでは、ビームの角度を、所定角度だけずらせる。なお、3回以上のスキャンに分けて、ビームの角度をさらに細かく補完させることもできる。図1の警報装置34は、たとえばステップa16のターゲット出力で与えられる確率が、50%以上となると警告を行うようにする。また、クルーズコントロール装置35は、確率が70〜80%程度になると、車両33の走行速度を制限する制動を行う。
【0064】
図3は、本発明の実施の第2形態として、図1の操作機構24がアンテナ23のビーム方向23aを方向検出装置36によって角度として検出しながら、一定角度毎に探査信号の送信と反射信号の受信とを行って得られる反射信号レベルの変化の一例を示す。図3(a)は、一方向にスキャンしたときの変化を示し、図3(b)は、往復方向で探査を行うビームの角度を所定角度だけずらした場合の探査結果を示す。図3(b)では、実線が今回のスキャンでの検出結果を示し、破線が前回のスキャン時での検出結果を示す。
【0065】
図3に示すような検出結果に基づいてターゲットの方向を決定する場合、図3(a)では、2つの角度でしかターゲットの検出が行われていないので、反射信号のパワーが大きい▲2▼の方がターゲットの方向であると判断せざるを得ない。図3(b)のように、角度をずらして2回のスキャンでのデータを用いると、ターゲットが存在する本来の角度は、前回の▲2▼の角度と、今回の▲1▼の角度との間であることが解る。本実施形態では、探査を行う角度は、比較的間隔があっても、1回目のスキャンと2回目のスキャンとで探査を行う角度をずらすので、結果的に小さな角度間隔で探査を行ったと同様の高精度な探査結果を得ることができる。
【0066】
図4は、ターゲット22に対して複数回のスキャンで探査を行うときの相対的な位置の変化の例を示す。ターゲット22と車両32との間には、一般に速度差がある。走査機構24は、アンテナ23を、たとえば±4度の範囲で、1スキャンあたり100ms程度の時間で走査を行う。したがって、2回のスキャンで探査を行うと、最初の車両32の位置と最終的な車両32の位置との間には、0.2秒程度分の相対的な移動があり、車両32に対してターゲット22が移動する。図2のステップa9では、前述の式4に基づいて、相対速度差からドップラシフト周波数を算出し、式1や式2に基づき、アップビート周波数やダウンビート周波数を、算出されたドップラシフト周波数に基づいてレンジ周波数を修正することによって求める。ステップa10では、ドップラシフト周波数に基づいて修正されたデータを、特定区間毎に分ける。ステップa11では、各特定区間で、前述の式3から得られる距離Rと、そのときの方向とに基づいて計算する。ステップa12では、ステップa11での位置計算の結果ターゲットの位置が集まっている部分を路肩であると判定する。
【0067】
ステップa9からステップa12までの手順では、ステップa8でペアリングできないデータを、ガイドレールなどの不要反射物として処理し、路肩位置の判断のために用いている。しかしながら、不要反射物は、車両の走行に対しては大きな障害とならないので、ステップa8でペアリングできないと判断されるデータについては、処理の対象から除去し、ターゲットとして扱わないようにすることもできる。このようにすれば、処理の負担を軽減することができる。
【0068】
図5は、本発明の参考形態として、ターゲット22に対して車両32が高速度で接近する場合に、ターゲット22の位置や相対速度を推測する手順を示す。ステップb1でターゲットを認識したあと、ステップb2では、距離が基準基準よりも小さくなっているか否かを判断する。小さくなっていると判断されるときには、ステップb3で、相対速度が基準速度よりも大きいか否かを判断する。ステップb2で距離が基準距離よりも小さくないと判断されるとき、またはステップb3で相対速度が基準速度よりも大きくないと判断されるときには、ステップb4で通常のFM−CW方式と同様に、周波数上昇区間と周波数下降区間とのデータを用いてターゲット22までの距離と相対速度とを算出する。ステップb3で、相対速度が基準速度よりも大きいと判断されるときには、ステップb5で、周波数下降区間でのデータのみを用いて、ターゲット22までの距離と相対速度とを推定する。ステップb4またはステップb5が終了すると、ステップb6で手順を終了する。
【0069】
図6は、FM−CW方式でターゲットの探査を行う際のアップビート周波数fubとダウンビート周波数fdbの距離による変化を示す。なお、式1および式2から、ダウンビート周波数fdbとアップビート周波数fubの差は、ドップラシフト周波数fdの2倍となっていることが解り、式4からドップラシフト周波数fdは相対速度Vに対応していることが解るので、fdbとfubとの差は相対速度Vに比例することが解る。したがって、相対速度が比較的大きいときには、ターゲットまでの距離が小さくなると、アップビート周波数fubはかなり小さくなってしまう。図1に示すような受信回路26では、あまり低い周波数に対しての処理が困難となるので、本実施形態では、ターゲットまでの距離が、たとえばd1となる基準距離よりも近くなると、相対速度が基準速度V1よりも大きいときには、周波数上昇区間のアップビート周波数fubを使用しないで、周波数下降区間のダウンビート周波数fdbのみを用いてターゲットまでの距離と相対速度とを判断する。相対速度として、ステップb4での通常と同様なFM−CW方式で求めた値をそのまま用いて、式4のドップラシフト周波数fdを求め、式2のダウンビート周波数fdbとの関係から、レンジ周波数frを求めて、式3から距離Rを算出して、相対速度Vと距離Rとを推定する。
【0070】
図7は、本発明の他の参考形態として、路上で静止している物体に接近するときに、その物体が踏み越え可能であるか否かを判断する考え方の一例を示す。車両32のアンテナ23から送信される探査信号40からの反射信号41が反射するターゲット42の高さが路面43よりも比較的高いときには、マルチパスの現象が生じる。すなわち、反射信号41のうち、直接アンテナ23で受信される信号と、1回路面43で反射してからアンテナ23で受信される信号とが生じ、行路差に基づいて受信される反射信号41間に位相差が生じる。この位相差で、反射信号41が打ち消し合うときには反射信号レベルが低下する。
【0071】
図8は、距離による反射信号41の信号レベルをパワーとして表すときに、ターゲット42の路面43からの高さの影響による違いを示す。図8(a)は比較的高いターゲット42からの反射信号41のパワーの変化を示す。図8(b)は、比較的低いターゲット42に対する反射信号のパワーの変化を示す。ターゲット42の高さが高いときには、マルチパスの影響で、距離に対するパワーの変動が大きい。
【0072】
図2のステップa22は、たとえば図8のA区間とB区間とで比較を行い、ステップa24の比較は、図8(a)のC区間とD区間とで比較を行う。なお、A,B,C,D各区間の距離の一例として、20mを挙げることができる。このように、マルチパスの影響でパワーが変動すれば、ターゲット42の高さが高く、車両が乗り越えることができる確率は非常に小さいと判断することができる。図8(b)に示すターゲット42の高さが小さい場合のパワーの変化では、ある一定の距離までは距離が近付くほどパワーが大きくなるので、図8(a)のA,B,CおよびD区間にそれぞれ対応する区間での比較についてのステップa22およびステップa24の条件は成立しない。
【0073】
図9は、本発明のさらに他の参考形態としての静止対象物についての踏み越え可能か否かの判断手順を示す。すなわちステップc1で、静止物ターゲットが検出されると、ステップc2で、その距離に基づいて、踏み越え可能か否かを判定する区間に入っているか否かを判断する。ステップc3では、ターゲットからの反射信号レベルが距離によって変動し、図2のステップa22やステップa24のようにマルチパスの影響が生じているか否かを判断する。マルチパスの影響があると判断されるときには、ステップc4で、確率値を増加させる。ステップc4で確率値を増加させたあと、あるいはステップc3でマルチパスの影響がないとして確率値を増加させなかったあとは、ステップc5で図2のステップa16と同様にターゲット出力を行い、確率値に基づく警告を、図1の警告装置34から行わせたり、制動制御を図1のクルーズコントロール装置35によって行わせたりする。ステップc5のターゲット出力が終了したあと、またはステップc2で判定区間でないと判断されるとき、ステップc6で手順を終了する。本実施形態では、判定区間を遠距離側から近付くにつれて複数区間に設け、早い時期から判定を行い、安全性の確保と、次回距離での判定での確実な判断とを行わせることができる。
【0074】
なお、マルチパスの発生状態と目標物までの距離から、目標物の高さを検出することもできる。
【0075】
図10は、本発明のさらに他の参考形態として、静止ターゲットの高さを判定する考え方を示す。図10(a)は車両32が路面43の走行方向の前方に存在する物標44,45に近付く状態を示す。物標44は物標45に比較して路面43からの高さが低いものとする。図10(a)に示すように、車両32のアンテナ23からのビーム方向23aは、ある程度の範囲で広がっているので、物標44,45までの距離が比較的に大きいときには、両方の物標44,45に探査信号が当たり、反射信号がアンテナ23に受信される。図10(b)に示すように、車両32が物標44,45に近付くと、アンテナ23のビーム方向23aは、路面43と間隔があいた位置から前方に延びるので、低い物標44では、ビーム方向23aの範囲から外れてしまう。
【0076】
図11(a)は、図10に示すような車両32が物標44,45に接近する際に、距離に対する反射信号の受信パワーの変化を示す。実線は低い物標44からの反射信号のパワー変化を示し、破線は高い物標45からの反射信号のパワー変化を示す。高い物標45であっても、遠距離では図8に示すようなマルチパスの影響を生じない程度の高さの場合もあり得る。本実施形態では、物標44,45に接近すれば、高さの差による受信レベルの落ち込みの違いから高さの違いを認識し、またアンテナ23の取付け位置などに基づいて、物標44,45の高さも推定することができる。物標44を車両32が踏み越えることが可能か否かは、たとえば踏み越え可能な高さについての受信レベルの変化をたとえば1点鎖線で示すような閾値として関係マップを設定しておき、この閾値よりも反射信号レベルが低下すれば踏み越え可能と判断することができる。また、閾値である踏み越え可能な高さを基準として、物標44の高さも推測することができる。
【0077】
図11(b)に示すように、高さの異なるマップを複数用意しておけば、落込み状態が近いマップから目標物のおよその高さを判断することができる。また、図11(c)に示すように、近距離側において受信レベルが所定の閾値Pを下まわった(ビームの下側の検出範囲から外れた)ときの距離Rから高さを求めることもできる。
【0078】
図12は、本実施形態の考え方に基づいて、踏み越え可能か否かを判断する手順を示す。ステップd1で静止物ターゲットを検出すると、ステップd2で、静止物ターゲットまでの距離が一定値よりも短くなっているか否かを判断する。距離が短いと判断されるときには、ステップd3で、反射信号レベルが一定値よりも小さくなっているか否かを判断する。小さくなっていなければ、その静止物ターゲットは踏み越え可能である可能性が小さく、ステップd4で確率値を増加させる。ステップd3で反射信号レベルが一定値よりも小さくなって落ち込んでいるときには、静止物ターゲットは踏み越え可能である可能性が高く、ステップd5で確率値を低減させる。ステップd4またはステップd5のあとは、ステップd6で、図2のステップa16と同様にターゲット出力を行う。ターゲット出力で、確率値がたとえば50%以上であれば、図1の警報装置34から警報が発生され、さらに確率値が70〜80%程度まで上昇すると、クルーズコントロール装置35によって制動がかけられる。ステップd6のターゲット出力が終了したあと、またはステップd2で距離が一定値よりも小さくないと判断されるときには、ステップd7で手順を終了する。ステップd2で距離を判定する一定値は、図10(b)に示すように、低い物標44がアンテナ23のビーム方向23aの範囲から外れる距離とする。
【0079】
なお、図12に示すような判断処理は、図2のステップa25の後に入れて行う。踏み越え可能か否かで、確率値を増減し、より適切な判断を行うことができる。
【0080】
図13は、本発明のさらに他の参考形態として、図11に示すような反射信号レベルの落ち込みを、遠方でのレベルを基準にして判断する考え方の手順を示す。ステップe1で静止物ターゲットを検出したあと、ステップe2では、既に記憶しているターゲットか否かを判断する。記憶していないときは、ステップe3で静止物ターゲットまでの距離と反射信号レベルとを図1のメモリ31などに記憶する。ステップe2で、ターゲットが既に記憶されているときは、ステップe4に移る。ステップe4では、反射信号レベルを、記憶されている信号レベルと比較する。ステップe5では、比較結果で、一定以上の落ち込みが生じているか否かを判断する。一定以上の落ち込みが生じていないと判断されるときには、ステップe6で、距離が基準値よりも小さくなっているか否かを判断する。この距離は、図10(b)に示すような物標44がビーム方向23aから外れるようになる距離に対応して定める。ステップe6で、距離が基準値よりも小さいと判断されるときには、ステップe7で、確率値を増加させる。ステップe5で、一定以上の落ち込みが生じていると判断されるときには、ステップe8で、確率値を減少させる。ステップe7またはステップe8で変化させた確率値で、ステップe9のターゲット出力が行われる。このターゲット出力は、図2のステップa16と同様に行われる。ステップe6で距離が基準値よりも小さくないと判断されるとき、またはステップe9でターゲット出力が行われたあとは、ステップe10で手順を終了する。
【0081】
本形態では、反射信号レベル自体は判断の対象とせず、ステップe4で、一定以上の落ち込みが生じているか否かを、遠方の反射信号レベルを基準として判断する。反射信号レベルは、ターゲットの材質などによっても変化するけれども、本実施形態では材質の影響を受けにくくすることができる。本実施形態では、距離が基準値よりも短くなる前に一定量の落ち込みが生じるか否かで、静止物ターゲットが踏み越え可能か否かを判断している。すなわち、落ち込み量が一定以上となる距離は、静止物ターゲットの高さに対応しているので、この一定以上の落ち込み量が発生するときの距離から静止物ターゲットの高さを推定することも可能となる。
【0082】
本形態も、基本的には、図2のステップa25に続けて実行する。ただし、ステップe2の距離に対する反射信号レベルの記憶は、各静止ターゲットで行っておく必要がある。
【0083】
図14は、本発明のさらに他の参考形態として、車両の走行に支障がない静止ターゲットを判断する考え方を示す。車両32が走行している路面43の近傍に看板46などが存在していると、図14(a)に示すように、比較的遠距離ではアンテナ23のビーム方向23aに看板46が入り、比較的大きな反射信号レベルで受信することができる。図14(b)に示すように、車両32が看板46に近付くと、アンテナ23のビーム方向23aは看板46から外れるので、反射信号レベルは急低下する。
【0084】
図15は、図14に示すように車両32が看板46に接近していく際の反射信号のパワーと距離との関係を示す。図14(a)に示す状態では反射信号のパワーは比較的大きく、図14(b)に示す状態になると急低下する。図15に示すように、高い物標に対して接近する際に、反射信号のパワーが急低下する距離は、低い物標に対して接近する際の落ち込みが生じる距離よりはかなり遠距離である。図2のステップa20での判断で、比較的遠距離でのパワーが急低下すればステップa21で確率値を低下させることは、本実施形態の考え方に基づいている。なお、本実施形態では、ターゲットの最も低い部分の高さを検出し、車両がくぐり抜け可能であることを確認している。これに対して、前述の踏み越え可能か否かの判断は、最も高い部分の高さに基づいて行っている。
【0085】
本形態においても、図11(b)、図11(c)のようなマップを用いることで、ターゲットの高さを求めることができる。
【0086】
【発明の効果】
以上のように本発明によれば、1回の走査内での探査回数を増やすことなく、複数回の走査で、探査角度をずらしながらターゲットの方向を精度よく求めることができる。1回の走査では探査回数を増やさないので、高速な演算処理を行う必要はなく、比較的低コストでターゲットの方向を精度よく求めることができる。さらに、ターゲットが静止物であるか否かを判断し、静止物であれば、ある一定の距離に近付く際の受信強度の変化に基づいてターゲットを認識し、踏み越え可能か否かなどの判断を行うことができる。
【0087】
また本発明によれば、ターゲットからの反射信号が得られる1回の走査でのビーム方向の数が多ければ、1回の走査での探査結果に基づいてターゲットの認識を行うので、迅速にターゲットの位置を算出することができる。1回の走査での反射信号が得られるビーム数が少ないときには、複数回の走査で、走査毎に異なる方向のビーム方向を組合せてターゲットの探査を行うので、ターゲットの方向を精度よく求めることができる。
【0088】
また本発明によれば、複数回の走査を組合せてターゲットの位置を算出する際に、ターゲットの移動に伴う相対速度差からドップラシフト周波数を算出して、算出結果に応じて認識のために組合せる反射信号を変化させるので、複数回の走査から得られるターゲットまでの距離や相対速度も精度よく算出することができる。
【0089】
また本発明によれば、複数回の走査で、ターゲットからの反射信号として組合せることができない探査結果は、ガードレールなどである可能性が高く、ターゲットからの反射信号として扱わないので、処理の負担を軽減することができる。
【0090】
また本発明によれば、ペアリング処理が可能でない探査結果は、ドップラシフト周波数の算出で反射信号を変化させるので、ガードレールなどの位置を精度よく求めることができる。
【0091】
また本発明によれば、自車速分のドップラシフト分を減算して算出した結果を不要反射物についてのデータと認識して、不要反射物が集まる位置を求め、その位置を路肩と判断するので、路肩やさらに外方の物体についての警報や制動の制御を避け、無用な減速などを行わせないようにすることができる。
【図面の簡単な説明】
【図1】本発明の実施の各形態で用いる車載レーダ装置21の概略的な電気的構成を示すブロック図である。
【図2】本発明の実施の第1形態としての目標認識回路30の動作手順を示すフローチャートである。
【図3】本発明の実施の第2形態として、複数のスキャンでターゲットの方向を検出する考え方を示す図である。
【図4】複数回のスキャンで得られるデータを利用する際に、ターゲットの相対的な移動量を考慮する考え方を示す図である。
【図5】 本発明の参考形態として、高相対速度で近付くターゲットに対して、距離および相対速度を推定する手順を示すフローチャートである。
【図6】高相対速度で近付くターゲットに対して、周波数下降区間を用いて距離と相対速度とを推測する理由を示すグラフである。
【図7】 本発明の他の参考形態として、反射信号の受信レベルにマルチパスの影響による変動が生じるか否かによって、踏み越え可能か否かを判断する考え方を示す図である。
【図8】ターゲットの高さの違いに応じてマルチパスの影響の違いが生じる状態を示すグラフである。
【図9】 本発明のさらに他の参考形態として、静止物ターゲットを踏み越えことができるか否かを、遠距離側から接近する際に、複数の区間で判定する手順を示すフローチャートである。
【図10】 本発明のさらに他の参考形態として、静止物ターゲットを踏み越えることができるか否かを、接近する際の反射信号レベルの落ち込みによって判断することができる原理を示す図である。
【図11】踏み越えることができる静止物ターゲットに近付く際の距離と反射信号レベルとの関係を示すグラフである。
【図12】図10に示す考え方を用いて、静止物ターゲットが踏み越え可能であるか否かを判断する他の考え方の手順を示すフローチャートである。
【図13】 本発明のさらに他の参考形態として、静止物ターゲットが踏み越え可能であるか否かを遠距離での反射信号レベルに対する接近時のレベルの落ち込み量から判定する他の考え方を示すグラフである。
【図14】 本発明のさらに他の参考形態として、静止物ターゲットが、看板など、車両が走行する位置よりも高い位置にあると判断する考え方を示す図である。
【図15】図14に示すような高い位置の静止対象物に対する反射信号レベルの距離による変化を示すグラフである。
【図16】従来からの車載レーダ装置の概略的な電気的構成を示すブロック図である。
【図17】FM−CW方式のレーダ装置の動作原理を示すグラフである。
【符号の説明】
21 車載レーダ装置
22 ターゲット
23 アンテナ
23a ビーム方向
24 走査機構
25 送信回路
26 受信回路
29 目標検出回路
30 目標認識回路
31 メモリ
32 車両
33,43 路面
34 警報装置
35 クルーズコントロール装置
36 方向検出装置
40 探査信号
41 反射信号
44,45 物標
46 看板

Claims (6)

  1. 車両に搭載され、車両の周囲のターゲットを探査する車載レーダ装置において、
    所定のビーム方向で利得が高くなるように形成され、該ビーム方向に探査信号を送信し、探査信号に対するターゲットからの反射信号を受信するアンテナと、
    アンテナのビーム方向を水平面内で所定の範囲で変化させる走査を行う走査手段と、
    走査手段によって変化するアンテナのビーム方向を検出する方向検出手段と、
    走査手段によって、アンテナのビーム方向を、該所定の範囲内で繰返して走査させ、繰返される走査間では、方向検出手段によって検出されるビーム方向が異なる角度となる複数の方向で、ターゲット探査を行うように制御する探査制御手段と、
    アンテナに受信されるターゲットからの反射信号およびアンテナから送信される探査信号に基づいて、ターゲットまでの距離を算出し、距離および方向検出手段によって検出されるアンテナのビーム方向に基づいて、ターゲットが静止物であるか否かを判断し、静止物であればある一定の距離までは距離が近付くほどパワーが大きくなる点に基づき踏み越え可能か否かを判断してターゲットの認識を行うターゲット認識手段とを含むことを特徴とする車載レーダ装置。
  2. 前記ターゲット認識手段は、前記走査毎の複数のビーム方向に対する探査結果に基づいてターゲットの認識を行い、反射信号が受信されるビーム方向の数が予め定める基準値よりも小さいとき、予め定める複数の走査によって得られる探査結果の組合せに基づいてターゲットの認識を行うことを特徴とする請求項1記載の車載レーダ装置。
  3. 前記ターゲット認識手段は、前記複数の走査によって得られる探査結果に対して、ターゲットの移動に伴う相対速度差からドップラシフト周波数を算出し、ターゲット認識のために組合せる反射信号を算出結果に応じて変化させることを特徴とする請求項2記載の車載レーダ装置。
  4. 前記ターゲット認識手段は、前記探査結果のうち、前記算出結果に応じての組合せの対象から外れる周波数の反射信号を、不要反射物からの反射信号として認識し、ターゲットからの反射信号として扱わないことを特徴とする請求項3記載の車載レーダ装置。
  5. 前記ターゲットの探査は、FM−CW方式で行われ、
    前記ターゲット認識手段は、前記探査結果のうち、ペアリング処理を行い、ペアリング処理が可能でないときに、前記ドップラシフト周波数の算出でターゲット認識のために組合せる反射信号を変化させることを特徴とする請求項3記載の車載レーダ装置。
  6. 前記ターゲット認識手段は、前記不要反射物からの反射信号と認識すると、距離と方向とから不要反射物が集まる位置を求め、その位置を路肩と判断することを特徴とする請求項4記載の車載レーダ装置。
JP33305899A 1999-11-24 1999-11-24 車載レーダ装置 Expired - Fee Related JP3750102B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP33305899A JP3750102B2 (ja) 1999-11-24 1999-11-24 車載レーダ装置
US09/717,153 US6429804B1 (en) 1999-11-24 2000-11-22 Motor-vehicle-mounted radar apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33305899A JP3750102B2 (ja) 1999-11-24 1999-11-24 車載レーダ装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004038360A Division JP3761888B2 (ja) 2004-02-16 2004-02-16 車載レーダ装置

Publications (2)

Publication Number Publication Date
JP2001153946A JP2001153946A (ja) 2001-06-08
JP3750102B2 true JP3750102B2 (ja) 2006-03-01

Family

ID=18261807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33305899A Expired - Fee Related JP3750102B2 (ja) 1999-11-24 1999-11-24 車載レーダ装置

Country Status (2)

Country Link
US (1) US6429804B1 (ja)
JP (1) JP3750102B2 (ja)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10039943A1 (de) * 2000-08-16 2002-02-28 Adc Automotive Dist Control Verfahren zum Betreiben eines Radarsystems
JP2002236170A (ja) * 2001-02-06 2002-08-23 Fujitsu Ten Ltd Fm−cwレーダ処理装置
JP3772969B2 (ja) * 2001-10-16 2006-05-10 オムロン株式会社 車載用レーダ装置
JP4156307B2 (ja) * 2002-09-09 2008-09-24 株式会社デンソー レーダ装置、プログラム
DE10249866B4 (de) * 2002-10-25 2012-02-16 Continental Automotive Gmbh Vorrichtung zur Positionsbestimmung wenigstens einer zweiten Sende- und Empfangseinrichtung bezüglich einer ersten Sende- und Empfangseinrichtung in einem GHz-Bereich arbeitenden passiven Zugangskontrollsystem
JP3994941B2 (ja) * 2003-07-22 2007-10-24 オムロン株式会社 車両用レーダ装置
JP2005145301A (ja) * 2003-11-17 2005-06-09 Denso Corp 車両の運転支援装置
DE102004036580A1 (de) * 2004-07-28 2006-03-16 Robert Bosch Gmbh Verfahren und Vorrichtung zur Objektdetektion bei einem Fahrzeug
US20100238066A1 (en) * 2005-12-30 2010-09-23 Valeo Raytheon Systems, Inc. Method and system for generating a target alert
JP5003674B2 (ja) 2006-03-27 2012-08-15 株式会社村田製作所 レーダ装置および移動体
US7647049B2 (en) * 2006-07-12 2010-01-12 Telefonaktiebolaget L M Ericsson (Publ) Detection of high velocity movement in a telecommunication system
US7623061B2 (en) * 2006-11-15 2009-11-24 Autoliv Asp Method and apparatus for discriminating with respect to low elevation target objects
JP5065723B2 (ja) * 2007-03-23 2012-11-07 Udトラックス株式会社 レーダシステム
JP2008249405A (ja) * 2007-03-29 2008-10-16 Mitsubishi Motors Corp 物体識別方法及び物体識別装置
US7592945B2 (en) * 2007-06-27 2009-09-22 Gm Global Technology Operations, Inc. Method of estimating target elevation utilizing radar data fusion
JP2009031053A (ja) * 2007-07-25 2009-02-12 Fujitsu Ten Ltd 前方障害物検出装置
US7920262B2 (en) * 2008-09-17 2011-04-05 The United States Of America As Represented By The Secretary Of The Army Systems for measuring backscattered light using rotating mirror
JP2010091317A (ja) * 2008-10-06 2010-04-22 Ud Trucks Corp レーダ装置
JP5570715B2 (ja) * 2008-10-10 2014-08-13 オムロンオートモーティブエレクトロニクス株式会社 物体検出装置
US7928901B2 (en) * 2008-10-16 2011-04-19 The United States Of America As Represented By The Secretary Of The Army Systems and methods for producing radar images
JP5251735B2 (ja) * 2008-11-28 2013-07-31 株式会社デンソーウェーブ レーザレーダ装置
WO2010067397A1 (ja) * 2008-12-09 2010-06-17 トヨタ自動車株式会社 物体検出装置および物体検出方法
JP4880712B2 (ja) * 2009-02-27 2012-02-22 株式会社日本自動車部品総合研究所 障害物検出装置
JP5050002B2 (ja) * 2009-06-09 2012-10-17 本田技研工業株式会社 車両用物体検知装置
JP5062456B2 (ja) * 2009-11-27 2012-10-31 トヨタ自動車株式会社 レーダー装置
JP5257341B2 (ja) * 2009-12-02 2013-08-07 株式会社デンソー 物体認識装置、プログラム
JP2011117896A (ja) * 2009-12-07 2011-06-16 Honda Elesys Co Ltd 電子走査型レーダ装置及びコンピュータプログラム
JP2011122876A (ja) * 2009-12-09 2011-06-23 Toyota Central R&D Labs Inc 障害物検出装置
DE112010005194T5 (de) * 2010-01-28 2012-10-31 Toyota Jidosha Kabushiki Kaisha Hinderniserfassungsvorrichtung
JP5637706B2 (ja) * 2010-03-15 2014-12-10 日本電産エレシス株式会社 レーダ装置及びコンピュータプログラム
JP5697904B2 (ja) * 2010-06-16 2015-04-08 株式会社豊田中央研究所 レーダ装置及び検知方法
JP5616693B2 (ja) 2010-06-16 2014-10-29 株式会社豊田中央研究所 車両用のレーダシステム及びターゲット高さ判定方法
JP5423891B2 (ja) * 2010-06-16 2014-02-19 トヨタ自動車株式会社 対象物識別装置、及びその方法
JP5611725B2 (ja) * 2010-08-27 2014-10-22 本田技研工業株式会社 物体検知装置
JP2013002927A (ja) * 2011-06-15 2013-01-07 Honda Elesys Co Ltd 障害物検知装置及びコンピュータプログラム
JP2013053946A (ja) * 2011-09-05 2013-03-21 Toyota Motor Corp レーダ装置
JP2013124986A (ja) * 2011-12-15 2013-06-24 Panasonic Corp 車両用障害物検出装置
JP2013124980A (ja) * 2011-12-15 2013-06-24 Panasonic Corp 車両用障害物検出装置
JP5852456B2 (ja) * 2012-01-30 2016-02-03 トヨタ自動車株式会社 周辺物体検知装置
JP5926069B2 (ja) * 2012-02-20 2016-05-25 トヨタ自動車株式会社 障害物判定装置
JP6009788B2 (ja) * 2012-03-21 2016-10-19 富士通テン株式会社 レーダ装置、および、信号処理方法
JP2013205225A (ja) * 2012-03-28 2013-10-07 Denso Corp 車載用レーダ装置
JP5853878B2 (ja) * 2012-06-21 2016-02-09 トヨタ自動車株式会社 上方構造物検出装置
KR101907173B1 (ko) * 2013-12-09 2018-10-11 주식회사 만도 차량용 레이더 시스템 및 그의 방위각 추출 방법
JP6412399B2 (ja) * 2014-10-22 2018-10-24 株式会社デンソー 物体検知装置
KR101649987B1 (ko) * 2015-04-13 2016-08-23 주식회사 만도 장착 각도 판별 장치 및 그 판별 방법
JP6701983B2 (ja) * 2016-06-02 2020-05-27 株式会社デンソー 物標検出装置
JP6381736B1 (ja) * 2017-05-24 2018-08-29 三菱電機株式会社 物体検知装置およびこれを用いた自動運転システム
JP2019168290A (ja) * 2018-03-22 2019-10-03 パナソニックIpマネジメント株式会社 レーダ装置、位置推定装置、及び、位置推定方法
EP3859388A4 (en) * 2018-09-27 2022-06-15 Kyocera Corporation ELECTRONIC DEVICE, ELECTRONIC DEVICE CONTROL METHOD AND ELECTRONIC DEVICE CONTROL PROGRAM
US10547941B1 (en) 2019-01-16 2020-01-28 Ford Global Technologies, Llc Vehicle acoustic transducer operation
CN112092016B (zh) * 2020-07-11 2024-06-07 广东翼景信息科技有限公司 一种智能变电站巡检机器人多源数据联合诊断方法
US11953590B1 (en) * 2022-08-31 2024-04-09 Zoox, Inc. Radar multipath detection based on changing virtual arrays

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6034707B2 (ja) 1976-03-16 1985-08-10 富士通テン株式会社 Fm−cwレ−ダ
JPS55111395A (en) 1979-02-20 1980-08-27 Mitsubishi Electric Corp Electric hoist
US4348675A (en) * 1979-05-23 1982-09-07 Honda Giken Kogyo Kabushiki Kaisha FM-CW Radar system for use in an automotive vehicle
JPH0731240B2 (ja) * 1989-12-06 1995-04-10 三菱電機株式会社 ビーム走査方法
US5268692A (en) * 1991-03-14 1993-12-07 Grosch Theodore O Safe stopping distance detector, antenna and method
JPH06289138A (ja) * 1993-04-05 1994-10-18 Michihiro Kannonji 障害物検出装置
JP3042278B2 (ja) * 1993-09-17 2000-05-15 三菱電機株式会社 距離測定装置
JPH07128435A (ja) * 1993-10-28 1995-05-19 Nec Corp 補間走査レーダー装置
JP3294922B2 (ja) 1993-10-28 2002-06-24 富士通株式会社 Fm−cwレーダ
JP3346867B2 (ja) * 1993-12-27 2002-11-18 富士通テン株式会社 静止物識別型移動体レーダー装置
JP3341186B2 (ja) * 1994-03-31 2002-11-05 オムロン株式会社 対象判別装置および方法,ならびに対象判別装置を搭載した車両
GB2291551B (en) * 1994-06-24 1998-03-18 Roscoe C Williams Limited Electronic viewing aid
JP3214250B2 (ja) 1994-09-13 2001-10-02 日産自動車株式会社 車両用レーダ装置
JP3524231B2 (ja) 1995-09-12 2004-05-10 富士通テン株式会社 Fm−cwレーダ装置及びfm−cwレーダ法における雑音成分判定方法
JP3565638B2 (ja) 1995-11-21 2004-09-15 富士通テン株式会社 Fm−cwレーダ故障検知装置
JPH09288178A (ja) * 1996-04-23 1997-11-04 Toyota Motor Corp 車載モノパルスレーダ装置
JP3307249B2 (ja) * 1996-12-11 2002-07-24 トヨタ自動車株式会社 車載レーダ装置
JPH10282220A (ja) 1997-04-10 1998-10-23 Mitsubishi Electric Corp 目標型式特定評価装置
JP3684776B2 (ja) * 1997-07-23 2005-08-17 株式会社デンソー 車両用障害物認識装置
JP3376864B2 (ja) 1997-07-23 2003-02-10 株式会社デンソー 車両用障害物認識装置
JP3398745B2 (ja) 1997-08-21 2003-04-21 三菱電機株式会社 車載用レーダ装置
JPH1172651A (ja) 1997-08-28 1999-03-16 Sumitomo Electric Ind Ltd 光コネクタフェルールの製造方法
JPH1184001A (ja) * 1997-09-08 1999-03-26 Honda Motor Co Ltd 車載レーダ装置及びこれを用いた車両の自動制御システム
DE19801617A1 (de) * 1998-01-17 1999-07-22 Daimler Chrysler Ag Radarsignal-Verarbeitungsverfahren
JP3942722B2 (ja) 1998-02-16 2007-07-11 本田技研工業株式会社 車載レーダ装置
US6317073B1 (en) * 1998-09-07 2001-11-13 Denso Corporation FM-CW radar system for measuring distance to and relative speed of a target
JP3411866B2 (ja) * 1999-10-25 2003-06-03 株式会社日立製作所 ミリ波レーダ装置
JP3427815B2 (ja) * 2000-03-30 2003-07-22 株式会社デンソー 先行車選択方法及び装置、記録媒体
JP2003532959A (ja) * 2000-05-08 2003-11-05 オートモーティブ・テクノロジーズ・インターナショナル,インク. 車両の死角識別及びモニタリング・システム

Also Published As

Publication number Publication date
US6429804B1 (en) 2002-08-06
JP2001153946A (ja) 2001-06-08

Similar Documents

Publication Publication Date Title
JP3750102B2 (ja) 車載レーダ装置
US9261589B2 (en) Signal processing device, radar device, vehicle control system, and signal processing method
JP3797277B2 (ja) レーダ
JP6077226B2 (ja) レーダ装置、および、信号処理方法
US6693583B2 (en) Object recognition apparatus and method thereof
JP3371854B2 (ja) 周囲状況検出装置及び記録媒体
JP6181924B2 (ja) レーダ装置、および、信号処理方法
JP3761888B2 (ja) 車載レーダ装置
JP4678945B2 (ja) スキャン式レーダの静止物検知方法
JP6092596B2 (ja) レーダ装置、および、信号処理方法
JP4093109B2 (ja) 車両用レーダ装置
JP3411866B2 (ja) ミリ波レーダ装置
JP3938686B2 (ja) レーダ装置、信号処理方法及びプログラム
WO2002075351A1 (fr) Détection d'objet stationnaire sur route au moyen d'un radar
JP4197033B2 (ja) レーダ
WO2011070426A2 (en) Obstacle detection device
US9383440B2 (en) Radar apparatus and signal processing method
US20150234041A1 (en) Radar apparatus
US9442183B2 (en) Radar apparatus and signal processing method
JP3102224B2 (ja) 車載レーダ装置
JP2014115137A (ja) レーダ装置、及び、信号処理方法
JP4079739B2 (ja) 車載用レーダ装置
JP6815840B2 (ja) レーダ装置および物標検知方法
JP2000147102A (ja) Fmcwレ―ダ装置及び記録媒体
JP3082535B2 (ja) 車載レーダ装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050915

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051122

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051125

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131216

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131216

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees