DE102004030664A1 - Benzol- und Toluolsulfonsäureester als Additive in Polycarbonat - Google Patents

Benzol- und Toluolsulfonsäureester als Additive in Polycarbonat Download PDF

Info

Publication number
DE102004030664A1
DE102004030664A1 DE200410030664 DE102004030664A DE102004030664A1 DE 102004030664 A1 DE102004030664 A1 DE 102004030664A1 DE 200410030664 DE200410030664 DE 200410030664 DE 102004030664 A DE102004030664 A DE 102004030664A DE 102004030664 A1 DE102004030664 A1 DE 102004030664A1
Authority
DE
Germany
Prior art keywords
hydroxyphenyl
polycarbonate
bis
carbonate
organic sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE200410030664
Other languages
English (en)
Inventor
Helmut-Werner Dr. Heuer
Melanie Dr. Möthrath
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covestro Deutschland AG
Original Assignee
Bayer MaterialScience AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer MaterialScience AG filed Critical Bayer MaterialScience AG
Priority to DE200410030664 priority Critical patent/DE102004030664A1/de
Priority to EP05012973A priority patent/EP1609818B1/de
Priority to AT05012973T priority patent/ATE460458T1/de
Priority to ES05012973T priority patent/ES2340500T3/es
Priority to DE502005009170T priority patent/DE502005009170D1/de
Priority to US11/157,092 priority patent/US20050288407A1/en
Priority to TW094120890A priority patent/TWI403555B/zh
Priority to KR1020050054391A priority patent/KR101260516B1/ko
Priority to CN 200510082375 priority patent/CN1712450B/zh
Priority to SG200904349-8A priority patent/SG153861A1/en
Priority to SG200504103A priority patent/SG118410A1/en
Priority to JP2005184734A priority patent/JP5242001B2/ja
Publication of DE102004030664A1 publication Critical patent/DE102004030664A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof

Abstract

Gegenstand dieser Erfindung sind Zusammensetzungen mit verbesserter Thermostabilität aus Polycarbonat und verbrückten Estern von organischen Schwefel-enthaltenden Säuren, wobei die Zusammensetzung weiterhin auch die Abbauprodukte der verbrückten Ester von organischen Schwefel-enthaltenden Säuren enthalten kann, sowie Formkörper und Extrudate aus diesen modifizierten Polycarbonat-Zusammensetzungen.

Description

  • Gegenstand dieser Erfindung sind Zusammensetzungen mit verbesserter Thermostabilität enthaltend Polycarbonat und verbrückte Ester von organischen Schwefel-enthaltenden Säuren sowie Formkörper und Extrudate aus diesen modifizierten Polycarbonat-Zusammensetzungen, wobei die Zusammensetzungen weiterhin auch Abbauprodukte der verbrückten Ester von organischen Schwefel-enthaltenen Säuren enthalten können.
  • Die Herstellverfahren für Polycarbonat sind literaturbekannt und in vielen Anmeldungen beschrieben:
    Zur Herstellung von Polycarbonaten nach dem Phasengrenzflächen- oder dem Schmelzeumesterungsverfahren sei beispielhaft auf „Schnell", Chemistry and Physics of Polycarbonates, Polymer Reviews, Vol. 9, Interscience Publishers, New York, London, Sydney 1964, S. 33 ff. und auf Polymer Reviews, Volume 10, „Condensation Polymers by Interfacial and Solution Methods", Paul W. Morgan, Interscience Publishers, New York 1965, Kap. VIII, S. 325 und EP-A 971790 verwiesen.
  • Polycarbonate benötigen unter dem Einfluss von hohen Temperaturen Stabilisatoren gegen Verfärbungen, chemische Reaktionen der Additive und Abbaureaktionen. Besonders Polycarbonattypen für optische Anwendungen können bei der weiteren Verarbeitung hohen Temperaturbelastungen ausgesetzt sein, die zu der unerwünschten Bildung von Monomeren durch Abbaureaktionen, dem Verlust an Molekulargewicht oder zu chemischen Reaktionen von Additiven, wie beispielsweise den Einbau in die Polymerkette sowie den Abbau der Additive, die die Wirksamkeit der Additive negativ beeinflussen, führen.
  • Bekannt ist die Stabilisierung gegen hohe Temperaturen mit Phosphor-organischen Verbindungen wie Phosphinen ( US 4 092 288 B ) oder Phosphiten ( JP 54036363 A ). Bekannt ist ebenfalls die Stabilisierung mit Oniumsalzen, wie Tetraalkyl-phosphonium- und -ammonium-Salzen, der Dodecylbenzolsulfonsäure und mit Säuren bzw. eines einfachen Säureesters einer Säure, die ein Schwefelatom enthält, wie n-Butyltosylat (JP 08-059975 A).
  • Phosphor-organische Thermostabilisatoren werden üblicherweise in Größenordnungen von mehreren 100 ppm dem Polycarbonat zugesetzt. Speziell bei Polycarbonattypen für optische Anwendungen wird aber angestrebt, nur minimalste Mengen an Additiven zu verwenden. So sollen unerwünschte Effekte der Partikelbildung oder Abformungsprobleme im Spritzguss unterdrückt und eine positive Gesamtperformance des Materials gewährleistet werden.
  • Aus Gründen der Wirtschaftlichkeit sind ebenfalls nur äußerst geringe Mengen an Additiven wünschenswert.
  • Als nachteilig erweisen sich bei den beschriebenen freien Säuren und leicht spaltbaren Estern deren korrosiven Eigenschaften bei hohen Temperaturen und Konzentration, wie sie beispielsweise bei einer technischen Dosierung der Stabilisatoren auftreten können. Es ist von großem Vorteil, Stabilisatoren einzusetzen, die die Werkstoffe der Apparate nicht in Mitleidenschaft ziehen, um Partikeln, metallischen Kationen und Sicherheitsmängeln vorzubeugen. Weiterhin sind ein Großteil der beschriebenen freien Säuren und leicht spaltbaren Estern leicht flüchtig. Das erschwert eine unabdingbare konstante und saubere Dosierung der Quencher bei einer kontinuierlichen Einmischung in den Schmelzestrom.
  • Ein weiterer Nachteil vieler Säureesterstabilisatoren ist, dass sie zu schnell große Mengen an freien Säuren generieren. Ein Überschuss an freier Säure katalysiert beispielsweise Reaktionen der Polycarbonate mit anderen Additiven wie Entformungsmitteln oder fördert sogar Rückreaktionen in Falle des Schmelzepolycarbonats mit Phenol unter Freisetzung von Diphenylcarbonat. Kleine Mengen an überschüssiger ester-gebundener Säure, die die freie Säure sehr langsam unter thermischer Belastung bei einer Weiterverarbeitung des stabilisierten Polycarbonats freisetzen, sind dagegen durchaus gewünscht. Sie erhöhen die thermische Belastbarkeit des Polycarbonats.
  • Es stellte sich daher die Aufgabe, Thermostabilisatoren für Polycarbonat zu finden, welche nur in geringen Mengen eingesetzt werden müssen, nicht korrosiv und schwer flüchtig sowie gleichzeitig leicht löslich und dosierbar in inerten Lösungsmitteln oder prozesseigenen Komponenten sind. Ebenfalls sollten die Stabilisatoren nie größere Überschüsse an freier Säure im Polycarbonat generieren, um Abbaureaktionen von Polycarbonat unter Bildung von Carbonaten zu vermeiden oder auch Reaktionen mit den Additiven zu unterbinden. Statt dessen ist eine langsame Generierung der freien Säuren gewünscht. Dabei ist besonders wünschenswert, wenn der Stabilisator während der Einarbeitung in das Polycarbonat und eventuellen Folgeschritten nicht komplett alle mögliche freie Säure bildet. So kann er bei einer Weiterverarbeitung nach Granulierung des Polycarbonats, wie zum Beispiel Spritzgießen, erneut Wirkung zeigen (Langzeitwirkung durch sukzessives Freisetzen der freien Säure bei sämtlichen thermischen Belastungsschritten).
  • Überraschend wurde nun gefunden, dass verbrückte Ester von organischen Schwefel-enthaltenden Säuren die gewünschten Eigenschaften ausgewogen vereinigen und hervorragend zur Thermostabilisierung von Polycarbonaten geeignet sind. So setzen diese Stabilisatoren überraschenderweise nur langsam und in Stufen die korrespondieren freien Säuren frei. Außerdem sind sie an sich so wenig flüchtig, dass sie auch bei längeren Verweilzeiten kaum aus der Polycarbonatschmelze ausdampfen. Überraschenderweise zeigen die Stabilisatoren auch bei hohen Tempera turen und Konzentrationen kein korrosives Verhalten gegenüber den üblicherweise verwendeten metallischen Werkstoffen wie beispielsweise 1.4571 oder 1. 4541 (Stahlschlüssel 2001, Verlag: Stahlschlüssel Wegst GmbH, Th-Heuss-Straße 36, D-71672 Marbach) und Ni-Basislegierungen vom Typ C, wie z. B. 2.4605 oder 2.4610 (Stahlschlüssel 2001, Verlag: Stahlschlüssel Wegst GmbH, Th-Heuss-Straße 36, D-71672 Marbach).
  • Dies ist insbesondere erstaunlich, als man bei der Stabilisierung von Polycarbonat im allgemeinen keine Voraussagen treffen kann, ob die Stabilisatoren die gewünschten Eigenschaften wie schwache Flüchtigkeit, Löslichkeit in prozessinhärenten Lösungsmitteln, Korrosionsfreiheit und langsame Säurefreisetzung im richtigen Maß vereinigen.
  • Gegenstand dieser Erfindung sind daher Zusammensetzungen mit verbesserter Thermostabilität enthaltend Polycarbonat und verbrückte Ester von organischen Schwefel-enthaltenden Säuren, sowie Formkörper und Extrudate aus diesen modifizierten Polycarbonat-Zusammensetzungen, wobei die Zusammensetzungen weiterhin auch Abbauprodukte dieser verbrückten Ester enthalten können.
  • Bevorzugte erfindungsgemäß geeignete Thermostabilisatoren sind verbrückte Ester von organischen Schwefel-enthaltenden Säuren, ausgewählt aus mindestens einer Verbindung
    • a) der Formel (I)
      Figure 00030001
      in welcher R1 unabhängig für Wasserstoff oder für C1-C20-Alkyl, vorzugsweise für C1-C8-Alkyl, besonders bevorzugt für unsubstituiertes C1-C6-Alkyl, ganz besonders bevorzugt für C1-C4-Alkyl, wobei Alkyl durch Halogen substituiert sein kann, insbesondere für Wasserstoff oder Methyl steht, R2 und R3 unabhängig voneinander für Wasserstoff, oder für C1-C6-Alkyl, C4-C30-Alkylcarboxyl, vorzugsweise C1-C4-Alkyl, C6-C25-Alkylcarboxyl, besonders bevorzugt für C8-C20-Alkylcarboxyl, insbesondere für Wasserstoff, C17-Alkylcarboxyl oder C15-Alkylcarboxyl oder für den Rest
      Figure 00040001
      stehen, worin R1 die oben genannte Bedeutung hat, n für eine ganze Zahl von 0 bis 8, vorzugsweise 0 bis 6, insbesondere 0, 1 oder 2 steht,
    • b) der Formel (II)
      Figure 00040002
      in welcher R1 die oben genannte Bedeutung hat,
    • c) der Formel
      Figure 00040003
      in welcher R1 die oben genannte Bedeutung hat und
    • d) der Formel (IV)
      Figure 00050001
      in welcher R1 und n die oben genannte Bedeutung haben, und R4 für C4-C30-Alkylcarboxyl, vorzugsweise C6-C25-Alkylcarboxyl, besonders bevorzugt für C8-C20-Alkylcarboxyl, insbesondere für, C17Alkylcarboxyl oder C1 5-Alkylcarboxyl oder für folgenden Rest
      Figure 00050002
      wobei R1 die oben genannte Bedeutung hat, steht und
    • e) der Formel (V), (VI), (VII), (Ib), (IVb)
      Figure 00050003
      Figure 00060001
      Figure 00070001
      in welcher R1 und n die oben genannte Bedeutung haben, und R5 und R6 unabhängig für Wasserstoff oder für C1-C20-Alkyl, vorzugsweise für C1-C8-Alkyl, besonders bevorzugt für C1-C6-Alkyl, ganz besonders bevorzugt für C1-C4-Alkyl, wobei Alkyl durch Halogen substituiert sein kann, insbesondere für Wasserstoff oder Methyl steht, und R11 unabhängig für Wasserstoff oder Di-(C1-C4)-Alkylamino, vorzugsweise für Wasserstoff oder Dimethylamino steht.
  • Ganz besonders bevorzugt sind folgende Themostabilisatoren der Formeln (Ia) bis (Ik):
    Figure 00070002
    Figure 00080001
    Figure 00090001
    Figure 00100001
  • Die erfindungsgemäßen Thermostabilisatoren können einzeln oder in beliebigen Mischungen oder mehreren verschiedenen Mischungen der Polymerschmelze zugesetzt werden. Die erfindungsgemäßen Thermostabilisatoren können auch in Mischungen mit freien Säuren, wie beispielsweise ortho-Phosphorsäure, zugesetzt werden.
  • Die Herstellung der erfindungsgemäßen verbrückten Ester von organischen Schwefel-enthaltenden Säuren erfolgt nach üblichen Methoden beispielsweise durch Alkoholyse aus dem Benzolsulfonsäurechlorid bzw. Toluolsulfonsäurechlorid mit den entsprechenden mehrfunktionellen Alkoholen (vgl. Organikum, Wiley-VCH Verlag, 20. Auflage, Weinheim, S. 606/1999).
  • Das Polycarbonat kann beispielsweise nach dem Schmelzeumesterungsverfahren hergestellt werden. Die Herstellung von aromatischen Oligo- bzw. Polycarbonaten nach dem Schmelzumesterungsverfahren ist literaturbekannt und beispielsweise in der Encyclopedia of Polymer Science, Vol. 10 (1969), Chemistry and Physics of Polycarbonates, Polymer Reviews, H. Schnell, Vol. 9, John Wiley and Sons, Inc. (1964) sowie in der DE-C 10 31 512, US-A 3,022,272, US-A 5,340,905 und US-A 5,399,659 vorbeschrieben.
  • Gemäß diesem Verfahren werden aromatische Dihydroxyverbindungen, mit Kohlensäurediestern unter Zuhilfenahme von geeigneten Katalysatoren und gegebenenfalls weiteren Zusatzstoffen in der Schmelze umgeestert.
  • Zur Durchführung des Verfahrens kann beispielsweise eine Anlagenkonzeption, wie sie in WO 02/077 067 dargestellt ist, benutzt werden.
  • Für die Herstellung von Polycarbonaten sind geeignete Dihydroxyarylverbindungen solche der Formel (VIII) HO-Z-OH (VIII)in welcher Z ein aromatischer Rest mit 6 bis 30 C-Atomen ist, der einen oder mehrere aromatische Kerne enthalten kann, substituiert sein kann und aliphatische oder cycloaliphatische Reste bzw. Alkylaryle oder Heteroatome als Brückenglieder enthalten kann.
  • Beispiele für Dihydroxyarylverbindungen sind: Dihydroxybenzole, Dihydroxydiphenyle, Bis-(hydroxyphenyl)-alkane, Bis-(hydroxyphenyl)-cycloalkane, Bis-(hydroxyphenyl)-aryle, Bis- (hydroxyphenyl)-ether, Bis-(hydroxyphenyl)-ketone, Bis-(hydroxyphenyl)-sulfide, Bis-(hydroxyphenyl)-sulfone, Bis-(hydroxyphenyl)-sulfoxide, 1,1'-Bis-(hydroxyphenyl)-diisopropylbenzole, sowie deren kernalkylierte und kernhalogenierte Verbindungen.
  • Diese und weitere geeignete andere Dihydroxyarylverbindungen sind z.B. in den US-Patentschriften 2 970 131, 2 991 273, 2 999 835, 2 999 846, 3 028 365, 3 062 781, 3 148 172, 3 271 367, 3 275 601, 4 982 014, in den deutschen Patentschriften 1 570 703, 2 063 050, 2 036 052, 2 211 956, 3 832 396, der französischen Patentschrift 1 561 518, und in der Monographie "H. Schnell, Chemistry and Physics of Polycarbonates, Interscience Publishers, New York 1964", S. 28ff S.102ff", und in "D.G. Legrand, J.T. Bendler, Handbook of Polycarbonate Science and Technology, Marcel Dekker New York 2000, S. 72ff." beschrieben.
  • Bevorzugte Dihydroxyarylverbindungen sind beispielsweise: Resorcin, 4,4'-Dihydroxydiphenyl, Bis-(4-hydroxyphenyl)-methan, Bis-(3,5-dimethyl-4-hydroxyphenyl)-methan, Bis-(4-hydroxyphenyl)-diphenyl-methan, 1,1-Bis-(4-hydroxyphenyl)-1-phenyl-ethan, 1,1-Bis-(4-hydroxyphenyl)-1-(1-naphthyl)-ethan, 1,1-Bis-(4-hydroxyphenyl)-1-(2-naphthyl)-ethan, 2,2-Bis-(4-hydroxyphenyl)-propan, 2,2-Bis-(3-methyl-4-hydroxyphenyl)-propan, 2,2-Bis-(3,5-dimethyl-4-hydroxyphenyl)-propan, 2,2-Bis-(4-hydroxyphenyl)-1-phenyl-propan, 2,2-Bis-(4-hydroxyphenyl)-hexafluor-propan, 2,4-Bis-(4-hydroxyphenyl)-2-methyl-butan, 2,4-Bis-(3,5-dimethyl-4-hydroxyphenyl)-2-methylbutan, 1,1-Bis-(4-hydroxyphenyl)-cyclohexan, 1,1-Bis-(3,5-dimethyl-4-hydroxyphenyl)-cyclohexan, 1,1-Bis-(4-hydroxyphenyl)-4-methyl-cyclohexan, 1,1-Bis-(4-hydroxyphenyl)-3,3,5-trimethyl-cyclohexan, 1,3-Bis-[2-(4-hydroxyphenyl)-2-propyl]-benzol, 1,1'-Bis-(4-hydroxyphenyl)-3-diisopropyl-benzol, 1,1'-Bis-(4-hydroxyphenyl)-4-diisopropyl-benzol, 1,3-Bis-[2-(3,5-dimethyl-4-hydroxyphenyl)-2-propyl]-benzol, Bis-(4-hydroxyphenyl)-ether, Bis-(4-hydroxyphenyl)-sulfid, Bis-(4-hydroxyphenyl)-sulfon, Bis-(3,5-dimethyl-4-hydroxyphenyl)-sulfon und 2,2',3,3'-Tetrahydro-3,3,3',3'-tetramethyl-1,1'-spirobi-[1H-inden]-5,5'-diol.
  • Besonders bevorzugte Dihydroxyarylverbindungen sind: Resorcin, 4,4'-Dihydroxydiphenyl, Bis-(4-hydroxyphenyl)-diphenyl-methan, 1,1-Bis-(4-hydroxyphenyl)-1-phenyl-ethan, Bis-(4-hydroxyphenyl)-1-(1-naphthyl)-ethan, Bis-(4-hydroxyphenyl)-1-(2-naphthyl)-ethan, 2,2-Bis-(4-hydroxyphenyl)-propan, 2,2-Bis(3,5-dimethyl-4-hydroxyphenyl)-propan, 1,1-Bis-(4-hydroxyphenyl)-cyclohexan, 1,1-Bis-(3,5-dimethyl-4-hydroxyphenyl)-cyclohexan, 1,1-Bis-(4-hydroxyphenyl)-3,3,5-trimethyl-cyclohexan, 1,1'-Bis-(4-hydroxyphenyl)-3-diisopropyl-benzol und 1,1'-Bis-(4-hydroxyphenyl)-4-diisopropyl-benzol.
  • Ganz besonders bevorzugt sind: 4,4'-Dihydroxydiphenyl, 2,2-Bis-(4-hydroxyphenyl)-propan und Bis-(4-hydroxyphenyl)-3,3,5-trimethyl-cyclohexan.
  • Es können sowohl eine Dihydroxyarylverbindung unter Bildung von Homopolycarbonaten als auch verschiedene Dihydroxyarylverbindungen unter Bildung von Copolycarbonaten verwendet werden.
  • Anstelle der monomeren Dihydroxyarylverbindungen können auch niedermolekulare, überwiegend OH-endgruppengestoppte Oligocarbonate als Ausgangsverbindung eingesetzt werden.
  • Die Dihydroxyarylverbindungen können auch mit Restgehalten der Monohydroxyarylverbindungen, aus denen sie hergestellt wurden bzw. die niedermolekularen Oligocarbonate mit Restgehalten der Monohydroxyarylverbindungen, die bei der Herstellung der Oligomeren abgespalten wurden, eingesetzt werden. Die Restgehalte der Monomerhydroxyarylverbindungen können bis zu 20 %, vorzugsweise 10 %, besonders bevorzugt bis 5 % und ganz besonders bevorzugt bis zu 2 % betragen (s. z.B. EP-A 1 240 232).
  • Die verwendeten Dihydroxyarylverbindungen, wie auch alle anderen der Synthese zugesetzten Rohstoffe, Chemikalien und Hilfsstoffe können mit den aus ihrer eigenen Synthese, Handhabung und Lagerung stammenden Verunreinigungen kontaminiert sein, obwohl es wünschenswert und Ziel ist, mit möglichst sauberen Rohstoffen, Chemikalien und Hilfsstoffen zu arbeiten.
  • Die für die Umsetzung mit den Dihydroxyarylverbindungen geeigneten Diarylcarbonate sind solche der Formel (IX)
    Figure 00120001
    wobei R, R' und R'' unabhängig voneinander gleich oder verschieden für Wasserstoff, gegebenenfalls verzweigtes C1-C34 Alkyl, C7-C34-Alkylaryl oder C6-C34-Aryl stehen, R weiterhin auch -COO-R''' bedeuten kann, wobei R''' für Wasserstoff, gegebenenfalls verzweigtes C1-C34 Alkyl, C7-C34-Alkylaryl oder C6-C34-Aryl steht.
  • Solche Diarylcarbonate sind beispielsweise: Diphenylcarbonat, Methylphenyl-phenyl-carbonate und Di-(methylphenyl)-carbonate, 4-Ethylphenyl-phenyl-carbonat, Di-(4-ethylphenyl)-carbonat, 4-n-Propylphenyl-phenyl-carbonat, Di-(4-n-propylphenyl)-carbonat, 4-iso-Propylphenyl-phenyl-carbonat, Di-(4-iso-propylphenyl)-carbonat, 4-n-Butylphenyl-phenyl-carbonat, Di-(4-n-butyl phenyl)-carbonat, 4-iso-Butylphenyl-phenyl-carbonat, Di-(4-iso-butylphenyl)-carbonat, 4-tert-Butylphenyl-phenyl-carbonat, Di-(4-tert-butylphenyl)-carbonat, 4-n-Pentylphenyl-phenyl-carbonat, Di-(4-n-pentylphenyl)-carbonat, 4-n-Hexylphenyl-phenyl-carbonat, Di-(4-n-hexylphenyl)-carbonat, 4-iso-Octylphenyl-phenyl-carbonat, Di-(4-iso-octylphenyl)-carbonat,4-n-Nonylphenyl-phenyl-carbonat, Di-(4-n-nonylphenyl)-carbonat, 4-Cyclohexylphenyl-phenyl-carbonat, Di-(4-cyclohexylphenyl)-carbonat, 4-(1-Methyl-1-phenylethyl)-phenyl-phenyl-carbonat, Di-[4-(1-methyl-1-phenylethyl)-phenyl]-carbonat, Biphenyl-4-yl-phenyl-carbonat, Di-(biphenyl-4-yl)-carbonat, 4-(1-Naphthyl)-phenyl-phenyl-carbonat, 4-(2-Naphthyl)-phenyl-phenyl-carbonat, Di-[4-(1-naphthyl)-phenyl]-carbonat, Di-[4-(2-naphthyl)phenyl]-carbonat, 4-Phenoxyphenyl-phenyl-carbonat, Di-(4-phenoxyphenyl)-carbonat, 3-Pentadecylphenyl-phenyl-carbonat, Di-(3-pentadecylphenyl)-carbonat, 4-Tritylphenyl-phenyl-carbonat, Di-(4-tritylphenyl)-carbonat, Methylsalicylat-phenyl-carbonat, Di-(methylsalicylat)-carbonat, Ethylsalicylat-phenyl-carbonat, Di-(ethylsalicylat)-carbonat, n-Propylsalicylat-phenyl-carbonat, Di-(n-propylsalicylat)-carbonat, iso-Propylsalicylat-phenyl-carbonat, Di-(iso-propylsalicylat)-carbonat, n-Butylsalicylat-phenyl-carbonat, Di-(n-butylsalicylat)-carbonat, iso-Butylsalicylat-phenyl-carbonat, Di-(iso-butylsalicylat)-carbonat, tert-Butylsalicylat-phenyl-carbonat, Di-(tert-butylsalicylat)-carbonat, Di-(phenylsalicylat)-carbonat und Di-(benzylsalicylat)-carbonat.
  • Bevorzugte Diarylverbindungen sind: Diphenylcarbonat, 4-tert-Butylphenyl-phenyl-carbonat, Di(4-tert-butylphenyl)-carbonat, Biphenyl-4-yl-phenyl-carbonat, Di-(biphenyl-4-yl)-carbonat, 4-(1-Methyl-1-phenylethyl)-phenyl-phenyl-carbonat und Di-[4-(1-methyl-1-phenylethyl)-phenyl]-carbonat.
  • Besonders bevorzugt ist: Diphenylcarbonat.
  • Die Diarylcarbonate können auch mit Restgehalten der Monohydroxyarylverbindungen, aus denen sie hergestellt wurden, eingesetzt werden. Die Restgehalte der Monohydroxyarylverbindungen können bis zu 20 %, vorzugsweise 10 %, besonders bevorzugt bis 5 % und ganz besonders bevorzugt bis zu 2 % betragen.
  • Bezogen auf die Dihydroxyarylverbindung werden die Diarylcarbonate im Allgemeinen mit 1,02 bis 1,30 Mol, bevorzugt mit 1,04 bis 1,25 Mol, besonders bevorzugt mit 1,06 bis 1,22 Mol, ganz besonders bevorzugt mit 1,06 bis 1,20 Mol pro Mol Dihydroxyarylverbindung eingesetzt. Es können auch Mischungen der oben genannten Diarylcarbonate eingesetzt werden.
  • Zur Steuerung bzw. Veränderung der Endgruppen kann zusätzlich eine Monohydroxyarylverbindung eingesetzt werden, die nicht zur Herstellung des verwendeten Diarylcarbonats benutzt wurde. Sie wird durch folgende allgemeine Formel (X) dargestellt:
    Figure 00140001
    wobei R, R' und R'' die bei Formel (IX) genannte Bedeutung haben mit der Maßgabe, dass in diesem Fall R nicht H sein kann, wohl aber R' und R'' H sein können.
  • Solche Monohydroxyarylverbindungen sind beispielsweise: 1-, 2- oder 3-Methylphenol, 2,4-Dimethylphenol 4-Etylphenol, 4-n-Propylphenol, 4-iso-Propylphenol, 4-n-Butylphenol, 4-iso-Butylphenol, 4-tert-Butylphenol, 4-n-Pentylphenol, 4-n-Hexylphenol, 4-iso-Octylphenol, 4-n-Nonylphenol, 3-Pentadecylphenol, 4-Cyclohexylphenol, 4-(1-Methyl-1-phenylethyl)-phenol, 4-Phenylphenol, 4-Phenoxyphenol, 4-(1-Naphthyl)-phenol, 4-(2-Naphthyl)-phenol, 4-Tritylphenol, Methylsalicylat, Etylsalicylat, n-Propylsalicylat, iso-Propylsalicylat, n-Butylsalicylat, iso-Butylsalicylat, tert-Butylsalicylat, Phenylsalicylat und Benzylsalicylat.
  • Bevorzugt sind: 4-tert-Butylphenol, 4-iso-Octylphenol und 3-Pentadecylphenol.
  • Dabei ist eine Monohydroxyarylverbindung zu wählen, deren Siedepunkt über dem der Monohydroxyarylverbindung liegt, die zur Herstellung des verwendeten Diarylcarbonates eingesetzt wurde. Die Monohydroxyarylverbindung kann zu jedem Zeitpunkt im Reaktionsverlauf zugegeben werden. Sie wird bevorzugt zu Beginn der Reaktion zugegeben oder aber auch an beliebiger Stelle im Verfahrensverlauf. Der Anteil an freier Monohydroxyarylverbindung kann 0,2 – 20 Mol %, bevorzugt 0,4 – 10 Mol %, bezogen auf die Dihydroxyarylverbindung, betragen.
  • Die Endgruppen können auch durch Mitverwendung eines Diarylcarbonates, dessen Basis-Monohydroxyarylverbindung einen höheren Siedepunkt hat als die Basis- Monohydroxyarylverbindung des hauptsächlich eingesetzten Diarylcarbonates, verändert werden. Auch hier kann das Diarylcarbonat zu jedem Zeitpunkt im Reaktionsverlauf zugegeben werden. Es wird bevorzugt zu Beginn der Reaktion zugegeben oder aber auch an beliebiger Stelle im Verfahrensverlauf. Der Anteil des Diarylcarbonates mit der höher siedenden Basis-Monohydroxyarylverbindung an der gesamt eingesetzten Diarylcarbonatmenge kann 1 – 40 Mol %, bevorzugt 1 – 20 Mol % und besonders bevorzugt 1 – 10 Mol % betragen.
  • Als Katalysatoren werden im Schmelzumesterungsverfahren zur Herstellung von Polycarbonaten die in der Literatur bekannten basischen Katalysatoren wie beispielsweise Alkali- und Erdalkalihydroxyde und -oxyde, aber auch Ammonium- oder Phosphoniumsalze, im folgenden als Oniumsalze bezeichnet, eingesetzt: Bevorzugt werden bei der Synthese Oniumsalze, besonders bevorzugt Phosphoniumsalze eingesetzt. Phosphoniumsalze im Sinne der Erfindung sind solche der allgemeinen Formel (XI)
    Figure 00150001
    wobei R7-10 dieselben oder verschiedene C1-C10-Alkyle, C6-C14-Aryle, C7-C15-Arylalkyle oder C5-C6-Cycloalkyle, bevorzugt Methyl oder C6-C14-Aryle, besonders bevorzugt Methyl oder Phenyl sein können, und X ein Anion wie Hydroxyd, Sulfat, Hydrogensulfat, Hydrogencarbonat, Carbonat oder ein Halogenid, bevorzugt Chlorid oder ein Alkylat bzw. Arylat der Formel -OR sein kann, wobei R ein C6-C14-Aryl, C7-C1 5-Arylalkyl oder C5-C6-Cycloalkyl, bevorzugt Phenyl sein kann.
  • Bevorzugte Katalysatoren sind Tetraphenylphosphoniumchlorid, Tetraphenylphosphoniumhydroxid und Tetraphenylphosphoniumphenolat, besonders bevorzugt ist Tetraphenylphosphoniumphenolat.
  • Sie werden bevorzugt in Mengen von 10–8 bis 10–3 mol, bezogen auf ein mol Dihydroxyarylverbindung, besonders bevorzugt in Mengen von 10–7 bis 10–4 mol, eingesetzt.
  • Weitere Katalysatoren können allein oder zusätzlich zu dem Oniumsalz als Cokatalysator verwendet werden, um die Geschwindigkeit der Polykondensation zu erhöhen.
  • Dazu gehören die alkalisch wirkenden Salze von Alkalimetallen und Erdalkalimetallen, wie Hydroxyde, Alkoxyde und Aryloxyde von Lithium, Natrium und Kalium, vorzugsweise Hydroxyde, Alkoxyde oder Aryloxyde von Natrium. Am meisten bevorzugt sind Natriumhydroxyd und Natriumphenolat, sowie auch das Dinatriumsalz des 2,2-Bis-(4-hydroxyphenyl)-propans.
  • Die Mengen der alkalisch wirkenden Salze von Alkalimetallen und Erdalkalimetallen allein oder als Cokatalysator können im Bereich von 1 bis 500 ppb, vorzugsweise 5 bis 300 ppb und am meisten bevorzugt 5 bis 200 ppb liegen, jeweils berechnet als Natrium und bezogen auf zu bildendes Polycarbonat.
  • Die alkalisch wirkenden Salze von Alkalimetallen und Erdalkalimetallen können schon bei der Herstellung der Oligocarbonate, das heißt zu Beginn der Synthese, eingesetzt oder aber auch erst vor der Polykondensation zugemischt werden, um unerwünschte Nebenreaktionen zu unterdrücken.
  • Weiter besteht auch die Möglichkeit, ergänzende Mengen Oniumkatalysatoren des gleichen Typs oder eines anderen vor der Polykondensation zuzugeben.
  • Die Zugabe der Katalysatoren erfolgt in Lösung, um bei der Dosierung schädliche Überkonzentrationen zu vermeiden. Die Lösungsmittel sind system- und verfahrensinhärente Verbindungen wie beispielsweise Dihydroxyarylverbindungen, Diarylcarbonate oder Monohydroxyarylverbindungen. Besonders bevorzugt sind Monohydroxyarylverbindungen, weil dem Fachmann geläufig ist, dass sich die Dihydroxyarylverbindungen und Diarylcarbonate bei schon leicht erhöhten Temperaturen, insbesondere unter Katalysatoreinwirkung, leicht verändern und zersetzen. Hierunter leiden die Polycarbonatqualitäten. Beim technisch bedeutsamen Umesterungsverfahren zur Herstellung von Polycarbonat ist die bevorzugte Verbindung Phenol. Phenol bietet sich auch deshalb schon zwingend an, weil der vorzugsweise benutzte Katalysator Tetraphenylphosphoniumphenolat bei der Herstellung als Mischkristall mit Phenol isoliert wird.
  • Die thermoplastischen Polycarbonate sind durch die Formel
    Figure 00160001
    beschrieben, wobei
    R, R' und R'' und Z die bei Formel (IX) bzw. (VIII) genannte Bedeutung haben,
    n ist eine wiederholende Struktureinheit und ist durch das Molekulargewicht des Polycarbonats charakterisiert.
  • Der Rest
    Figure 00160002
    kann in Formel (XII) als ganze Gruppe auch H und auf beiden Seiten verschieden sein.
  • Die erhaltenen mittleren Gewichtsmolekulargewichte der Polycarbonate betragen im Allgemeinen 15.000 bis 40.000, bevorzugt 17.000 bis 36.000, besonders bevorzugt 17.000 bis 34.000, wobei das mittlere Gewichtsmolekulargewicht über die relative Viskosität nach der Mark-Houwing Korrelation (J. M. G. Cowie, Chemie und Physik der synthetischen Polymeren, Vieweg Lehrbuch, Braunschweig/Wiesbaden, 1997, Seite 235) bestimmt wurde.
  • Die Polycarbonate haben einen äußerst geringen Gehalt von Kationen und Anionen von jeweils weniger als 60 ppb, bevorzugt < 40 ppb und besonders bevorzugt < 20 ppb (als Na-Kation berechnet), wobei als Kationen solche von Alkali- und Erdalkalimetallen vorliegen, welche beispielsweise als Verunreinigung aus den verwendeten Rohstoffen und den Phosphonium- und Ammoniumsalzen stammen können. Weitere Ionen wie Fe-, Ni-, Cr-, Zn-, Sn, Mo-, Al-Ionen und ihre Homologen können in den Rohstoffen enthalten sein oder durch Abtrag oder Korrosion aus den Werkstoffen der benutzten Anlage stammen. Der Gehalt dieser Ionen ist in der Summe kleiner als 2 ppm, bevorzugt kleiner als 1 ppm und besonders bevorzugt kleiner 0,5 ppm.
  • Als Anionen liegen solche von anorganischen Säuren und von organischen Säuren in äquivalenten Mengen vor (z. B. Chlorid, Sulfat, Carbonat, Phosphat, Phosphit, Oxalat, u.a.).
  • Angestrebt werden also geringste Mengen, die nur durch Verwendung reinster Rohstoffe erreicht werden können. Derart reine Rohstoffe sind z.B. nur nach Reinigungsverfahren wie Umkristallisieren, Destillieren, Umfällen mit Wäschen u. ä. erhältlich.
  • Die Polycarbonate können gezielt verzweigt werden. Geeignete Verzweiger sind die für die Polycarbonatherstellung bekannten Verbindungen mit drei und mehr funktionellen Gruppen, vorzugsweise solche mit drei oder mehr Hydroxylgruppen.
  • Einige der verwendbaren Verbindungen mit drei oder mehr phenolischen Hydroxylgruppen sind beispielsweise: Phloroglucin, 4,6-Dimethyl-2,4,6-tri-(4-hydroxyphenyl)-hepten-2, 4,6-Dimethyl-2,4,6-tri-(4-hydroxyphenyl)-heptan, 1,3,5-Tri-(4-hydroxyphenyl)-benzol, 1,1,1-Tri-(4-hydroxyphenyl)-ethan, Tri-(4-hydroxyphenyl)-phenylmethan, 2,2-Bis-(4,4-bis-(4-hydroxyphenyl)-cyclohexyl]-propan, 2,4-Bis-(4-hydroxyphenyl-isopropyl)-phenol und Tetra-(4-hydroxyphenyl)-methan.
  • Einige der sonstigen trifunktionellen Verbindungen sind: 2,4-Dihydroxybenzoesäure, Trimesinsäure, Cyanurchlorid und 3,3-Bis-(3-methyl-4-hydroxyphenyl)-2-oxo-2,3-dihydroindol.
  • Bevorzugte Verzweiger sind: 3,3-Bis-(3-methyl-4-hydroxyphenyl)-2-oxo-2,3-dihydroindol und 1,1,1-Tri-(4-hydroxyphenyl)-ethan.
  • Die Verzweiger werden in Mengen im Allgemeinen von 0,02 bis 3,6 Mol %, bezogen auf die Dihydroxyarylverbindung, eingesetzt.
  • Das Verfahren zur Herstellung von Polycarbonat nach dem Umesterungsverfahren kann diskontinuierlich oder auch kontinuierlich gestaltet werden. Nachdem die Dihydroxyarylverbindungen und Diarylcarbonate, ggf. mit weiteren Verbindungen, als Schmelze vorliegen, wird in Gegenwart geeigneter Katalysatoren die Umsetzung gestartet. Der Umsatz bzw. das Molekulargewicht wird bei steigenden Temperaturen und fallenden Drucken in geeigneten Apparaten und Vorrichtungen durch Abführen der sich abspaltenden Monohydroxyarylverbindung solange erhöht, bis der angestrebte Endzustand erreicht ist. Durch Wahl des Verhältnisses Dihydroxyarylverbindung zu Diarylcarbonat, der durch Wahl der Verfahrensweise bzw. Anlage zur Herstellung des Polycarbonats gegebenen Verlustrate des Diarylcarbonats über die Brüden und ggf. zugesetzter Verbindungen, wie beispielsweise einer höhersiedenden Monohydroxyarylverbindung, werden die Endgruppen in Art und Konzentration geprägt.
  • Bezüglich der Art und Weise, in welcher Anlage und nach welcher Verfahrensweise der Prozess ausgeführt wird, gibt es keine Limitierung und Einschränkung.
  • Weiter gibt es keine spezielle Limitierung und Einschränkung bezüglich der Temperaturen, der Drucke und verwendeter Katalysatoren, um die Schmelzeumesterungsreaktion zwischen der Dihydroxyarylverbindung und dem Diarylcarbonat, ggf. auch anderer zugesetzter Reaktanten durchzuführen. Jede Bedingung ist möglich, solange die gewählten Temperaturen, Drucke und Katalysatoren eine Schmelzeumesterung unter entsprechend schneller Entfernung der abgespaltenen Monohydroxyarylverbindung ermöglichen.
  • Die Temperaturen über den gesamten Prozess liegen im Allgemeinen zwischen 180 und 330°C, die Drucke zwischen 15 bar, absolut und 0,01 mbar, absolut.
  • Meist wird eine kontinuierliche Verfahrensweise gewählt, weil das vorteilhaft für die Produktqualität ist.
  • Vorzugsweise ist das kontinuierliche Verfahren zur Herstellung von Polycarbonaten dadurch gekennzeichnet, dass eine oder mehrere Dihydroxyarylverbindungen mit dem Diarylcarbonat, ggf. auch anderer zugesetzter Reaktanten unter Verwendung von Katalysatoren, nach einer Vorkondensation ohne Abtrennen der gebildeten Monohydroxyarylverbindung in sich dann daran anschließenden mehreren Reaktioes-Verdampfer-Stufen bei schrittweise steigenden Temperaturen und schrittweise fallenden Drucken das Molekulargewicht bis zum gewünschten Niveau aufgebaut wird.
  • Die für die einzelnen Reaktions-Verdampfer-Stufen geeigneten Vorrichtungen, Apparate und Reaktoren sind entsprechend dem Verfahrensverlauf Wärmetauscher, Entspannungsapparate, Abscheider, Kolonnen, Verdampfer, Rührbehälter und Reaktoren oder sonstige käufliche Apparate, welche die nötige Verweilzeit bei ausgewählten Temperaturen und Drucken bereitstellen. Die gewählten Vorrichtungen müssen den nötigen Wärmeeintrag ermöglichen und so konstruiert sein, dass sie den kontinuierlich wachsenden Schmelzviskositäten gerecht werden.
  • Alle Vorrichtungen sind über Pumpen, Rohrleitungen und Ventilen miteinander verbunden. Die Rohrleitungen zwischen allen Einrichtungen sollten selbstverständlich so kurz wie möglich sein und die Krümmungen der Leitungen so gering wie möglich gehalten werden, um unnötig verlängerte Verweilzeiten zu vermeiden. Dabei sind die äußeren, das heißt technischen Rahmenbedingungen und Belange für Montagen chemischer Anlagen zu berücksichtigen.
  • Zur Durchführung des Verfahrens nach einer bevorzugten kontinuierlichen Verfahrensweise können die Reaktionspartner entweder gemeinsam aufgeschmolzen oder aber die feste Dihydroxyarylverbindung in der Diarylcarbonatschmelze oder das feste Diarylcarbonat in der Schmelze der Dihydroxyarylverbindung gelöst werden oder beide Rohstoffe werden als Schmelze, bevorzugt direkt aus der Herstellung, zusammengeführt. Die Verweilzeiten der getrennten Schmelzen der Rohstoffe, insbesondere die der Schmelze der Dihydroxyarylverbindung, werden so kurz wie möglich eingestellt. Das Schmelzegemisch kann dagegen wegen des im Vergleich zu den einzelnen Rohstoffen erniedrigten Schmelzpunktes des Rohstoffgemisches bei entsprechend niedrigeren Temperaturen ohne Qualitätseinbußen länger verweilen.
  • Danach wird der Katalysator, vorzugsweise in Phenol gelöst, zugemischt und die Schmelze auf die Reaktionstemperatur erhitzt. Diese beträgt zu Beginn des technisch bedeutsamen Prozesses zur Herstellung von Polycarbonat aus 2,2-Bis-(4-hydroxyphenyl)-propan und Diphenylcarbonat 180 bis 220°C, vorzugsweise 190 bis 210°C, ganz besonders bevorzugt 190°C. Bei Verweilzeiten von 15 bis 90 min, vorzugsweise 30 bis 60 min, wird das Reaktionsgleichgewicht eingestellt, ohne dass die gebildete Hydroxyarylverbindung entnommen wird. Die Reaktion kann bei Atmosphärendruck, aber aus technischen Gründen auch bei Überdruck gefahren werden. Der bevorzugte Druck in technischen Anlagen beträgt 2 bis 15 bar absolut.
  • Das Schmelzegemisch wird in eine erste Vakuumkammer, deren Druck auf 100 bis 400 mbar, vorzugsweise auf 150 bis 300 mbar eingestellt wird, entspannt und direkt danach in einer geeigneten Vorrichtung bei gleichem Druck wieder auf die Eintrittstemperatur erhitzt. Bei dem Entspannungsvorgang wird die entstandene Hydroxyarylverbindung mit noch vorhandenen Monomeren verdampft. Nach einer Verweilzeit von 5 bis 30 min in einer Sumpfvorlage ggf. mit Umpumpung bei gleichem Druck und gleicher Temperatur wird das Reaktionsgemisch in eine zweite Vakuumkammer, deren Druck 50 bis 200 mbar, vorzugsweise 80 bis 150 mbar beträgt, entspannt und direkt danach in einer geeigneten Vorrichtung bei gleichem Druck auf eine Temperatur von 190 bis 250°C, bevorzugt 210 bis 240°C, besonders bevorzugt 210 bis 230°C, erwärmt. Auch hierbei wird die entstandene Hydroxyarylverbindung mit noch vorhandenen Monomeren verdampft. Nach einer Verweilzeit von 5 bis 30 min in einer Sumpfvorlage, ggf. mit Umpumpung, bei gleichem Druck und gleicher Temperatur wird das Reaktionsgemisch in eine dritte Vakuum kammer, deren Druck 30 bis 150 mbar, vorzugsweise 50 bis 120 mbar beträgt, entspannt und direkt danach in einer geeigneten Vorrichtung bei gleichem Druck auf eine Temperatur von 220 bis 280°C, bevorzugt 240 bis 270°C, besonders bevorzugt 240 bis 260°C, erwärmt. Auch hierbei wird die entstandene Hydroxyarylverbindung mit noch vorhandenen Monomeren verdampft. Nach einer Verweilzeit von 5 bis 20 min in einer Sumpfvorlage ggf. mit Umpumpung bei gleichem Druck und gleicher Temperatur wird das Reaktionsgemisch in eine weitere Vakuumkammer, deren Druck bei 5 bis 100 mbar, bevorzugt 15 bis 100 mbar, besonders bevorzugt 20 bis 80 mbar beträgt, entspannt und direkt danach in einer geeigneten Vorrichtung bei gleichem Druck auf eine Temperatur von 250 bis 300°C, vorzugsweise 260 bis 290°C, besonders bevorzugt 260 bis 280°C, erwärmt. Auch hierbei wird die entstandene Hydroxyarylverbindung mit noch vorhandenen Monomeren verdampft.
  • Die Zahl dieser Stufen, hier beispielhaft 4, kann zwischen 2 und 6 variieren. Die Temperaturen und Drucke sind bei Änderung der Stufigkeit entsprechend anzupassen, um vergleichbare Resultate zu erhalten. Die in diesen Stufen erreichte rel. Viskosität des oligomeren Carbonats liegt zwischen 1,04 und 1,20, bevorzugt zwischen 1,05 und 1,15, besonders bevorzugt zwischen 1,06 bis 1,10.
  • Das so erzeugte Oligocarbonat wird nach einer Verweilzeit von 5 bis 20 min in einer Sumpfvorlage ggf. mit Umpumpung bei gleichem Druck und gleicher Temperatur wie in der letzten Flash-/Verdampferstufe in einen Scheiben- oder Korbreaktor gefördert und bei 250 bis 310°C, bevorzugt 250 bis 290°C, besonders bevorzugt 250 bis 280°C, bei Drucken von 1 bis 15 mbar, vorzugsweise 2 bis 10 mbar, bei Verweilzeiten von 30 bis 90 min, vorzugsweise 30 bis 60 min, weiter aufkondensiert. Das Produkt erreicht eine rel. Viskosität von 1,12 bis 1,28, bevorzugt 1,13 bis 1,26, besonders bevorzugt 1,13 bis 1,24.
  • Die diesen Reaktor verlassende Schmelze wird in einem weiteren Scheiben- oder Korbreaktor auf die gewünschte Endviskosität bzw. das Endmolekulargewicht gebracht. Die Temperaturen betragen 270 bis 330°C, bevorzugt 280 bis 320°C, besonders bevorzugt 280 bis 310°C, der Druck 0,01 bis 3 mbar, vorzugsweise 0,2 bis 2 mbar, bei Verweilzeiten von 60 bis 180 nun, vorzugsweise 75 bis 150 min. Die rel. Viskositäten werden auf das für die vorgesehene Anwendung nötige Niveau eingestellt und betragen 1,18 bis 1,40, bevorzugt 1,18 bis 1,36, besonders bevorzugt 1,18 bis 1,34.
  • Die Funktion der beiden Korbreaktoren kann auch in einem Korbreaktor zusammengefasst werden.
  • Die Brüden aus allen Verfahrensstufen werden unmittelbar abgeleitet, gesammelt und aufgearbeitet. Diese Aufarbeitung erfolgt in der Regel destillativ, um hohe Reinheiten der rückge wonnenen Stoffe zu erreichen. Dies kann beispielsweise gemäss Deutscher Patentanmeldung Nr. 10 100 404 erfolgen. Eine Rückgewinnung und Isolierung der abgespaltenen Monohydroxyarylverbindung in reinster Form ist aus ökonomischer und ökologischer Sicht selbstverständlich. Die Monohydroxyarylverbindung kann direkt zur Herstellung einer Dihydroxyarylverbindung oder eines Diarylcarbonats verwendet werden.
  • Die Scheiben- oder Korbreaktoren zeichnen sich dadurch aus, dass sie bei hohen Verweilzeiten eine sehr große, sich ständig erneuernde Oberfläche am Vakuum bereitstellen. Die Scheiben- oder Korbreaktoren sind entsprechend den Schmelzviskositäten der Produkte geometrisch ausgebildet. Geeignet sind beispielsweise Reaktoren, wie sie in der DE 44 47 422 C2 und EP A 1 253 163, oder Zweiwellenreaktoren, wie sie in der WO A 99/28 370 beschrieben sind.
  • Die Oligocarbonate, auch sehr niedermolekulare, und die fertigen Polycarbonate werden in der Regel mittels Zahnradpumpen, Schnecken unterschiedlichster Bauart oder Verdrängerpumpen spezieller Bauart gefördert.
  • Besonders geeignete Werkstoffe zur Herstellung der Apparate, Reaktoren, Rohrleitungen, Pumpen und Armaturen sind nicht rostende Stähle vom Typ Cr Ni (Mo) 18/10 wie z. B. 1.4571 oder 1. 4541 (Stahlschlüssel 2001, Verlag: Stahlschlüssel Wegst GmbH, Th-Heuss-Straße 36, D-71672 Marbach) und Ni-Basislegierungen vom Typ C, wie z. B. 2.4605 oder 2.4610 (Stahlschlüssel 2001, Verlag: Stahlschlüssel Wegst GmbH, Th-Heuss-Straße 36, D-71672 Marbach). Die nicht rostenden Stähle werden bis zu Prozesstemperaturen von etwa 290°C und die Ni-Basislegierungen bei Prozesstemperaturen oberhalb von etwa 290°C benutzt.
  • Das Polycarbonat kann aber auch zum Beispiel nach dem Phasengrenzflächenverfahren hergestellt werden. Dieses Verfahren zur Polycarbonatsynthese ist mannigfaltig in der Literatur beschrieben, so unter anderem bei
    • • Schnell, „Chemistry and Physics of Polycarbonates", Polymer Reviews, Volume 9, Interscience Publishers, New York, London, Sydney 1964, S. 33-70;
    • • D.C. Prevorsek, B.T. Debona und Y. Kesten, Corporate Research Center, Allied Chemical Corporation, Morristown, New Jersey 07960: „Synthesis of Poly(ester Carbonate) Copolymers" in Journal of Polymer Science, Polymer Chemistry Edition, Vol. 18,(1980)"; S. 75-90,
    • • D. Freitag, U. Grigo, P.R. Müller, N. Nouvertne', BAYER AG, „Polycarbonates" in Encyclopedia of Polymer Science and Engineering, Volume 1 1, Second Edition, 1988, S. 651-692 und schließlich
    • • Dres. U. Grigo, K. Kircher und P. R- Müller "Polycarbonate" in Becker/Braun, Kunststoff-Handbuch, Band 3/1, Polycarbonate, Polyacetale, Polyester, Celluloseester, Carl Hanser Verlag München, Wien 1992, S. 118-145,
    sowie z.B. in EP-A 0 517 044 und vielen anderen Patentanmeldungen.
  • Gemäß diesem Verfahren erfolgt die Phosgenierung eines in wässrig-alkalischer Lösung (oder Suspension) vorgelegten Dinatriumsalzes eines Bisphenols (oder eines Gemisches verschiedener Bisphenole) in Gegenwart eines inerten organischen Lösungsmittels oder Lösungsmittelgemisches, welches eine zweite Phase ausbildet. Die entstehenden, hauptsächlich in der organischen Phase vorliegenden, Oligocarbonate werden mit Hilfe geeigneter Katalysatoren zu hochmolekularen, in der organischen Phase gelösten, Polycarbonaten aufkondensiert. Die organische Phase wird schließlich abgetrennt und das Polycarbonat durch verschiedene Aufarbeitungsschritte daraus isoliert.
  • In diesem Verfahren wird eine wässrige Phase aus NaOH, einem oder mehreren Bisphenolen und Wasser verwendet, wobei die Konzentration dieser wässrigen Lösung bezüglich der Summe der Bisphenole, nicht als Natriumsalz sondern als freies Bisphenol gerechnet, zwischen 1 und 30 Gew.-%, bevorzugt zwischen 3 und 25 Gew.-%, besonders bevorzugt zwischen 3 und 8 Gew.-% für Polycarbonate mit einem Mw > 45000 und 12 bis 22 Gew.-% für Polycarbonate mit einem Mw < 45000, variieren kann. Dabei kann es bei höheren Konzentrationen notwendig sein, die Lösungen zu temperieren. Das zur Lösung der Bisphenole verwendete Natriumhydroxid kann fest oder als wässrige Natronlauge verwendet werden. Die Konzentration der Natronlauge richtet sich nach der Zielkonzentration der angestrebten Bisphenolatlösung, liegt aber in der Regel zwischen 5 und 25 Gew.-%, bevorzugt 5 und 10 Gew.-%, oder aber wird konzentrierter gewählt und anschließend mit Wasser verdünnt. Bei dem Verfahren mit anschließender Verdünnung werden Natronlaugen mit Konzentrationen zwischen 15 und 75 Gew.-%, bevorzugt 25 und 55 Gew.-%, gegebenenfalls temperiert, verwendet. Der Alkaligehalt pro mol Bisphenol ist sehr von der Struktur des Bisphenols abhängig, bewegt sich aber in der Regel zwischen 0,25 mol Alkali/mol Bisphenol und 5,00 mol Alkali/mol Bisphenol, bevorzugt 1,5 – 2,5 Mol Alkali/mol Bisphenol und im Fall, dass Bisphenol A als alleiniges Bisphenol verwendet wird, 1,85 – 2,15 mol Alkali. Wird mehr als ein Bisphenol verwendet, so können diese zusammen gelöst werden. Es kann jedoch vorteilhaft sein, die Bisphenole getrennt in optimaler alkalischer Phase zu lösen und die Lösungen getrennt zu dosieren oder aber vereinigt der Reaktion zuzuführen. Weiterhin kann es von Vorteil sein, das oder die Bisphenole nicht in Natronlauge sondern in mit zusätzlichem Alkali ausgestatteter, verdünnter Bisphenolatlösung zu lösen. Die Lösevorgänge können von festem Bisphenol, meist in Schuppen oder Prillform oder auch von geschmolzenem Bisphenol ausgehen. Das eingesetzte Natriumhydroxid bzw. die Natronlauge kann nach dem Amalgamverfahren oder dem sogenannten Membranverfahren hergestellt worden sein. Beide Verfahren werden seit langer Zeit benutzt und sind dem Fachmann geläufig. Bevorzugt wird Natronlauge aus dem Membranverfahren verwendet.
  • Die so angesetzte wässrige Phase wird zusammen mit einer organischen Phase bestehend aus Lösungsmitteln für Polycarbonat, die gegenüber den Reaktanten inert sind und eine zweite Phase bilden, phosgeniert.
  • Die gegebenenfalls praktizierte Dosierung von Bisphenol nach oder während der Phosgen-einleitung kann so lange durchgeführt werden, wie Phosgen oder dessen unmittelbare Folgeprodukte, die Chlorkohlensäureester in der Reaktionslösung vorhanden sind.
  • Die Synthese von Polycarbonaten aus Bisphenolen und Phosgen im alkalischen Milieu ist eine exotherme Reaktion und wird in einem Temperaturbereich von -5°C bis 100°C, bevorzugt 15°C bis 80°C, ganz besonders bevorzugt 25-65°C durchgeführt, wobei je nach Lösungsmittel oder Lösungsmittelgemisch gegebenenfalls unter Überdruck gearbeitet werden muss.
  • Für die Herstellung der erfindungsgemäß zu verwendenden Polycarbonate geeignete Diphenole sind beispielsweise Hydrochinon, Resorcin, Dihydroxydiphenyl, Bis-(hydroxyphenyl)-alkane, Bis(hydroxy-phenyl)-cycloalkane, Bis-(hydroxyphenyl)-sulfide, Bis-(hydroxyphenyl)-ether, Bis-(hydroxyphenyl)-ketone, Bis-(hydroxyphenyl)-sulfone, Bis-(hydroxyphenyl)-sulfoxide, (α,α'-Bis-(hydroxyphenyl)-diisopropylbenzole diisopropylbenzole, sowie deren alkylierte, kernalkylierte und kernhalogenierte Verbindungen.
  • Bevorzugte Diphenole sind 4,4'-Dihydroxydiphenyl, 2,2-Bis-(4-hydroxyphenyl)-1-phenyl-propan, 1,1-Bis-(4-hydroxyphenyl)-phenyl-ethan, 2,2-Bis-(4-hydroxyphenyl)propan, 2,4-Bis-(4-hydroxyphenyl)-2-methylbutan, 1,1-Bis-(4-hydroxyphenyl)-m/p diisopropylbenzol, 2,2-Bis-(3-methyl-4-hydroxyphenyl)-propan, Bis-(3,5-dimethyl-4-hydroxyphenyl)-methan, 2,2-Bis-(3,5-dimethyl-4-hydroxyphenyl)-propan, Bis-(3,5-dimethyl-4-hydroxyphenyl)-sulfon, 2,4-Bis-(3,5-dimethyl-4-hydroxyphenyl)-2-methylbutan, 1,1-Bis-(3,5-dimethyl-4-hydroxyphenyl)-m/p-diisopropyl-benzol und 1,1-Bis-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexan.
  • Besonders bevorzugte Diphenole sind 4,4'-Dihydroxydiphenyl, 1,1-Bis-(4-hydroxyphenyl)-phenyl-ethan, 2,2-Bis-(4-hydroxyphenyl)-propan, 2,2-Bis(3,5-dimethyl-4-hydroxyphenyl)-propan, 1,1-Bis-(4-hydroxyphenyl)-cyclohexan und 1,1-Bis-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexan.
  • Diese und weitere geeignete Diphenole sind z.B. in den US-A 2 999 835, 3 148 172, 2 991 273, 3 271 367, 4 982 014 und 2 999 846, in den deutschen Offenlegungsschriften 1 570 703, 2 063 050, 2 036 052, 2 211 956 und 3 832 396, der französischen Patentschrift 1 561 518, in der Monographie "H. Schnell, Chemistry and Physics of Polycarbonates, Interscience Publishers, New York 1964, S. 28ff; S.102ff", und in "D.G. Legrand, J.T. Bendler, Handbook of Polycarbonate Science and Technology, Marcel Dekker New York 2000, S. 72ff." beschrieben.
  • Im Falle der Homopolycarbonate wird nur ein Diphenol eingesetzt, im Falle der Copolycarbonate werden mehrere Diphenole eingesetzt, wobei selbstverständlich die verwendeten Bisphenole, wie auch alle anderen der Synthese zugesetzten Chemikalien und Hilfsstoffe mit den aus ihrer eigenen Synthese, Handhabung und Lagerung stammenden Verunreinigungen kontaminiert sein können, obwohl es wünschenswert ist, mit möglichst sauberen Rohstoffen zu arbeiten.
  • Die organische Phase kann aus einem oder Mischungen mehrerer Lösungsmittel bestehen. Geeignete Lösungsmittel sind chlorierte Kohlenwasserstoffe (aliphatische und/oder aromatische), bevorzugt Dichlormethan, Trichlorethylen, 1,1,1-Trichlorethan, 1,1,2-Trichlorethan und Chlorbenzol und deren Gemische. Es können jedoch auch aromatische Kohlenwasserstoffe wie Benzol, Toluol, m/p/o-Xylol oder aromatische Ether wie Anisol allein, im Gemisch oder zusätzlich oder im Gemisch mit chlorierten Kohlenwasserstoffen verwendet werden. Eine andere Ausführungsform der Synthese verwendet Lösungsmittel welche Polycarbonat nicht lösen sondern nur anquellen. Es können daher auch Fällungsmittel für Polycarbonat in Kombination mit Lösungsmitteln verwendet werden. Wobei dann als Lösungsmittel auch in der wässrigen Phase lösliche Lösungsmittel wie Tetrahydrofuran, 1,3/1,4-Dioxan oder 1,3-Dioxolan verwendet werden können, wenn der Lösungsmittelpartner die zweite organische Phase bildet.
  • Die beiden Phasen die das Reaktionsgemisch bilden werden gemischt, um die Reaktion zu beschleunigen. Das geschieht durch Eintrag von Energie über Scherung, d.h. Pumpen oder Rührer oder durch statische Mischer bzw. durch Erzeugung turbulenter Strömung mittels Düsen und/oder Blenden. Auch Kombinationen dieser Maßnahmen werden angewendet, oft auch wiederholt in zeitlicher oder apparativer Abfolge. Als Rührer werden bevorzugt Anker-, Propeller-, MIG-Rührer, usw. eingesetzt, wie sie z.B. im Ullmann, "Encyclopedia of Industrial Chemistry", 5. Auflage, Vol B2, S. 251 ff. beschrieben sind. Als Pumpen werden Kreiselpumpen, oft auch mehrstufige, wobei 2 bis 9stufige bevorzugt sind, eingesetzt. Als Düsen und/oder Blenden werden Lochblenden bzw. an deren Stelle verjüngte Rohrstücke oder auch Venturi- oder Lefosdüsen eingesetzt.
  • Der Eintrag des Phosgens kann gasförmig oder flüssig oder gelöst in Lösungsmittel erfolgen. Der verwendete Überschuss an Phosgen, bezogen auf die Summe der eingesetzten Bisphenole liegt zwischen 3 und 100 Mol-% bevorzugt zwischen 5 und 50 Mol-%. Wobei über einmalige oder mehrfache Nachdosierung von Natronlauge oder entsprechende Nachdosierung von Bisphenolatlösung der pH-Wert der wässrigen Phase während und nach der Phosgendosierung im alkalischen Bereich, bevorzugt zwischen 8,5 und 12 gehalten wird, während er nach der Katalysatorzugabe bei 10 bis 14 liegen sollte. Die Temperatur während der Phosgenierung beträgt 25 bis 85°C, bevorzugt 35 bis 65°C, wobei je nach verwendetem Lösungsmittel auch unter Überdruck gearbeitet werden kann.
  • Die Phosgendosierung kann direkt in das beschriebene Gemisch der organischen und wässrigen Phase erfolgen oder aber auch ganz oder teilweise, vor der Mischung der Phasen, in eine der beiden Phasen, die anschließend mit der entsprechenden anderen Phase gemischt wird. Weiterhin kann das Phosgen ganz oder teilweise in einen rückgeführten Teilstrom des Synthesegemisches aus beiden Phasen dosiert werden, wobei dieser Teilstrom vorzugsweise vor der Katalysatorzugabe rückgeführt wird. In einer anderen Ausführungsform werden die beschriebene wässrige Phase mit der das Phosgen enthaltenden organischen Phase gemischt und anschließend nach einer Verweilzeit von 1 Sekunde bis 5 min, bevorzugt 3 Sekunden bis 2 Minuten dem oben erwähnten rückgeführten Teilstrom zugesetzt oder aber die beiden Phasen, die beschriebene wässrige Phase mit der das Phosgen enthaltenden organischen Phase werden direkt in dem oben erwähnten rückgeführten Teilstrom gemischt. In allen diesen Ausführungsformen sind die oben beschriebenen pH-Wertbereiche zu beachten und gegebenenfalls durch einmalige oder mehrfache Nachdosierung von Natronlauge oder entsprechende Nachdosierung von Bisphenolatlösung einzuhalten. Ebenso muss der Temperaturbereich gegebenenfalls durch Kühlung oder Verdünnung der Reaktionsmischung eingehalten werden.
  • Die Durchführung der Polycarbonatsynthese kann kontinuierlich oder diskontinuierlich geschehen. Die Reaktion kann daher in Rührkesseln, Rohrreaktoren, Umpumpreaktoren oder Rührkesselkaskaden oder deren Kombinationen erfolgen, wobei durch Verwendung der bereits erwähnten Mischorgane sicherzustellen ist, dass wässrige und organische Phase sich möglichst erst dann entmischen, wenn das Synthesegemisch ausreagiert hat, d.h. kein verseifbares Chlor von Phosgen oder Chlorkohlensäureestern mehr enthält.
  • Die zur Regelung des Molekulargewichtes benötigten monofunktionellen Kettenabbrecher, wie Phenol oder Alkylphenole, insbesondere Phenol, p-tert.Butylphenol, iso-Octylphenol, Cumylphenol, deren Chlorkohlensäureester oder Säurechloride von Monocarbonsäuren bzw. Gemischen aus diesen Kettenabbrechern, werden entweder mit dem Bisphenolat bzw. den Bisphenolaten der Reaktion zugeführt oder aber zu jedem beliebigen Zeitpunkt der Synthese zugesetzt, solange im Reaktionsgemisch noch Phosgen oder Chlorkohlensäureendgruppen vorhanden sind, bzw. im Falle der Säurechloride und Chlorkohlensäureester als Kettenabbrecher, solange genügend phenolische Endgruppen des sich bildenden Polymers zur Verfügung stehen. Vorzugsweise werden der oder die Kettenabbrecher jedoch nach der Phosgenierung an einem Ort oder zu einem Zeitpunkt zugegeben, wenn kein Phosgen mehr vorliegt, aber der Katalysator noch nicht dosiert wurde, bzw. sie werden vor dem Katalysator, mit dem Katalysator zusammen oder parallel dazu dosiert.
  • In der gleichen Weise werden eventuell zu verwendende Verzweiger oder Verzweigermischungen der Synthese zugesetzt, üblicherweise jedoch vor den Kettenabbrechern. Üblicherweise werden Trisphenole, Quarterphenole oder Säurechloride von Tri- oder Tetracarbonsäuren verwendet, oder auch Gemische der Polyphenole oder der Säurechloride.
  • Einige der verwendbaren Verbindungen mit drei oder mehr als drei phenolischen Hydroxylgruppen sind beispielsweise
    Phloroglucin,
    4,6-Dimethyl-2,4,6-tri-(4-hydroxyphenyl)-hepten-2,
    4,6-Dimethyl-2,4,6-tri-(4-hydroxyphenyl)-heptan,
    1,3,5-Tri-(4-hydroxyphenyl)-benzol,
    1,1,1-Tri-(4-hydroxyphenyl)-ethan,
    Tri-(4-hydroxyphenyl)-phenylmethan,
    2,2-Bis-(4,4-bis-(4-hydroxyphenyl)-cyclohexyl]-propan,
    2,4-Bis-(4-hydroxyphenyl-isopropyl)-phenol,
    Tetra-(4-hydroxyphenyl)-methan.
  • Einige der sonstigen trifunktionellen Verbindungen sind 2,4-Dihydroxybenzoesäure, Trimesinsäure, Cyanurchlorid und 3,3-Bis-(3-methyl-4-hydroxyphenyl)-2-oxo-2,3-dihydroindol.
  • Bevorzugte Verzweiger sind 3,3-Bis-(3-methyl-4-hydroxyphenyl)-2-oxo-2,3-dihydroindol und 1,1,1-Tris-(4-hydroxyphenyl)-ethan.
  • Die in der Phasengrenzflächensynthese verwendeten Katalysatoren sind tert. Amine, insbesondere Triethylamin, Tributylamin, Trioctylamin, N-Ethylpiperidin, N-Methylpiperidin, N-i/n-Propylpiperidin; quartäre Ammoniumsalze wie Tetrabutylammonium-/Tributylbenzylammonium-/Tetraethylammonium-hydroxid/-chlorid/-bromid/-hydrogensulfab-tetrafluoroborat; sowie die den Ammoniumverbindungen entsprechenden Phosphoniumverbindungen. Ammonium- und Phosphoniumverbindungen werden in diesem Kontext gemeinsam auch als Oniumverbindungen bezeichnet.
  • Diese Verbindungen sind als typische Phasengrenzflächen-Katalysatoren in der Literatur beschrieben, kommerziell erhältlich und dem Fachmann geläufig. Die Katalysatoren können einzeln, im Gemisch oder auch neben- und nacheinander der Synthese zugesetzt werden, gegebenenfalls auch vor der Phosgenierung, bevorzugt sind jedoch Dosierungen nach der Phosgeneintragung, es sei denn, es wird eine Oniumverbindung oder Gemische aus Oniumverbindungen als Katalysatoren verwendet, dann ist eine Zugabe vor der Phosgendosierung bevorzugt.
  • Die Dosierung des Katalysators oder der Katalysatoren kann in Substanz, in einem inerten Lösungsmittel, vorzugsweise dem der Polycarbonatsynthese, oder auch als wässrige Lösung, im Falle der tert. Amine dann als deren Ammoniumsalze mit Säuren, bevorzugt Mineralsäuren, insbesondere Salzsäure, erfolgen. Bei Verwendung mehrerer Katalysatoren oder der Dosierung von Teilmengen der Katalysatorgesamtmenge können natürlich auch unterschiedliche Dosierungsweisen an verschiedenen Orten oder zu verschiedenen Zeiten vorgenommen werden.
  • Die Gesamtmenge der verwendeten Katalysatoren liegt zwischen 0,001 bis 10 Mol-% bezogen auf Mole eingesetzte Bisphenole, bevorzugt 0,01 bis 8 Mol-%, besonders bevorzugt 0,05 bis 5 Mol-%.
  • Nach Eintrag des Phosgens kann es vorteilhaft sein, eine gewisse Zeit die organische Phase und die wässrige Phase zu durchmischen, bevor gegebenenfalls Verzweiger, sofern dieser nicht gemeinsam mit dem Bisphenolat dosiert wird, Kettenabbrecher und Katalysator zugegeben werden. Eine derartige Nachrührzeit kann nach jeder Dosierung von Vorteil sein. Diese Nachrührzeiten liegen, insofern sie eingelegt werden, zwischen 10 Sekunden und 60 Minuten, bevorzugt zwischen 30 sec. und 40 Minuten, besonders bevorzugt zwischen 1 und 15 min.
  • Das ausreagierte, höchstens noch Spuren, bevorzugt < 2 ppm, an Chlorkohlensäureestern enthaltende mindestens zweiphasige Reaktionsgemisch lässt man zur Phasentrennung absitzen. Die wässrige alkalische Phase wird evt. ganz oder teilweise als wässrige Phase zurück in die Polycarbonatsynthese geleitet oder aber der Abwasseraufarbeitung zugeführt, wo Lösungsmittel- und Katalysatoranteile abgetrennt und rückgeführt werden. In einer anderen Variante der Aufarbeitung wird nach Abtrennung der organischen Verunreinigungen, insbesondere von Lösungsmitteln und Polymerresten, und gegebenenfalls nach der Einstellung eines bestimmten pH-Wertes, z.B. durch Natronlaugezugabe, das Salz abgetrennt, welches z. B. der Chloralkalielektrolyse zugeführt werden kann, während die wässrige Phase gegebenenfalls wieder der Synthese zugeführt wird.
  • Die organische, das Polymer enthaltende Phase muss nun von allen Kontaminationen alkalischer, ionischer oder katalytischer Art gereinigt werden. Sie enthält auch nach einem oder mehreren Absetzvorgängen, gegebenenfalls unterstützt durch Durchläufe durch Absetzkessel, Rührkessel, Coalescer oder Separatoren bzw. Kombinationen aus diesen Maßnahmen – wobei gegebenenfalls Wasser in jedem oder einigen Trennschritten gegebenenfalls unter Verwendung von aktiven oder passiven Mischorganen zudosiert werden kann – noch Anteile der wässrigen alkalischen Phase in feinen Tröpfchen sowie den Katalysator, in der Regel ein tert. Amin.
  • Nach dieser groben Abtrennung der alkalischen, wässrigen Phase wird die organische Phase ein oder mehrmals mit verdünnten Säuren, Mineral-, Carbon- Hydroxycarbon-und/oder Sulfonsäuren gewaschen. Bevorzugt sind wässrige Mineralsäuren insbesondere Salzsäure, phosphorige Säure und Phosphorsäure oder Mischungen dieser Säuren. Die Konzentration dieser Säuren sollte im Bereich 0,001 bis 50 Gew.-%, bevorzugt 0,01 bis 5 Gew.-% liegen.
  • Weiterhin wird die organische Phase mit entsalztem oder destilliertem Wasser wiederholt gewaschen. Die Abtrennung der, gegebenenfalls mit Teilen der wässrigen Phase dispergierten, organischen Phase nach den einzelnen Waschschritten geschieht mittels Absetzkessel, Rührkessel, Coalescer oder Separatoren bzw. Kombinationen aus diesen Maßnahmen, wobei das Waschwasser zwischen den Waschschritten gegebenenfalls unter Verwendung von aktiven oder passiven Mischorganen zudosiert werden kann.
  • Zwischen diesen Waschschritten oder auch nach der Wäsche können gegebenenfalls Säuren, vorzugsweise gelöst im Lösungsmittel welches der Polymerlösung zugrunde liegt, zugegeben werden. Bevorzugt werden hier Chlorwasserstoffgas und Phosphorsäure oder phosphorige Säure verwendet, die gegebenenfalls auch als Mischungen eingesetzt werden können.
  • Die so erhaltene, gereinigte Polymerlösung sollte nach dem letzten Trennvorgang nicht mehr als 5 Gew.-%, bevorzugt weniger als 1 Gew.-%, ganz besonders bevorzugt weniger als 0,5 Gew.-% Wasser enthalten.
  • Die Isolierung des Polymers aus der Lösung kann durch Verdampfen des Lösungsmittels mittels Temperatur, Vakuum oder eines erhitzten Schleppgases erfolgen. Andere Isolierungsmethoden sind Kristallisation und Fällung.
  • Geschieht die Konzentrierung der Polymerlösung und eventuell auch die Isolierung des Polymeren durch Abdestillation des Lösungsmittels, gegebenenfalls durch Überhitzung und Entspannung, so spricht man von einem 'Flash-Verfahren" siehe auch "Thermische Trennverfahren", VCH Verlagsanstalt 1988, S. 114; wird statt dessen ein geheiztes Trägergas zusammen mit der einzudampfenden Lösung versprüht, so spricht man von einer „Sprühverdampfung/Sprühtrocknung" beispielhaft beschrieben in Vauck, "Grundoperationen chemischer Verfahrenstechnik", Deutscher Verlag für Grundstoffindustrie 2000, 11.Auflage, S. 690. Alle diese Verfahren sind in der Patentliteratur und in Lehrbüchern beschrieben und dem Fachmann geläufig.
  • Bei der Entfernung des Lösungsmittels durch Temperatur (Abdestillieren) oder dem technisch effektiveren Flash-Verfahren erhält man hochkonzentrierte Polymerschmelzen. Bei dem bekannten Flashverfahren werden Polymerlösungen wiederholt unter leichtem Überdruck auf Temperaturen oberhalb des Siedepunktes unter Normaldruck erhitzt und diese, bezüglich des Normaldruckes, überhitzten Lösungen anschließend in ein Gefäß mit niedrigerem Druck, z.B. Normaldruck, entspannt. Es kann dabei von Vorteil sein, die Aufkonzentrationsstufen, oder anders ausgedrückt die Temperaturstufen der Überhitzung nicht zu groß werden zu lassen sondern lieber ein zwei- bis vierstufiges Verfahren zu wählen.
  • Aus den so erhaltenen hochkonzentrierten Polymerschmelzen können die Reste des Lösungsmittels entweder direkt aus der Schmelze mit Ausdampfextrudern (BE-A 866 991, EP-A 0 411 510, US-A 4 980 105, DE-A 33 32 065), Dünnschichtverdampfern (EP-A 0 267 025), Fallfilmverdampfern, Strangverdampfern oder durch Friktionskompaktierung (EP-A 0 460 450), gegebenenfalls auch unter Zusatz eines Schleppmittels, wie Stickstoff oder Kohlendioxid oder unter Verwendung von Vakuum (EP-A 003 996, EP-A 0 256 003, US-A 4 423 207), entfernt werden, alternativ auch durch anschließende Kristallisation (DE-A 3 429 960) und Ausheizen der Reste des Lösungsmittels in der festen Phase (US-A 3 986 269, DE-A 2 053 876).
  • Granulate erhält man bevorzugt durch direktes Abspinnen der Schmelze und anschließender Granulierung oder aber durch Verwendung von Austragsextrudern von denen in Luft oder unter Flüssigkeit, meist Wasser, abgesponnen wird. Werden Extruder benutzt, so kann man der Schmelze, vor diesem Extruder, gegebenenfalls unter Einsatz von statischen Mischern oder durch Seitenextruder im Extruder, Additive zusetzen.
  • Bei einer Versprühung wird die Polymerlösung gegebenenfalls nach Erhitzung entweder in ein Gefäß mit Unterdruck verdüst oder mittels einer Düse mit einem erhitzten Trägergas, z.B. Stickstoff, Argon oder Wasserdampf in ein Gefäß mit Normaldruck verdüst. In beiden Fällen erhält man in Abhängigkeit von der Konzentration der Polymerlösung Pulver (verdünnt) oder Flocken (konzentriert) des Polymers, aus dem gegebenenfalls auch die letzten Reste des Lösungsmittels wie oben entfernt werden müssen. Anschließend kann mittels eines Compoundierextruders und anschließender Abspinnung Granulat erhalten werden. Auch hier können Additive, wie oben beschrieben, in der Peripherie oder dem Extruder selbst, zugesetzt werden. Oftmals muss vor der Extrusion aufgrund der geringen Schüttdichte der Pulver und Flocken ein Kompaktierungsschritt für das Polymerpulver eingesetzt werden.
  • Aus der gewaschenen und gegebenenfalls noch aufkonzentrierten Lösung des Polycarbonates kann durch Zugabe eines Fällungsmittels für Polycarbonat das Polymer weitgehend kristallin ausgefällt werden. Hierbei ist es vorteilhaft erst eine geringe Menge des Fällungsmittels zuzugeben und gegebenenfalls auch Wartezeiten zwischen den Zugaben der Chargen an Fällungsmittel einzulegen. Es kann außerdem von Vorteil sein, verschiedene Fällungsmittel einzusetzen. Verwendung als Fällungsmittel finden hier z.B. Kohlenwasserstoffe, insbesondere Heptan, i-Octan, Cyclohexan und Alkohole wie Methanol, Ethanol, i-Propanol.
  • Bei der Fällung wird in der Regel die Polymerlösung langsam einem Fällungsmittel zugesetzt, hier werden meist Alkohole wie Methanol, Ethanol, i-Propanol., aber auch Cyclohexan oder Ketone wie Aceton als Fällungsmittel verwendet.
  • Die so erhaltenen Materialien werden wie bei der Sprühverdampfung beschrieben zu Granulat verarbeitet und gegebenenfalls additiviert.
  • Nach anderen Verfahren werden Fällungs- und Kristallisations-Produkte oder amorph erstarrte Produkte in feinkörniger Form durch Überleiten von Dämpfen eines oder mehrer Fällungsmittel für Polycarbonat, unter gleichzeitiger Erhitzung unterhalb der Glastemperatur kristallisiert und weiter zu höheren Molekulargewichten aufkondensiert. Handelt es sich dabei um Oligomere, gegebenenfalls mit unterschiedlichen Endgruppen (Phenolische und Kettenabbrecherenden), so spricht man von Festphasenaufkondensation.
  • Thermostablisatoren:
  • Bevorzugt werden die erfindungsgemäßen Themostabilisatoren gemäß den Formeln (I) bis (VII) nach Erreichen des gewünschten Molekulargewichts des Polycarbonats zugegeben. Zur wirksamen Einmischung des Thermostabilisators sind statische Mischer oder andere zu einer homogenen Einmischung führende Mischer, wie beispielsweise Extruder, geeignet. In letzterem Falle wird der Thermostabilisator über einen Seitenextruder der Polymerschmelze, evtl. zusammen mit anderen Stoffen, wie z.B. Entformungsmittel dem Polymerhauptstrom zugegeben.
  • Die erfindungsgemäßen Thermostabilisatoren können einzeln oder in beliebigen Mischungen untereinander oder mehreren verschiedenen Mischungen der Polymerschmelze zugesetzt werden. Ausserdem können auch Mischungen der erfindungsgemäßen Thermosstabilisatoren mit freien Sulfonsäurederivaten, wie z.B. Benzol- oder Toluolsulfonsäure zugegeben werden.
  • Die Thermosatbilisatoren haben bevorzugt Schmelzpunkte größer als 30°C, bevorzugt größer 40°C und besonders bevorzugt größer 50°C und Siedepunkte bei 1 mbar größer 150°C, bevorzugt größer 200°C und besonders bevorzugt größer 230°C.
  • Die erfindungsgemäßen verbrückten Ester von organischen Schwefel-enthaltenden Säuren können in Mengen von kleiner 100 ppm bezogen auf das Polycarbonat eingesetzt werden, bevorzugt kleiner 50 ppm bezogen auf das Polycarbonat, besonders bevorzugt kleiner 30 ppm und ganz besonders bevorzugt kleiner 15 ppm.
  • Bevorzugt werden mindestens 0,5 ppm, besonders bevorzugt 1 ppm, ganz besonders bevorzugt 1,5 ppm Thermostabilisator oder Mischungen davon eingesetzt. Insbesondere werden die Thermostabilisatoren bezogen auf das Polycarbonat in Mengen von 2 bis 10 ppm eingesetzt.
  • Wahlweise können sie auch in Mischungen mit freien Säuren, wie beispielsweise ortho-Phosphorsäure oder anderen als Stabilisatoren geeigneten Additive, wie z.B. Benzol- oder Toluol-sulfonsäuren zugesetzt werden. Die Menge an freien Säuren bzw. anderen Stabilisatoren beträgt (bezogen auf Polycarbonat) bis zu 20 ppm, vorzugsweise bis zu 10 ppm, insbesondere 0 bis 5 ppm.
  • Bezüglich der Zugabeform der erfindungsgemäßen verbrückten Ester von organischen Schwefelenthaltenden Säuren gibt es keine Limitierung. Die erfindungsgemäßen verbrückten Ester von organischen Schwefel-enthaltenden Säuren beziehungsweise deren Mischungen können als Feststoff, also als Pulver, in Lösung oder als Schmelze der Polymerschmelze zugesetzt werden. Eine andere Art der Dosierung ist die Verwendung eines Masterbatches (vorzugsweise mit Polycarbonat), das auch weitere Additive, wie beispielsweise andere Stabilisatoren oder Entformungsmittel enthalten kann.
  • Bevorzugt werden die erfindungsgemäßen verbrückten Ester von organischen Schwefelenthaltenden Säuren in flüssiger Form zugegeben. Da die zu dosierenden Mengen sehr gering sind, werden vorzugsweise Lösungen der erfindungsgemäßen verbrückten Ester verwendet.
  • Geeignete Lösemittel sind solche, die den Prozess nicht stören, chemisch inert sind und schnell verdampfen.
  • Als Lösemittel kommen alle organischen Lösemittel mit einem Siedepunkt bei Normaldruck von 30 bis 300°C, bevorzugt von 30 bis 250°C und besonders bevorzugt von 30 bis 200°C sowie auch Wasser – dazu zählt auch Kristallwasser – in Frage. Vorzugsweise werden solche Verbindungen gewählt, die in den jeweiligen Prozessen vorkommen. Eventuell verbleibende Reste mindern, je nach Anforderungsprofil des herzustellenden Produktes, nicht die Qualität.
  • Lösemittel sind neben Wasser Alkane, Cycloalkane und Aromaten, die auch substituiert sein können. Die Substituenten können aliphatische, cycloaliphatische oder aromatische Reste in unterschiedlicher Kombination sowie Halogene oder eine Hydroxylpruppe sein. Heteroatome, wie beispielsweise Sauerstoff, können auch zwischen aliphatischen, cycloaliphatischen oder aromatischen Resten Brückenglieder sein, wobei die Reste gleich oder unterschiedlich sein können. Weitere Lösemittel können auch Ketone und Ester organischer Säuren sowie cyclische Carbonate sein. Weiterhin kann der Thermostabilisator auch in Glycerinmonostearat gelöst und zudosiert werden.
  • Beispiele sind neben Wasser n-Pentan, n-Hexan, n-Heptan und deren Isomere, Chlorbenzol, Methanol, Ethanol, Propanol, Butanol und deren Isomere, Phenol, o-, m- und p-Kresol, Aceton, Diethylether, Dimethylketon, Polyethylenglycole, Polypropylenglycole, Essigsäureethylester, Ethylencarbonat und Propylencarbonat.
  • Bevorzugt geeignet sind für den Polycarbonatprozess Wasser, Phenol, Propylencarbonat, Ethylencarbonat und Toluol.
  • Besonders bevorzugt geeignet sind Wasser, Phenol und Propylencarbonat.
  • Als Abbauprodukte der erfindungsgemäßen Thermostabilisatoren der Formeln (I) bis (VII) entstehen freie Sulfonsäuren sowie teilweise noch veresterte Sulfonsäuren und auch Alkohole.
  • Weiterhin kann das erhaltene Polycarbonat zur Veränderung von Eigenschaften mit weiteren, üblichen Additiven und Zusatzstoffen (z.B. Hilfs- und Verstärkungsstoffe) nach Zugabe der erfindungsgemäßen Inhibitoren versehen werden. Der Zusatz von Additiven und Zuschlagsstoffen dient der Verlängerung der Nutzungsdauer (z.B. Hydrolyse- oder Abbaustabilisatoren), der Verbesserung der Farbstabilität (z.B. Thermo- und UV-Stabilisatoren), der Vereinfachung der Verarbeitung (z.B. Entformer, Fließhilfsmittel), der Verbesserung der Gebrauchseigenschaften (z.B. Antistatika), der Verbesserung des Flammschutzes, der Beeinflussung des optischen Eindrucks (z.B. organische Farbmittel, Pigmente) oder der Anpassung der Polymereigenschaften an bestimmte Belastungen (Schlagzähmodifikatoren, fein zerteilte Mineralien, Faserstoffe, Quarzmehl, Glas- und Kohlenstofffasern). Alles kann beliebig kombiniert werden, um die gewünschten Eigenschaften einzustellen und zu erreichen. Solche Zuschlagstoffe und Additive werden z.B. in "Plastics Additives", R. Gächter und H. Müller, Hanser Publishers 1983, beschrieben.
  • Diese Additive und Zuschlagstoffe können einzeln oder in beliebigen Mischungen oder mehreren verschiedenen Mischungen der Polymerschmelze zugesetzt werden und zwar direkt bei der Isolierung des Polymeren oder aber nach Aufschmelzung von Granulat in einem sogenannten Compoundierungsschritt.
  • Dabei können die Additive und Zuschlagstoffe beziehungsweise deren Mischungen als Feststoff, also als Pulver, oder als Schmelze der Polymerschmelze zugesetzt werden. Eine andere Art der Dosierung ist die Verwendung von Masterbatches oder Mischungen von Masterbatches der Additive oder Additivmischungen.
  • Der Zusatz dieser Stoffe erfolgt vorzugsweise auf herkömmlichen Aggregaten zum fertigen Polycarbonat, kann jedoch, je nach den Erfordernissen, auch auf einer anderen Stufe im Herstellverfahren des Polycarbonats erfolgen.
  • Geeignete Additive sind beispielsweise beschrieben in Additives for Plastics Handbook, John Murphy, Elsevier, Oxford 1999 oder Plastics Additives Handbook Hans Zweifel, Hanser, München 2001.
  • Weitere Anwendungen sind beispielsweise, ohne jedoch den Gegenstand der vorliegenden Erfindung einzuschränken:
    • 1. Sicherheitsscheiben, die bekanntlich in vielen Bereichen von Gebäuden, Fahrzeugen und Flugzeugen erforderlich sind, sowie als Schilde von Helmen.
    • 2. Folien.
    • 3. Blaskörper (s.a. US-A 2 964 794), beispielsweise 1 bis 5 Gallon Wasserflaschen.
    • 4. Lichtdurchlässige Platten, wie Massivplatten oder insbesondere Hohlkammerplatten, beispielsweise zum Abdecken von Gebäuden wie Bahnhöfen, Gewächshäusern und Beleuchtungsanlagen.
    • 5. Optische Datenspeicher, wie Audio CD's, CD-R(W)'s, DCD's, DVD-R(W)'s, Minidises und den Folgeentwicklungen.
    • 6. Ampelgehäuse oder Verkehrsschilder.
    • 7. Schaumstoffe mit offener oder geschlossener gegebenenfalls bedruckbarer Oberfläche.
    • 8. Fäden und Drähte (s.a. DE-A 11 37 167).
    • 9. Lichttechnische Anwendungen, gegebenenfalls unter Verwendung von Glasfasern für Anwendungen im transluzenten Bereich.
    • 10. Transluzente Einstellungen mit einem Gehalt an Bariumsulfat und oder Titandioxid und oder Zirkoniumoxid bzw. organischen polymeren Acrylatkautschuken (EP-A 0 634 445, EP-A 0 269 324) zur Herstellung von lichtdurchlässigen und lichtstreuenden Formteilen.
    • 11. Präzisionsspritzgussteile, wie Halterungen, z.B. Linsenhalterungen; hier werden gegebenenfalls Polycarbonate mit Glasfasern und einem gegebenenfalls zusätzlichen Gehalt von 1-10 Gew.-% Molybdändisulfid (bez. auf die gesamte Formmasse) verwendet.
    • 12. optische Geräteteile, insbesondere Linsen für Foto- und Filmkameras (DE-A 27 01 173).
    • 13. Lichtübertragungsträger, insbesondere Lichtleiterkabel (EP-A 0 089 801) und Beleuchtungsleisten.
    • 14. Elektroisolierstoffe für elektrische Leiter und für Steckergehäuse und Steckverbinder sowie Kondensatoren.
    • 15. Mobiltelefongehäuse.
    • 16. Network Interface devices.
    • 17. Trägermaterialien für organische Fotoleiter.
    • 18. Leuchten, Scheinwerferlampen, Streulichtscheiben oder innere Linsen.
    • 19. Medizinische Anwendungen wie Oxygenatoren, Dialysatoren.
    • 20. Lebensmittelanwendungen, wie Flaschen, Geschirr und Schokoladenformen.
    • 21. Anwendungen im Automobilbereich, wie Verglasungen oder in Form von Blends mit ABS als Stoßfänger.
    • 22. Sportartikel wie Slalomstangen, Skischuhschnallen.
    • 23. Haushaltsartikel, wie Küchenspülen, Waschbecken, Briefkästen.
    • 24. Gehäuse, wie Elektroverteilerkästen.
    • 25. Gehäuse für elektrische Geräte wie Zahnbürsten, Föne, Kaffeemaschinen, Werkzeugmaschinen, wie Bohr-, Fräs-, Hobelmaschinen und Sägen.
    • 26. Waschmaschinen-Bullaugen.
    • 27. Schutzbrillen, Sonnenbrillen, Korrekturbrillen bzw. deren Linsen.
    • 28. Lampenabdeckungen.
    • 29. Verpackungsfolien.
    • 30. Chip-Boxen, Chipträger, Boxen für Si-Wafer.
    • 31. Sonstige Anwendungen wie Stallmasttüren oder Tierkäfige.
  • Die nachfolgenden Beispiele sollen die vorliegende Erfindung illustrieren, ohne sie jedoch einschränken zu wollen:
  • Die relative Lösungsviskosität wird in Dichlormethan bei einer Konzentration von 5 g/l bei 25°C bestimmt.
  • Der Gehalt an phenolischem OH wird durch IR-Messung erhalten. Zu diesem Zweck wird eine Differenzmessung von einer Lösung aus 2 g Polymer in 50 ml Dichlormethan gegenüber reinem Dichlormethan vermessen und die Extinktionsdifferenz bei 3582 cm–1 bestimmt.
  • Zur Bestimmung der Restmonomere wird die Probe in Dichlormethan gelöst und dann mit Aceton/Methanol ausgefällt. Nach Abtrennen des ausgefällten Polymers wird das Filtrat eingeengt. Die Quantifizierung der Restmonomere erfolgt durch Reverse-Phase-Chromatographie im Fließmittelgradienten 0,04 % Phosphorsäure – Acetonitril. Die Detektion erfolgt über UV.
  • Unter GMS wird ein Gemisch aus Glycerinmonopalmitat und Glycerinmonostearat verstanden.
  • Der GMS-Gesamtgehalt setzt sich zusammen aus dem freien GMS (GMSfrei), dem GMS-Carbonat (GMS-CO3) und dem eingebauten GMS. Letzterer wird durch Differenzbildung errechnet.
  • Ein Teil der Probe wird bei etwa 80°C alkalisch hydrolysiert und anschließend mit Salzsäure auf etwa pH 1 eingestellt. Diese Lösung wird mit tert-Butylmethylether extrahiert und der Extrakt getrocknet. Nach Derivatisierung erfolgt die gaschromatographische Analyse auf einer Kapillarsäule in Verbindung mit einem Flammenionisationsdetektor. Die quantitative Auswertung erfolgt über einen inneren Standard und ergibt den Gesamtgehalt an GMS.
  • Ein anderer Teil der Probe wird in Dichlormethan gelöst und derivatisiert. Nach gaschromatographischer Auftrennung auf einer Kapillarsäule und Detektion mittels Flammenionisationsdetektor (FID) erfolgt die Quantifizierung über einen inneren Standard. Es werden die Gehalte an freiem GMS und GMS-Carbonat erhalten.
  • Quantifizierung von Glycerinmonostearat (GMS) und Glycerinmonostearat-carbonat (GMS-Carbonat) in Polycarbonat per GC-FID:
    Ca. 0,5 g Probe werden in 5 ml CH2Cl2 gelöst und mit internem Standard (z.B. n-Alkan) versetzt. Zu dieser Lösung werden ca. 5 ml tert.-Butylmethylether (MTBE) gegeben, um das Polymer auszufällen. Die Suspension wird dann geschüttelt und anschließend zentrifugiert. Eine definierte Menge (3 ml) der überstehenden Lösung wird abpipetiert und unter Stickstoff-Atmosphäre bis zur Trockne eingeengt. Der Rückstand wird mit MSTFA-Lösung (N-Methyl-N-(trimethylsilyl)-trifluoroacetamide) silyliert. Die filtrierte Lösung wird per Gaschromatographie (GC) (z.B. HP 6890) chromatographiert. Detektion erfolgt per Flammenionisationsdetektor (FID).
  • Analytikvorschrift zur Ermittlung der Restmonomere:
  • Die Probe wird in Dichlormethan gelöst und in Aceton/Methanol umgefällt. Das ausgefällte Polymer wird abgetrennt und das Filtrat eingeengt. Die Quantifizierung der Restmonomere erfolgt durch Reverse-Phase. Chromatographie im Fließmittelgradienten 0,04 % Phosphorsäure-Acetonitril. Die Detektion erfolgt über UV.
  • Auf diese Weise werden das Bisphenol (BPA), Phenol, tert. Butylphenol (BUP), Diphenylcarbonat (DPC) und Di-BUP-carbonat bestimmt. Einsatzmaterialien: Polycarbonat B:
    relative Viskosität 1,201
    phenolischer OH Wert 240 ppm
    DPC 80 ppm
    BPA 10 ppm
    Phenol 65 ppm
    GMSfrei 288 ppm
    GMS-CO3 < 10 ppm
  • Thermostabilisator A:
    Figure 00360001
  • Thermostabilisator B:
    Figure 00360002
  • Thermosatbilisator C:
    Figure 00370001
  • Der Einfluss der erfindungsgemäßen Thermostabilisatoren auf die Verbesserung der thermischen Stabilität eines Polycarbonats wird anhand der langzeitigen thermischen Belastbarkeit des Polycarbonats untersucht.
  • Beispiel A Synthese von Thermostabilisator A:
    Figure 00370002
  • 552,6 g (6,0 Mol) Glycerin der Fa. KMF und 4746g (60 Mol) Pyridin der Firma Aldrich werden unter Stickstoff vorgelegt und homogen gelöst. 3196,8 g (18,1Mol) Benzolsulfonsäurechlorid werden sehr langsam zugetropft, wobei eine Temperatur von 30-35°C nicht überschritten werden sollte. Anschließend wird 1 Stunde bei 40°C gerührt.
  • Aufarbeitung:
  • Der Ansatz wird sehr langsam in eine Mischung aus 3 Liter destilliertem Wasser, etwa 4kg Eis und 3 Liter Dichlormethan unter starkem Rühren abgelassen. Hierbei sollte eine Temperatur von 35°C nicht überschritten werden.
  • Die organische Phase wird anschließend in ca. 10 Liter Methanol gefällt, abgesaugt und so lange mit Methanol gewaschen bis ein Nachweis in der Dünnschichtchromatographie auf ein sauberes Produkt hinweist.
  • Anschließend wird bis zur Massenkonstanz im Vakuumtrockenschrank bei 60°C getrocknet.
    Ausbeute: 970g (31,54 % der Theorie) weißes Pulver
  • Analytik:
    • • Schmelzpunkt Fp. 81-83°C
    • 1H-NMR (400 MHz, TMS, CDCl3) δ = 7,8 ppm (m, 6H), 7,7 (m, 3H), 7,55 (m, 6H), 4,75 (m, 1H), 4,1 (d, 4H).
  • Beispiel 1
  • 2,5 kg Polycarbonat B werden mit 4 ppm Thermostabilisator A (als Pulver), bezogen auf das Polycarbonat, auf einem Extruder homogen gemischt (Ausgangsmaterial). Dieses Gemisch wird jeweils für 10 min. bei 340°C und bei 360° thermisch belastet und anschließend chemisch analysiert (Tabelle 1).
  • Vergleichsbeispiel 1
  • Wie in Beispiel 1, jedoch werden statt 4 ppm Thermostabilisator A 3 ppm ortho-Phosphorsäure eingemischt.
  • Tabelle 1
    Figure 00390001
  • Die Beispiele beweisen eindrucksvoll die verbesserte Stabilität des Polycarbonats unter thermischer Belastung im Vergleich zum Vergleichsbeispiel 1 mit Phosphorsäure als Stabilisator, was sich im höheren Anteil an freiem GMS, in einem geringeren Anteil an GMS-CO3 und in einer deutlich geringeren Rückbildungsrate zu Diphenylcarbonat DPC äußert. Der Gehalt an Restmonomeren (DPC) lässt sich somit auf einem relativ geringen Level halten. Dies ist besonders für die Anwendung in optischen Datenspeichern wichtig, da beim Verspritzen des Polycarbonates der ausgedampfte Monomeranteil sich als Belag auf dem Spritzgusswerkzeug (Stamper) festsetzen kann (blade out), was unerwünscht ist.

Claims (6)

  1. Zusammensetzung enthaltend Polycarbonat und verbrückte Ester von organischen Schwefel-enthaltenden Säuren.
  2. Zusammensetzung gemäß Anspruch 1, worin verbrückte Ester von organischen Schwefelenthaltenden Säuren ausgewählt sind aus mindestens einer Verbindung a) der Formel (I)
    Figure 00400001
    in welcher R1 unabhängig für Wasserstoff oder unsubstituiertes oder durch Halogen substituiertes C1-C20-Alkyl steht, R2 und R3 unabhängig voneinander für Wasserstoff, C1-C6-Alkyl oder C4-C30-Alkylcarboxyl oder für den Rest steht
    Figure 00400002
    worin R1 die oben genannte Bedeutung hat, n für eine ganze Zahl von 0 bis 8, vorzugsweise 0 bis 6, insbesondere 0, 1 oder 2 steht, b) der Formel (II)
    Figure 00410001
    in welcher R1 die oben genannte Bedeutung hat, c) der Formel
    Figure 00410002
    in welcher R1 die oben genannte Bedeutung hat, d) der Formel (IV)
    Figure 00410003
    in welcher R1 und n die oben genannte Bedeutung haben, und R4 für C4-C30-Alkylcarboxyl oder für den Rest
    Figure 00410004
    steht, worin R1 die oben genannte Bedeutung hat, e) der Formel (V), (VI), (VII)
    Figure 00420001
    in welcher R1 und n die oben genannte Bedeutung haben, und R5 und R6 unabhängig für Wasserstoff oder unsubstituiertes oder durch Halogen substituiertes C1-C20-Alkyl stehen.
  3. Zusammensetzung gemäß Anspruch 1, enthaltend bis zu 100 ppm verbrückte Ester von organischen Schwefel-enthaltenden Säuren.
  4. Zusammensetzung gemäß Anspruch 1, enthaltend Abbauprodukte der verbrückten Ester.
  5. Verfahren zur Herstellung von Zusammensetzungen gemäß Anspruch 1, wobei Polycarbonat mit den verbrückten Estern von organischen Schwefel-enthaltenden Säuren gemischt und compoundiert wird.
  6. Formteile, Formkörper und Extrudate erhältlich aus Zusammensetzung gemäß Anspruch 1.
DE200410030664 2004-06-24 2004-06-24 Benzol- und Toluolsulfonsäureester als Additive in Polycarbonat Withdrawn DE102004030664A1 (de)

Priority Applications (12)

Application Number Priority Date Filing Date Title
DE200410030664 DE102004030664A1 (de) 2004-06-24 2004-06-24 Benzol- und Toluolsulfonsäureester als Additive in Polycarbonat
EP05012973A EP1609818B1 (de) 2004-06-24 2005-06-16 Thermostabilisierte Polycarbonat-Zusammensetzungen
AT05012973T ATE460458T1 (de) 2004-06-24 2005-06-16 Thermostabilisierte polycarbonat- zusammensetzungen
ES05012973T ES2340500T3 (es) 2004-06-24 2005-06-16 Composiciones de policarbotanato termoestabilizadas.
DE502005009170T DE502005009170D1 (de) 2004-06-24 2005-06-16 Thermostabilisierte Polycarbonat-Zusammensetzungen
US11/157,092 US20050288407A1 (en) 2004-06-24 2005-06-20 Thermally stabilized polycarbonate composition
TW094120890A TWI403555B (zh) 2004-06-24 2005-06-23 熱安定性聚碳酸酯組成物
KR1020050054391A KR101260516B1 (ko) 2004-06-24 2005-06-23 열안정성 폴리카보네이트 조성물
CN 200510082375 CN1712450B (zh) 2004-06-24 2005-06-24 热稳定的聚碳酸酯组合物
SG200904349-8A SG153861A1 (en) 2004-06-24 2005-06-24 A thermally stabilized polycarbonate composition
SG200504103A SG118410A1 (en) 2004-06-24 2005-06-24 A thermally stabilized polycarbonate composition
JP2005184734A JP5242001B2 (ja) 2004-06-24 2005-06-24 熱的に安定化させたポリカーボネート組成物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200410030664 DE102004030664A1 (de) 2004-06-24 2004-06-24 Benzol- und Toluolsulfonsäureester als Additive in Polycarbonat

Publications (1)

Publication Number Publication Date
DE102004030664A1 true DE102004030664A1 (de) 2006-01-12

Family

ID=35501815

Family Applications (1)

Application Number Title Priority Date Filing Date
DE200410030664 Withdrawn DE102004030664A1 (de) 2004-06-24 2004-06-24 Benzol- und Toluolsulfonsäureester als Additive in Polycarbonat

Country Status (2)

Country Link
CN (1) CN1712450B (de)
DE (1) DE102004030664A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007059299A1 (de) 2007-05-16 2008-11-20 Entex Rust & Mitschke Gmbh Vorrichtung zur Verarbeitung von zu entgasenden Produkten
WO2019121463A1 (de) * 2017-12-19 2019-06-27 Covestro Deutschland Ag Thermoplastische zusammensetzungen mit guter stabilität
CN114085368A (zh) * 2021-12-01 2022-02-25 万华化学集团股份有限公司 一种聚碳酸酯及其制备方法、应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150076650A (ko) * 2013-12-27 2015-07-07 제일모직주식회사 외관 및 유동성이 향상된 폴리카보네이트 수지 조성물

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2924985B2 (ja) * 1991-06-28 1999-07-26 日本ジーイープラスチックス株式会社 ポリカーボネートの製造方法
EP0640646B1 (de) * 1993-08-26 2002-11-06 Teijin Limited Verfahren zur Herstellung von stabilisiertem Polycarbonat
DE69628613T2 (de) * 1995-07-12 2004-04-29 Mitsubishi Engineering-Plastics Corp. Polycarbonatharzzusammensetzung

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007059299A1 (de) 2007-05-16 2008-11-20 Entex Rust & Mitschke Gmbh Vorrichtung zur Verarbeitung von zu entgasenden Produkten
EP1997608A2 (de) 2007-05-16 2008-12-03 Entex Rust &amp; Mitschke GmbH Verfahren zur Verarbeitung von zu entgasenden Produkten
EP2289687A1 (de) 2007-05-16 2011-03-02 Entex Rust & Mitschke GmbH Verfahren zur Verarbeitung von zu entgasenden Produkten
WO2019121463A1 (de) * 2017-12-19 2019-06-27 Covestro Deutschland Ag Thermoplastische zusammensetzungen mit guter stabilität
CN114085368A (zh) * 2021-12-01 2022-02-25 万华化学集团股份有限公司 一种聚碳酸酯及其制备方法、应用
CN114085368B (zh) * 2021-12-01 2023-08-11 万华化学集团股份有限公司 一种聚碳酸酯及其制备方法、应用

Also Published As

Publication number Publication date
CN1712450A (zh) 2005-12-28
CN1712450B (zh) 2010-05-26

Similar Documents

Publication Publication Date Title
EP1609818B1 (de) Thermostabilisierte Polycarbonat-Zusammensetzungen
EP2268706B1 (de) Polycarbonate mit umlagerungsstrukturen, cyclischen und linearen oligomeren sowie verbessertem fliessverhalten
EP2147038B1 (de) Verfahren zur herstellung von polycarbonat nach dem schmelzeumesterungsverfahren
EP1612231B1 (de) Inhibierung von katalytisch aktiven Verunreinigungen in Polycarbonat nach dem Schmelzeumesterungsverfahren
DE102008023800A1 (de) Alkylphenol zur Einstellung des Molekulargewichtes und Copolycarbonat mit verbesserten Eigenschaften
EP2058363A1 (de) Verfahren zur Herstellung von Polycarbonat nach dem Schmelzeumesterungsverfahren
EP2098553B1 (de) Verfahren zur Herstellung von Polycarbonat nach dem Phasengrenzflächenverfahren
DE102008008841A1 (de) Verfahren zur Herstellung von Polycarbonaten
EP2090605B1 (de) Verfahren zur Herstellung von Polycarbonaten
EP1692205B1 (de) Verfahren zur herstellung von polycarbonaten mit geringem gehalt an flüchtigen verbindungen nach dem umesterungsverfahren
DE102008008842A1 (de) Alkylphenol zur Einstellung des Molekulargewichtes und Polycarbonatzusammensetzungen mit verbesserten Eigenschaften
EP2250210B1 (de) Polycarbonate mit cyclischen oligomeren und verbessertem fliessverhalten
DE102004030664A1 (de) Benzol- und Toluolsulfonsäureester als Additive in Polycarbonat
WO2015110447A1 (de) Verfahren zur herstellung von polycarbonat nach dem phasengrenzflächenverfahren
DE102004057349A1 (de) Benzol- und Toluolsulfonsäureester als Additive in Polycarbonat
DE102004032125A1 (de) Inhibierung von katalytisch aktiven Verunreinigungen in Polycarbonat nach dem Schmelzeumesterungsverfahren
DE102004057348A1 (de) Inhibrierung von katalytisch aktiven Verunreinigungen in Polycarbonat nach dem Schmelzeumesterungsverfahren
DE10249270B4 (de) Rücklöseverfahren
WO2004037894A1 (de) Herstellung von besonders wenig durch sauerstoff geschädigtem polycarbonat
EP2343328B1 (de) Verfahren und Vorrichtung zur Herstellung von Polycarbonat
DE10248951A1 (de) Herstellung von Polycarbonat mit Hilfe eines Filtrationskonzeptes
EP3498752A1 (de) Verfahren zur herstellung eines polycarbonats unter verwendung eines organischen lösungsmittels auf der grundlage von chlorkohlenwasserstoffen
DE10248021A1 (de) Verfahren zur Herstellung von Polycarbonat nach dem Phasengrenzflächenverfahren mit Verweiltank
DE10249269A1 (de) Verfahren zur Herstellung von Polycarbonaten unter Rückführung von Polycar-bonatlösung aus Abwasser-und Abfallströmen in den Herstellungsprozess
DE102004043114A1 (de) Verfahren zur Herstellung von Polycarbonat

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee