DE10026166A1 - Weiße, pigmentierte, hochglänzende Polyesterfolie enthaltend Cycloolefincopolymer (COC), Verfahren zu ihrer Herstellung und ihre Verwendung - Google Patents

Weiße, pigmentierte, hochglänzende Polyesterfolie enthaltend Cycloolefincopolymer (COC), Verfahren zu ihrer Herstellung und ihre Verwendung

Info

Publication number
DE10026166A1
DE10026166A1 DE10026166A DE10026166A DE10026166A1 DE 10026166 A1 DE10026166 A1 DE 10026166A1 DE 10026166 A DE10026166 A DE 10026166A DE 10026166 A DE10026166 A DE 10026166A DE 10026166 A1 DE10026166 A1 DE 10026166A1
Authority
DE
Germany
Prior art keywords
weight
polyester film
film according
film
coc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE10026166A
Other languages
English (en)
Inventor
Ursula Murschall
Bart Janssens
Ulrich Kern
Herbert Peiffer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Polyester Film GmbH
Original Assignee
Mitsubishi Polyester Film GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Polyester Film GmbH filed Critical Mitsubishi Polyester Film GmbH
Priority to DE10026166A priority Critical patent/DE10026166A1/de
Publication of DE10026166A1 publication Critical patent/DE10026166A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • B29C48/307Extrusion nozzles or dies having a wide opening, e.g. for forming sheets specially adapted for bringing together components, e.g. melts within the die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/023Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets using multilayered plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/38Polymers of cycloalkenes, e.g. norbornene or cyclopentene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • B29K2105/0032Pigments, colouring agents or opacifiyng agents

Abstract

Biaxial orientierte, koextrudierte Polyesterfolien, die mindestens eine Basisschicht, die einen thermoplastischen Polyester, bevorzugt Polyethylenterephthalat, und ca. 2 bis 60 Gew.-% eines Cycloolefincopolymeren, das bevorzugt aus Norbornen- und Ethylen-Einheiten aufgebaut ist, und ein Weißpigment wie TiO¶2¶ oder BaSO¶4¶ und einen optischen Aufheller enthält, und die mindestens eine Deckschicht, die kein COC enthält, und die gegebenenfalls weitere Deck- bzw- Zwischenschichten aufweisen und die übliche Additive wie Stabilisatoren und Antiblockmittel enthalten können, zeichnen sich insbesondere durch einen Weißgrad von > 75%, eine Opazität von > 55% und einen Glanz - mindestens einseitig - von > 100 aus und sind daher für zahlreiche industrielle Anwendungen geeignet. Bei der Herstellung der Folien nach dem Koextrusionsverfahren können bis zu 70 Gew.-% an Regenerat verwendet werden, ohne dass die physikalischen Eigenschaften der Folien nennenswert negativ beeinflusst werden.

Description

Die vorliegende Erfindung betrifft eine weiße, pigmentierte, hochglänzende, biaxial orientierte, koextrudierte Polyesterfolie, die aus mindestens einer Basisschicht und mindestens einer Deckschicht besteht, wobei die Basisschicht einen thermoplastischen Polyester, mindestens ein Weißpigment, mindestens einen optischen Aufheller und ein Cycloolefincopolymer (COC) enthält. Die Erfindung betrifft ferner ein Verfahren zur Herstellung der Polyesterfolie sowie ihre Verwendung.
Weiße, biaxial orientierte Polyesterfolien sind nach dem Stand der Technik bekannt.
In der DE-A 23 53 347 wird ein Verfahren zur Herstellung einer ein- oder mehrschichtigen, milchigen Polyesterfolie beschrieben, das dadurch gekennzeichnet ist, dass man ein Gemisch aus Teilchen eines linearen Polyesters und 3 bis 27 Gew.-% eines Homopolymeren oder Mischpolymeren von Ethylen oder Propylen herstellt, das Gemisch als Film extrudiert, den Film abschreckt und durch Verstrecken in senkrecht zueinander verlaufenden Richtungen biaxial orientiert und den Film thermofixiert. Nachteilig an dem Verfahren ist, dass das bei der Herstellung der Folie anfallende Regenerat (im wesentlichen ein Gemisch aus Polyesterrohstoff und Ethylen- oder Propylen-Mischpolymer) nicht mehr eingesetzt werden kann, da ansonsten die Folie verfärbt bzw. gelb wird. Das Verfahren ist damit unwirtschaftlich. Außerdem weist die Folie hohe Rauigkeiten auf und hat damit ein sehr mattes Aussehen (sehr niedriger Glanz), was für viele Anwendungszwecke unerwünscht ist.
In der EP-A 0 300 060 wird eine einschichtige Polyesterfolie beschrieben, die außer Polyethylenterephthalat noch 3 bis 40 Gew.-% eines kristallinen Propylenpolymeren und 0,001 bis 3 Gew.-% einer oberflächenaktiven Substanz enthält. Die oberflächenaktive Substanz bewirkt, dass die Anzahl der Vakuolen in der Folie ansteigt und gleichzeitig ihre Größe in gewünschtem Maße abnimmt. Hierdurch wird eine höhere Opazität und eine niedrigere Dichte der Folie erzielt. Nachteilig ist auch hier, dass das bei der Herstellung der Folie anfallende Regenerat (im wesentlichen ein Gemisch aus Polyesterrohstoff und Propylen-Homopolymer) nicht mehr eingesetzt werden kann, da ansonsten die Folie gelb verfärbt wird. Das Verfahren ist damit aber unwirtschaftlich. Außerdem weist die Folie hohe Rauigkeiten auf und hat damit ein sehr mattes Aussehen (sehr niedriger Glanz), was für viele Anwendungszwecke unerwünscht ist.
In der EP-A 0 360 201 wird eine zumindest zweischichtige Polyesterfolie beschrieben, die eine Basisschicht mit feinen Vakuolen aufweist, deren Dichte zwischen 0,4 und 1,3 kg/dm3 liegt, und mindestens eine Deckschicht aufweist, deren Dichte größer als 1,3 kg/dm3 ist. Die Vakuolen werden durch Zugabe von 4 bis 30 Gew.-% eines kristallinen Propylenpolymeren und anschließender biaxialer Streckung der Folie erzeugt. Durch die zusätzliche Deckschicht wird die Herstellbarkeit der Folie besser (keine Streifenbildung auf der Oberfläche der Folie), die Oberflächenspannung wird erhöht und die Rauigkeit der laminierten Oberfläche kann verringert werden. Nachteilig ist auch hier, dass das bei der Herstellung der Folie anfallende Regenerat (im wesentlichen ein Gemisch aus Polyesterrohstoff und Propylen-Homopolymer) nicht mehr eingesetzt werden kann, da ansonsten die Folie gelb verfärbt wird. Das Verfahren ist damit aber unwirtschaftlich. Außerdem weisen die in den Beispielen aufgeführten Folien hohe Rauigkeiten auf und haben damit ein mattes Aussehen (niedriger Glanz), was für viele Anwendungszwecke unerwünscht ist.
In der EP-A 0 795 399 wird eine zumindest zweischichtige Polyesterfolie beschrieben, die eine Basisschicht mit feinen Vakuolen aufweist, deren Dichte zwischen 0,4 und 1,3 kg/dm3 liegt und mindestens eine Deckschicht aufweist, deren Dichte größer als 1,3 kg/dm3 beträgt. Die Vakuolen werden durch Zugabe von 5 bis 45 Gew.-% eines thermoplastischen Polymers zum Polyesterrohstoff der Basisschicht und anschließende biaxiale Streckung der Folie erzeugt. Als thermoplastische Polymere werden u. a. Polypropylen, Polyethylen, Polymethyl-Penten, Polystyrol oder Polycarbonat genannt, wobei Polypropylen das bevorzugte thermoplastische Polymer ist. Durch die zusätzliche Deckschicht wird die Herstellbarkeit der Folie besser (keine Streifenbildung auf der Oberfläche der Folie), die Oberflächenspannung wird erhöht und die Rauigkeit der laminierten Oberfläche kann den jeweiligen Erfordernissen angepasst werden. Eine weitere Modifizierung der Folie in der Basisschicht und/oder in den Deckschichten mit Weiß-Pigmenten (in der Regel TiO2) und/oder mit optischen Aufhellern ermöglicht die Anpassung der Folieneigenschaften an die jeweiligen Anwendungserfordernisse.
Nachteilig ist auch hier, dass das bei der Herstellung der Folie anfallende Regenerat (im wesentlichen ein Gemisch aus Polyesterrohstoff und dem additiven Rohstoff) nicht mehr eingesetzt werden kann, da ansonsten die Folie undefiniert in der Farbe verändert wird, was für viele Anwendungen unerwünscht ist. Das Verfahren ist damit aber unwirtschaftlich. Außerdem weisen die in den Beispielen aufgeführten Folien hohe Rauigkeiten auf und haben damit ein mattes Aussehen (niedriger Glanz), was für viele Anwendungszwecke unerwünscht ist.
In der DE-A 195 40 277 wird eine ein- oder mehrschichtige Polyesterfolie beschrieben, die eine Basisschicht mit feinen Vakuolen aufweist, deren Dichte zwischen 0,6 und 1,3 kg/dm3 liegt, und eine Doppelbrechung in der Ebene aufweist, die von -0,02 bis 0,04 reicht. Die Vakuolen werden durch Zugabe von 3 bis 40 Gew.-% eines thermoplastischen Harzes zum Polyesterrohstoff der Basisschicht und anschließende biaxiale Streckung der Folie erzeugt. Als thermoplastische Harze werden u. a. Polypropylen, Polyethylen, Polymethyl-Penten, cyclische Olefin-Polymere, Polyacrylharze, Polystyrol oder Polycarbonat genannt, wobei Polypropylen und Polystyrol bevorzugte Rohstoffe sind. Durch Einhalt der angegebenen Grenzen für die Doppelbrechung der Folie zeichnet sich die beanspruchte Folie insbesondere durch eine gute Reißfestigkeit und gute Isotropieeigenschaften aus. Nachteilig bleibt weiterhin, dass das bei der Herstellung der Folie anfallende Regenerat nicht mehr eingesetzt werden kann, da ansonsten die Folie undefiniert in der Farbe verändert wird, was für viele Anwendungen unerwünscht ist. Das Verfahren ist damit aber unwirtschaftlich. Außerdem weisen die in den Beispielen aufgeführten Folien hohe Rauigkeiten auf und haben damit ein mattes Aussehen (niedriger Glanz), was für viele Anwendungszwecke unerwünscht ist.
Die Aufgabe der vorliegenden Erfindung bestand daher darin, eine weiße, pigmentierte, Polyesterfolie bereitzustellen, die sich insbesondere durch einen sehr hohen Glanz, einen hohen Weißgrad und durch eine verbesserte Herstellbarkeit, d. h. geringe Herstellkosten, auszeichnet, ohne dabei die oben genannten nachteiligen Eigenschaften aufzuweisen. Insbesondere sollte auch gewährleistet sein, dass das bei dem Herstellprozeß immanent anfallende Regenerat in einer Konzentration von ca. 10 bis 70 Gew.-%, bezogen auf das Gesamtgewicht der Folie, wieder verwendet werden kann, ohne dass dabei die physikalischen Eigenschaften der Folie nennenswert negativ beeinflusst werden. Insbesondere sollte durch die Regeneratzugabe keine nennenswerte Verfärbung bzw. Gelbfärbung der Folie auftreten.
Die Aufgabe wird gelöst durch eine weiße, pigmentierte, hochglänzende, biaxial orientierte, koextrudierte Polyesterfolie im Dickenbereich von bevorzugt 4 bis 500 µm bestehend aus mindestens einer Basisschicht und mindestens einer Deckschicht, wobei die Basisschicht mindestens ein Weißpigment in einer Konzentration von bevorzugt 0,1 bis 25 Gew.-%, mindestens einen optischen Aufheller in einer Konzentration von 10 bis 50 000 ppm und ein Cycloolefincopolymeres (COC) in einer Konzentration von bevorzugt 2 bis 60 Gew.-%, jeweils bezogen auf das Gewicht der Basisschicht enthält. Die Glasübergangstemperatur des Cycloolefincopolymeren (COC) liegt bevorzugt im Bereich von 70 bis 270°C und mindestens eine Folienoberfläche (Deckschicht) weist einen Glanzwert (Messwinkel 20°) von größer 100 auf.
Ein hoher Oberflächenglanz bedeutet, dass der Glanz bei < 100 (DIN 67 530 bei einem Messwinkel von 20°), vorzugsweise bei < 120 und insbesondere bei < 130 liegt.
Unter einer weißen Polyesterfolie im Sinne der vorliegenden Erfindung wird eine solche Folie verstanden, die einen Weißgrad von mehr als 75%, bevorzugt von mehr als 80% und besonders bevorzugt von mehr als 85%, aufweist. Des Weiteren beträgt die Opazität der erfindungsgemäßen Folie mehr als 55%, bevorzugt mehr als 60% und besonders bevorzugt mehr als 65%.
Zur Erzielung der gewünschten Opazität der erfindungsgemäßen Folie sollte der Anteil an dem Cycloolefincopolymeren (COC) in der Basisschicht größer als 2 Gew.-% sein. Ist der Cycloolefincopolymer(COC)-Gehalt andererseits größer als 60 Gew.-%, so besteht die Gefahr, dass sich die Folie nicht mehr wirtschaftlich herstellen lässt, da sie unter Umständen nicht mehr verfahrenssicher verstreckt werden kann.
Weiterhin ist es bevorzugt, dass die Glasübergangstemperatur des eingesetzten Cycloolefincopolymeren (COC) größer als 70°C ist. Andernfalls (bei einer Glasübergangstemperatur von kleiner als 70°C) ist das Rohstoffgemisch unter Umständen schlechter verarbeitbar (schlechter extrudierbar), der gewünschte Weißgrad wird unter Umständen nicht mehr erreicht und das eingesetzte Regenerat führt zu einer Folie, die eine erhöhte Gelbfärbung aufweisen kann. Ist andererseits die Glasübergangstemperatur des ausgewählten Cycloolefincopolymeren (COC) größer als 270°C, so wird sich die Rohstoffmischung unter Umständen im Extruder nicht mehr ausreichend homogen dispergieren lassen. Dies hätte dann eine Folie mit inhomogenen Eigenschaften zur Folge.
In der bevorzugten Ausführungsform der erfindungsgemäßen Folie liegt die Glasübergangstemperatur der verwendeten COCs in einem Bereich von 90 bis 250°C und in der besonders bevorzugten Ausführungsform in einem Bereich von 110 bis 220°C.
Überraschenderweise wurde gefunden, dass durch den Zusatz eines Cycloolefincopolymeren (COC) in der vorstehend beschriebenen Weise eine weiße, opake, glänzende Folie hergestellt werden kann.
Entsprechend der Menge und der Art des zugegebenen Cycloolefincopolymeren (COC) kann der Weißgrad und die Opazität der Folie exakt eingestellt und den jeweiligen Anforderungen angepasst werden. Durch diese Maßnahme ist es möglich, auf andere gängige weiß- und opakmachende Additive weitgehend zu verzichten. Weiterhin war es sehr überraschend, dass die Oberflächenrauigkeit der Folie wesentlich geringer und damit der Glanz der Folie wesentlich höher ist, als bei vergleichbaren Folien nach dem Stand der Technik. Vollkommen überraschend war darüber hinaus der zusätzliche Effekt, dass das Regenerat nicht, wie die polymeren Additive nach dem Stand der Technik, zur Gelbverfärbung neigt.
Alle diese beschriebenen Merkmale waren nicht vorhersehbar. Dies umso mehr, da z. B. COCs zwar zum bevorzugten Polyester Polyethylenterephthalat weitgehend inkompatibel sind, bekanntlich aber mit ähnlichen Streckverhältnissen und Strecktemperaturen orientiert werden, wie Polyethylenterephthalat. Unter diesen Voraussetzungen hätte der Fachmann erwartet, dass bei den erfindungsgemäßen Herstellbedingungen keine weiße, opake Folie mit hohem Glanz produziert werden kann.
Insbesondere in den bevorzugten und den besonders bevorzugten Ausführungsformen zeichnet sich die erfindungsgemäße Folie durch einen hohen/bzw. durch einen besonders hohen Weißgrad und eine hohe/bzw. durch eine besonders hohe Opazität in Kombination mit einem hohen Oberflächenglanz auf mindestens einer Folienoberfläche aus, wobei die Farbänderung der Folie durch die Regeneratzugabe äußerst gering bleibt.
Die erfindungsgemäße Folie ist mehrschichtig. Mehrschichtige Ausführungsformen sind mindestens zweischichtig und umfassen immer die COC-haltige Basisschicht und zumindest eine weitere Deckschicht. In einer bevorzugten Ausführungsform bildet die COC-haltige Schicht die Basisschicht der Folie mit mindestens einer, vorzugsweise mit beidseitigen Deckschichten, wobei gegebenenfalls einseitig oder beidseitig Zwischenschichten vorhanden sein können. Der Schichtaufbau der Folie ist dann z. B. A-B-C, wobei B die Basisschicht und A und C die Deckschichten sind, die gleich oder verschieden sein können. In einer weiteren bevorzugten Ausführungsform bildet die COC-haltige Schicht auch eine Zwischenschicht der Mehrschichtfolie. Weitere Ausführungsformen mit COC-haltigen Zwischenschichten sind fünfschichtig aufgebaut und haben neben der COC-haltigen Basisschicht beidseitig COC-haltige Zwischenschichten. In einer weiteren Ausführungsform kann die COC-haltige Schicht zusätzlich zur Basisschicht, einseitig eine Deckschicht auf der Basis- oder Zwischenschicht bilden. Die Basisschicht ist im Sinne der vorliegenden Erfindung diejenige Schicht, welche bevorzugt 50% bis 99,5%, insbesondere 60 bis 95%, der Gesamtfoliendicke ausmacht. Die Deckschichten sind die Schichten, welche die äußeren Schichten der Folie bilden.
Die COC-haltige Basisschicht der erfindungsgemäßen Folie enthält einen thermoplastischen Polyester, vorzugsweise ein Polyesterhomopolymeres, ein COC, mindestens ein Weißpigment und mindestens einen optischen Aufheller sowie gegebenenfalls weitere Additive in jeweils wirksamen Mengen. Im allgemeinen enthält diese Schicht mindestens 20 Gew.-% bis 98 Gew.-%, vorzugsweise 40 bis 98 Gew.-%, insbesondere 70 bis 98 Gew.-%, thermoplastischen Polyester, bezogen auf das Gewicht der Schicht.
Geeignete thermoplastische Polyester für die Basisschicht sind bevorzugt Polyester aus Ethylenglykol und Terephthalsäure (= Polyethylenterephthal, PET), aus Ethylenglykol und Naphthalin-2,6-dicarbonsäure (= Polyethylen-2,6-naphthalat, PEN), aus 1,4-Bis­ hydroximethyl-cyclohexan und Terephthalsäure (= Poly-1,4-cyclohexan­ dimethylenterephthalat, PCDT) sowie aus Ethylenglykol, Naphthalin-2,6-dicarbonsäure und Biphenyl-4,4'-dicarbonsäure (= Polyethylen-2,6-naphthalatbibenzoat, PENBB). Besonders bevorzugt sind Polyester, die zu mindestens 90 Mol-%, bevorzugt mindestens 95 Mol-%, aus Ethylenglykol- und Terephthalsäure-Einheiten oder aus Ethylenglykol- und Naphthalin-2,6-dicarbonsäure-Einheiten bestehen. Die restlichen Monomereinheiten stammen aus anderen aliphatischen, cycloaliphatischen oder aromatischen Diolen bzw. Dicarbonsäuren, wie sie auch z. B. in der Schicht A (A = Deckschicht 1) und/oder der Schicht C (C = Deckschicht 2) einer mehrschichtigen Folie ABC (B = Basisschicht) vorkommen können.
Geeignete andere aliphatische Diole sind beispielsweise Diethylenglykol, Triethylenglykol, aliphatische Glykole der allgemeinen Formel HO-(CH2)n-OH, wobei n eine ganze Zahl von 3 bis 6 darstellt (insbesondere Propan-1,3-diol, Butan-1,4-diol, Pentan-1,5-diol und Hexan-1,6-diol) oder verzweigte aliphatische Glykole mit bis zu 6 Kohlenstoff-Atomen. Von den cycloaliphatischen Diolen sind Cyclohexandiole (insbesondere Cyclohexan-1,4-diol) zu nennen. Geeignete andere aromatische Diole entsprechen beispielsweise der Formel HO-C6H4-X-C6H4-OH, wobei X für -CH2-, -C(CH3)2-, -C(CF3)2-, -O-, -S- oder -SO2- steht. Daneben sind auch Bisphenole der Formel HO-C6H4-C6H4-OH gut geeignet.
Andere aromatische Dicarbonsäuren sind bevorzugt Benzoldicarbonsäuren, Naphtalindicarbonsäuren (beispielsweise Naphthalin-1,4- oder -1,6-dicarbonsäure), Biphenyl-x,x'-dicarbonsäuren (insbesondere Biphenyl-4,4'-dicarbonsäure), Diphenylacetylen-x,x'-dicarbonsäuren (insbesondere Diphenylacetylen-4,4'- dicarbonsäure) oder Stilben-x,x'-dicarbonsäuren. Von den cycloaliphatischen Dicarbonsäuren sind Cyclohexandicarbonsäuren (insbesondere Cyclohexan-1,4- dicarbonsäure) zu nennen. Von den aliphatischen Dicarbonsäuren sind die (C3-C19)- Alkandisäuren besonders geeignet, wobei der Alkanteil geradkettig oder verzweigt sein kann.
Die Herstellung der erfindungsgemäß zu verwendenden Polyester kann z. B. nach dem Umesterungsverfahren erfolgen. Dabei geht man von Dicarbonsäureestern und Diolen aus, die mit den üblichen Umesterungskatalysatoren, wie Zink-, Calcium-, Lithium-, Magnesium- und Mangan-Salzen, umgesetzt werden. Die Zwischenprodukte werden dann in Gegenwart allgemein üblicher Polykondensationskatalysatoren, wie Antimontrioxid oder Titan-Salzen, polykondensiert. Die Herstellung kann ebenso gut nach dem Direktveresterungsverfahren in Gegenwart von Polykondensationskatalysatoren erfolgen. Dabei geht man direkt von den Dicarbonsäuren und den Diolen aus.
Erfindungsgemäß enthält/enthalten die COC-haltige Schicht/en ein Cycloolefincopolymeres (COC) in einer Menge von bevorzugt minimal 2,0 Gew.-%, insbesondere 4 bis 50 Gew.-% und besonders bevorzugt 6 bis 40 Gew.-%, bezogen auf das Gewicht der mit COC ausgerüsteten Schicht. Es ist sehr vorteilhaft für die vorliegende Erfindung, wenn das verwendete Cycloolefincopolymere (COC) mit dem thermoplastischen Polyester, z. B. Polyethylenterephthalat, nicht verträglich ist und mit diesem keine homogene Mischung bildet.
Cycloolefinpolymere sind allgemein Homopolymerisate oder Copolymerisate, welche polymerisierte Cycloolefineinheiten und gegebenenfalls acyclische Olefine als Comonomer enthalten. Für die vorliegende Erfindung sind besonders Cycloolefinpolymere geeignet, die 0,1 bis 100 Gew.-%, bevorzugt 10 bis 99 Gew.-%, besonders bevorzugt 50-95 Gew.-%, jeweils bezogen auf die Gesamtmasse des Cycloolefinpolymeren, polymerisierte Cycloolefineinheiten enthalten. Bevorzugt sind insbesondere Polymere, die aus den Monomeren der cyclischen Olefine der Formeln I, II, III, IV, V oder VI aufgebaut sind:
In diesen Formeln sind R1, R2, R3, R4, R5, R6, R7 und R8 unabhängig voneinander gleich oder verschieden und bedeuten ein Wasserstoffatom oder einen C1-C30- Kohlenwasserstoffrest; oder zwei oder mehrere der Reste R1 bis R8 sind cyclisch verbunden, wobei gleiche Reste in den verschiedenen Formeln gleiche oder unterschiedliche Bedeutung haben. C1-C30-Kohlenwasserstoffreste sind bevorzugt lineare oder verzweigte C1-C8-Alkylreste, C6-C18-Arylreste, C7-C20-Alkylenarylreste oder cyclische C3-C20-Alkylreste oder acyclische C2-C20-Alkenylreste.
Gegebenenfalls können die erfindungsgemäßen Cycloolefinpolymere 0 bis 45 Gew.-%, bezogen auf die Gesamtmasse des Cycloolefinpolymeren, polymerisierte Einheiten mindestens eines monocyclischen Olefins der Formel VII enthalten:
Hierin ist n eine Zahl von 2 bis 10.
Gegebenenfalls können die Cycloolefinpolymere 0 bis 99 Gew.-%, bezogen auf die Gesamtmasse des Cycloolefinpolymeren, polymerisierte Einheiten eines acyclischen Olefins der Formel VIII enthalten:
Hierin sind R9, R10, R11, und R12 unabhängig voneinander gleich oder verschieden und bedeuten ein Wasserstoffatom oder C1-C10-Kohlenwasserstoffrest, bevorzugt einen C1-C8-Alkyl­ rest oder C6-C14-Arylrest.
Ebenfalls prinzipiell geeignet sind Cycloolefinpolymere, welche durch ringöffnende Polymerisation mindestens eines der Monomere der Formeln I bis VI und anschließende Hydrierung erhalten werden.
Cycloolefinhomopolymere sind aus einem Monomeren der Formeln I-VI aufgebaut. Diese Cycloolefin-Polymere sind für die Zwecke der vorliegenden Erfindung weniger geeignet. Für die Zwecke der vorliegenden Erfindung sind insbesondere Cycloolefincopolymerisate (COC) geeignet, welche mindestens ein Cycloolefin der Formeln I bis VI und mindestens ein Comonomer enthalten. Bevorzugte Comonomere sind die acyclischen Olefine der Formel VIII. Im vorstehenden wie im nachfolgenden werden diese erfindungsgemäß verwendbaren Cycloolefincopolymerisate COC genannt. Dabei sind als acyclische Olefine VIII solche bevorzugt, die 2 bis 20 C-Atome aufweisen, insbesondere unverzweigte acyclische Olefine mit 2 bis 10 C-Atomen wie beispielsweise Ethylen, Propylen und/oder Butylen. Der Anteil polymerisierter Einheiten acyclischer Olefine der Formel VIII beträgt bis zu 99 Gew.-%, bevorzugt 5 bis 80 Gew.-%, besonders bevorzugt 10 bis 60 Gew.-%, bezogen auf das Gesamtgewicht des jeweiligen Cycloolefincopolymers (COC).
Unter den Cycloolefincopolymeren sind insbesondere diejenigen bevorzugt, die polymerisierte Einheiten polycyclischer Olefine mit Norbornengrundstruktur, besonders bevorzugt Norbornen, 5-Methyl-Norbornen oder Tetracyclododecen, enthalten. Geeignete Monomere sind weiterhin Dimethyloctahydronaphthalin und Cyclopenten. Besonders bevorzugt sind Cycloolefincopolymere (COC), die polymerisierte Einheiten acyclischer Olefine, insbesondere Ethylen, enthalten. Wiederum besonders bevorzugt sind Norbonen/Ethylen- und Tetracyclododecen/Ethylen-Copolymere, welche 5 bis 80 Gew.-%, vorzugsweise 10 bis 60 Gew.-% an acyclischem Olefin enthalten (bezogen auf das Gewicht des Copolymeren).
Die beschriebenen Cycloolefinpolymeren weisen im allgemeinen Glasübergangstemperaturen zwischen -20°C und 400°C auf. Für die Erfindung sind bevorzugt Cycloolefincopolymerisate (COC) verwendbar, die eine Glasübergangstemperatur von größer als 70°C, vorzugsweise größer als 90°C und insbesondere größer als 110°C aufweisen. Die Viskositätszahl (Dekalin, 135°C, DIN 53 728) liegt zweckmäßiger Weise zwischen 0,1 und 200 ml/g, bevorzugt zwischen 50 und 150 ml/g.
Die Herstellung der Cycloolefincopolymere (COC) geschieht durch eine heterogene oder homogene Katalyse mit metallorganischen Verbindungen und ist in einer Vielzahl von Dokumenten beschrieben. Geeignete Katalysatorsysteme basierend auf Mischkatalysatoren aus Titan- bzw. Vanadiumverbindungen in Verbindung mit Aluminiumorganylen werden in DD 109 224, DD 237 070 und EP-A-0 156 464 beschrieben. EP-A-0 283 164, EP-A-0 407 870, EP-A-0 485 893 und EP-A-0 503 422 beschreiben die Herstellung von Cycloolefincopolymeren (COC) mit Katalysatoren, basierend auf löslichen Metallocenkomplexen. Auf die in obengenannten Schriften beschriebenen Herstellungsverfahren von Cycloolefinpolymeren wird hiermit ausdrücklich Bezug genommen.
Die Cycloolefincopolymere werden entweder als reines Granulat oder als granuliertes Konzentrat (Masterbatch) in die Folie eingearbeitet, indem das Polyestergranulat oder -pulver mit dem Cycloolefincopolymer (COC) bzw. dem Cycloolefincopolymer(COC)- Masterbatch vorgemischt und anschließend dem Extruder zugeführt wird. Im Extruder werden die Komponenten weiter vermischt und auf Verarbeitungstemperatur erwärmt. Dabei ist es für das erfindungsgemäße Verfahren zweckmäßig, dass die Extrusionstemperatur oberhalb der Glasübergangstemperatur Tg des Cycloolefincopolymeren (COC) liegt, im allgemeinen mindestens 5°C, vorzugsweise 10 bis 180°C, insbesondere 15 bis 150°C, über der Glasübergangstemperatur des Cycloolefincopolymeren (COC).
Für die Zwischenschichten und Deckschichten können prinzipiell die gleichen Polymere verwendet werden wie für die Basisschicht. Bevorzugt können die Deckschichten und ggf. die Zwischenschichten aus einem Gemisch von Polymeren, einem Copolymeren oder einem Homopolymeren bestehen, welche Ethylen-2,6-naphthalat-Einheiten und/oder Ethylen-terephthalat-Einheiten enthalten. Bis zu 30 Mol-% der Polymere können aus weiteren Comonomeren (z. B. Ethylen-isophthalat-Einheiten) bestehen.
Bevorzugt ist, dass mindestens eine Deckschicht nicht mit Cycloolefincopolymer (COC) ausgerüstet ist. Diese Deckschicht enthält im wesentlichen die genannten thermoplastischen Polyester und ist ggf. mit Antiblock- und/oder Gleitmitteln ausgerüstet.
Die Basisschicht und die anderen Schichten können zusätzlich übliche Additive, wie z. B. Stabilisatoren und Antiblockmittel, enthalten. Sie werden zweckmäßig dem Polymer bzw. der Polymermischung bereits vor dem Aufschmelzen zugesetzt. Als Stabilisatoren werden beispielsweise Phosphorverbindungen, wie Phosphorsäure oder Phosphorsäureester, eingesetzt.
Typische Antiblockmittel (in diesem Zusammenhang auch als Pigmente bezeichnet) sind anorganische und/oder organische Partikel, beispielsweise Calciumcarbonat, amorphe Kieselsäure, Talk, Magnesiumcarbonat, Bariumcarbonat, Calciumsulfat, Ba­ riumsulfat, Lithiumphosphat, Calciumphosphat, Magnesiumphosphat, Aluminiumoxid, Lithiumfluorid, Calcium-, Barium-, Zink- oder Mangan-Salze der eingesetzten Dicarbonsäuren, Ruß, Titandioxid, Kaolin oder vernetzte Polymerpartikel, z. B. Polystyrol- oder Acrylat-Partikel.
Als Additive können auch Mischungen von zwei und mehreren verschiedenen Antiblockmitteln oder Mischungen von Antiblockmitteln gleicher Zusammensetzung, aber unterschiedlicher Partikelgröße gewählt werden. Die Partikel können den Polymeren der einzelnen Schichten der Folie in den jeweils vorteilhaften Konzentrationen, z. B. als glykolische Dispersion während der Polykondensation oder über Masterbatche bei der Extrusion zugegeben werden. Als besonders geeignet haben sich Pigmentkonzentrationen von 0 bis 25 Gew.-% erwiesen (bezogen auf das Gewicht der damit ausgerüsteten Schicht). Eine detaillierte Beschreibung geeigneter Antiblockmittel findet sich beispielsweise in der EP-A-0 602 964.
Geeignete Gleitmittel sind z. B. Polydimethylsiloxan, Carbonsäuren, Metallsalze von Carbonsäuren, Carbonsäureamide, Carbonsäureester. Eine detaillierte Beschreibung findet sich beispielsweise in Kunststoff-Additive, 2. Ausgabe, Carl Hanser Verlag, München, Wien, S. 309 bis 347.
Zu Verbesserung des Weißgrades der Folie enthält die Basisschicht erfindungsgemäß und/oder ggf. andere zusätzliche Schichten mindestens ein Weißpigment und einen optischen Aufheller.
Geeignete Weißpigmente sind vorzugsweise Titandioxid, Bariumsulfat, Calcium­ carbonat, Kaolin, Siliciumdioxid, wobei Titandioxid und Bariumsulfat besonders bevorzugt sind.
Die Titandioxidteilchen können aus Anatas oder Rutil bestehen, vorzugsweise überwiegend aus Rutil, welcher im Vergleich zu Anatas eine höhere Deckkraft zeigt. In bevorzugter Ausführungsform bestehen die Titandioxidteilchen zu mindestens 95 Gew.-% aus Rutil. Sie können nach einem üblichen Verfahren, z. B. nach dem Chlorid- oder dem Sulfat-Prozeß, hergestellt werden. Der Anteil der Weißpigmente in den damit ausgerüsteten Schichten, bevorzugt in der Basisschicht, beträgt zweckmäßigerweise 0,1-25 Gew.-%, vorzugsweise 0,2-23 Gew.-% und insbesondere 0,3-22 Gew.-%, bezogen auf das Gewicht der damit ausgerüsteten Schichten. Die mittlere Teilchengröße ist relativ klein und liegt vorzugsweise im Bereich von 0,10 bis 0,30 µm.
Durch Einsatz von z. B. Titandioxid der beschriebenen Art entstehen innerhalb der Polymermatrix keine Vakuolen während der Folienherstellung.
Die Titandioxidteilchen können einen Überzug aus anorganischen Oxiden besitzen, wie er üblicherweise als Überzug für TiO2-Weißpigment in Papieren oder Anstrichmitteln zur Verbesserung der Lichtechtheit eingesetzt wird.
TiO2 ist fotoaktiv. Bei Einwirkung von UV-Strahlen bilden sich freie Radikale auf der Oberfläche der Partikel. Diese freien Radikale können in die Polymermatrix wandern, was zu Abbaureaktionen und Vergilbung führen kann. Um dies zu vermeiden, können die TiO2-Partikel oxydisch beschichtet werden. Zu den besonders geeigneten Oxiden für die Beschichtung gehören die Oxide von Aluminium, Silicium, Zink oder Magnesium oder Mischungen aus zwei oder mehreren dieser Verbindungen. TiO2-Partikel mit einem Überzug aus mehreren dieser Verbindungen werden z. B. in der EP-A-0 044 515 und EP-A-0 078 633 beschrieben. Weiterhin kann der Überzug organische Verbindungen mit polaren und unpolaren Gruppen enthalten. Die organischen Verbindungen müssen für die Herstellung der Folie durch Extrusion der Polymer­ schmelze ausreichend thermostabil sein. Polare Gruppen sind beispielsweise -OH; -OR; -COOX; (X = R; H oder Na, R = Alkyl mit 1-34 C-Atomen). Bevorzugte organische Verbindungen sind Alkanole und Fettsäuren mit 8-30 C-Atomen in der Alkylgruppe, insbesondere Fettsäuren und primäre n-Alkanole mit 12-24 C-Atomen, sowie Polydiorganosiloxane und/oder Polyorganohydrogensiloxane wie z. B. Polydi­ methylsiloxan und Polymethylhydrogensiloxan.
Der Überzug für die Titandioxidteilchen besteht gewöhnlich aus 1 bis 12, insbesondere 2 bis 6 g anorganischer Oxide und/oder 0,5 bis 3, insbesondere 0,7 bis 1,5 g organischer Verbindung, bezogen auf 100 g Titandioxidteilchen. Der Überzug wird üblicherweise auf die Teilchen in wässriger Suspension aufgebracht. Die anorganischen Oxide können aus wasserlöslichen Verbindungen, z. B. Alkali-, insbesondere Natriumnitrat, Natriumsilikat (Wasserglas) oder Kieselsäure in der wässrigen Suspension ausgefällt werden.
Unter anorganischen Oxiden wie Al2O3 oder SiO2 sind auch die Hydroxide oder deren verschiedenen Entwässerungsstufen wie z. B. Oxidhydrat zu verstehen, ohne dass man deren genaue Zusammensetzung und Struktur kennt. Auf das TiO2-Pigment werden nach dem Glühen und Mahlen in wässriger Suspension die Oxidhydrate z. B. des Aluminiums und/oder Silicium gefällt, die Pigmente dann gewaschen und getrocknet. Diese Ausfällung kann somit direkt in einer Suspension geschehen, wie sie im Herstellungsprozess nach der Glühung und der sich anschließenden Naßmahlung anfällt. Die Ausfällung der Oxide und/oder Oxidhydrate der jeweiligen Metalle erfolgt aus den wasserlöslichen Metallsalzen im bekannten pH-Bereich, für das Aluminium wird beispielsweise Aluminiumsulfat in wässriger Lösung (pH kleiner 4) eingesetzt und durch Zugabe von wässriger Ammoniaklösung oder Natronlauge im pH-Bereich zwischen 5 und 9, vorzugsweise zwischen 7 und 8,5, das Oxidhydrat gefällt. Geht man von einer Wasserglas- oder Alkalialuminatlösung aus, sollte der pH-Wert der vorgelegten TiO2- Suspension im stark alkalischen Bereich (pH größer 8) liegen. Die Ausfällung erfolgt dann durch Zugabe von Mineralsäure wie Schwefelsäure im pH-Bereich 5 bis 8. Nach der Ausfällung der Metalloxide wird die Suspension noch 15 min bis etwa 2 h gerührt, wobei die ausgefällten Schichten eine Alterung erfahren. Das beschichtete Produkt wird von der wässrigen Dispersion abgetrennt und nach dem Waschen bei erhöhter Temperatur, insbesondere bei 70 bis 100°C, getrocknet.
Die Folie enthält bevorzugt gegebenenfalls anstelle von Titandioxid Bariumsulfat als Pigment, wobei die Konzentration des Bariumsulfats vorzugsweise zwischen 0,1 Gew.-% und 25 Gew.-%, besonders bevorzugt zwischen 0,2 und 23 Gew.-%, insbesondere zwischen 0,3 und 22 Gew.-%, bezogen auf das Gewicht der damit ausgerüsteten Schichten, liegt. Vorzugsweise wird auch das Bariumsulfat über die sogenannte Masterbatch-Technologie direkt bei der Folienherstellung zudosiert.
In einer weiteren bevorzugten Ausführungsform werden gefällte Bariumsulfat-Typen eingesetzt. Gefälltes Bariumsulfat erhält man aus Bariumsalzen und Sulfaten oder Schwefelsäure als feinteiliges farbloses Pulver, dessen Korngröße durch die Fällungsbedingungen zu steuern ist. Gefällte Bariumsulfate können nach den üblichen Verfahren, die in Kunststoff-Journal 8, Nr. 10, 30-36 und Nr. 11, 36-31 (1974) beschrieben sind, hergestellt werden.
Die mittlere Teilchengröße ist relativ klein und liegt vorzugsweise im Bereich von 0,1 bis 5 µm, besonders bevorzugt im Bereich von 0,2 bis 3 µm. Die Dichte des verwendeten Bariumsulfates liegt zwischen 4 und 5 g/cm3.
Die für die erfindungsgemäßen Folien geeigneten Weißpigmente sind im Handel erhältlich oder können nach den beschriebenen bzw. bekannten Methoden hergestellt werden.
Die Folie enthält mindestens einen optischen Aufheller, bevorzugt in der Basisschicht, wobei die optischen Aufheller in Mengen von 10 ppm bis 50 000 ppm, insbesondere von 20 ppm bis 30 000 ppm, besonders bevorzugt von 50 ppm bis 25 000 ppm, bezogen auf das Gewicht der damit ausgerüsteten Schichten, eingesetzt werden. Vorzugsweise wird auch der optische Aufheller über die sogenannte Masterbatch- Technologie direkt bei der Folienherstellung zudosiert.
Die erfindungsgemäßen optischen Aufheller sind in der Lage, UV-Strahlen im Bereich von 360 bis 380 nm zu absorbieren und als längerwelliges, sichtbares blauviolettes Licht wieder abzugeben.
Geeignete optische Aufheller sind z. B. Bis-benzoxazole, Phenylcumarine und Bis­ sterylbiphenyle, insbesondere Phenylcumarin, besonders bevorzugt sind Triazin­ phenylcumarin (®Tinopal, Ciba-Geigy, Basel, Schweiz), ®Hostalux KS (Clariant, Deutschland) sowie ®Eastobrite OB-1 (Eastman).
Sofern zweckmäßig können neben dem optischen Aufheller auch noch in dem thermoplastischen Polyester lösliche blaue Farbstoffe zugesetzt werden. Als geeignete blaue Farbstoffe haben sich Kobaltblau, Ultramarinblau und Anthrachinonfarbstoffe, insbesondere Sudanblau 2 (BASF, Ludwigshafen, Bundesrepublik Deutschland) erwiesen.
Die blauen Farbstoffe werden in Mengen von 10 ppm bis 10 000 ppm, insbesondere 20 ppm bis 5000 ppm, besonders bevorzugt 50 ppm bis 1000 ppm, bezogen auf das Gewicht der damit ausgerüsteten Schicht, eingesetzt.
Erfindungsgemäß können die Weißpigmente, z. B. Titandioxid oder Bariumsulfat, der optische Aufheller und gegebenenfalls der blaue Farbstoff bereits beim Thermoplast- Rohstoffhersteller zudosiert werden oder bei der Folienherstellung über Masterbatch- Technologie in den Extruder dosiert werden.
Besonders bevorzugt ist die Zugabe des Weißpigments, des optischen Aufhellers und gegebenenfalls des blauen Farbstoffes über die Masterbatch-Technologie. Die Additive werden in einem festen Trägermaterial dispergiert. Als Trägermaterialien kommen der thermoplastische Polyester selbst, wie z. B. das Polyethylenterephthalat oder auch andere Polymere, die mit dem Thermoplasten ausreichend verträglich sind, in Frage.
Vorteilhaft ist, dass die Korngröße und das Schüttgewicht des/der Masterbatches ähnlich der Korngröße und dem Schüttgewicht des verwendeten Polyesters ist, so dass eine homogene Verteilung und damit eine homogener Weißgrad und somit eine homogene Opazität erreicht werden.
Die Weißpigmente, optischen Aufheller und gegebenenfalls zusätzliche Farbstoffe können grundsätzlich in allen Schichten der erfindungsgemäßen Folie enthalten sein, d. h. in der Basischicht, den Zwischenschichten und/oder Deckschichten. Es können auch Mischungen verschiedener Weißpigmente, verschiedener optischer Aufheller und/oder verschiedenere Farbstoffe verwendet werden.
Die Gesamtdicke der Folie kann innerhalb weiter Grenzen variieren und richtet sich nach dem beabsichtigten Verwendungszweck. Die bevorzugten Ausführungsformen der erfindungsgemäßen Folie haben Gesamtdicken von 4 bis 500 µm, wobei 8 bis 300 µm, insbesondere 10 bis 300 µm, besonders bevorzugt sind. Die Dicke der gegebenenfalls vorhandenen Zwischenschichten beträgt im allgemeinen jeweils unabhängig voneinander 0,5 bis 15 µm, wobei Zwischenschichtdicken von 1 bis 10 µm, insbesondere 1 bis 8 µm, bevorzugt sind. Die angegebenen Werte beziehen sich jeweils auf eine Zwischenschicht. Die Dicke der Deckschichten wird unabhängig von den anderen Schichten gewählt und liegt bevorzugt im Bereich von 0,1 bis 10 µm, insbesondere 0,2 bis 5 µm, vorzugsweise 0,3 bis 2 µm, wobei beidseitig aufgebrachte Deckschichten bezüglich Dicke und Zusammensetzung gleich oder verschieden sein können. Die Dicke der Basisschicht ergibt sich entsprechend aus der Differenz von Gesamtdicke der Folie und der Dicke der aufgebrachten Deck- und Zwischenschichten und kann daher analog der Gesamtdicke innerhalb weiter Grenzen variieren.
Die Erfindung betrifft weiterhin ein Verfahren zur Herstellung der erfindungsgemäßen Polyesterfolie nach dem an sich bekanntem Koextrusionsverfahren.
Im Rahmen dieses Verfahrens wird so vorgegangen, dass die den einzelnen Schichten der Folie entsprechenden Schmelzen durch eine Flachdüse koextrudiert werden, die so erhaltene Folie zur Verfestigung auf einer oder mehreren Walze/n abgezogen wird, die Folie anschließend biaxial gestreckt (orientiert), die biaxial gestreckte Folie thermofixiert und gegebenenfalls an der zur Behandlung vorgesehenen Oberflächenschicht corona- oder flammbehandelt wird.
Die biaxiale Verstreckung wird im allgemeinen sequentiell durchgeführt. Dabei wird vorzugsweise erst in Längsrichtung (d. h. in Maschinenrichtung, = MD-Richtung) und anschließend in Querrichtung (d. h. senkrecht zur Maschinenrichtung, = TD-Richtung) verstreckt. Dies führt zu einer Orientierung der Molekülketten. Das Verstrecken in Längsrichtung erfolgt bevorzugt mit Hilfe zweier entsprechend dem angestrebten Streckverhältnis verschieden schnell laufenden Walzen. Zum Querverstrecken benutzt man allgemein einen entsprechenden Kluppenrahmen.
Die Temperatur, bei der die Verstreckung durchgeführt wird, kann in einem relativ großen Bereich variieren und richtet sich nach den gewünschten Eigenschaften der Folie. Im allgemeinen wird die Längsstreckung bei 80 bis 130°C und die Querstreckung bei 90 bis 150°C durchgeführt. Das Längsstreckverhältnis liegt allgemein im Bereich von 2,5 : 1 bis 6 : 1, bevorzugt von 3 : 1 bis 5,5 : 1. Das Querstreckverhältnis liegt allgemein im Bereich von 3,0 : 1 bis 5,0 : 1, bevorzugt von 3,5 : 1 bis 4,5 : 1.
Bei der nachfolgenden Thermofixierung wird die Folie etwa 0,1 bis 10 s lang bei einer Temperatur von ca. 150 bis 250°C gehalten. Anschließend wird die Folie in üblicher Weise aufgewickelt.
Zur Einstellung weiterer gewünschter Eigenschaften kann die Folie chemisch behandelt werden als auch corona- bzw. flammbehandelt sein. Die Behandlungsintensität sollte so gewählt werden, dass die Oberflächenspannung der Folie im allgemeinen über 45 mN/m liegt.
Ebenso kann zur Einstellung weiterer Eigenschaften die Folie beschichtet werden. Typische Beschichtungen sind haftvermittelnde, antistatisch, schlupfverbessernd oder dehäsivwirkende Schichten. Es bietet sich an, diese zusätzlichen Schichten über in-line coating mittels wässriger Dispersionen vor der Querverstreckung auf die Folie aufzubringen.
Der besondere Vorteil der erfindungsgemäße Folie drückt sich durch einen hohen Weißgrad, durch eine hohe Opazität in Kombination mit mindestens einer hochglänzenden Oberfläche aus. Der Weißgrad der Folie beträgt mehr als 75%, bevorzugt mehr als 80% und besonders bevorzugt mehr als 85%. Die Opazität der erfindungsgemäßen Folie beträgt mehr als 55%, bevorzugt mehr als 60% und besonders bevorzugt mehr als 65%. Der Glanz der erfindungsgemäßen Folie beträgt mindestens einseitig mehr als 100, bevorzugt mehr als 120 und besonders bevorzugt mehr als 130 bei einem Messwinkel von 20° (DIN 67 530).
Ein weiterer Vorteil der Erfindung liegt darin, dass das bei der Herstellung der Folie immanent anfallende Regenerat in einer Konzentration von ca. 10 bis 70 Gew.-%, bezogen auf das Gesamtgewicht der Folie, wieder verwendet werden kann, ohne dass dabei die physikalischen Eigenschaften der Folie nennenswert negativ beeinflusst werden. Insbesondere wird durch das Regenerat (im wesentlichen aus Polyesterrohstoff, Weißpigment, optischem Aufheller und Cycloolefincopolymeren (COC) bestehend) die Folie nicht undefiniert in der Farbe verändert, was bei den Folien nach dem Stand der Technik der Fall ist. Bevorzugt ist, dass die hochglänzende Deckschicht regeneratfrei bleibt.
Darüber hinaus besteht ein weiterer Vorteil der Erfindung darin, dass die Herstellungskosten der erfindungsgemäßen Folie vergleichbar sind mit denen herkömmlicher transparenter Folien nach dem Stand der Technik. Die sonstigen verarbeitungs- und gebrauchsrelevanten Eigenschaften der erfindungsgemäßen Folie bleiben im wesentlichen unverändert oder sind sogar verbessert.
Die Folie eignet sich sehr gut für Innenraumverkleidungen, für Messebau und Messeartikel, für Schutzverkleidungen von Maschinen und Fahrzeugen sowie zur Verpackung von licht- und/oder luftempfindlichen Nahrungs- und Genußmitteln. Daneben ist sie auch hervorragend für den Einsatz im industriellen Bereich, z. B. bei der Herstellung von Prägefolien oder als Etikettenfolie, geeignet. Daneben ist die Folie natürlich besonders geeignet für Bildaufzeichnungspapiere, Druckbögen, magnetische Aufzeichnungskarten, um nur einige mögliche Anwendungen zu nennen.
Das Verarbeitungs- und das Wickelverhalten der Folie, insbesondere auf schnelllaufenden Maschinen (Wickler, Metallisierer, Druck- und Kaschiermaschinen) ist ausgesprochen gut. Ein Maß für das Verarbeitungsverhalten ist der Reibungskoeffizient der Folie, der kleiner als 0,6 ist. Das Wickelverhalten wird neben einem guten Dickenprofil, einer hervorragender Planlage und niedrigem Reibungskoeffizienten entscheidend durch die Rauigkeit der Folie beeinflusst. Es hat sich herausgestellt, dass die Wickelung der erfindungsgemäßen Folie insbesondere dann gut ist, wenn unter Einbehalt der anderen Eigenschaften die mittlere Rauigkeit in einem Bereich von 50 bis 250 nm liegt. Die Rauigkeit lässt sich u. a. durch Variation der COC-Konzentration, der Deckschichtdicke, ggf. der Deckschichtrezeptur, und den Verfahrensparametern beim Herstellungsprozess im angegebenen Bereich variieren.
Die nachstehende Tabelle (Tabelle 1) fasst die wichtigsten erfindungsgemäßen Folieneigenschaften noch einmal zusammen.
Zur Charakterisierung der Rohstoffe und der Folien wurden die folgenden Messwerte benutzt:
DIN = Deutsches Institut für Normung
ISO = International Organization for Standardisation
ASTM = American Society for Testing and Materials.
SV-Wert (standard viscosity)
Die Standardviskosität SV (DCE) wird, angelehnt an DIN 53 726, in Dichloressigsäure gemessen.
Die intrinsische Viskosität (IV) berechnet sich wie folgt aus der Standardviskosität:
IV (DCE) = 6,67.10-4 SV (DCE) + 0,118
Reibung
Die Reibung wurde nach DIN 53 375 bestimmt. Die Gleitreibungszahl wurde 14 Tage nach der Produktion gemessen.
Oberflächenspannung
Die Oberflächenspannung wurde mittels der sogenannten Tintenmethode (DIN 53 364) bestimmt.
Rauigkeit
Die Rauigkeit Ra der Folie wurde nach DIN 4768 bei einem Cut-off von 0,25 mm bestimmt.
Weißgrad und Opazität
Die Bestimmung des Weißgrades und der Opazität erfolgt mit Hilfe des elektrischen Remissionsphotometers "ELREPHO" der Firma Zeiss, Oberkochem (DE), Normlichtart C, 2° Normalbeobachter. Die Opazität wird nach DIN 53 146 bestimmt. Der Weißgrad wird als WG = RY + 3RZ - 3RX definiert.
WG = Weißgrad, RY, RZ, RX = entsprechende Reflexionsfaktoren bei Einsatz des Y-, Z- und X-Farbmessfilters. Als Weißstandard wird ein Pressling aus Bariumsulfat (DIN 5033, Teil 9) verwendet. Eine ausführliche Beschreibung ist z. B. in Hansl Loos "Farbmessung", Verlag Beruf und Schule, Itzehoe (1989), beschrieben.
Lichtdurchlässigkeit
Die Lichtdurchlässigkeit wird in Anlehnung an ASTM-D 1033-77 gemessen.
Glanz
Der Glanz wurde nach DIN 67 530 bei einem Messwinkel von 20° bestimmt. Gemessen wurde der Reflektorwert als optische Kenngröße für die Oberfläche einer Folie. Ein Lichtstrahl trifft unter dem eingestellten Einstrahlwinkel auf die ebene Prüffläche und wird von dieser reflektiert bzw. gestreut. Die auf den photoelektronischen Empfänger auffallenden Lichtstrahlen werden als proportionale elektrische Größe angezeigt. Der Messwert ist dimensionslos und muß mit dem Einstrahlwinkel angegeben werden.
Glasübergangstemperatur
Die Glasübergangstemperatur Tg wurde anhand von Folienproben mit Hilfe der DSC (Differential Scanning Calorimetry) bestimmt (DIN 73 765). Verwendet wurde das Gerät DSC 1090 der Fa. DuPont. Die Aufheizgeschwindigkeit betrug 20 K/min und die Einwaage ca. 12 mg. Im ersten Aufheizvorgang wurde der Glasübergang Tg ermittelt. Die Proben zeigten vielfach eine Enthalpierelaxation (ein Peak) zu Beginn des stufenförmigen Glasübergangs. Als Tg wurde die Temperatur genommen, bei der die stufenförmige Veränderung der Wärmekapazität - unabhängig von der peakförmigen Enthalpierelaxation - ihre halbe Höhe im ersten Aufheizvorgang erreichte. In allen Fällen wurde nur eine einzige Glasübergangsstufe im Thermogramm beim ersten Aufheizen beobachtet.
Die nachfolgenden Beispiele dienen zu näheren Erläuterung der Erfindung. Es handelt sich um koextrudierte, mehrschichtige Folien.
Beispiel 1
Nach der Koextrusions-Technologie wird eine 23 µm dicke mehrschichtige Folie mit der Schichtreihenfolge A-B-A hergestellt, wobei B die Basisschicht und A die Deckschichten darstellen. Die Basisschicht B ist 21 µm dick und die beiden Deckschichten, die die Basisschicht überziehen, sind jeweils 1 µm dick. Chips aus Polyethylenterephthalat (hergestellt über das Umesterungsverfahren mit Mn als Umesterungskatalysator, Mn- Konzentration: 100 ppm) wurden bei 150°C auf eine Restfeuchte von unterhalb 100 ppm getrocknet und dem Extruder für die Basisschicht B zugeführt. Daneben wurden Chips aus Cycloolefincopolymeren (COC) der Fa. Ticona: ®Topas 6015 (COC bestehend aus 2- Norbornen und Ethylen, siehe auch W. Hatke: Folien aus COC, Kunststoffe 87 (1997) 1, S. 58-62) mit einer Glasübergangstemperatur Tg von 170°C ebenfalls dem Extruder für die Basisschicht B zugeführt. Der Anteil des Cycloolefincopolymeren (COC) an der Basisschicht betrug 10 Gew.-%.
Außerdem enthält die Basisschicht 5 Gew.-% Bariumsulfat (®Blanc fixe XR-HX, Sachtleben Chemie) und 200 ppm optischen Aufheller (Tinopal®, Ciba-Geigy, Basel).
Die Additive Bariumsulfat und optischer Aufheller werden als Masterbatch zugegeben.
Das Polyethylenterephthalat, das zur Herstellung der Masterbatche verwendet wird, hat eine Standardviskosität SV (DCE) im Bereich von 900 bis 1100.
Das Masterbatch 1 setzt sich aus Klarrohstoff, 50% Bariumsulfat und 2000 ppm optischem Aufheller zusammen und wird mit 10 Gew.-% in die Basisschicht dosiert.
Die 1 µm dicken Deckschichten enthalten 93% Polyester (RT49, Kosa, Deutschland) sowie 7% eines Masterbatches, das neben Polyester 10 000 ppm Siliciumdioxid (®Sylobloc, Grace, Deutschland) enthält.
Es wurde durch Koextrusion und anschließende stufenweise Orientierung in Längs- und Querrichtung eine weiße, opake dreischichtige Folie einer Gesamtdicke von 23 µm hergestellt.
Basisschicht B, Mischung aus:
80,0 Gew.-% Polyethylenterephthalat-Homopolymer (RT49, Fa. Kosa, Deutschland)
10,0 Gew.-% Cycloolefincopolymeren (COC) der Fa. Ticona, ®Topas 6015
10,0 Gew.-% Masterbatch 1, das neben RT49 50 Gew.-% Bariumsulfat und 2000 ppm ®Tinopal enthält.
Die Herstellungsbedingungen in den einzelnen Verfahrensschritten waren:
Extrusion
Temperaturen der Basis- und der Deckschicht 280°C
Temperatur der Abzugswalze 30°C
Längsstreckung
Temperatur 80-125°C
Längsstreckverhältnis 4,2
Querstreckung
Temperatur 80-135°C
Querstreckverhältnis 4,0
Fixierung
Temperatur 230°C
Dauer 3 s
Die Folie hatte die geforderten guten Eigenschaften und zeigt das gewünschte Handling und das gewünschte Verarbeitungsverhalten. Die erzielten Eigenschaften derart hergestellter Folien sind in der Tabelle 2 zusammengefasst.
Beispiel 2
Im Vergleich zu Beispiel 1 wurde jetzt in die Basisschicht 50 Gew.-% Regenerat gegeben. Die Konzentration des Cycloolefincopolymeren (COC) in der Basisschicht betrug wiederum 10 Gew.-%. Die Konzentration an Bariumsulfat und optischem Aufheller waren identisch mit Beispiel 1. Die Verfahrensparameterwurden im Vergleich zu Beispiel 1 nicht geändert. Es wurde die Gelbverfärbung der Folie visuell beobachtet. Tabelle 2 zeigt, dass kaum eine Gelbverfärbung der Folie sichtbar geworden ist.
Basisschicht B, Mischung aus:
35,0 Gew.-% Polyethylenterephthalat-Homopolymer (RT49, Kosa, Deutschland)
50,0 Gew.-% Regenerat (90 Gew.-% Polyester + 10 Gew.-% Topas 6015)
5,0 Gew.-% Cycloolefincopolymeren (COC) der Fa. Ticona, ®Topas 6015
10,0 Gew.-% Masterbatch 1, das neben RT49 50 Gew.-% Bariumsulfat und 2000 ppm ®Tinopal enthält.
Deckschichten: Wie in Beispiel 1.
Beispiel 3
Im Vergleich zu Beispiel 1 wurde jetzt eine ABA-Folie mit einer Dicke von 96 µm hergestellt, wobei die 92 µm dicke Basisschicht von den je 2 µm dicken Deckschichten überzogen wird. Die Konzentration des Cycloolefincopolymeren (COC) in der Basisschicht betrug 8 Gew.-%. Die Konzentration an Bariumsulfat und optischem Aufheller waren identisch mit Beispiel 1. Die Verfahrensparameterwurden im Vergleich zu Beispiel 1 nicht geändert. Es wurde die Gelbverfärbung der Folie visuell beobachtet. Tabelle 2 zeigt, dass keine Gelbverfärbung der Folie sichtbar geworden ist.
Basisschicht B (92 µm), Mischung aus:
82,0 Gew.-% Polyethylenterephthalat-Homopolymer (RT49, Kosa, Deutschland)
8,0 Gew.-% Cycloolefincopolymeren (COC) der Fa. Ticona, ®Topas 6015
10,0 Gew.-% Masterbatch 1, das neben RT49 50 Gew.-% Bariumsulfat und 2000 ppm ®Tinopal enthält.
Deckschichten: Wie in Beispiel 1. Die Dicke der Deckschichten liegt jedoch bei 2 µm.
Beispiel 4
Im Vergleich zu Beispiel 3 wurde jetzt in die Basisschicht 50 Gew.-% Regenerat gegeben. Die Konzentration des Cycloolefincopolymeren (COC) in der Basisschicht betrug 8 Gew.-%. Die Verfahrensparameter, die Konzentration an Bariumsulfat und an optischem Aufheller wurden im Vergleich zu Beispiel 1 nicht geändert. Es wurde die Gelbverfärbung der Folie visuell beobachtet. Tabelle 2 zeigt, dass kaum eine Gelbverfärbung der Folie sichtbar geworden ist.
Basisschicht B, Mischung aus:
37,0 Gew.-% Polyethylenterephthalat-Homopolymer (RT49, Kosa, Deutschland)
50,0 Gew.-% Eigenregenerat (90 Gew.-% Polyester + 10 Gew.-% Topas 6015)
3,0 Gew.-% Cycloolefincopolymeren (COC) der Fa. Ticona, ®Topas 6015
10,0 Gew.-% Masterbatch 1, das neben RT49 50 Gew.-% Bariumsulfat und 2000 ppm ®Tinopal enthält.
Deckschichten: Wie in Beispiel 3.
Vergleichsbeispiel 1
Es wurde Beispiel 1 aus der DE-A 23 53 347 nachgearbeitet. In Abänderung des Beispiels wurden zusätzlich 50 Gew.-% Regenerat mitverarbeitet. Tabelle 2 zeigt, dass eine deutliche Gelbverfärbung der Folie sichtbar geworden ist. Außerdem ist die Rauigkeit der Folie für viele Anwendungen zu hoch und der Glanz für viele Anwendungen zu niedrig.
Basisschicht B, Mischung aus:
47,5 Gew.-% Polyethylenterephthalat-Homopolymer (RT49, Kosa, Deutschland)
50,0 Gew.-% Eigenregenerat (95 Gew.-% Polyester + 5 Gew.-% Polypropylen)
2,5 Gew.-% Polypropylen.
Vergleichsbeispiel 2
Es wurde Beispiel 1 aus der EP-A 0 300 060 nachgearbeitet. In Abänderung des Beispiels wurden zusätzlich 50 Gew.-% Regenerat mitverarbeitet. Tabelle 2 zeigt, dass eine deutliche Gelbverfärbung der Folie sichtbar geworden ist. Außerdem ist die Rauigkeit der Folie für viele Anwendungen zu hoch und der Glanz für viele Anwendungen zu niedrig.
Basisschicht B, Mischung aus:
45,0 Gew.-% Polyethylenterephthalat-Homopolymer (RT49, Kosa, Deutschland)
50,0 Gew.-% Eigenregenerat (95 Gew.-% Polyester + 5 Gew.-% Polypropylen)
5,0 Gew.-% Polypropylen.
Vergleichsbeispiel 3
Es wurde Beispiel 1 aus der EP-A 0 360 201 nachgearbeitet. In Abänderung des Beispiels wurden zusätzlich 50 Gew.-% Regenerat mitverarbeitet. Tabelle 2 zeigt, dass eine deutliche Gelbverfärbung der Folie sichtbar geworden ist. Außerdem ist die Rauigkeit der Folie für viele Anwendungen zu hoch und der Glanz für viele Anwendungen zu niedrig.
Basisschicht B, Mischung aus:
40,0 Gew.-% Polyethylenterephthalat-Homopolymer (RT49, Kosa, Deutschland)
50,0 Gew.-% Eigenregenerat (95 Gew.-% Polyester + 5 Gew.-% Polypropylen)
10,0 Gew.-% Polypropylen.
Vergleichsbeispiel 4
Es wurde Beispiel 1 aus der DE-A 195 40 277 nachgearbeitet. In Abänderung des Beispiels wurden zusätzlich 50 Gew.-% Regenerat mitverarbeitet. Tabelle 2 zeigt, dass eine deutliche Gelbverfärbung der Folie sichtbar geworden ist. Außerdem ist die Rauigkeit der Folie für viele Anwendungen zu hoch und der Glanz für viele Anwendungen zu niedrig.
Basisschicht B, Mischung aus:
43,5 Gew.-% Polyethylenterephthalat-Homopolymer (RT49, Kosa, Deutschland)
50,0 Gew.-% Eigenregenerat (95 Gew.-% Polyester + 5 Gew.-% Polystyrol)
6,5 Gew.-% Polystyrol.

Claims (22)

1. Polyesterfolie, welche mindestens eine Basisschicht (B) und mindestens eine Deckschicht aufweist, dadurch gekennzeichnet, dass mindestens die Basisschicht neben einem thermoplastischen Polyester ein Cycloolefincopolymer (COC), ein Weißpigment und einen optischen Aufheller enthält.
2. Polyesterfolie gemäß Anspruch 1, dadurch gekennzeichnet, dass sie einen Schichtaufbau A-B-C hat, wobei die Deckschichten A und C gleich oder ver­ schieden sind und mindestens eine der Deckschichten kein COC enthält.
3. Polyesterfolie gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass sie wei­ tere Deck- und/oder Zwischenschichten aufweist.
4. Polyesterfolie gemäß einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der thermoplastische Polyester Ethylenglykol- und Terephthalsäure-Einheiten oder Ethylenglykol- und Naphthalin-2,6-dicarbon­ säure-Einheiten enthält.
5. Polyesterfolie gemäß einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass es sich bei dem thermoplastischen Polyester um Poly­ ethylenterephthalat handelt.
6. Polyesterfolie gemäß einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die mit dem COC ausgerüsteten Schichten das COC von 2 bis 60 Gew.-%, bevorzugt von 4 bis 50 Gew.-%, insbesondere von 6 bis 40 Gew.-%, jeweils bezogen auf das Gewicht der damit ausgerüsteten Schichten, enthalten.
7. Polyesterfolie gemäß einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das COC Polynorbornen, Polytetracyclododecen, Poly­ dimethyloctahydronaphthalin, Polycyclopenten oder Poly(5-methyl)norbornen enthält.
8. Polyesterfolie gemäß einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das COC als Copolymer Ethylen, Propylen und/oder Butylen, bevorzugt Ethylen, enthält.
9. Polyesterfolie gemäß einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das COC ein Norbornen/Ethylen oder ein Tetracyclo­ dodecen/Ethylen-Copolymerisat ist.
10. Polyesterfolie gemäß einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das COC eine Glasübergangstemperatur von 70 bis 270°C, bevorzugt 90 bis 250°C, insbesondere von 110 bis 220°C, aufweist.
11. Polyesterfolie gemäß einem oder mehreren der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die mit dem Weißpigment ausgerüsteten Schichten dieses von 0,1-25 Gew.-%, bevorzugt von 0,2-23 Gew.-%, insbesondere von 0,3-22 Gew.-%, jeweils bezogen auf das Gewicht der damit ausgerüsteten Schichten, enthalten.
12. Polyesterfolie gemäß einem oder mehreren der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die mit dem optischen Aufheller ausgerüsteten Schichten diesen von 10 bis 50 000 ppm, bevorzugt von 20 bis 30 000 ppm, insbesondere von 50 bis 25 000 ppm, jeweils bezogen auf das Gewicht der damit ausgerüsteten Schichten, enthalten.
13. Polyesterfolie gemäß einem oder mehreren der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass als Weißpigmente Titandioxid, Bariumsulfat, Calciumcarbonat, Kaolin oder Siliciumdioxid, bevorzugt Titandioxid oder Bariumsulfat, oder Mischungen dieser Pigmente oder Mischungen dieser Pigmente mit anderen Weißpigmenten verwendet werden.
14. Polyesterfolie gemäß einem oder mehreren der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass als optische Aufheller Bis-benzoxazole, Phenylcumarine oder Bissterylbiphenyle, bevorzugt Phenylcumann oder Triazinphenylcumann, oder Mischungen dieser Aufheller oder Mischungen dieser Aufheller mit anderen optischen Aufhellern verwendet werden.
15. Polyesterfolie gemäß einem oder mehreren der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass die Folie einen in dem thermoplastischen Polyester löslichen blauen Farbstoff, bevorzugt Kobaltblau, Ultramarinblau oder Anthrachinonfarbstoffe, enthält.
16. Polyesterfolie gemäß einem oder mehreren der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass die Folie zusätzlich übliche Additive wie Antiblockmittel, Stabilisatoren oder Gleitmittel enthält.
17. Polyesterfolie gemäß einem oder mehreren der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass die Folie einen Weißgrad von größer 75%, bevorzugt größer 80%, insbesondere größer 85%, aufweist.
18. Polyesterfolie gemäß einem oder mehreren der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass die Folie eine Opazität von größer 55%, bevorzugt größer 60%, insbesondere größer 65%, aufweist.
19. Polyesterfolie gemäß einem oder mehreren der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass die Folie zumindest einseitig einen Oberflächenglanz von größer 100, bevorzugt größer 120, insbesondere von größer 130, aufweist.
20. Verfahren zur Herstellung einer Polyesterfolie gemäß einem oder mehreren der Ansprüche 1 bis 19, dadurch gekennzeichnet, dass man die für die Herstellung der Basis- und Deckschichten und gegebenenfalls Zwischenschichten erforderlichen Ausgangsstoffe über Extruder durch eine Flachdüse koextrudiert und die erhaltene Folie biaxial verstreckt und thermofixiert und gegebenenfalls weiterbehandelt.
21. Verwendung einer Polyesterfolie gemäß einem oder mehreren der Ansprüche 1 bis 19 zur Herstellung von Formkörpern.
22. Formkörper hergestellt unter Verwendung einer Polyesterfolie gemäß einem oder mehreren der Ansprüche 1 bis 19.
DE10026166A 2000-05-26 2000-05-26 Weiße, pigmentierte, hochglänzende Polyesterfolie enthaltend Cycloolefincopolymer (COC), Verfahren zu ihrer Herstellung und ihre Verwendung Withdrawn DE10026166A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE10026166A DE10026166A1 (de) 2000-05-26 2000-05-26 Weiße, pigmentierte, hochglänzende Polyesterfolie enthaltend Cycloolefincopolymer (COC), Verfahren zu ihrer Herstellung und ihre Verwendung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10026166A DE10026166A1 (de) 2000-05-26 2000-05-26 Weiße, pigmentierte, hochglänzende Polyesterfolie enthaltend Cycloolefincopolymer (COC), Verfahren zu ihrer Herstellung und ihre Verwendung

Publications (1)

Publication Number Publication Date
DE10026166A1 true DE10026166A1 (de) 2001-11-29

Family

ID=7643688

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10026166A Withdrawn DE10026166A1 (de) 2000-05-26 2000-05-26 Weiße, pigmentierte, hochglänzende Polyesterfolie enthaltend Cycloolefincopolymer (COC), Verfahren zu ihrer Herstellung und ihre Verwendung

Country Status (1)

Country Link
DE (1) DE10026166A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1842663A1 (de) * 2006-04-05 2007-10-10 Mitsubishi Polyester Film GmbH Mehrschichtige, weisse Polyesterfolie
EP1859933A1 (de) * 2006-05-24 2007-11-28 Mitsubishi Polyester Film GmbH Mehrschichtige haftvermittelnde, weisse Polyesterfolie

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1842663A1 (de) * 2006-04-05 2007-10-10 Mitsubishi Polyester Film GmbH Mehrschichtige, weisse Polyesterfolie
US7829175B2 (en) 2006-04-05 2010-11-09 Mitsubishi Polyester Film Gmbh Multilayer, white polyester film
EP1859933A1 (de) * 2006-05-24 2007-11-28 Mitsubishi Polyester Film GmbH Mehrschichtige haftvermittelnde, weisse Polyesterfolie

Similar Documents

Publication Publication Date Title
EP1068949B1 (de) Weisse, biaxial orientierte Polyesterfolie mit Cycloolefincopolymer (COC), Verfahren zu ihrer Herstellung und ihre Verwendung
DE10011652A1 (de) Biaxial orientierte Polyesterfolie mit hohem Weißgrad, Verfahren zu ihrer Herstellung und ihre Verwendung
EP1132424B1 (de) Weisse, biaxial orientierte, schwer entflammbare und UV-stabilisierte Polyesterfolie mit Cycloolefincopolymer, Verfahren zu ihrer Herstellung und ihre Verwendung
EP1274576B1 (de) Matte, uv-stabile, thermoformbare, koextrudierte polyesterfolie, verfahren zu ihrer herstellung und ihre verwendung
EP1127912A1 (de) Weisse, biaxial orientierte und UV-stabilisierte Polyesterfolie mit Cycloolefincopolymer (COC), Verfahren zu ihrer Herstellung und ihre Verwendung
EP1289759B1 (de) Weisse, hochglänzende, polyesterfolie enthaltend cycloolefincopolymer (coc), verfahren zu ihrer herstellung und ihre verwendung
EP1138716B1 (de) Biaxal orientierte Polyesterfolie enthaltend ein Cycloolefincopolymer, Verfahren zu ihrer Herstellung und ihre Verwendung
DE10030235A1 (de) Weiße, siegelfähige, thermoformbare, biaxial orientierte und koextrudierte Polyesterfolie mit Cycloolefincopolymer, Verfahren zu ihrer Herstellung und ihre Verwendung
DE10009295A1 (de) Weisse, biaxial orientierte, schwer entflammbare Polyesterfolie mit Cycloolefincopolymer, Verfahren zu ihrer Herstellung und ihre Verwendung
DE10007671A1 (de) Weiß-opake Folie mit niedriger Transparenz aus einem kristallisierbaren Thermoplasten
DE10022942A1 (de) Weisse, zumindest einseitig matte, biaxial orientierte Polyesterfolie mit Cycloolefincopolymer, Verfahren zu ihrer Herstellung und ihre Verwendung
EP1299235B1 (de) Weisse, siegelfähige, biaxial orientierte, koextrudierte polyesterfolie mit cycloolefincopolymer (coc), verfahren zu ihrer herstellung und ihre verwendung
DE10026166A1 (de) Weiße, pigmentierte, hochglänzende Polyesterfolie enthaltend Cycloolefincopolymer (COC), Verfahren zu ihrer Herstellung und ihre Verwendung
DE10042332A1 (de) Verbundfolie aus einer weißen, pigmentierten Polyesterfolie enthaltend Cycloolefincopolymer (COC), Verfahren zu ihrer Herstellung und ihre Verwendung
EP1245618B1 (de) Weisse, biaxial orientierte Folie aus einem kristallisierbaren Thermoplasten mit guter Schneidbarkeit
DE10022947A1 (de) Zumindest einseitig matte, biaxial orientierte Polyesterfolie mit hohem Weissgrad, Verfahren zu ihrer Herstellung und ihre Verwendung
DE10022946A1 (de) Weisse, zumindest einseitig matte, biaxial orientierte, UV-stabilisierte und schwer entflammbare Polyesterfolie mit Cycloolefincopolymer (COC), Verfahren zu ihrer Herstellung und ihre Verwendung
DE10026163A1 (de) Weiße, hochglänzende, UV-stabilisierte, schwerentflammbare Polyesterfolie enthaltend Cycloolefincopolymer (COC), Verfahren zu ihrer Herstellung und ihre Verwendung
DE10042334A1 (de) Verbundfolie aus einer weißen Polyesterfolie enthaltend Cycloolefincopolymer (COC), Verfahren zu ihrer Herstellung und ihre Verwendung
DE10042333A1 (de) Verbundfolie aus einer weißen, schwerentflammbaren Polyesterfolie enthaltend Cycloolefincopolymer (COC), Verfahren zu ihrer Herstellung und ihre Verwendung
DE10026164A1 (de) Weiße, hochglänzende, thermoformbare Polyesterfolie enthaltend Cycloolefincopolymer (COC), Verfahren zu ihrer Herstellung und ihre Verwendung
DE10030243A1 (de) Weiße, pigmentierte, siegelfähige, biaxial orientierte, koextrudierte Polyesterfolie mit Cycloolefincopolymer (COC), Verfahren zu ihrer Herstellung und ihre Verwendung
DE10026167A1 (de) Weiße, hochglänzende, UV-stabilisierte Polyesterfolie enthaltend Cycloolefincopolymer (COC), Verfahren zu ihrer Herstellung und ihre Verwendung
DE10042328A1 (de) Verbundfolie aus einer weißen, UV-stabilisierten Polyesterfolie enthaltend Cycloolefincopolymer (COC), Verfahren zu ihrer Herstellung und ihre Verwendung
DE10026165A1 (de) Weiße, hochglänzende, schwer entflammbare Polyesterfolie enthaltend Cycloolefincopolymer (COC), Verfahren zu ihrer Herstellung und ihre Verwendung

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee