DE10102631A1 - Thiophencarbonsäureester und flüssigkristallines Medium - Google Patents

Thiophencarbonsäureester und flüssigkristallines Medium

Info

Publication number
DE10102631A1
DE10102631A1 DE2001102631 DE10102631A DE10102631A1 DE 10102631 A1 DE10102631 A1 DE 10102631A1 DE 2001102631 DE2001102631 DE 2001102631 DE 10102631 A DE10102631 A DE 10102631A DE 10102631 A1 DE10102631 A1 DE 10102631A1
Authority
DE
Germany
Prior art keywords
liquid crystal
formula
compound
dielectric anisotropy
compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE2001102631
Other languages
English (en)
Inventor
Volker Reiffenrath
Harald Hirschmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
Merck Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent GmbH filed Critical Merck Patent GmbH
Priority to DE2001102631 priority Critical patent/DE10102631A1/de
Publication of DE10102631A1 publication Critical patent/DE10102631A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/42Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/26Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D319/00Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D319/041,3-Dioxanes; Hydrogenated 1,3-dioxanes
    • C07D319/061,3-Dioxanes; Hydrogenated 1,3-dioxanes not condensed with other rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/26Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D333/38Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/78Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems condensed with rings other than six-membered or with ring systems containing such rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/0403Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit the structure containing one or more specific, optionally substituted ring or ring systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3491Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having sulfur as hetero atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/42Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40
    • C09K19/46Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40 containing esters

Abstract

Die Erfindung betrifft neue Thiophencarbonsäureester der Formel I DOLLAR F1 worin DOLLAR A R·1·, X·1·, X·2·, Y und A die angegebene Bedeutung aufweisen.

Description

Die Erfindung betrifft neue Thiophencarbonsäureester der Formel I
worin
R1 H, einen unsubstituierten, einen mindestens einfach durch Halogen oder CN substituierten Alkylrest mit 1-12 C-Atomen, worin auch eine oder mehrere CH2-Gruppen jeweils unab­ hängig voneinander durch -O-, -C∼C- oder -CH=CH- so er­ setzt sein können, daß Heteroatome nicht direkt verbunden sind,
X1, X2 unabhängig voneinander H oder F,
und
Y CN, F, OCF3, OCHF2, CF3, OC2F5 oder ein Perfluoralkylrest, worin eine oder mehrere CF2-Gruppen durch -CHF-, -O-, -CH=CH-, -CF=CF-, -CO-, -O-CO- oder -CO-O- ersetzt sein können, bedeutet.
Die Erfindung betrifft außerdem die Verwendung der Verbindungen der Formel I als Komponenten flüssigkristalliner Medien sowie Flüssigkristall- und elektrooptische Anzeigeelemente, die die erfindungsgemäßen flüssigkristallinen Medien enthalten.
Die Verbindungen der Formel I weisen häufig stark positive Werte der dielektrischen Anisotropie bei mittleren bis hohen Werten der optischen Anisotropie Δn und relativ geringer Viskosität auf und können als Kompo­ nenten flüssigkristalliner Medien verwendet werden, insbesondere für Displays, die auf dem Prinzip der verdrillten Zelle, dem Guest-Host-Effekt, dem Effekt der Deformation aufgerichteter Phasen DAP oder ECB (Electrically controlled birefringence) oder dem Effekt der dynamischen Streuung beruhen.
Die bisher für diesen Zweck eingesetzten Substanzen haben stets gewisse Nachteile, beispielsweise zu geringe Stabilität gegenüber der Einwirkung von Wärme, Licht oder elektrischen Feldern, ungünstige elastische und/oder dielektrische Eigenschaften.
Der Erfindung lag die Aufgabe zugrunde, neue stabile flüssigkristalline oder mesogene Verbindungen mit besonders großer positiver dielektrischer Anisotropie und mittlerer bis hoher optischer Anisotropie bei geringer Viskosität aufzufinden, die als Komponenten flüssig­ kristalliner Medien, insbesondere für TN, TFT- und STN-Displays, geeignet sind.
Es wurde nun gefunden, daß die Verbindungen der Formel I vorzüglich als Komponenten flüssigkristalliner Medien geeignet sind. Mit ihrer Hilfe lassen sich stabile flüssigkristalline Medien, insbesondere geeignet für TFT- oder STN-Displays, erhalten: Die neuen Verbindungen zeichnen sich vor allem durch eine hohe thermische Stabilität aus, die für eine hohe "holding ratio" vorteilhaft ist und zeigen günstige Werte der Klär­ punkte.
Mit der Bereitstellung von Verbindungen der Formel I wird ganz allgemein die Palette der flüssigkristallinen Substanzen, die sich unter verschiedenen anwendungstechnischen Gesichtspunkten zur Herstellung flüssigkristalliner Gemische eignen, erheblich verbreitert.
Die Verbindungen der Formel I besitzen einen breiten Anwendungs­ bereich. In Abhängigkeit von der Auswahl der Substituenten können diese Verbindungen als Basismaterialien dienen, aus denen flüssigkristalline Medien zum überwiegenden Teil zusammengesetzt sind; es können aber auch Verbindungen der Formel I flüssigkristalline Basismaterialien aus anderen Verbindungsklassen zugesetzt werden, um beispielsweise die dielektrische und/oder optische Anisotropie eines solchen Dielektrikums zu beeinflussen und/oder um dessen Schwellenspannung und/oder dessen Viskosität zu optimieren. Durch Zusatz der Verbindungen der Formel I zu flüssigkristallinen Dielektrika lassen sich Δn-Werte und Δε-Werte solcher Medien deutlich beeinflussen.
Die Bedeutung der Formel I schließt alle Isotope der in den Verbindungen der Formel I gebundenen chemischen Elemente ein. In enantiomeren­ reiner oder -angereicherter Form eignen sich die Verbindungen der Formel I auch als chirale Dotierstoffe und generell zur Erzielung chiraler Meso­ phasen.
Die Verbindungen der Formel I sind in reinem Zustand farblos und bilden flüssigkristalline Mesophasen in einem für die elektrooptische Verwendung günstig gelegenen Temperaturbereich. Chemisch, thermisch und gegen Licht sind sie stabil.
Gegenstand der Erfindung sind somit die Verbindungen der Formel I sowie die Verwendung dieser Verbindungen als Komponenten flüssigkristalliner Medien. Gegenstand der Erfindung sind ferner flüssigkristalline Medien mit einem Gehalt an mindestens einer Verbindung der Formel I sowie Flüssig­ kristallanzeigeelemente, insbesondere elektrooptische Anzeigeelemente, die derartige Medien enthalten.
Vor- und nachstehend haben R1, X1, X2, Y und A die angegebene Bedeutung, sofern nicht ausdrücklich etwas anderes vermerkt ist.
Die folgende Gruppe von Verbindungen der Teilformeln Ia bis IO stellt bevorzugte Ausführungsformen der Erfindung dar:
worin R1 die oben angegeben Bedeutung aufweist.
Falls R1 in den vor- und nachstehenden Formeln einen Alkylrest bedeutet, so kann dieser geradkettig oder verzweigt sein. Vorzugsweise ist er geradkettig, hat 2, 3, 4, 5, 6 oder 7 C-Atome und bedeutet demnach bevorzugt Ethyl, Propyl, Butyl, Pentyl, Hexyl oder Heptyl, ferner Methyl, Octyl, Nonyl, Decyl, Undecyl, Dodecyl, Tridecyl, Tetradecyl oder Pentadecyl.
Falls R1 einen Alkylrest bedeutet, in dem eine CH2-Gruppe durch -O­ ersetzt ist, so kann dieser geradkettig oder verzweigt sein. Vorzugsweise ist er geradkettig und hat 1 bis 10 C-Atome. Bevorzugt ist die erste CH2- Gruppe dieses Alkylrestes durch -O- ersetzt, sodaß der Rest R1 die Bedeutung Alkoxy erhält und vorzugsweise Methoxy, Ethoxy, Propoxy, Butoxy, Pentyloxy, Hexyloxy, Heptyloxy, Octyloxy, Nonyloxy bedeutet.
Weiterhin kann auch eine CH2-Gruppe an anderer Stelle durch -O- ersetzt sein, so daß der Rest R1 vorzugsweise geradkettiges 2-Oxapropyl (= Methoxymethyl), 2-(= Ethoxymethyl) oder 3-Oxabutyl (= 2-Methoxy­ ethyl), 2-, 3- oder 4-Oxapentyl, 2-, 3-, 4- oder 5-Oxahexyl, 2-, 3-, 4-, 5- oder 6-Oxaheptyl, 2-, 3-, 4-, 5-, 6- oder 7-Oxaoctyl, 2-, 3-,4-, 5-, 6-, 7- oder 8-Oxanonyl, 2-, 3-, 4-, 5-, 6-, 7-, 8- oder 9-Oxadecyl bedeutet.
Falls R1 einen Alkylrest bedeutet, worin eine oder mehrere CH2-Gruppen durch -CH=CH- ersetzt sind, so kann dieser geradkettig oder verzweigt sein. Vorzugsweise ist er geradkettig und hat 2 bis 10 C-Atome. Er bedeutet demnach besonders Vinyl; Prop-1-, oder Prop-2-enyl, But-1-, 2- oder But-3-enyl, Pent-1-, 2-, 3- oder Pent-4-enyl, Hex-1-, 2-, 3-, 4- oder Hex-5-enyl, Hept-1-, 2-, 3-, 4-, 5- oder Hept-6-enyl, Oct-1-, 2-, 3-, 4-, 5-, 6- oder Oct-7-enyl, Non-1-, 2-, 3-, 4-, 5-, 6-, 7- oder Non-8-enyl, Dec-1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- oder Dec-9-enyl.
Besonders bevorzugt bedeutet R1 einen Rest aus der folgenden Gruppe:
Falls R1 einen Alkenyloxyrest bedeutet, so kann dieser geradkettig oder verzweigt sein. Vorzugsweise ist er geradkettig und hat 2 bis 10 C-Atome. Er bedeutet besonders bevorzugt einen Rest der folgenden Gruppe:
Falls R1 einen mindestens einfach durch Halogen substituierten Alkylrest bedeutet, so ist dieser Rest vorzugsweise geradkettig. Halogen ist vorzugsweise F oder Cl. Bei Mehrfachsubstitution ist Halogen vorzugs­ weise F. Die resultierenden Reste schließen auch perfluorierte Reste ein. Bei Einfachsubstitution kann der Fluor- oder Chlorsubstituent in beliebiger Position sein, vorzugsweise jedoch in ω-Position.
Falls R1 einen Alkinylrest bedeutet, so kann dieser geradkettig oder verzweigt sein. Vorzugsweise ist er geradkettig und hat 2 bis 10 C-Atome. Er bedeutet demnach besonders Ethinyl, Prop-1-, oder Prop-2-inyl, But-1-, 2- oder But-3-inyl, Pent-1-, 2-, 3- oder Pent-4-inyl, Hex-1-, 2-, 3-, 4- oder Hex-5-inyl-, Hept-1-, 2-, 3-, 4-, 5- oder Hept-6-inyl, Oct-1-, 2-, 3-, 4-, 5-, 6- oder Oct-7-inyl, Non-1-, 2-, 3-, 4-, 5-, 6-, 7- oder Non-8-inyl, Dec-1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- oder Dec-9-inyl.
Besonders bevorzugt bedeutet R1 einen Alkinylrest aus der folgenden Gruppe:
-C=CH, -CH2-C∼CH, -C∼C-CH3, -C∼C-C2H5, -CH2-CH2-CH∼CH, -CH2-C∼C-CH3, -CH2-CH2-C∼C-CH3, -CH2-CH2-C∼C-C2H5.
Falls R1 einen Oxaalkyl- oder Alkoxyrest bedeutet, worin eine CH2-Gruppe durch -C∼C- ersetzt ist, so kann dieser geradkettig oder verzweigt sein. Vorzugsweise ist er geradkettig und hat 2 bis 10 C-Atome. Er bedeutet besonders bevorzugt einen Rest der folgenden Gruppe:
-O-CH2-C∼CH, -O-CH2-C∼C-CH3, -O-CH2-CH2-C∼CH, -O-CH2-CH2-C∼C-CH3, -O-CH2-CH2-C∼C-C2H5, -C∼C-CH2-OCH3, -C∼C-CH2-OC2H5 oder -C∼C-CH2-CH2-O-CH3.
Verbindungen der Formel I mit verzweigter Flügelgruppe R1 können gelegentlich wegen einer besseren Löslichkeit in den üblichen flüssig­ kristallinen Basismaterialien von Bedeutung sein, insbesondere aber als chirale Dotierstoffe, wenn sie optisch aktiv sind. Smektische Verbindungen dieser Art eignen sich als Komponenten für ferroelektrische Materialien.
Verzweigte Gruppen dieser Art enthalten in der Regel nicht mehr als eine Kettenverzweigung. Bevorzugte verzweigte Reste R1 sind Isopropyl, 2-Butyl (= 1-Methylpropyl), Isobutyl (= 2-Methylpropyl), 2-Methylbutyl, Isopentyl (= 3-Methylbutyl), 2-Methylpentyl, 3-Methylpentyl, 2-Ethylhexyl, 2-Propylpentyl, Isopropoxy, 2-Methylpropoxy, 2-Methylbutoxy, 3-Methyl­ butoxy, 2-Methylpentyloxy, 3-Methylpentyloxy, 2-Ethylhexyloxy, 1-Methyl­ hexyloxy, 1-Methylheptyloxy.
Formel I umfaßt sowohl die Racemate dieser Verbindungen als auch die optischen Antipoden sowie deren Gemische.
Unter diesen Verbindungen der Formel I sowie den Unterformeln sind diejenigen bevorzugt, in denen mindestens einer der darin enthaltenden Reste eine der angegebenen bevorzugten Bedeutungen hat.
Im folgenden sind weitere bevorzugte Verbindungen der Formel I angegeben:
Verbindungen der Formel I, deren Gruppe R1 die Bedeutung eines Alkyl-, Oxaalkyl- oder Alkoxyrestes mit 1 bis 10 C-Atomen aufweist, worin eine CH2-Gruppe durch -C∼C- ersetzt sein kann.
Verbindungen der Formel I, worin einer der beiden Reste X1 und X2 und der andere F bedeutet oder worin die Reste gleichzeitig F bedeuten.
Verbindungen der Formel I, worin der Ring A die Bedeutung
oder
aufweist.
R1 bedeutet besonders bevorzugt einen n-Alkyl- oder n-Alkoxyrest mit 1 bis 7 C-Atomen, insbesondere Ethyl, n-Propyl, n-Butyl, n-Pentyl, n-Propyloxy, n-Butyloxy, n-Pentyloxy, n-Hexyloxy.
Y bedeutet vorzugsweise CN, F oder CF3, insbesondere CN.
Einige ganz besonders bevorzugte kleinere Gruppen von Verbindungen der Formel I sind diejenigen der Teilformeln I1 bis I4:
worin R2 die Bedeutung einer Alkyl- oder Alkoxygruppe mit 1 bis 7 C- Atomen aufweist.
Die Verbindungen der Formel I werden nach an sich bekannten Methoden dargestellt, wie sie in der Literatur (z. B. in den Standardwerken wie Houben-Weyl, Methoden der Organischen Chemie, Georg-Thieme-Verlag, Stuttgart) beschrieben sind und zwar unter Reaktionsbedingungen, die für die genannten Umsetzungen bekannt und geeignet sind.
Dabei kann man von an sich bekannten, hier nicht näher erwähnten Varianten Gebrauch machen.
Die Ausgangsstoffe können gewünschtenfalls auch in situ gebildet werden, derart, daß man sie aus dem Reaktionsgemisch nicht isoliert, sondern sofort weiter zu den Verbindungen der Formel I umsetzt.
Die erfindungsgemäßen Verbindungen können z. B. nach folgenden Reaktionsschemata hergestellt werden:
Schema 1
Schema 2
Ester der Formel I können auch durch Veresterung entsprechender Carbonsäuren (oder ihrer reaktionsfähigen Derivate) mit Alkoholen bzw. Phenolen (oder ihren reaktionsfähigen Derivaten) oder nach der DCC- Methode (DCC = Dicyclohexylcarbodiimid) erhalten werden.
Die entsprechenden Carbonsäuren und Alkohole bzw. Phenole sind bekannt oder können in Analogie zu bekannten Verfahren hergestellt werden.
Als reaktionsfähige Derivate der genannten Carbonsäuren eignen sich insbesondere die Säurehalogenide, vor allem die Chloride und Bromide, ferner die Anhydride, Azide oder Ester, insbesondere Alkylester mit 1-4 C-Atomen in der Alkylgruppe.
Als reaktionsfähige Derivate der genannten Alkohole bzw. Phenole kommen insbesondere die entsprechenden Metallalkoholate bzw. Phenolate, vorzugsweise eines Alkalimetalls wie Na oder K, in Betracht.
Die Veresterung wird vorteilhaft in Gegenwart eines inerten Lösungsmittels durchgeführt. Gut geeignet sind insbesondere Ether wie Diethylether, Di-n­ butylether, THF, Dioxan oder Anisol, Ketone wie Aceton, Butanon oder Cyclohexanon, Amide wie DMF oder Phosphorsäurehexamethyltriamid, Kohlenwasserstoffe wie Benzol, Toluol oder Xylol, Halogenkohlenwasser­ stoffe wie Tetrachlorkohlenstoff oder Tetrachlorethylen und Sulfoxide wie Dimethylsulfoxid oder Sulfolan. Mit Wasser nicht mischbare Lösungsmittel können gleichzeitig vorteilhaft zum azeotropen Abdestillieren des bei der Veresterung gebildeten Wassers verwendet werden. Gelegentlich kann auch ein Überschuß einer organischen Base, z. B. Pyridin, Chinolin oder Triethylamin, als Lösungsmittel für die Veresterung angewandt werden. Die Veresterung kann auch in Abwesenheit eines Lösungsmittels, z. B. durch einfaches Erhitzen der Komponenten in Gegenwart von Natrium­ acetat, durchgeführt werden. Die Reaktionstemperatur liegt gewöhnlich zwischen -50° und +250°, vorzugsweise zwischen -20° und +80°. Bei diesen Temperaturen sind die Veresterungsreaktionen in der Regel nach 15 Minuten bis 48 Stunden beendet.
Im einzelnen hängen die Reaktionsbedingungen für die Veresterung weitgehend von der Natur der verwendeten Ausgangsstoffe ab. So wird eine freie Carbonsäure mit einem freien Alkohol oder Phenol in der Regel in Gegenwart einer starken Säure, beispielsweise einer Mineralsäure wie Salzsäure oder Schwefelsäure, umgesetzt. Eine bevorzugte Reaktions­ weise ist die Umsetzung eines Säureanhydrids oder insbesondere eines Säurechlorids mit einem Alkohol, vorzugsweise in einem basischen Milieu, wobei als Basen insbesondere Alkalimetallhydroxide wie Natrium- oder Kaliumhydroxid, Alkalimetallcarbonate bzw. -hydrogencarbonate wie Natriumcarbonat, Natriumhydrogencarbonat, Kaliumcarbonat oder Kalium­ hydrogencarbonat, Alkalimetallacetate wie Natrium- oder Kaliumacetat, Erdalkalimetallhydroxide wie Calciumhydroxid oder organische Basen wie Triethylamin, Pyridin, Lutidin, Kollidin oder Chinolin von Bedeutung sind. Eine weitere bevorzugte Ausführungsform der Veresterung besteht darin, daß man den Alkohol bzw. das Phenol zunächst in das Natrium- oder Kaliumalkoholat bzw. -phenolat überführt, z. B. durch Behandlung mit ethanolischer Natron- oder Kalilauge, dieses isoliert und mit einem Säure­ anhydrid oder insbesondere Säurechlorid umsetzt.
Nitrile können durch Austausch von Halogenen mit Kupfercyanid oder Alkalicyanid erhalten werden.
In einem weiteren Verfahren zur Herstellung der Verbindungen der Formel I, worin R1 Alkenyl bedeutet, setzt man ein Arylhalogenid mit einem Olefin um in Gegenwart eines tertiären Amins und eines Palladium­ katalysators (vgl. R. F. Heck, Acc. Chem. Res. 12 (1979) 146). Geeignete Arylhalogenide sind beispielsweise Chloride, Bromide und Iodide, insbesondere Bromide und Iodide. Die für das Gelingen der Kupplungs­ reaktion erforderlichen tertiären Amine, wie z. B. Triethylamin, eignen sich auch als Lösungsmittel. Als Palladiumkatalysatoren sind beispielsweise dessen Salze, insbesondere (Pd(II)-acetat, mit organischen Phosphor(III)- Verbindungen wie z. B. Triarylphosphanen geeignet. Man kann dabei in Gegenwart oder Abwesenheit eines inerten Lösungsmittels bei Tempera­ turen zwischen etwa 0°C und 150°C, vorzugsweise zwischen 20°C und 100°C, arbeiten; als Lösungsmittel kommen z. B. Nitrile wie Acetonitril oder Kohlenwasserstoffe wie Benzol oder Toluol in Betracht. Die als Ausgangs­ stoffe eingesetzten Arylhalogenide und Olefine sind vielfach im Handel erhältlich oder können nach literaturbekannten Verfahren hergestellt werden, beispielsweise durch Halogenierung entsprechender Stamm­ verbindungen bzw. durch Eliminierungsreaktionen an entsprechenden Alkoholen oder Halogeniden.
Ether der Formel I sind durch Veretherung entsprechender Hydroxy­ verbindungen, vorzugsweise entsprechender Phenole, erhältlich, wobei die Hydroxyverbindung zweckmäßig zunächst in ein entsprechendes Metallderivat, z. B. durch Behandeln mit NaH, NaNH2, NaOH, KOH, Na2CO3 oder K2CO3 in das entsprechende Alkalimetallalkoholat oder Alkalimetallphenolat übergeführt wird. Dieses kann dann mit dem ent­ prechenden Alkylhalogenid, -sulfonat oder Dialkylsulfat umgesetzt werden, zweckmäßig in einem inerten Lösungsmittel wie z. B. Aceton, 1,2-Dimetho­ xythan, DMF oder Dimethylsulfoxid oder auch mit einem Überschuß an wäßriger oder wäßrigalkoholischer NaOH oder KOH bei Temperaturen zwischen etwa 20°C und 100°C.
Zur Herstellung der lateral substituierten Fluor- oder Chlor-Verbindungen der Formel I können entsprechende Anilinderivate mit Natriumnitrit und entweder mit Tetrafluorborsäure (zur Einführung eines F-Atoms) oder mit Kupfer-(I)-chlorid (zur Einführung eines Cl-Atoms) zu dem Diazoniumsalzen umgesetzt werden, die dann bei Temperaturen von 100°-140° thermisch zersetzt werden.
Die metallorganischen Verbindungen stellt man beispielsweise durch Metall-Halogenaustausch (z. B. nach Org. React. 6, 339-366 (1951)) zwischen der entsprechenden Halogen-Verbindung und einer lithium­ rganischen Verbindung wie vorzugsweise tert-Butyllithium oder Lithium- Naphthalenid oder durch Umsatz mit Magnesiumspänen her.
Die Verknüpfung einer aliphatischen Gruppe R1 mit einem aromatischen Ring erfolgt vorzugsweise durch Friedel-Crafts-Alkylierung oder Acylierung dadurch, daß man die entsprechenden aromatischen Verbindungen unter Lewis-Säure-Katalyse umsetzt. Geeignete Lewis-Säuren sind z. B. SnCl4, ZnCl2 oder besonders AlCl3 und TiCl4.
Darüber hinaus können die Verbindungen der Formel I hergestellt werden, indem man eine Verbindung, die sonst der Formel I entspricht, aber an Stelle von H-Atomen eine oder mehrere reduzierbare Gruppen und/oder C-C-Bindungen enthält, reduziert.
Als reduzierbare Gruppen kommen vorzugsweise Carbonylgruppen in Betracht, insbesondere Ketogruppen, ferner z. B. freie oder veresterte Hydroxygruppen oder aromatisch gebundene Halogenatome. Bevorzugte Ausgangsstoffe für die Reduktion sind Verbindungen entsprechend der Formel I, die aber an Stelle einer -CH2CH2-Gruppe eine -CH=CH-Gruppe und/oder an Stelle einer -CH2-Gruppe eine -CO-Gruppe und/oder an Stelle eine H-Atoms eine freie oder eine funktionell (z. B. in Form ihres p-Toluolsulfonats) abgewandelte OH-Gruppe enthalten.
Die Reduktion kann z. B. erfolgen durch katalytische Hydrierung bei Temperaturen zwischen etwa 0° und etwa 200° sowie Drucken zwischen etwa 1 und 200 bar in einem inerten Lösungsmittel, z. B. einem Alkohol wie Methanol, Ethanol oder Isopropanol, einem Ether wie Tetrahydrofuran (THF) oder Dioxan, einem Ester wie Tetrahydrofuran (THF) oder Dioxan, einem Ester wie Ethylacetat, einer Carbonsäure wie Essigsäure oder einem Kohlenwasserstoff wie Cyclohexan. Als Katalysatoren eignen sich zweckmäßig Edelmetalle wie Pt oder Pd, die in Form von Oxiden (z. B. PtO2, PdO); auf einem Träger (z. B. Pd auf Kohle, Calciumcarbonat oder Strontiumcarbonat) oder in feinverteilter Form eingesetzt werden können.
Ketone können auch nach den Methoden von Clemmensen (mit Zink, amalgamiertem Zink oder Zinn und Salzsäure, zweckmäßig in wäßrig­ alkoholischer Lösung oder in heterogener Phase mit Wasser/Toluol bei Temperaturen zwischen etwa 80 und 120°) oder Wolff-Kishner (mit Hydrazin, zweckmäßig in Gegenwart von Alkali wie KOH oder NaOH in einem hochsiedenden Lösungsmittel wie Diethylenglykol oder Triethylen­ glykol bei Temperaturen zwischen etwa 100 und 200°) zu den entspre­ chendenn Verbindungen der Formel I, die Alkylgruppen und/oder -CH2CH2-Brücken enthalten, reduziert werden.
Weiterhin sind Reduktionen mit komplexen Hydriden möglich. Beispiels­ weise können Arylsulfonyloxygruppen mit LiAlH4 reduktiv entfernt werden, insbesondere p-Toluolsulfonyloxymethylgruppen zu Methylgruppen redu­ ziert werden, zweckmäßig in einem inerten Lösungsmittel wie Diethylether oder THF bei Temperaturen zwischen etwa 0 und 100°. Doppelbindungen können mit NaBH4 oder Tributylzinnhydrid in Methanol hydriert werden.
Die Ausgangsmaterialien sind entweder bekannt oder können in Analogie zu bekannten Verbindungen hergestellt werden.
Die erfindungsgemäßen flüssigkristallinen Medien enthalten vorzugsweise neben einer oder mehreren erfindungsgemäßen Verbindungen als weitere Bestandteile 2 bis 40, insbesondere 4 bis 30 Komponenten. Ganz beson­ ders bevorzugt enthalten diese Medien neben einer oder mehreren erfin­ dungsgemäßen Verbindungen 7 bis 25 Komponenten. Diese weiteren Bestandteile werden vorzugsweise ausgewählt aus nematischen oder nematogenen (monotropen oder isotropen) Substanzen, insbesondere Substanzen aus den Klassen der Azoxybenzole, Benzylidenaniline, Biphenyle, Terphenyle, Phenyl- oder Cyclohexylbenzoate, Cyclohexan­ carbonsäure-phenyl- oder cyclohexylester, Phenyl- oder Cyclohexylester der Cyclohexylbenzoesäure, Phenyl- oder Cyclohexylester der Cyclo­ hexylcyclohexancarbonsäure, Cyclohexyl-phenylester der Benzoesäure, der Cyclohexancarbonsäure, bzw. der Cyclohexylcyclohexancarbonsäure, Phenylcyclohexane, Cyclohexylbiphenyle, Phenylcyclohexylcyclohexane, Cyclohexylcyclohexane, Cyclohexylcyclohexylcyclohexene, 1,4-Bis-cyclo­ hexylbenzole, 4,4'-Bis-cyclohexylbiphenyle, Phenyl- oder Cyclohexyl­ pyrimidine, Phenyl- oder Cyclohexylpyridine, Phenyl- oder Cyclohexyl­ dioxane, Phenyl- oder Cyclohexyl-1,3-dithiane, 1,2-Diphenylethane, 1,2-Dicyclohexylethane, 1-Phenyl-2-cyclohexylethane, 1-Cyclohexyl-2-(4- phenyl-cyclohexyl)-ethane, 1-Cyclohexyl-2-biphenylylethane, 1-Phenyl-2- cyclohexyl-phenylethane, gegebenenfalls halogenierten Stilbene, Benzyl­ phenylether, Tolane und substituierten Zimtsäuren. Die 1,4-Phenylen­ gruppen in diesen Verbindungen können auch fluoriert sein.
Die wichtigsten als weitere Bestandteile erfindungsgemäßer Medien in Frage kommenden Verbindungen lassen sich durch die Formeln 1, 2, 3, 4 und 5 charakterisieren;
R'-L-E-R" 1
R'-L-COO-E-R" 2
R'-L-OOC-E-R" 3
R'-L-CH2CH2-E-R" 4
R'-L-C∼C-E-R" 5
In den Formeln 1, 2, 3, 4 und 5 bedeuten L und E, die gleich oder ver­ schieden sein können, jeweils unabhängig voneinander einen bivalenten Rest aus der aus -Phe-, -Cyc-, -Phe-Phe-, -Phe-Cyc-, -Cyc-Cyc-, -Pyr-, -Dio-, -G-Phe- und -G-Cyc- sowie deren Spiegelbilder gebildeten Gruppe, wobei Phe unsubstituiertes oder durch Fluor substituiertes 1,4-Phenylen, Cyc trans-1,4-Cyclohexylen oder 1,4-Cyclohexylen, Pyr Pyrimidin-2-5-diyl oder Pyridin-2,5-diyl, Dio 1,3-Dioxan-2,5-diyl und G 2-(trans-1,4-Cyclo­ hexyl)-ethyl, Pyrimidin-2,5-diyl, Pyridin-2,5-diyl oder 1,3-Dioxan-2,5-diyl bedeuten.
Vorzugsweise ist einer der Reste L und E Cyc, Phe oder Pyr. E ist vor­ zugsweise Cyc, Phe oder Phe-Cyc. Vorzugsweise enthalten die erfin­ dungsgemäßen Medien eine oder mehrere Komponenten ausgewählt aus den Verbindungen der Formeln 1, 2, 3, 4 und 5, worin L und E ausgewählt sind aus der Gruppe Cyc, Phe und Pyr und gleichzeitig eine oder mehrere Komponenten ausgewählt aus den Verbindungen der Formeln 1, 2, 3, 4 und 5, worin einer der Reste L und E ausgewählt ist aus der Gruppe Cyc, Phe und Pyr und der andere Rest ausgewählt ist aus der Gruppe -Phe- Phe-, -Phe-Cyc-, -Cyc-Cyc-, -G-Phe- und -G-Cyc-, und gegebenenfalls eine oder mehrere Komponenten ausgewählt aus den Verbindungen der Formeln 1, 2, 3, 4 und 5, worin die Reste L und E ausgewählt sind aus der Gruppe -Phe-Cyc-, -Cyc-Cyc-, -G-Phe- und -G-Cyc-.
R' und R" bedeuten in einer kleineren Untergruppe der Verbindungen der Formeln 1, 2, 3, 4 und 5 jeweils unabhängig voneinander Alkyl, Alkenyl, Alkoxy, Alkoxyalkyl, Alkenyloxy oder Alkanoyloxy mit bis zu 8 Kohlenstoff­ atomen. Im folgenden wird diese kleinere Untergruppe Gruppe A genannt und die Verbindungen werden mit den Teilformeln 1a, 2a, 3a, 4a und 5a bezeichnet. Bei den meisten dieser Verbindungen sind R' und R" vonein­ ander verschieden, wobei einer dieser Reste meist Alkyl, Alkenyl, Alkoxy oder Alkoxyalkyl ist.
In einer anderen als Gruppe B bezeichneten kleineren Untergruppe der Verbindungen der Formeln 1, 2, 3, 4 und 5 bedeutet R" -F, -Cl, -NCS oder -(O)iCH3-(k + l) FkCli, wobei i 0 oder 1 und k und I 1, 2 oder 3 sind; die Ver­ bindungen, in denen R" diese Bedeutung hat, werden mit den Teilformeln 1b, 2b, 3b, 4b und 5b bezeichnet. Besonders bevorzugt sind solche Ver­ bindungen der Teilformeln 1b, 2b, 3b, 4b und 5b, in denen R" die Bedeu­ tung -F, -Cl, -NCS, -CF3, -OCHF2 oder -OCF3 hat.
In den Verbindungen der Teilformeln 1b, 2b, 3b, 4b und 5b hat R' die bei den Verbindungen der Teilformeln 1a-5a angegebene Bedeutung und ist vorzugsweise Alkyl, Alkenyl, Alkoxy oder Alkoxyalkyl.
In einer weiteren kleineren Untergruppe der Verbindungen der Formeln 1, 2, 3, 4 und 5 bedeutet R" -CN; diese Untergruppe wird im folgenden als Gruppe C bezeichnet und die Verbindungen dieser Untergruppe werden entsprechend mit Teilformeln 1c, 2c, 3c, 4c und 5c beschrieben. In den Verbindungen der Teilformeln 1c, 2c, 3c, 4c und 5c hat R' die bei den Verbindungen der Teilformeln 1 a-5a angegebene Bedeutung und ist vorzugsweise Alkyl, Alkoxy oder Alkenyl.
Neben den bevorzugten Verbindungen der Gruppen A, B und C sind auch andere Verbindungen der Formeln 1, 2, 3, 4 und 5 mit anderen Varianten der vorgesehenen Substituenten gebräuchlich. Alle diese Substanzen sind nach literaturbekannten Methoden oder in Analogie dazu erhältlich.
Die erfindungsgemäßen Medien enthalten neben erfindungsgemäßen Verbindungen der Formel I vorzugsweise eine oder mehrere Verbin­ dungen, welche ausgewählt werden aus der Gruppe A und/oder Gruppe B und/oder Gruppe C. Die Massenanteile der Verbindungen aus diesen Gruppen an den erfindungsgemäßen Medien sind vorzugsweise:
Gruppe A:
0 bis 90%, vorzugsweise 20 bis 90%,
insbesondere 30 bis 90%
Gruppe B:
0 bis 80%, vorzugsweise 10 bis 80%,
insbesondere 10 bis 65%
Gruppe C:
0 bis 80%, vorzugsweise 5 bis 80%,
insbesondere 5 bis 50%
wobei die Summe der Massenanteile der in den jeweiligen erfindungs­ gemäßen Medien enthaltenen Verbindungen aus den Gruppen A und/oder B und/oder C vorzugsweise 5%-90% und insbesondere 10% bis 90% beträgt.
Die erfindungsgemäßen Medien enthalten vorzugsweise 1 bis 40%, insbesondere vorzugsweise 5 bis 30% der erfindungsgemäßen Verbin­ dungen. Weiterhin bevorzugt sind Medien, enthaltend mehr als 40%, insbesondere 45 bis 90% an erfindungsgemäßen Verbindungen. Die Medien enthalten vorzugsweise drei, vier oder fünf erfindungsgemäße Verbindungen.
Die Herstellung der erfindungsgemäßen Medien erfolgt in an sich üblicher Weise. In der Regel werden die Komponenten ineinander gelöst, zweck­ mäßig bei erhöhter Temperatur. Durch geeignete Zusätze können die flüssigkristallinen Phasen nach der Erfindung so modifiziert werden, daß sie in allen bisher bekannt gewordenen Arten von Flüssigkristallanzeige­ elementen verwendet werden können. Derartige Zusätze sind dem Fach­ mann bekannt und in der Literatur ausführlich beschrieben (H. Kelker/- R. Hatz, Handbook of Liquid Crystals, Verlag Chemie, Weinheim, 1980). Beispielsweise können pleochroitische Farbstoffe zur Herstellung farbiger Guest-Host-Systeme oder Substanzen zur Veränderung der dielektrischen Anisotropie, der Viskosität und/oder Orientierung der nematischen Phasen zugesetzt werden.
Die folgenden Beispiele sollen die Erfindung erläutern, ohne sie zu begrenzen. Vor- und nachstehend bedeuten Prozentangaben Gewichts­ prozent. Alle Temperaturen sind in Grad Celsius angegeben. Fp. bedeutet Schmelzpunkt, Klp. = Klärpunkt, Tg = Glastemperatur. Ferner bedeuten K = kristalliner Zustand, N = nematische Phase, Sm = smektische Phase und I = isotrope Phase. Die Angaben zwischen diesen Symbolen stellen die Übergangstemperaturen dar. Δn bedeutet optische Anisotropie (589 nm 20°C) und Δε die dielektrische Anisotropie (1 kHz, 20°C). Δn- und Δε-Werte der erfindungsgemäßen Verbindungen wurden durch Extrapolation aus flüssigkristallinen Mischungen erhalten, die zu 10% aus der jeweiligen erfindungsgemäßen Verbindung und zu 90% aus dem kommerziell erhältlichen Flüssigkristall ZLI 4792 (Fa. Merck, Darmstadt) bestanden.
Die Viskosität (mm2/sec) wurde bei 20°C bestimmt.
"Übliche Aufarbeitung" bedeutet: man gibt gegebenenfalls Wasser hinzu, extrahiert mit Methylenchlorid, Diethylether oder Toluol, trennt ab, trocknet die organische Phase, dampft ein und reinigt das Produkt durch Destil­ lation unter reduziertem Druck oder Kristallisation und/oder Chromato­ graphie.
Folgende Abkürzungen werden verwendet:
THF = Tetrahydrofuran
KOtBu = Kalium-tert.-butylat
RT = Raumtemperatur
MTB-Ether = Methyl-tert.-butylether
DCC = N,N-Dicyclohexylcarbodimid
DMAP = 4-Dimethylaminopyridin
Beispiel 1
Zu einer Lösung von 50.00 g 1 in 700 ml THF wurden bei -70°C 221.65 ml einer 15%igen Lösung von Butyllithium in Hexan getropft. Nachdem für 30 min gerührt worden war, leitete man einen Überschuß an Kohlendioxid derart in die Lösung, daß die Temperatur nicht über -50°C anstieg. Anschließend wurde die Kühlung entfernt, und die Mischung wie üblich aufgearbeitet, wodurch 2 erhalten wurde.
Beispiel 2
Zu einer Lösung von 4.21 g 3, 6.16 g DCC und 0.400 g DMAP in 60 ml Toluol wurden 5.00 g 2 portionsweise zugegeben. Nachdem für 3 h bei RT gerührt worden war, wurden 0.68 g Oxalsäure-Dihydrat zur Reaktions­ mischung gegeben. Das Gemisch wurde für 1 h gerührt und anschließend filtriert. Das Filtrat wurde wie üblich aufgearbeitet wodurch 4 erhalten wurde (T(Glas) = -54°C, T(X, I) = -7°C, Δε = 57,3, Δn = 0,107).
Beispiel 3-52
Beispiele 53-103
Beispiel 104-153

Claims (10)

1. Thiophencarbonsäureester der Formel I
worin
R1 H, einen unsubstituierten, einen mindestens einfach durch Halogen oder CN substituierten Alkylrest mit 1-12 C-Atomen, worin auch eine oder mehrere CH2- Gruppen jeweils unabhängig voneinander durch -O-, -C∼C- oder -CH=CH- so ersetzt sein können, daß Heteroatome nicht direkt verbunden sind,
X1, X2 unabhängig voneinander H oder F,
und
Y CN, F, OCF3, OCHF2, CF3, OC2F5 oder ein Perfluor­ alkylrest, worin eine oder mehrere CF2-Gruppen durch -CHF-, -O-, -CH=CH-, CF=CF, -CO-, -O-CO- oder -CO-O- ersetzt sein können, bedeutet.
2. Thiophencarbonsäureester nach Anspruch 1, dadurch gekennzeich­ net, daß R1 die Bedeutung eines Alkyl-, Oxaalkyl- oder Alkoxyrestes mit 1 bis 10 C-Atomen aufweist, worin eine CH2-Gruppe durch -C∼C- ersetzt sein kann.
3. Thiophencarbonsäureester nach Anspruch 1 oder 2, worin einer der beiden Reste X1 und X2 H und der andere F bedeutet oder worin die Reste gleichzeitig F bedeuten.
4. Thiophencarbonsäureester nach Anspruch 1, 2 oder 3, worin Y die Bedeutung CN, F oder CF3 aufweist.
5. Thiophencarbonsäureester nach Anspruch 1, 2, 3 oder 4, worin der Ring A die Bedeutung
aufweist.
6. Thiophencarbonsäureester der Formeln I1 bis I4:
worin R2 die Bedeutung einen Alkyl- oder Alkoxygruppe mit 1 bis 7 C- Atomen aufweist.
7. Verwendung von Verbindungen der Formel I nach Anspruch 1 bis 6 als Komponenten flüssigkristalliner Medien.
8. Flüssigkristallines Medium mit mindestens zwei flüssigkristallinen Komponenten, dadurch gekennzeichnet, daß es mindestens eine Verbindung der Formel I enthält.
9. Flüssigkristall-Anzeigeelement, dadurch gekennzeichnet, daß es ein flüssigkristallines Medium nach Anspruch 8 enthält.
10. Elektrooptisches Anzeigeelement, dadurch gekennzeichnet, daß es als Dielektrikum ein flüssigkristallines Medium nach Anspruch 8 enthält.
DE2001102631 2000-02-28 2001-01-20 Thiophencarbonsäureester und flüssigkristallines Medium Withdrawn DE10102631A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE2001102631 DE10102631A1 (de) 2000-02-28 2001-01-20 Thiophencarbonsäureester und flüssigkristallines Medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10009234 2000-02-28
DE2001102631 DE10102631A1 (de) 2000-02-28 2001-01-20 Thiophencarbonsäureester und flüssigkristallines Medium

Publications (1)

Publication Number Publication Date
DE10102631A1 true DE10102631A1 (de) 2001-08-30

Family

ID=7632623

Family Applications (1)

Application Number Title Priority Date Filing Date
DE2001102631 Withdrawn DE10102631A1 (de) 2000-02-28 2001-01-20 Thiophencarbonsäureester und flüssigkristallines Medium

Country Status (1)

Country Link
DE (1) DE10102631A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010011073A1 (de) 2009-04-06 2010-10-07 Merck Patent Gmbh Flüssigkristallines Medium und Flüssigkristallanzeige
JP2012518017A (ja) * 2009-02-19 2012-08-09 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 液晶媒体のためのチオフェン化合物
CN107557022A (zh) * 2016-07-01 2018-01-09 江苏和成显示科技股份有限公司 含有单环化合物的液晶组合物及其显示器件
WO2022175959A1 (en) * 2021-02-21 2022-08-25 Ramino-Bio Thiophene based compounds and use thereof as bckdk inhibitors

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012518017A (ja) * 2009-02-19 2012-08-09 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 液晶媒体のためのチオフェン化合物
DE102010011073A1 (de) 2009-04-06 2010-10-07 Merck Patent Gmbh Flüssigkristallines Medium und Flüssigkristallanzeige
US8202584B2 (en) 2009-04-06 2012-06-19 Merck Patent Gmbh Liquid-crystalline medium and liquid-crystal display
CN107557022A (zh) * 2016-07-01 2018-01-09 江苏和成显示科技股份有限公司 含有单环化合物的液晶组合物及其显示器件
CN107557022B (zh) * 2016-07-01 2023-09-12 江苏和成显示科技有限公司 含有单环化合物的液晶组合物及其显示器件
WO2022175959A1 (en) * 2021-02-21 2022-08-25 Ramino-Bio Thiophene based compounds and use thereof as bckdk inhibitors

Similar Documents

Publication Publication Date Title
EP1006098B1 (de) Querverbrückte Cyclohexan-Derivate und flüssigkristallines Medium
DE10157674B4 (de) Alkenylverbindungen mit negativer DK-Anisotropie und flüssigkristallines Medium
DE19748109B4 (de) Schwefelpentafluorid-Derivate und flüssigkristallines Medium
DE19814550A1 (de) Vinylen- und Ethylverbindungen
DE10013681A1 (de) Fluorcyclohexen-Derivate und flüssigkristallines Medium
DE19909761A1 (de) Benzofuran- und Benzodifuran-Derivate
DE10124480B4 (de) Pentafluorosulfuranylbenzol-Derivate und deren Verwendung
EP0418362B1 (de) Trifluormethylcyclohexan-derivate
DE19909760B4 (de) Benzofuran-Derivate
DE19900517A1 (de) 2,3-Dihydro-6,7-difluorbenzofuran-Derivate
DE19926044A1 (de) Tolan-Derivate und flüssigkristallines Medium
DE19945890A1 (de) Cyclohexan-Derivate und flüssigkristallines Medium
DE19933175B4 (de) Schwefelpentalfurorid-Derivate und Verwendung für ein flüssigkristallines Medium
DE19723276A1 (de) Cyclohexan-Derivate und flüssigkristallines Medium
WO1994026840A1 (de) Partiell fluorierte benzolderivate und flüssigkristallines medium
DE19714231A1 (de) Fluorcyclohexan-Derivate und flüssigkristallines Medium
WO2002098832A1 (de) Cf2o-verbrückte, axial substituierte cyclohexan-derivate
DE10134299A1 (de) Dioxanderivate und flüssigkristallines Medium
DE10058472A1 (de) Pentafluorosulfuranyloxybenzol-Derivate und flüssigkristallines Medium
DE10102631A1 (de) Thiophencarbonsäureester und flüssigkristallines Medium
DE19755245B4 (de) Spiroverbindungen
DE10218975B4 (de) 4-Alk-3-enyl-biphenyl-Derivate
DE19807371A1 (de) Perfluoralkyltetrafluorsulfanyl-Derivate und flüssigkristallines Medium
EP1174405A2 (de) Dialkinverbindungen
DE60022229T2 (de) Benzoesäureester und flüssigkristallmedium

Legal Events

Date Code Title Description
8141 Disposal/no request for examination