DE10042051A1 - Neue für das cstA-Gen kodierende Nukleotidsequenzen - Google Patents

Neue für das cstA-Gen kodierende Nukleotidsequenzen

Info

Publication number
DE10042051A1
DE10042051A1 DE10042051A DE10042051A DE10042051A1 DE 10042051 A1 DE10042051 A1 DE 10042051A1 DE 10042051 A DE10042051 A DE 10042051A DE 10042051 A DE10042051 A DE 10042051A DE 10042051 A1 DE10042051 A1 DE 10042051A1
Authority
DE
Germany
Prior art keywords
polynucleotide
gene
sequence
coding
amino acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE10042051A
Other languages
English (en)
Inventor
Bettina Moeckel
Achim Marx
Thomas Hermann
Mike Farwick
Walter Pfefferle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Degussa GmbH filed Critical Degussa GmbH
Priority to DE10042051A priority Critical patent/DE10042051A1/de
Priority to AU2001282022A priority patent/AU2001282022A1/en
Priority to EP01960554A priority patent/EP1311683B1/de
Priority to PCT/EP2001/008601 priority patent/WO2002018597A1/en
Priority to ES01960554T priority patent/ES2254463T3/es
Priority to DE60115913T priority patent/DE60115913T2/de
Priority to AT01960554T priority patent/ATE312924T1/de
Priority to US09/935,799 priority patent/US6972190B2/en
Publication of DE10042051A1 publication Critical patent/DE10042051A1/de
Priority to US11/147,238 priority patent/US20050266534A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/34Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Corynebacterium (G)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Die Erfindung betrifft ein isoliertes Polynukleotid, enthaltend eine Polynukleotidsequenz, ausgewählt aus der Gruppe DOLLAR A a) Polynukleotid, das mindestens zu 70% identisch ist mit einem Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz von SEQ ID No. 2 enthält, DOLLAR A b) Polynukleotid, das für ein Polypeptid kodiert, das eine Aminosäuresequenz enthält, die zu mindestens 70% identisch ist mit der Aminosäuresequenz von SEQ ID No. 2, DOLLAR A c) Polynukleotid, das komplementär ist zu den Polynukleotiden von a) oder b), und DOLLAR A d) Polynukleotid, enthaltend mindestens 15 aufeinanderfolgende Nukleotide der Polynukleotidsequenz von a), b) oder c), DOLLAR A und ein Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung von coryneformen Bakterien, in denen zumindest das cstA-Gen verstärkt vorliegt, und die Verwendung der Polynukleotidsequenz als Hybridisierungssonden.

Description

Gegenstand der Erfindung sind für das cstA-Gen kodierende Nukleotidsequenzen aus coryneformen Bakterien und ein Verfahren zur fermentativen Herstellung von Aminosäuren, insbesondere L-Lysin, unter Verwendung von Bakterien, in denen das cstA-Gen verstärkt wird.
Stand der Technik
L-Aminosäuren, insbesondere L-Lysin, finden in der Humanmedizin und in der pharmazeutischen Industrie, in der Lebensmittelindustrie und ganz besonders in der Tierernährung, Anwendung.
Es ist bekannt, daß Aminosäuren durch Fermentation von Stämmen coryneformer Bakterien, insbesondere Corynebacterium glutamicum, hergestellt werden. Wegen der großen Bedeutung wird ständig an der Verbesserung der Herstellverfahren gearbeitet. Verfahrensverbesserungen können fermentationstechnische Maßnahmen wie zum Beispiel Rührung und Versorgung mit Sauerstoff, oder die Zusammensetzung der Nährmedien wie zum Beispiel die Zuckerkonzentration während der Fermentation, oder die Aufarbeitung zur Produktform durch zum Beispiel Ionenaustauschchromatographie oder die intrinsischen Leistungseigenschaften des Mikroorganismus selbst betreffen.
Zur Verbesserung der Leistungseigenschaften dieser Mikroorganismen werden Methoden der Mutagenese, Selektion und Mutantenauswahl angewendet. Auf diese Weise erhält man Stämme, die resistent gegen Antimetabolite oder auxotroph für regulatorisch bedeutsame Metabolite sind und Aminosäuren produzieren.
Seit einigen Jahren werden ebenfalls Methoden der rekombinanten DNA-Technik zur Stammverbesserung von L-Aminosäure produzierenden Stämmen von Corynebacterium eingesetzt, indem man einzelne Aminosäure-Biosynthesegene amplifiziert und die Auswirkung auf die Aminosäure- Produktion untersucht.
Aufgabe der Erfindung
Werden im folgenden L-Aminosäuren oder Aminosäuren erwähnt, sind damit eine oder mehrere Aminosäuren einschließlich ihrer Salze, ausgewählt aus der Gruppe L-Asparagin, L- Threonin, L-Serin, L-Glutamat, L-Glycin, L-Alanin, L- Cystein, L-Valin, L-Methionin, L-Isoleucin, L-Leucin, L- Tyrosin, L-Phenylalanin, L-Histidin, L-Lysin, L-Tryptophan und L-Arginin gemeint.
Die Erfinder haben sich zur Aufgabe gestellt, neue Maßnahmen zur verbesserten fermentativen Herstellung von Aminosäuren, insbesondere L-Lysin, bereitzustellen.
Beschreibung der Erfindung
Wenn im folgenden Lysin oder L-Lysin erwähnt werden, sind damit nicht nur die Base, sondern auch die Salze wie z. B. Lysin-Monohydrochlorid oder Lysin-Sulfat gemeint.
Gegenstand der Erfindung ist ein isoliertes Polynukleotid aus coryneformen Bakterien, enthaltend eine für das cstA-Gen kodierende Polynukleotidsequenz, ausgewählt aus der Gruppe
  • a) Polynukleotid, das mindestens zu 70% identisch ist mit einem Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz von SEQ ID No. 2 enthält,
  • b) Polynukleotid, das für ein Polypeptid kodiert, das eine Aminosäuresequenz enthält, die zu mindestens 70% identisch ist mit der Aminosäuresequenz von SEQ ID No. 2,
  • c) Polynukleotid, das komplementär ist zu den Polynukleotiden von a) oder b), und
  • d) Polynukleotid, enthaltend mindestens 15 aufeinanderfolgende Nukleotide der Polynukleotidsequenz von a), b) oder c),
wobei das Polypeptid bevorzugt die Aktivität des Carbon Starvation Proteins A aufweist.
Gegenstand der Erfindung ist ebenfalls das oben genannte Polynukleotid, wobei es sich bevorzugt um eine replizierbare DNA handelt, enthaltend:
  • a) die Nukleotidsequenz, gezeigt in SEQ ID No. 1, oder
  • b) mindestens eine Sequenz, die der Sequenz (i) innerhalb des Bereichs der Degeneration des genetischen Kodes entspricht, oder
  • c) mindestens eine Sequenz, die mit der zur Sequenz (i) oder (ii) komplementären Sequenz hybridisiert, und gegebenenfalls
  • d) funktionsneutralen Sinnmutationen in (i)
Weitere Gegenstände sind
ein Polynukleotid enthaltend die Nukleotidsequenz wie in SEQ ID No. 1 dargestellt;
ein Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz, wie in SEQ ID No. 2 dargestellt, enthält;
ein Vektor, enthaltend das erfindungsgemäße Polynukleotid, insbesondere Pendelvektor oder Plasmidvektor, und
als Wirtszelle dienende coryneforme Bakterien, die den Vektor enthalten oder in denen das cstA-Gen verstärkt ist.
Gegenstand der Erfindung sind ebenso Polynukleotide, die im wesentlichen aus einer Polynukleotidsequenz bestehen, die erhältlich sind durch Screening mittels Hybridisierung einer entsprechenden Genbank eines coryneformen Bakteriums, die das vollständige Gen oder Teile davon enthält, mit einer Sonde, die die Sequenz des erfindungsgemäßen Polynukleotids gemäß SEQ ID No. 1 oder ein Fragment davon enthält und Isolierung der genannten Polynukleotidsequenz.
Polynukleotidsequenzen gemäß der Erfindung sind als Hybridisierungs-Sonden für RNA, cDNA und DNA geeignet, um Nukleinsäuren bzw. Polynukleotide oder Gene in voller Länge zu isolieren, die für das Carbon Starvation Protein A kodieren, oder um solche Nukleinsäuren bzw. Polynukleotide oder Gene zu isolieren, die eine hohe Ähnlichkeit der Sequenz mit der des cstA-Gens aufweisen.
Polynukleotidsequenzen gemäß der Erfindung sind weiterhin als Primer geeignet, mit deren Hilfe mit der Polymerase- Kettenreaktion (PCR) DNA von Genen hergestellt werden kann, die für das Carbon Starvation Protein A kodieren.
Solche, als Sonden oder Primer dienende Oligonukleotide, enthalten mindestens 30, bevorzugt mindestens 20, ganz besonders bevorzugt mindestens 15 aufeinanderfolgende Nukleotide. Geeignet sind ebenfalls Oligonukleotide mit einer Länge von mindestens 40 oder 50 Nukleotiden.
"Isoliert" bedeutet aus seinem natürlichen Umfeld herausgetrennt.
"Polynukleotid" bezieht sich im allgemeinen auf Polyribonukleotide und Polydeoxyribonukleotide, wobei es sich um nicht modifizierte RNA oder DNA oder modifizierte RNA oder DNA handeln kann.
Die Polynukleotide gemäß Erfindung schließen ein Polynukleotid gemäß SEQ ID No. 1 oder ein daraus hergestelltes Fragment und auch solche ein, die zu wenigstens 70%, bevorzugt zu wenigstens 80% und besonders zu wenigstens 90% bis 95% identisch sind mit dem Polynukleotid gemäß SEQ ID No. 1 oder eines daraus hergestellten Fragments.
Unter "Polypeptiden" versteht man Peptide oder Proteine, die zwei oder mehr über Peptidbindungen verbundene Aminosäuren enthalten.
Die Polypeptide gemäß Erfindung schließen ein Polypeptid gemäß SEQ ID No. 2, insbesondere solche mit der biologischen Aktivität des Carbon Starvation Proteins A und auch solche ein, die zu wenigstens 70%, bevorzugt zu wenigstens 80% und besonders die zu wenigstens 90% bis 95% identisch sind mit dem Polypeptid gemäß SEQ ID No. 2 und die genannte Aktivität aufweisen.
Die Erfindung betrifft weiterhin ein Verfahren zur fermentativen Herstellung von Aminosäuren, insbesondere L-Lysin, unter Verwendung von coryneformen Bakterien, die insbesondere bereits Aminosäuren produzieren, und in denen die für das cstA-Gen kodierenden Nukleotidsequenzen verstärkt, insbesondere überexprimiert werden.
Der Begriff "Verstärkung" beschreibt in diesem Zusammenhang die Erhöhung der intrazellulären Aktivität eines oder mehrerer Enzyme in einem Mikroorganismus, die durch die entsprechende DNA kodiert werden, indem man beispielsweise die Kopienzahl des Gens bzw. der Gene erhöht, einen starken Promotor verwendet oder ein Gen verwendet, das für ein entsprechendes Enzym mit einer hohen Aktivität kodiert und gegebenenfalls diese Maßnahmen kombiniert.
Die Mikroorganismen, die Gegenstand der vorliegenden Erfindung sind, können L-Aminosäuren, insbesondere L-Lysin, aus Glucose, Saccharose, Lactose, Fructose, Maltose, Melasse, Stärke, Cellulose oder aus Glycerin und Ethanol herstellen. Es kann sich um Vertreter coryneformer Bakterien insbesondere der Gattung Corynebacterium handeln. Bei der Gattung Corynebacterium ist insbesondere die Art Corynebacterium glutamicum zu nennen, die in der Fachwelt für ihre Fähigkeit bekannt ist, L-Aminosäuren zu produzieren.
Geeignete Stämme der Gattung Corynebacterium, insbesondere der Art Corynebacterium glutamicum (C. glutamicum), sind besonders die bekannten Wildtypstämme
Corynebacterium glutamicum ATCC13032
Corynebacterium acetoglutamicum ATCC15806
Corynebacterium acetoacidophilum ATCC13870
Corynebacterium thermoaminogenes FERM BP-1539
Corynebacterium melassecola ATCC17965
Brevibacterium flavum ATCC14067
Brevibacterium lactofermentum ATCC13869 und
Brevibacterium divaricatum ATCC14020
und daraus hergestellte L-Lysin produzierende Mutanten bzw. Stämme, wie beispielsweise
Corynebacterium glutamicum FERM-P 1709
Brevibacterium flavum FERM-P 1708
Brevibacterium lactofermentum FERM-P 1712
Corynebacterium glutamicum FERM-P 6463
Corynebacterium glutamicum FERM-P 6464 und
Corynebacterium glutamicum DSM5715.
Den Erfindern gelang es, das neue, für das Carbon Starvation Protein A kodierende cstA-Gen von C. glutamicum zu isolieren.
Zur Isolierung des cstA-Gens oder auch anderer Gene von C. glutamicum wird zunächst eine Genbank dieses Mikroorganismus in Escherichia coli (E. coli) angelegt.
Das Anlegen von Genbanken ist in allgemein bekannten Lehrbüchern und Handbüchern niedergeschrieben. Als Beispiel seien das Lehrbuch von Winnacker: Gene und Klone, Eine Einführung in die Gentechnologie (Verlag Chemie, Weinheim, Deutschland, 1990), oder das Handbuch von Sambrook et al.: Molecular Cloning, A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1989) genannt. Eine sehr bekannte Genbank ist die des E. coli K-12 Stammes W3110, die von Kohara et al. (Cell 50, 495-508 (1987)) in λ-Vektoren angelegt wurde. Bathe et al. (Molecular and General Genetics, 252: 255-265, 1996) beschreiben eine Genbank von C. glutamicum ATCC13032, die mit Hilfe des Cosmidvektors SuperCos I (Wahl et al., 1987, Proceedings of the National Academy of Sciences USA, 84: 2160-2164) im E. coli K-12 Stamm NM554 (Raleigh et al., 1988, Nucleic Acids Research 16: 1563-1575) angelegt wurde.
Börmann et al. (Molecular Microbiology 6(3), 317-326 (1992)) wiederum beschreiben eine Genbank von C. glutamicum ATCC13032 unter Verwendung des Cosmids pHC79 (Hohn und Collins, Gene 11, 291-298 (1980)). Zur Herstellung einer Genbank von C. glutamicum in E. coli können auch Plasmide wie pBR322 (Bolivar, Life Sciences, 25, 807-818 (1979)) oder pUC9 (Vieira et al., 1982, Gene, 19: 259-268) verwendet werden. Als Wirte eignen sich besonders solche E. coli Stämme, die restriktions- und rekombinationsdefekt sind. Ein Beispiel hierfür ist der Stamm DH5αmcr, der von Grant et al. (Proceedings of the National Academy of Sciences USA, 87 (1990) 4645-4649) beschrieben wurde. Die mit Hilfe von Cosmiden klonierten langen DNA-Fragmente können anschließend wiederum in gängige, für die Sequenzierung geeignete Vektoren subkloniert und anschließend sequenziert werden, so wie es z. B. bei Sanger et al. (Proceedings of the National Academy of Sciences of the United States of America, 74: 5463-5467, 1977) beschrieben ist.
Die erhaltenen DNA-Sequenzen können dann mit bekannten Algorithmen bzw. Sequenzanalyse-Programmen wie z. B. dem von Staden (Nucleic Acids Research 14, 217-232 (1986)), dem von Marck (Nucleic Acids Research 16, 1829-1836 (1988)) oder dem GCG-Programm von Butler (Methods of Biochemical Analysis 39, 74-97 (1998)) untersucht werden.
Auf diese Weise wurde die neue für das Gen cstA kodierende DNA-Sequenz von C. glutamicum erhalten, die als SEQ ID No. 1 Bestandteil der vorliegenden Erfindung ist. Weiterhin wurde aus der vorliegenden DNA-Sequenz mit den oben beschriebenen Methoden die Aminosäuresequenz des entsprechenden Proteins abgeleitet. In SEQ ID No. 2 ist die sich ergebende Aminosäuresequenz des cstA-Genproduktes dargestellt.
Kodierende DNA-Sequenzen, die sich aus SEQ ID No. 1 durch die Degeneriertheit des genetischen Kodes ergeben, sind ebenfalls Bestandteil der Erfindung. In gleicher Weise sind DNA-Sequenzen, die mit SEQ ID No. 1 oder Teilen von SEQ ID No. 1 hybridisieren, Bestandteil der Erfindung. In der Fachwelt sind weiterhin konservative Aminosäureaustausche wie z. B. Austausch von Glycin gegen Alanin oder von Asparaginsäure gegen Glutaminsäure in Proteinen als "Sinnmutationen" ("sense mutations") bekannt, die zu keiner grundsätzlichen Veränderung der Aktivität des Proteins führen, d. h. funktionsneutral sind. Weiterhin ist bekannt, daß Änderungen am N- und/oder C-Terminus eines Proteins dessen Funktion nicht wesentlich beeinträchtigen oder sogar stabilisieren können. Angaben hierzu findet der Fachmann unter anderem bei Ben-Bassat et al. (Journal of Bacteriology 169: 751-757 (1987)), bei O'Regan et al. (Gene 77: 237-251 (1989)), bei Sahin-Toth et al. (Protein Sciences 3: 240-247 (1994)), bei Hochuli et al. (Bio/Technology 6: 1321-1325 (1988)) und in bekannten Lehrbüchern der Genetik und Molekularbiologie. Aminosäuresequenzen, die sich in entsprechender Weise aus SEQ ID No. 2 ergeben, sind ebenfalls Bestandteil der Erfindung.
In gleicher Weise sind DNA-Sequenzen, die mit SEQ ID No. 1 oder Teilen von SEQ ID No. 1 hybridisieren Bestandteil der Erfindung. Schließlich sind DNA-Sequenzen Bestandteil der Erfindung, die durch die Polymerase-Kettenreaktion (PCR) unter Verwendung von Primern hergestellt werden, die sich aus SEQ ID No. 1 ergeben. Derartige Oligonukleotide haben typischerweise eine Länge von mindestens 15 Nukleotiden.
Anleitungen zur Identifizierung von DNA-Sequenzen mittels Hybridisierung findet der Fachmann unter anderem im Handbuch "The DIG System Users Guide for Filter Hybridization" der Firma Boehringer Mannheim GmbH (Mannheim, Deutschland, 1993) und bei Liebl et al. (International Journal of Systematic Bacteriology (1991) 41: 255-260). Die Hybridisierung findet unter stringenten Bedingungen statt, das heisst, es werden nur Hybride gebildet, bei denen Sonde und Zielsequenz, d. h. die mit der Sonde behandelten Polynukleotide, mindestens 70% identisch sind. Es ist bekannt, dass die Stringenz der Hybridisierung einschließlich der Waschschritte durch Variieren der Pufferzusammensetzung, der Temperatur und der Salzkonzentration beeinflußt bzw. bestimmt wird. Die Hybridisierungsreaktion wird vorzugsweise bei relativ niedriger Stringenz im Vergleich zu den Waschschritten durchgeführt (Hybaid Hybridisation Guide, Hybaid Limited, Teddington, UK, 1996).
Für die Hybridisierungsreaktion kann beispielsweise ein 5 × SSC-Puffer bei einer Temperatur von ca. 50-68°C eingesetzt werden. Dabei können Sonden auch mit Polynukleotiden hybridisieren, die weniger als 70% Identität zur Sequenz der Sonde aufweisen. Solche Hybride sind weniger stabil und werden durch Waschen unter stringenten Bedingungen entfernt. Dies kann beispielsweise durch Senken der Salzkonzentration auf 2 × SSC und nachfolgend 0,5 × SSC (The DIG System Users Guide for Filter Hybridisation, Boehringer Mannheim, Mannheim, Deutschland, 1995) erreicht werden, wobei eine Temperatur von ca. 50-68°C eingestellt wird. Es ist gegebenenfalls möglich die Salzkonzentration bis auf 0,1 × SSC zu senken. Durch schrittweise Erhöhung der Hybridisierungstemperatur in Schritten von ca. 1-2°C können Polynukleotidfragmente isoliert werden, die beispielsweise mindestens 70% oder mindestens 80% oder mindestens 90% bis 95% Identität zur Sequenz der eingesetzten Sonde besitzen. Weitere Anleitungen zur Hybridisierung sind in Form sogenannter Kits am Markt erhältlich (z. B. DIG Easy Hyb von der Firma Roche Diagnostics GmbH, Mannheim, Deutschland, Catalog No. 1603558).
Anleitungen zur Amplifikation von DNA-Sequenzen mit Hilfe der Polymerase-Kettenreaktion (PCR) findet der Fachmann unter anderem im Handbuch von Gait: Oligonukleotide synthesis: A Practical Approach (IRL Press, Oxford, UK, 1984) und bei Newton und Graham: PCR (Spektrum Akademischer Verlag, Heidelberg, Deutschland, 1994).
Es wurde gefunden, daß coryneforme Bakterien nach Überexpression des cstA-Gens in verbesserter Weise Aminosäuren, insbesondere L-Lysin, produzieren.
Zur Erzielung einer Überexpression kann die Kopienzahl der entsprechenden Gene erhöht werden, oder es kann die Promotor- und Regulationsregion oder die Ribosomenbindungsstelle, die sich stromaufwärts des Strukturgens befindet, mutiert werden. In gleicher Weise wirken Expressionskassetten, die stromaufwärts des Strukturgens eingebaut werden. Durch induzierbare Promotoren ist es zusätzlich möglich, die Expression im Verlaufe der fermentativen Lysin-Produktion zu steigern. Durch Maßnahmen zur Verlängerung der Lebensdauer der m-RNA wird ebenfalls die Expression verbessert. Weiterhin wird durch Verhinderung des Abbaus des Enzymproteins ebenfalls die Enzymaktivität verstärkt. Die Gene oder Genkonstrukte können entweder in Plasmiden mit unterschiedlicher Kopienzahl vorliegen oder im Chromosom integriert und amplifiziert sein. Alternativ kann weiterhin eine Überexpression der betreffenden Gene durch Veränderung der Medienzusammensetzung und Kulturführung erreicht werden.
Anleitungen hierzu findet der Fachmann unter anderem bei Martin et al. (Bio/Technology 5, 137-146 (1987)), bei Guerrero et al. (Gene 138, 35-41 (1994)), Tsuchiya und Morinaga (Bio/Technology 6, 428-430 (1988)), bei Eikmanns et al. (Gene 102, 93-98 (1991)), in der Europäischen Patentschrift 0 472 869, im US Patent 4,601,893, bei Schwarzer und Pühler (Bio/Technology 9, 84-87 (1991)), bei Remscheid et al. (Applied and Environmental Microbiology 60, 126-132 (1994)), bei Laßarre et al. (Journal of Bacteriology 175, 1001-1007 (1993)), in der Patentanmeldung WO 96/15246, bei Malumbres et al. (Gene 134, 15-24 (1993)), in der japanischen Offenlegungsschrift JP-A-10-229891, bei Jensen und Hammer (Biotechnology and Bioengineering 58, 191-195 (1998)), bei Makrides (Microbiological Reviews 60: 512-538 (1996)) und in bekannten Lehrbüchern der Genetik und Molekularbiologie.
Zur Verstärkung wurde das erfindungsgemäße cstA-Gen beispielhaft mit Hilfe von episomalen Plasmiden überexprimiert. Als Plasmide eignen sich solche, die in coryneformen Bakterien repliziert werden. Zahlreiche bekannte Plasmidvektoren wie z. B. pZ1 (Menkel et al., Applied and Environmental Microbiology (1989) 64: 549-554), pEKEx1 (Eikmanns et al., Gene 102: 93-98 (1991)) oder pHS2-1 (Sonnen et al., Gene 107: 69-74 (1991)) beruhen auf den kryptischen Plasmiden pHM1519, pBL1 oder pGA1. Andere Plasmidvektoren wie z. B. solche, die auf pCG4 (US-A 4,489,160), oder pNG2 (Serwold-Davis et al., FEMS Microbiology Letters 66, 119-124 (1990)), oder pAG1 (US-A 5,158,891) beruhen, können in gleicher Weise verwendet werden.
Weiterhin eignen sich auch solche Plasmidvektoren mit Hilfe derer man das Verfahren der Genamplifikation durch Integration in das Chromosom anwenden kann, so wie es beispielsweise von Remscheid et al. (Applied and Environmental Microbiology 60, 126-132 (1994)) zur Duplikation bzw. Amplifikation des hom-thrB-Operons beschrieben wurde. Bei dieser Methode wird das vollständige Gen in einen Plasmidvektor kloniert, der in einem Wirt (typischerweise E. coli), nicht aber in C. glutamicum replizieren kann. Als Vektoren kommen beispielsweise pSUP301 (Simon et al., Bio/Technology 1, 784-791 (1983)), pK18mob oder pK19mob (Schäfer et al., Gene 145, 69-73 (1994)), pGEM-T (Promega corporation, Madison, WI, USA), pCR2.1-TOPO (Shuman (1994). Journal of Biological Chemistry 269: 32678-84; US-A 5,487,993), pCR®Blunt (Firma Invitrogen; Groningen, Niederlande; Bernard et al., Journal of Molecular Biology, 234: 534-541 (1993)), pEM1 (Schrumpf et al. 1991, Journal of Bacteriology 173: 4510-4516) oder pBGS8 (Spratt et al., 1986, Gene 41: 337-342) in Frage. Der Plasmidvektor, der das zu amplifizierende Gen enthält, wird anschließend durch Konjugation oder Transformation in den gewünschten Stamm von C. glutamicum überführt. Die Methode der Konjugation ist beispielsweise bei Schäfer et al. (Applied and Environmental Microbiology 60, 756-759 (1994)) beschrieben. Methoden zur Transformation sind beispielsweise bei Thierbach et al. (Applied Microbiology and Biotechnology 29, 356-362 (1988)), Dunican und Shivnan (Bio/Technology 7, 1067-1070 (1989)) und Tauch et al. (FEMS Microbiological Letters 123, 343-347 (1994)) beschrieben. Nach homologer Rekombination mittels eines "cross over"-Ereignisses enthält der resultierende Stamm mindestens zwei Kopien des betreffenden Gens.
Zusätzlich kann es für die Produktion von Aminosäuren, insbesondere L-Lysin, vorteilhaft sein, neben dem cstA-Gen eines oder mehrere Enzyme des jeweiligen Biosyntheseweges, der Glykolyse, der Anaplerotik, des Zitronensäure-Zyklus oder des Aminosäure-Exports und gegebenenfalls regulatorische Proteine zu verstärken.
So kann beispielsweise für die Herstellung von Aminosäuren, insbesondere L-Lysin, eines oder mehrere Gene, ausgewählt aus der Gruppe
  • - das für die Dihydrodipicolinat-Synthase kodierende Gen dapA (EP-B 0 197 335),
  • - das für die Glyceraldehyd-3-Phosphat Dehydrogenase kodierende Gen gap (Eikmanns (1992), Journal of Bacteriology 174: 6076-6086),
  • - das für die Triosephosphat Isomerase kodierende Gen tpi (Eikmanns (1992), Journal of Bacteriology 174: 6076-6086),
  • - das für die 3-Phosphoglycerat Kinase kodierende Gen pgk (Eikmanns (1992), Journal of Bacteriology 174: 6076-6086),
  • - das für die Pyruvat Carboxylase kodierende Gen pyc (Peters-Wendisch et al. (Microbiology 144, 915-927 (1998)),
  • - das für eine feed back resistente Aspartatkinase kodierende Gen lysC (Kalinowski et al. (1990), Molecular and General Genetics 224, 317-324; Accession No. P26512),
  • - das für den Lysin-Export kodierende Gen lysE (DE-A-195 48 222),
  • - das für das Zwa1-Protein kodierende Gen zwa1 (DE 199 59 328.0, DSM 13115)
verstärkt, insbesondere überexprimiert werden.
Weiterhin kann es für die Produktion von Aminosäuren, insbesondere L-Lysin, vorteilhaft sein, zusätzlich zur Verstärkung des cstA-Gens eines oder mehrere Gene, ausgewählt aus der Gruppe
  • - das für die Phosphoenolpyruvat-Carboxykinase kodierende Gen pck (DE 199 50 409.1; DSM 13047),
  • - das für die Glucose-6-Phosphat Isomerase kodierende Gen pgi (US 09/396,478; DSM 12969),
  • - das für die Pyruvat-Oxidase kodierende Gen poxB (DE 199 51 975.7; DSM 13114),
  • - das für das Zwa2-Protein kodierende Gen zwa2 (DE 199 59 327.2, DSM 13113)
abzuschwächen, insbesondere die Expression zu verringern.
Weiterhin kann es für die Produktion von Aminosäuren, insbesondere L-Lysin, vorteilhaft sein, neben der Überexpression des cstA-Gens unerwünschte Nebenreaktionen auszuschalten (Nakayama: "Breeding of Amino Acid Producing Micro-organisms", in: Overproduction of Microbial Products, Krumphanzl, Sikyta, Vanek (eds.), Academic Press, London, UK, 1982).
Die erfindungsgemäß hergestellten Mikroorganismen können kontinuierlich oder diskontinuierlich im batch - Verfahren (Satzkultivierung) oder im fed batch (Zulaufverfahren) oder repeated fed batch Verfahren (repetitives Zulaufverfahren) zum Zwecke der Produktion von Aminosäuren, insbesondere L-Lysin kultiviert werden. Eine Zusammenfassung über bekannte Kultivierungsmethoden sind im Lehrbuch von Chmiel (Bioprozeßtechnik 1. Einführung in die Bioverfahrenstechnik (Gustav Fischer Verlag, Stuttgart, 1991)) oder im Lehrbuch von Storhas (Bioreaktoren und periphere Einrichtungen (Vieweg Verlag, Braunschweig/Wiesbaden, 1994)) beschrieben.
Das zu verwendende Kulturmedium muß in geeigneter Weise den Ansprüchen der jeweiligen Stämme genügen. Beschreibungen von Kulturmedien verschiedener Mikroorganismen sind im Handbuch "Manual of Methods for General Bacteriology" der American Society for Bacteriology (Washington D. C., USA, 1981) enthalten.
Als Kohlenstoffquelle können Zucker und Kohlehydrate wie z. B. Glucose, Saccharose, Lactose, Fructose, Maltose, Melasse, Stärke und Cellulose, Öle und Fette wie z. B. Sojaöl, Sonnenblumenöl, Erdnußöl und Kokosfett, Fettsäuren wie z. B. Palmitinsäure, Stearinsäure und Linolsäure, Alkohole wie z. B. Glycerin und Ethanol und organische Säuren wie z. B. Essigsäure verwendet werden. Diese Stoffe können einzeln oder als Mischung verwendet werden.
Als Stickstoffquelle können organische Stickstoff haltige Verbindungen wie Peptone, Hefeextrakt, Fleischextrakt, Malzextrakt, Maisquellwasser, Sojabohnenmehl und Harnstoff oder anorganische Verbindungen wie Ammoniumsulfat, Ammoniumchlorid, Ammoniumphosphat, Ammoniumcarbonat und Ammoniumnitrat verwendet werden. Die Stickstoffquellen können einzeln oder als Mischung verwendet werden.
Als Phosphorquelle können Phosphorsäure, Kaliumdihydrogen­ phosphat oder Dikaliumhydrogenphosphat oder die entsprechenden Natrium haltigen Salze verwendet werden. Das Kulturmedium muß weiterhin Salze von Metallen enthalten wie z. B. Magnesiumsulfat oder Eisensulfat, die für das Wachstum notwendig sind. Schließlich können essentielle Wuchsstoffe wie Aminosäuren und Vitamine zusätzlich zu den oben genannten Stoffen eingesetzt werden. Dem Kulturmedium können überdies geeignete Vorstufen zugesetzt werden. Die genannten Einsatzstoffe können zur Kultur in Form eines einmaligen Ansatzes hinzugegeben oder in geeigneter Weise während der Kultivierung zugefüttert werden.
Zur pH-Kontrolle der Kultur werden basische Verbindungen wie Natriumhydroxid, Kaliumhydroxid, Ammoniak bzw. Ammoniakwasser oder saure Verbindungen wie Phosphorsäure oder Schwefelsäure in geeigneter Weise eingesetzt. Zur Kontrolle der Schaumentwicklung können Antischaummittel wie z. B. Fettsäurepolyglykolester eingesetzt werden. Zur Aufrechterhaltung der Stabilität von Plasmiden können dem Medium geeignete selektiv wirkende Stoffe wie z. B. Antibiotika hinzugefügt werden. Um aerobe Bedingungen aufrechtzuerhalten, werden Sauerstoff oder Sauerstoff haltige Gasmischungen wie z. B. Luft in die Kultur eingetragen. Die Temperatur der Kultur liegt normalerweise bei 20°C bis 45°C und vorzugsweise bei 25°C bis 40°C. Die Kultur wird solange fortgesetzt, bis sich ein Maximum des gewünschten Produktes gebildet hat. Dieses Ziel wird normalerweise innerhalb von 10 Stunden bis 160 Stunden erreicht.
Die Analyse von Lysin kann durch Ionenaustauschchromatographie mit anschließender Ninhydrin- Derivatisierung erfolgen, so wie bei Spackman et al. (Analytical Chemistry, 30, (1958), 1190) beschrieben.
Das erfindungsgemäße Verfahren dient zur fermentativen Herstellung von Aminosäuren, insbesondere L-Lysin.
Die vorliegende Erfindung wird im folgenden anhand von Ausführungsbeispielen näher erläutert.
Die Isolierung von Plasmid-DNA aus Escherichia coli sowie alle Techniken zur Restriktion, Klenow- und alkalische Phosphatasebehandlung wurden nach Sambrook et al. (Molecular Cloning. A Laboratory Manual (1989) Cold Spring Harbour Laboratory Press, Cold Spring Harbor, NY, USA) durchgeführt. Methoden zur Transformation von Escherichia coli sind ebenfalls in diesem Handbuch beschrieben.
Die Zusammensetzung gängiger Nährmedien wie LB- oder TY- Medium kann ebenfalls dem Handbuch von Sambrook et al. entnommen werden.
Beispiel 1 Herstellung einer genomischen Cosmid-Genbank aus Corynebacterium glutamicum ATCC 13032
Chromosomale DNA aus Corynebacterium glutamicum ATCC 13032 wurde wie bei Tauch et al. (1995, Plasmid 33: 168-179) beschrieben isoliert und mit dem Restriktionsenzym Sau3AI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung Sau3AI, Code no. 27-0913-02) partiell gespalten. Die DNA-Fragmente wurden mit shrimp alkalischer Phosphatase (Roche Diagnostics GmbH, Mannheim, Deutschland, Produktbeschreibung SAP, Code no. 1758250) dephosphoryliert. Die DNA des Cosmid-Vektors SuperCos1 (Wahl et al. (1987) Proceedings of the National Academy of Sciences USA 84: 2160-2164), bezogen von der Firma Stratagene (La Jolla, USA, Produktbeschreibung SuperCos1 Cosmid Vektor Kit, Code no. 251301) wurde mit dem Restriktionsenzym XbaI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung XbaI, Code no. 27-0948-02) gespalten und ebenfalls mit shrimp alkalischer Phosphatase dephosphoryliert.
Anschließend wurde die Cosmid-DNA mit dem Restriktionsenzym BamHI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung BamHI, Code no. 27-0868-04) gespalten. Die auf diese Weise behandelte Cosmid-DNA wurde mit der behandelten ATCC13032-DNA gemischt und der Ansatz mit T4- DNA-Ligase (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung T4-DNA-Ligase, Code no. 27-0870-04) behandelt. Das Ligationsgemisch wurde anschließend mit Hilfe des Gigapack II XL Packing Extracts (Stratagene, La Jolla, USA, Produktbeschreibung Gigapack II XL Packing Extract, Code no. 200217) in Phagen verpackt.
Zur Infektion des E. coli Stammes NM554 (Raleigh et al. 1988, Nucleic Acid Research 16: 1563-1575) wurden die Zellen in 10 mM MgSO4 aufgenommen und mit einem Aliquot der Phagensuspension vermischt. Infektion und Titerung der Cosmidbank wurden wie bei Sambrook et al. (1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor) beschrieben durchgeführt, wobei die Zellen auf LB-Agar (Lennox, 1955, Virology, 1: 190) mit 100 mg/l Ampicillin ausplattiert wurden. Nach Inkubation über Nacht bei 37°C wurden rekombinante Einzelklone selektioniert.
Beispiel 2 Isolierung und Sequenzierung des cstA-Gens
Die Cosmid-DNA einer Einzelkolonie wurde mit dem Qiaprep Spin Miniprep Kit (Product No. 27106, Qiagen, Hilden, Germany) nach Herstellerangaben isoliert und mit dem Restriktionsenzym Sau3AI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung Sau3AI, Product No. 27-0913-02) partiell gespalten. Die DNA-Fragmente wurden mit shrimp alkalischer Phosphatase (Roche Diagnostics GmbH, Mannheim, Deutschland, Produktbeschreibung SAP, Product No. 1758250) dephosphoryliert. Nach gelelektrophoretischer Auftrennung erfolgte die Isolierung der Cosmidfragmente im Größenbereich von 1500 bis 2000 bp mit dem QiaExII Gel Extraction Kit (Product No. 20021, Qiagen, Hilden, Germany).
Die DNA des Sequenziervektors pZero-1 bezogen von der Firma Invitrogen (Groningen, Niederlande, Produktbeschreibung Zero Background Cloning Kit, Product No. K2500-01) wurde mit dem Restriktionsenzym BamHI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung BamHI, Product No. 27-0868-04) gespalten. Die Ligation der Cosmidfragmente in den Sequenziervektor pZero-1 wurde wie von Sambrook et al. (1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor) beschrieben durchgeführt, wobei das DNA-Gemisch mit T4-Ligase (Pharmacia Biotech, Freiburg, Deutschland) über Nacht inkubiert wurde. Dieses Ligationsgemisch wurde anschließend in den E. coli Stamm DHSαMCR (Grant, 1990, Proceedings of the National Academy of Sciences U. S. A., 87: 4645-4649) elektroporiert (Tauch et al. 1994, FEMS Microbiol Letters, 123: 343-7) und auf LB- Agar (Lennox, 1955, Virology, 1: 190) mit 50 mg/l Zeocin ausplattiert.
Die Plasmidpräparation der rekombinanten Klone erfolgte mit dem Biorobot 9600 (Product No. 900200, Qiagen, Hilden; Deutschland). Die Sequenzierung erfolgte nach der Dideoxy- Kettenabbruch-Methode von Sanger et al. (1977, Proceedings of the National Academy of Sciences U.S.A., 74: 5463-5467) mit Modifikationen nach Zimmermann et al. (1990, Nucleic Acids Research, 18: 1067). Es wurde der "RR dRhodamin Terminator Cycle Sequencing Kit" von PE Applied Biosystems (Product No. 403044, Weiterstadt, Deutschland) verwendet. Die gelelektrophoretische Auftrennung und Analyse der Sequenzierreaktion erfolgte in einem "Rotiphorese NF Acrylamid/Bisacrylamid" Gel (29: 1) (Product No. A124.1, Roth, Karlsruhe, Germany) mit dem "ABI Prism 377" Sequenziergerät von PE Applied Biosystems (Weiterstadt, Deutschland).
Die erhaltenen Roh-Sequenzdaten wurden anschließend unter Anwendung des Staden-Programpakets (1986, Nucleic Acids Research, 14: 217-231) Version 97-0 prozessiert. Die Einzelsequenzen der pZero1-Derivate wurden zu einem zusammenhängenden Contig assembliert. Die computergestützte Kodierbereichsanalyse wurde mit dem Programm XNIP (Staden, 1986, Nucleic Acids Research, 14: 217-231) angefertigt.
Die erhaltene Nukleotidsequenz ist in SEQ ID No. 1 dargestellt. Die Analyse der Nukleotidsequenz ergab ein offenes Leseraster von 2316 Basenpaaren, welches als cstA- Gen bezeichnet wurde. Das cstA-Gen kodiert für ein Protein von 772 Aminosäuren.
SEQUENZPROTOKOLL

Claims (21)

1. Isoliertes Polynukleotid aus coryneformen Bakterien, enthaltend eine für das cstA-Gen kodierende Polynukleotidsequenz, ausgewählt aus der Gruppe
  • a) Polynukleotid, das mindestens zu 70% identisch ist mit einem Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz von SEQ ID No. 2 enthält,
  • b) Polynukleotid, das für ein Polypeptid kodiert, das eine Aminosäuresequenz enthält, die zu mindestens 70% identisch ist mit der Aminosäuresequenz von SEQ ID No. 2,
  • c) Polynukleotid, das komplementär ist zu den Polynukleotiden von a) oder b), und
  • d) Polynukleotid, enthaltend mindestens 15 aufeinanderfolgende Nukleotide der Polynukleotidsequenz von a), b) oder c),
wobei das Polypeptid bevorzugt die Aktivität des Carbon Starvation Proteins A aufweist.
2. Polynukleotid gemäß Anspruch 1, wobei das Polynukleotid eine in coryneformen Bakterien replizierbare, bevorzugt rekombinante DNA ist.
3. Polynukleotid gemäß Anspruch 1, wobei das Polynukleotid eine RNA ist.
4. Polynukleotid gemäß Anspruch 2, enthaltend die Nukleinsäuresequenz wie in SEQ ID No. 1 dargestellt.
5. Replizierbare DNA gemäß Anspruch 2, enthaltend
  • a) die Nukleotidsequenz, gezeigt in SEQ ID No. 1, oder
  • b) mindestens eine Sequenz, die der Sequenz (i) innerhalb des Bereichs der Degeneration des genetischen Kodes entspricht, oder
  • c) mindestens eine Sequenz, die mit der zur Sequenz (i) oder (ii) komplementären Sequenz hybridisiert, und gegebenenfalls
  • d) funktionsneutrale Sinnmutationen in (i).
6. Polynukleotidsequenz gemäß Anspruch 2, die für ein Polypeptid kodiert, das die in SEQ ID No. 2 dargestellte Aminosäuresequenz enthält.
7. Coryneforme Bakterien, in denen das cstA-Gen verstärkt, insbesondere überexprimiert wird.
8. Verfahren zur fermentativen Herstellung von L- Aminosäuren, insbesondere L-Lysin, dadurch gekennzeichnet, daß man folgende Schritte durchführt:
  • a) Fermentation der die gewünschte L-Aminosäure produzierenden coryneformen Bakterien, in denen man zumindest das cstA-Gen oder dafür kodierende Nukleotidsequenzen verstärkt, insbesondere überexprimiert;
  • b) Anreicherung der L-Aminosäure im Medium oder in den Zellen der Bakterien, und
  • c) Isolieren der L-Aminosäure.
9. Verfahren gemäß Anspruch 8, dadurch gekennzeichnet, daß man Bakterien einsetzt, in denen man zusätzlich weitere Gene des Biosyntheseweges der gewünschten L-Aminosäure verstärkt.
10. Verfahren gemäß Anspruch 8, dadurch gekennzeichnet, daß man Bakterien einsetzt, in denen die Stoffwechselwege zumindest teilweise ausgeschaltet sind, die die Bildung der gewünschten L-Aminosäure verringern.
11. Verfahren gemäß Anspruch 8, dadurch gekennzeichnet, daß man einen mit einem Plasmidvektor transformierten Stamm einsetzt, und der Plasmidvektor die für das cstA-Gen kodierende Nukleotidsequenz trägt.
12. Verfahren gemäß Anspruch 8, dadurch gekennzeichnet, daß man die Expression des Polynukleotides, das für das cstA-Gen kodiert verstärkt, insbesondere überexprimiert.
13. Verfahren gemäß Anspruch 8, dadurch gekennzeichnet, daß man die regulatorischen Eigenschaften des Polypetids erhöht, für das das Polynukleotid cstA kodiert.
14. Verfahren gemäß Anspruch 8, dadurch gekennzeichnet, daß man zur Herstellung von L-Aminosäuren, insbesondere L-Lysin, coryneforme Mikroorganismen fermentiert, in denen man gleichzeitig eines oder mehrere der Gene, ausgewählt aus der Gruppe
  • 1. 14.1 das für eine feed back resistente Aspartatkinase kodierende Gen lysC,
  • 2. 14.2 das für die Dihydrodipicolinat-Synthase kodierende Gen dapA,
  • 3. 14.3 das für die Glycerinaldehyd-3-Phosphat Dehydrogenase kodierende Gen gap,
  • 4. 14.4 das für die 3-Phosphoglycerat Kinase kodierende Gen pgk,
  • 5. 14.5 das für die Pyruvat Carboxylase kodierende Gen pyc,
  • 6. 14.6 das für die Triosephosphat Isomerase kodierende Gen tpi,
  • 7. 14.7 das für den Lysin-Export kodierende Gen lysE,
  • 8. 14.8 das für das Zwa1-Protein kodierende Gen zwa1, verstärkt bzw. überexprimiert.
15. Verfahren gemäß Anspruch 8, dadurch gekennzeichnet, daß man zur Herstellung von L-Aminosäuren, insbesondere L-Lysin, coryneforme Mikroorganismen fermentiert, in denen man gleichzeitig eines oder mehrere der Gene, ausgewählt aus der Gruppe
  • 1. 15.1 das für die Phosphoenolpyruvat-Carboxykinase kodierende Gen pck,
  • 2. 2 das für die Glucose-6-Phosphat6 Isomerase kodierende Gen pgi,
  • 3. 15.3 das für die Pyruvat-Oxidase kodierende Gen poxB,
  • 4. 15.4 das für das Zwa2-Protein kodierende Gen zwa2
abschwächt.
16. Coryneforme Bakterien, die einen Vektor enthalten, der ein Polynukleotid gemäß Anspruch 1 trägt.
17. Verfahren gemäß einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man Mikroorganismen der Gattung Corynebacterium einsetzt.
18. Verfahren zum Auffinden von RNA, cDNA und DNA, um Nukleinsäuren, beziehungsweise Polynukleotide oder Gene zu isolieren, die für das Carbon Starvation Protein A kodieren oder eine hohe Ähnlichkeit mit der Sequenz des cstA-Gens aufweisen, dadurch gekennzeichnet, daß man die Polynukleotidsequenzen gemäß Anspruch 1, 2, 3 oder 4 als Hybridisierungssonden einsetzt.
19. Verfahren gemäß Anspruch 18, dadurch gekennzeichnet, dass die Hybridisierung unter einer Stringenz entsprechend höchstens 2 × SSC durchgeführt wird.
DE10042051A 2000-08-26 2000-08-26 Neue für das cstA-Gen kodierende Nukleotidsequenzen Withdrawn DE10042051A1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
DE10042051A DE10042051A1 (de) 2000-08-26 2000-08-26 Neue für das cstA-Gen kodierende Nukleotidsequenzen
AU2001282022A AU2001282022A1 (en) 2000-08-26 2001-07-25 Nucleotide sequences which code for the csta gene from corynebacterium glutamicum
EP01960554A EP1311683B1 (de) 2000-08-26 2001-07-25 Nukleotid sequenzen kodierend für das csta gen aus corynebacterium glutamicum
PCT/EP2001/008601 WO2002018597A1 (en) 2000-08-26 2001-07-25 Nucleotide sequences which code for the csta gene from corynebacterium glutamicum
ES01960554T ES2254463T3 (es) 2000-08-26 2001-07-25 Secuencias de nucleotidos que codifican el gen csta de corynebacterium glutamicum.
DE60115913T DE60115913T2 (de) 2000-08-26 2001-07-25 Nukleotid sequenzen kodierend für das csta gen aus corynebacterium glutamicum
AT01960554T ATE312924T1 (de) 2000-08-26 2001-07-25 Nukleotid sequenzen kodierend für das csta gen aus corynebacterium glutamicum
US09/935,799 US6972190B2 (en) 2000-08-26 2001-08-24 Nucleotide sequences which code for the cstA gene
US11/147,238 US20050266534A1 (en) 2000-08-26 2005-06-08 Nucleotide sequences which code for the cstA gene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10042051A DE10042051A1 (de) 2000-08-26 2000-08-26 Neue für das cstA-Gen kodierende Nukleotidsequenzen

Publications (1)

Publication Number Publication Date
DE10042051A1 true DE10042051A1 (de) 2002-03-07

Family

ID=7653938

Family Applications (2)

Application Number Title Priority Date Filing Date
DE10042051A Withdrawn DE10042051A1 (de) 2000-08-26 2000-08-26 Neue für das cstA-Gen kodierende Nukleotidsequenzen
DE60115913T Expired - Lifetime DE60115913T2 (de) 2000-08-26 2001-07-25 Nukleotid sequenzen kodierend für das csta gen aus corynebacterium glutamicum

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE60115913T Expired - Lifetime DE60115913T2 (de) 2000-08-26 2001-07-25 Nukleotid sequenzen kodierend für das csta gen aus corynebacterium glutamicum

Country Status (7)

Country Link
US (2) US6972190B2 (de)
EP (1) EP1311683B1 (de)
AT (1) ATE312924T1 (de)
AU (1) AU2001282022A1 (de)
DE (2) DE10042051A1 (de)
ES (1) ES2254463T3 (de)
WO (1) WO2002018597A1 (de)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SK284235B6 (en) * 1997-10-04 2004-11-03 Forschungszentrum Juelich Gmbh Method for microbial production of amino acids of the aspartate and/or glutamate family and agents which can be used in the said method
US6822084B1 (en) * 1999-06-25 2004-11-23 Basf Aktiengesellschaft Corynebacterium glutamicum genes encoding stress, resistance and tolerance proteins
MXPA01012844A (es) * 1999-06-25 2002-07-09 Basf Ag Genes de corynebacterium glutamicum que codifican proteinas de tolerancia y resistencia al estres.
JP4623825B2 (ja) * 1999-12-16 2011-02-02 協和発酵バイオ株式会社 新規ポリヌクレオチド

Also Published As

Publication number Publication date
US6972190B2 (en) 2005-12-06
ATE312924T1 (de) 2005-12-15
US20020137912A1 (en) 2002-09-26
AU2001282022A1 (en) 2002-03-13
DE60115913D1 (de) 2006-01-19
DE60115913T2 (de) 2006-08-24
US20050266534A1 (en) 2005-12-01
EP1311683B1 (de) 2005-12-14
ES2254463T3 (es) 2006-06-16
EP1311683A1 (de) 2003-05-21
WO2002018597A1 (en) 2002-03-07

Similar Documents

Publication Publication Date Title
DE10126164A1 (de) Für das metD-gen kodierende Nukleotidsequenzen
DE19947791A1 (de) Neue für das eno-Gen codierende Nukleotidsequenzen
DE10044681A1 (de) Neue für das lldD2-Gen kodierende Nukleotidsequenzen
DE10162387A1 (de) Für das rpoB-Gen kodierende Nukleotidsequenzen
EP1239040A2 (de) Mutationen im rpoB-Gen L-Lysin produzierender Corynebacterium glutamicum-Stämme und Verfahren zur Herstellung von L-Lysin
DE60127425T3 (de) Für das ppsa-gen kodierende nukleotidsequenzen
DE60132341T2 (de) Isolierung und sequenzierung vom gen ptsi aus c. glutamicum
DE10063314A1 (de) Neue für das ilvE-Gen kodierende Nukleotidsequenzen
DE10047865A1 (de) Neue für das deaD-Gen kodierende Nukleotidsequenzen
DE10046623A1 (de) Neue für das dps-Gen kodierende Nukleotidsequenzen
DE10045487A1 (de) Neue für das ccsB-Gen kodierende Nukleotidsequenzen
DE10001101A1 (de) Neue für das ptsH-Gen codierende Nukleotidsequenzen
DE60127428T2 (de) Für das misk-gen kodierende nukleotidsequenzen
DE10162386A1 (de) Für das rpsL-Gen kodierende Nukleotidsequenzen
DE10047403A1 (de) Neue für das ppgK-Gen kodierende Nukleotidsequenzen
DE10045579A1 (de) Neue für das atr61-Gen kodierende Nukleotidsequenzen
DE10043331A1 (de) Neue für das sigD-Gen kodierende Nukleotidsequenzen
DE10045486A1 (de) Neue für das pstC2-Gen kodierende Nukleotidsequenzen
DE10047866A1 (de) Neue für das dep67-Gen kodierende Nukleotidsequenzen
DE10047864A1 (de) Neue für das truB-Gen kodierende Nukleotidsequenzen
DE10057801A1 (de) Neue für das cysQ-Gen kodierende Nukleotidsequenzen
DE10055869A1 (de) Neue für das nadA-Gen kodierende Nukleotidsequenzen
DE19958159A1 (de) Neue für das glk-Gen codierende Nukleotidsequenzen
DE10046625A1 (de) Neue für das ndkA-Gen kodierende Nukleotidsequenzen
DE19956131A1 (de) Neue für das pfk-Gen codierende Nukleotidsequenzen

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee