DE10022947A1 - Zumindest einseitig matte, biaxial orientierte Polyesterfolie mit hohem Weissgrad, Verfahren zu ihrer Herstellung und ihre Verwendung - Google Patents

Zumindest einseitig matte, biaxial orientierte Polyesterfolie mit hohem Weissgrad, Verfahren zu ihrer Herstellung und ihre Verwendung

Info

Publication number
DE10022947A1
DE10022947A1 DE10022947A DE10022947A DE10022947A1 DE 10022947 A1 DE10022947 A1 DE 10022947A1 DE 10022947 A DE10022947 A DE 10022947A DE 10022947 A DE10022947 A DE 10022947A DE 10022947 A1 DE10022947 A1 DE 10022947A1
Authority
DE
Germany
Prior art keywords
film
range
weight
matt
polyester film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE10022947A
Other languages
English (en)
Inventor
Herbert Peiffer
Holger Kliesch
Gottfried Hilkert
Guenther Crass
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Polyester Film GmbH
Original Assignee
Mitsubishi Polyester Film GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Polyester Film GmbH filed Critical Mitsubishi Polyester Film GmbH
Publication of DE10022947A1 publication Critical patent/DE10022947A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • B29C48/307Extrusion nozzles or dies having a wide opening, e.g. for forming sheets specially adapted for bringing together components, e.g. melts within the die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/023Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets using multilayered plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/38Polymers of cycloalkenes, e.g. norbornene or cyclopentene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

Die vorliegende Erfindung betrifft eine zumindest einseitig matte, hochweiße biaxial orientierte und koextrudierte Polyesterfolie mit mindestens einer Basisschicht B, die neben Polyesterrohstoff ein Cycloelefincopolymer (COC) in einer Menge von 4 bis 60 Gew.-%, bezogen auf das Gewicht der Basisschicht B, enthält, wobei die Glasübergangstemperatur T¶g¶ des COCs im Bereich im von 70 bis 270 DEG C liegt, und mindestens einer matten Deckschicht A aus Polyester. Die Basisschicht B enthält zumindest noch ein Weißpigment und ggf. einen optischen Aufheller in einer Menge von 0 bis 5 Gew.-%. Die Folie eignet sich insbesondere zur Verwendung auf schnelllaufenden Maschinen wie Wickel-, Metallisier-, Druck- oder Kaschiermaschinen.

Description

Die vorliegende Erfindung betrifft eine hochweiße, zumindest einseitig matte, biaxial orientierte und koextrudierte Polyesterfolie, die mindestens eine Basisschicht B und mindestens eine matte Deckschicht umfasst, wobei mindestens die Basisschicht B einen Polyesterrohstoff, ein Weißpigment und ein Cycloolefincopolymer (COC) enthält. Die Erfindung betrifft ferner ein Verfahren zur Herstellung der hochweißen, zumindest einseitig matten Polyesterfolie sowie ihre Verwendung.
Weiße, biaxial orientierte Polyesterfolien sind nach dem Stand der Technik bekannt. Diese nach dem Stand der Technik bekannten Folien zeichnen sich entweder durch eine gute Herstellbarkeit, eine gute Optik oder durch ein akzeptables Verarbeitungsverhalten aus.
In der DE-A 23 53 347 wird ein Verfahren zur Herstellung einer ein- oder mehrschichtigen, milchigen Polyesterfolie beschrieben, das dadurch gekennzeichnet ist, dass man ein Gemisch aus Teilchen eines linearen Polyesters mit 3 bis 27 Gew.-% eines Homopolymeren oder Mischpolymeren von Ethylen oder Propylen herstellt, das Gemisch als Film extrudiert, den Film abschreckt und durch Verstrecken in senkrecht zueinander verlaufenden Richtungen biaxial orientiert und den Film thermofixiert. Nachteilig an dem Verfahren ist, dass das bei der Herstellung der Folie anfallende Regenerat (im Wesentlichen ein Gemisch aus Polyesterrohstoff und Ethylen oder Propylen-Mischpolymer) nicht mehr eingesetzt werden kann, da ansonsten die Folie gelb wird. Das Verfahren ist damit aber unwirtschaftlich und die mit Regenerat produzierte, gelbliche Folie konnte sich am Markt nicht durchsetzen.
In der EP-A-0 300 060 wird eine einschichtige Polyesterfolie beschrieben, die außer Polyethylenterephthalat noch 3 bis 40 Gew.-% eines kristallinen Propylenpolymeren und 0,001 bis 3 Gew.-% einer oberflächenaktiven Substanz enthält. Die oberflächenaktive Substanz bewirkt, dass die Anzahl der Vakuolen in der Folie ansteigt und gleichzeitig ihre Größe in gewünschtem Maße abnimmt. Hierdurch wird eine höhere Opazität und eine niedrigere Dichte der Folie erzielt. Nachteilig an der Folie bleibt weiterhin, dass das bei der Herstellung der Folie anfallende Regenerat (im Wesentlichen ein Gemisch aus Polyesterrohstoff und Propylen-Homopolymer) nicht mehr eingesetzt werden kann, da ansonsten die Folie gelb wird. Das Verfahren ist damit aber unwirtschaftlich und die mit Regenerat produzierte Folie mit Gelbstich konnte sich am Markt nicht durchsetzen.
In der EP-A-0 360 201 wird eine mindestens zweischichtige Polyesterfolie beschrieben, die eine Basisschicht mit feinen Vakuolen enthält, deren Dichte zwischen 0,4 und 1,3 kg/dm3 liegt und mindestens eine Deckschicht aufweist, deren Dichte größer als 1,3 kg/dm3 ist. Die Vakuolen werden durch Zugabe von 4 bis 30 Gew.-% eines kristallinen Propylenpolymeren und anschließender biaxialer Streckung der Folie erzielt. Durch die zusätzliche Deckschicht wird die Herstellbarkeit der Folie besser (keine Streifenbildung auf der Oberfläche der Folie), die Oberflächenspannung wird erhöht und die Rauigkeit der laminierten Oberfläche kann verringert werden. Nachteilig bleibt weiterhin, dass das bei der Herstellung der Folie anfallende Regenerat (im Wesentlichen ein Gemisch aus Polyesterrohstoff und Propylen-Homopolymer) nicht mehr eingesetzt werden kann, da ansonsten die Folie gelb wird. Das Verfahren ist damit aber unwirtschaftlich und die mit Regenerat produzierte Folie mit Gelbton konnte sich am Markt nicht durchsetzen.
In der EP-A-0 795 399 wird eine zumindest zweischichtige Polyesterfolie beschrieben, die eine Basisschicht mit feinen Vakuolen enthält, deren Dichte zwischen 0,4 und 1,3 kg/dm3 liegt und mindestens eine Deckschicht aufweist, deren Dichte größer als 1,3 kg/dm3 beträgt. Die Vakuolen werden durch Zugabe von 5 bis 45 Gew.-% eines thermoplastischen Polymers zum Polyesterrohstoff in der Basis und anschließender biaxialer Streckung der Folie erzielt. Als thermoplastische Polymere werden u. a. Polypropylen, Polyethylen, Polymethyl-Penten, Polystyrol oder Polycarbonat genannt, wobei Polypropylen das bevorzugte thermoplastische Polymer ist. Durch die zusätzliche Deckschicht wird die Herstellbarkeit der Folie besser (keine Streifenbildung auf der Oberfläche der Folie), die Oberflächenspannung wird erhöht und die Rauigkeit der laminierten Oberfläche kann den jeweiligen Erfordernissen angepasst werden. Eine weitere Modifizierung der Folie in der Basisschicht und/oder in den Deckschichten mit Weiß-Pigmenten (in der Regel TiO2) und/oder mit optischen Aufhellern ermöglicht die Anpassung der Folieneigenschaften an die jeweiligen Anwendungserfordernisse. Nachteilig bleibt weiterhin, dass das bei der Herstellung der Folie anfallende Regenerat (im Wesentlichen ein Gemisch aus Polyesterrohstoff und dem additiven Rohstoff) nicht mehr eingesetzt werden kann, da ansonsten die Folie undefiniert in der Farbe verändert wird, was in hohem Maße unerwünscht ist. Das Verfahren ist damit unwirtschaftlich und die mit Regenerat produzierte, verfärbte Folie konnte sich am Markt nicht durchsetzen.
In der DE-A 195 40 277 wird eine ein- oder mehrschichtige Polyesterfolie beschrieben, die eine Basisschicht mit feinen Vakuolen enthält, deren Dichte zwischen 0,6 und 1,3 kg/dm3 liegt und eine Doppelbrechung in der Ebene aufweist, die von -0,02 bis 0,04 reicht. Die Vakuolen werden durch Zugabe von 3 bis 40 Gew.-% eines thermoplastischen Harzes zum Polyesterrohstoff in der Basis und anschließender biaxialer Streckung der Folie erzielt. Als thermoplastische Harze werden u. a. Polypropylen, Polyethylen, Polymethyl-Penten, cyclische Olefin-Polymere, Polyacrylharze, Polystyrol oder Polycarbonat genannt, wobei Polypropylen und Polystyrol bevorzugte Rohstoffe sind. Durch Einhalt der angegebenen Grenzen für die Doppelbrechung der Folie zeichnet sich die beanspruchte Folie insbesondere durch eine überlegene Reißfestigkeit und überlegene Isotropieeigenschaften aus. Nachteilig bleibt jedoch, dass das bei der Herstellung der Folie anfallende Regenerat nicht mehr eingesetzt werden kann, da ansonsten die Folie undefiniert in der Farbe verändert wird, was sehr unerwünscht ist. Das Verfahren ist damit unwirtschaftlich und die mit Regenerat produzierte Folie mit Farbton konnte sich am Markt nicht durchsetzen.
Die Aufgabe der vorliegenden Erfindung bestand darin, eine hochweiße, zumindest einseitig matte, biaxial orientierte Polyesterfolie bereitzustellen, die sich durch eine verbesserte Herstellbarkeit, d. h. geringe Herstellkosten auszeichnet. Insbesondere soll gewährleistet sein, dass bei dem Herstellprozeß immanent anfallendes Verschnittmaterial als Regenerat in einer Menge von 10 bis 70 Gew.-%, bezogen auf das Gesamtgewicht der Folie, wieder für den Herstellprozess eingesetzt werden kann, ohne dass dabei die physikalischen und optischen Eigenschaften der mit Regenerat hergestellten Folie nennenswert negativ beeinflusst werden. Insbesondere soll durch die Regeneratzugabe keine nennenswerte Gelbfärbung der Folie auftreten.
Die Aufgabe wird erfindungsgemäß durch eine hochweiße, zumindest einseitig matte, biaxial orientierte Polyesterfolie mit mindestens einer Basisschicht B und mindestens einer matten Deckschicht A, beide aus Polyesterrohstoff, gelöst, deren kennzeichnende Merkmale darin zu sehen sind, dass zumindest die Basisschicht B zusätzlich Cycloolefincopolymer (COC) in einer Menge im Bereich von 2 bis 60 Gew.-%, bezogen auf das Gewicht der Basisschicht B, enthält, wobei die Glasübergangstemperatur Tg des Cycloolefincopolymeren (COCs) im Bereich von 70 bis 270°C liegt, und dass die Basisschicht B zusätzlich mindestens ein Weißpigment und ggf. einen optischen Aufheller enthält.
Unter einer hochweißen, biaxial orientierten Polyesterfolie im Sinne der vorliegenden Erfindung wird eine solche Folie bezeichnet, die einen Weißgrad von mehr als 80%, bevorzugt von mehr als 85% und besonders bevorzugt von mehr als 90%, aufweist. Ferner beträgt die Opazität der erfindungsgemäßen hochweißen Folie mehr als 55%, bevorzugt mehr als 60% und besonders bevorzugt mehr als 65%.
Zur Erzielung des gewünschten Weißgrades der erfindungsgemäßen Folie soll die Menge an Cycloolefincopolymer (COC) in der Basisschicht B größer als 2 Gew.-% sein, andernfalls ist der Weißgrad kleiner als 70%. Ist die Menge an COC andererseits größer als 60 Gew.-%, dann läßt sich die Folie nicht mehr wirtschaftlich herstellen, da sie sich nicht mehr verfahrenssicher strecken lässt.
Weiterhin ist es notwendig, dass die Glasübergangstemperatur Tg des eingesetzten COCs größer als 70°C ist. Andernfalls, wenn die Glasübergangstemperatur Tg des eingesetzten COCs kleiner als 70°C ist, ist das Rohstoffgemisch schlecht verarbeitbar, weil es sich nur noch schlecht extrudieren läßt. Der gewünschte Weißgrad wird nicht mehr erreicht und das eingesetzte Regenerat führt zu einer Folie, die zu einer erhöhten Gelbfärbung neigt. Ist andererseits die Glasübergangstemperatur Tg des ausgewählten COCs größer als 270°C, dann wird sich die Rohstoffmischung im Extruder nicht mehr ausreichend homogenisieren lassen. Dies hat dann eine Folie mit unerwünscht inhomogenen Eigenschaften zur Folge.
In der bevorzugten Ausführungsform der erfindungsgemäßen Folie liegt die Glasübergangstemperatur Tg der verwendeten COCs in einem Bereich von 90 bis 250°C und in der besonders bevorzugten Ausführungsform in einem Bereich von 110 bis 220°C.
Überraschend wurde gefunden, dass durch den Zusatz eines COCs in der vorstehend beschriebenen Weise eine weiße, opake Folie hergestellt werden kann. Um den Weißgrad der erfindungsgemäßen hochweißen Polyesterfolie noch weiter zu erhöhen, enthält die Basisschicht B zusätzlich mindestens ein Weißpigment in einer Menge im Bereich von 0,1 bis 25 Gew.-%, bezogen auf das Gesamtgewicht der Basisschicht B, und optional einen optischen Aufheller in einer Menge im Bereich von 0 bis 5 Gew.-%.
Alle diese beschriebenen Merkmale waren nicht vorhersehbar. Dies um so mehr, da COCs zwar offensichtlich mit Polyethylenterephthalat weitgehend inkompatibel sind, bekanntlich aber mit ähnlichen Streckverhältnissen und Strecktemperaturen orientiert werden wie Polyethylenterephthalat. Unter diesen Voraussetzungen hätte der Fachmann erwartet, dass bei diesen Herstellbedingungen keine weiße, opake Folie produziert werden kann.
In den bevorzugten und den besonders bevorzugten Ausführungsformen zeichnet sich die erfindungsgemäße Folie durch einen besonders hohen/bzw. durch einen ganz besonders hohen Weißgrad und eine hohe/bzw. durch eine besonders hohe Opazität aus, wobei die Farbänderung der Folie durch die Regeneratzugabe äußerst gering bleibt.
Die erfindungsgemäße Folie ist mehrschichtig. Mehrschichtige Ausführungsformen sind mindestens zweischichtig und umfassen immer die COC-haltige Basisschicht B und zumindest eine matte Deckschicht A. In einer bevorzugten Ausführungsform bildet die COC-haltige Schicht die Basisschicht B der Folie mit mindestens einer, oder mit beidseitigen Deckschichten, wobei gegebenenfalls einseitig eine oder beidseitig Zwischenschichten vorhanden sein kann/können. In einer weiteren bevorzugten Ausführungsform bildet die COC-haltige Schicht auch eine Zwischenschicht der Mehrschichtfolie. Weitere Ausführungsformen mit COC-haltigen Zwischenschichten sind fünfschichtig aufgebaut und haben neben der COC-haltigen Basisschicht B beidseitig COC-haltige Zwischenschichten. In einerweiteren Ausführungsform kann die COC-haltige Schicht zusätzlich zur Basisschicht B, ein- oder beidseitig Deckschicht/en auf der Basis- oder Zwischenschicht bilden. Die Basisschicht B ist im Sinne der vorliegenden Erfindung diejenige Schicht, die mehr als 30 bis 99,5%, vorzugsweise 70 bis 95%, der Gesamtfoliendicke ausmacht. Die Deckschicht ist die Schicht, welche die äußere Schicht der Folie bildet.
Die jeweilige Ausführungsform der Erfindung ist eine nicht transparente, opake, hochweiße Folie. Unter nicht transparenten Folien werden im Sinne der vorliegenden Erfindung solche Folien verstanden, deren Lichtdurchlässigkeit nach ASTM-D 1003-77 unter 95%, vorzugsweise unter 75%, liegt.
Die COC-haltige Schicht (die Basisschicht B) der erfindungsgemäßen Folie enthält einen Polyesterrohstoff, vorzugsweise ein Polyesterhomopolymeres, ein COC, ein Weißpigment sowie gegebenenfalls weitere zugesetzte Additive in jeweils wirksamen Mengen. Im allgemeinen enthält diese Schicht mindestens 20 Gew.-%, vorzugsweise 40 bis 96 Gew.-%, insbesondere 70 bis 96 Gew.-%, Polyesterrohstoff, bezogen auf das Gewicht der Schicht.
Die Basisschicht B der Folie enthält einen thermoplastischen Polyester. Dafür geeignet sind Polyester aus Ethylenglykol und Terephthalsäure (= Polyethylenterephthalat, PET), aus Ethylenglykol und Naphthalin-2,6-dicarbonsäure (= Polyethylen-2,6-naphthalat, PEN), aus 1,4-Bis-hydroximethyl-cyclohexan und Terephthalsäure (= Poly(1,4-cyclo­ hexandimethylenterephthalat, PCDT) sowie aus Ethylenglykol, Naphthalin-2,6- dicarbonsäure und Biphenyl-4,4'-dicarbonsäure (= Polyethylen-2,6-naphthalatbibenzoat, PENBB). Besonders bevorzugt sind Polyester, die zu mindestens 90 Mol-%, bevorzugt mindestens 95 Mol-%, aus Ethylenglykol- und Terephthalsäure-Einheiten oder aus Ethylenglykol- und Naphthalin-2,6-dicarbonsäure-Einheiten bestehen. Die restlichen Monomereinheiten stammen aus anderen aliphatischen, cycloaliphatischen oder aromatischen Diolen bzw. Dicarbonsäuren.
Geeignete andere aliphatische Diole sind beispielsweise Diethylenglykol, Triethylenglykol, aliphatische Glykole der allgemeinen Formel HO-(CH2)n-OH, wobei n eine ganze Zahl von 3 bis 6 darstellt (insbesondere Propan-1,3-diol, Butan-1,4-diol, Pentan-1,5-diol und Hexan-1,6-diol) oder verzweigte aliphatische Glykole mit bis zu 6 Kohlenstoff-Atomen. Von den cycloaliphatischen Diolen sind Cyclohexandiole (insbesondere Cyclohexan-1,4-diol) zu nennen. Geeignete andere aromatische Diole entsprechen beispielsweise der Formel HO-C6H4-X-C6H4-OH, wobei X für -CH2, -C(CH3)2-, -C(CF3)2-, -O-, -S- oder -SO2- steht. Daneben sind auch Bisphenole der Formel HO-C6H4-C6H4-OH gut geeignet.
Geeignete andere aromatische Dicarbonsäuren sind bevorzugt Benzoldicarbonsäuren, Naphtalindicarbonsäuren (beispielsweise Naphthalin-1,4- oder 1,6-dicarbonsäure), Biphenyl-x,x'-dicarbonsäuren (insbesondere Biphenyl-4,4'-dicarbonsäure), Diphenylacetylen-x,x'-dicarbonsäuren (insbesondere Diphenylacetylen-4,4'- dicarbonsäure) oder Stilben-x,x'-dicarbonsäuren. Von den cycloaliphatischen Dicarbonsäuren sind Cyclohexandicarbonsäuren (insbesondere Cyclohexan-1,4- dicarbonsäure) zu nennen. Von den aliphatischen Dicarbonsäuren sind die (C3-C19)- Alkandisäuren besonders geeignet, wobei derAlkanteil geradkettig oder verzweigt sein kann.
Die Herstellung der Polyester kann z. B. nach dem Umesterungsverfahren erfolgen. Dabei geht man von Dicarbonsäureestern und Diolen aus, die mit den üblichen Umesterungskatalysatoren, wie Zink-, Calcium-, Lithium-, Magnesium- und Mangan- Salzen, umgesetzt werden. Die Zwischenprodukte werden dann in Gegenwart allgemein üblicher Polykondensationskatalysatoren, wie Antimontrioxid oder Titan- Salzen, polykondensiert. Die Herstellung kann ebenso gut nach dem Direktveresterungsverfahren in Gegenwart von Polykondensationskatalysatoren erfolgen. Dabei geht man direkt von den Dicarbonsäuren und den Diolen aus.
Erfindungsgemäß enthält die COC-haltige Schicht ein Cycloolefincopolymeres (COC) in einer Menge von minimal 2,0 Gew.-%, bevorzugt 4 bis 50 Gew.-% und besonders bevorzugt 6 bis 40 Gew.-%, bezogen auf das Gewicht der Schicht bzw. bezogen auf das Gewicht der Folie bei einschichtigen Ausführungsformen. Es ist wesentlich für die vorliegende Erfindung, dass das COC mit dem Polyethylenterephthalat nicht verträglich ist und mit diesem keine homogene Mischung in der Schmelze bildet.
Cycloolefinpolymere sind Homopolymerisate oder Copolymerisate, welche polymerisierte Cycloolefineinheiten und gegebenenfalls acyclische Olefine als Comonomer enthalten. Für die vorliegende Erfindung sind Cycloolefinpolymere geeignet, die 0,1 bis 100 Gew.-%, bevorzugt 10 bis 99 Gew.-%, besonders bevorzugt 50 bis 95 Gew.-%, jeweils bezogen auf die Gesamtmasse des Cycloolefinpolymeren, polymerisierte Cycloolefineinheiten enthalten. Bevorzugt sind insbesondere Polymere, die aus den Monomeren der cyclischen Olefinen der Formeln I, II, III, IV, V oder VI aufgebaut sind:
In diesen Formeln sind R1, R2, R3, R4, R5, R6, R7 und R6 gleich oder verschieden und bedeuten ein Wasserstoffatom oder einen C1-C30-Kohlenwasserstoffrest; oder zwei oder mehrere der Reste R1 bis R8 sind cyclisch verbunden, wobei gleiche Reste in den verschiedenen Formeln gleiche oder unterschiedliche Bedeutung haben. C1-C30- Kohlenwasserstoffreste sind beispielsweise lineare oder verzweigte C1-C8-Alkylreste, C6-C18-Arylreste, C7-C20-Alkylenarylreste oder cyclische C3-C20-Alkylreste oder acyclische C2-C20-Alkenylreste.
Gegebenenfalls können die COCs 0 bis 45 Gew.-%, bezogen auf die Gesamtmasse des Cycloolefinpolymeres, polymerisierte Einheiten mindestens eines monocyclischen Olefins der Formel VII enthalten:
Hierin ist n eine Zahl von 2 bis 10.
Gegebenenfalls können die COCs 0 bis 99 Gew.-%, bezogen auf die Gesamtmasse an COC, polymerisierte Einheiten eines acyclischen Olefins der Formel VIII enthalten:
Hierin sind R9, R10, R11, und R12 gleich oder verschieden und bedeuten ein Wasserstoffatom oder C1-C10-Kohlenwasserstoffreste, z. B. einen C1-C8-Alkylrest oder C6-C14-Arylrest.
Ebenfalls prinzipiell geeignet sind Cycloolefinpolymere, welche durch ringöffnende Polymerisation mindestens eines der Monomere der Formeln I bis VI und anschließende Hydrierung erhalten werden.
Cycloolefinhomopolymere sind aus einem Monomeren der Formeln I-VI aufgebaut. Diese Cycloolefinpolymeren sind für die Zwecke der vorliegenden Erfindung weniger geeignet. Für die Zwecke der vorliegenden Erfindung sind Cycloolefincopolymerisate (COC) geeignet, welche mindestens ein Cycloolefin der Formeln I bis VI und acyclische Olefine der Formel VIII als Comonomer enthalten. Dabei sind als acyclische Olefine solche bevorzugt, die 2 bis 20 C-Atome aufweisen, insbesondere unverzweigte acyclische Olefine mit 2 bis 10 C-Atomen wie beispielsweise Ethylen, Propylen und/oder Butylen. Der Anteil polymerisierter Einheiten acyclischer Olefine der Formel VIII beträgt bis zu 99 Gew.-%, bevorzugt 5 bis 80 Gew.-%, besonders bevorzugt 10 bis 60 Gew.-%, bezogen auf das Gesamtgewicht des jeweiligen COCs.
Unter den vorstehend beschriebenen COCs sind insbesondere diejenigen bevorzugt, die polymerisierte Einheiten polycyclischer Olefine mit Norbornengrundstruktur, besonders bevorzugt Norbornen oder Tetracyclododecen, enthalten. Besonders bevorzugt sind auch COCs, die polymerisierte Einheiten acyclischer Olefine, insbesondere Ethylen, enthalten. Wiederum besonders bevorzugt sind Norbornen/Ethylen- und Tetracyclododecen/Ethylen-Copolymere, welche 5 bis 80 Gew.-%, vorzugsweise 10 bis 60 Gew.-%, Ethylen enthalten (bezogen auf das Gewicht des Copolymeren).
Die vorstehend generisch beschriebenen Cycloolefinpolymeren weisen im allgemeinen Glasübergangstemperaturen Tg zwischen -20°C und 400°C auf. Für die Erfindung sind COCs verwendbar, die eine Glasübergangstemperatur Tg von größer als 70°C, vorzugsweise größer als 90°C und insbesondere größer als 110°C aufweisen. Die Viskositätszahl (Dekalin, 135°C, DIN 53 728) liegt zweckmäßig zwischen 0,1 und 200 ml/g, bevorzugt zwischen 50 und 150 ml/g.
Die Herstellung der COCs geschieht durch eine heterogene oder homogene Katalyse mit metallorganischen Verbindungen und ist in einer Vielzahl von Dokumenten beschrieben. Geeignete Katalysatorsysteme basierend auf Mischkatalysatoren aus Titan- bzw. Vanadiumverbindungen in Verbindung mit Aluminiumorganylen werden in DD 109 224, DD 237 070 und EP-A-0 156 464 beschrieben. EP-A-0 283 164, EP-A-0 407 870, EP-A-0 485 893 und EP-A-0 503 422 beschreiben die Herstellung von COCs mit Katalysatoren, basierend auf löslichen Metallocenkomplexen. Auf die in oben genannten Schriften beschriebenen Herstellungsverfahren von COC wird hiermit ausdrücklich Bezug genommen.
Die COCs werden entweder als reines Granulat oder als granuliertes Konzentrat (Masterbatch) in die Folie eingearbeitet, indem das Polyestergranulat oder -pulver mit dem COC bzw. dem COC-Masterbatch vorgemischt und anschließend dem Extruder zugeführt wird. Im Extruder werden die Komponenten weiter vermischt und auf Verarbeitungstemperatur erwärmt. Dabei ist es für das erfindungsgemäße Verfahren zweckmäßig, dass die Extrusionstemperatur oberhalb der Glasübergangstemperatur Tg des COCs liegt, im allgemeinen mindestens 5 K, vorzugsweise 10 bis 180 K, insbesondere 15 bis 150 K, über der Glasübergangstemperatur Tg des COCs.
Die matte Deckschicht A enthält in ihrer vorteilhaften Ausführungsform zugesetzte Additive in Form von inerten anorganischen Antiblockmitteln und gegebenenfalls ein Blend oder eine Mischung aus zwei Komponenten (I) und (II).
Typische Antiblockmittel (in diesem Zusammenhang auch als Pigmente bezeichnet) sind anorganische und/oder organische Partikel, beispielsweise Calciumcarbonat, amorphe Kieselsäure, Talk, Magnesiumcarbonat, Bariumcarbonat, Calciumsulfat, Ba­ riumsulfat, Lithiumphosphat, Calciumphosphat, Magnesiumphosphat, Aluminiumoxid, Lithiumfluorid, Calcium-, Barium-, Zink- oder Mangan-Salze der eingesetzten Dicarbonsäuren, Ruß, Titandioxid, Kaolin oder vernetzte Polymerpartikel, z. B. Polystyrol- oder Acrylat-Partikel.
Als Additive können auch Mischungen von zwei und mehreren verschiedenen Antiblockmitteln oder Mischungen von Antiblockmitteln gleicher Zusammensetzung, aber unterschiedlicher Partikelgröße gewählt werden. Die Partikel können den Polymeren der einzelnen Schichten der Folie in den jeweils vorteilhaften Konzentrationen, z. B. als glykolische Dispersion während der Polykondensation oder über Masterbatche bei der Extrusion zugegeben werden. Als besonders geeignet haben sich Pigment-Konzentrationen von 0 bis 25 Gew.-% erwiesen (bezogen auf das Gewicht der jeweiligen Schicht). Eine detaillierte Beschreibung der Antiblockmittel findet sich beispielsweise in der EP-A-0 602 964.
Die Komponente (I) der Mischung oder des Blends ist ein Ethylenterephthalat- Homopolymer oder Ethylenterephthalat-Copolymer oder eine Mischung aus Ethylenterephthalat Homo- oder Copolymeren.
Die Komponente (II) der Mischung oder des Blends ist ein Ethylenterephthalat- Copolymer, welches aus dem Kondensationsprodukt der folgenden Monomeren bzw. deren zur Bildung von Polyestern befähigten Derivaten besteht:
  • A) 65 bis 95 Mol-% Isophthalsäure;
  • B) 0 bis 30 Mol-% wenigstens einer aliphatische Dicarbonsäure mit der Formel HOOC(CH2)nCOOH, wobei n im Bereich von 1 bis 11 liegt;
  • C) 5 bis 15 Mol% wenigstens eines Sulfomonomeren enthaltend eine Alkalimetall­ sulfonatgruppe an dem aromatischen Teil einer Dicarbonsäure;
  • D) die zur Bildung von 100 Mol-% Kondensat notwendige stöchiometrische Menge eines copolymerisierbaren aliphatischen oder cycloaliphatischen Glykols mit 2 bis 11 Kohlenstoffatomen;
wobei die Prozentangaben jeweils bezogen sind auf die Gesamtmenge der die Komponente (II) bildenden Monomeren. Zur ausführlichen Beschreibung der Komponente (II) wird auf den Inhalt der EP-A-0 144 878 verwiesen, auf die hier ausdrücklich Bezug genommen wird.
Unter Mischungen im Sinne der vorliegenden Erfindung sind mechanische Mischungen zu verstehen, welche aus den Einzelkomponenten hergestellt werden. Im allgemeinen werden hierzu die einzelnen Bestandteile als gepresste Formkörper kleiner Größe, z. B. linsen- oder kugelförmiges Granulat, zusammengeschüttet und mit einer geeigneten Rüttelvorrichtung mechanisch miteinander gemischt. Eine andere Möglichkeit für die Erstellung der Mischung besteht darin, dass die jeweiligen Komponenten (I) und (II) in Granulatform jeweils für sich getrennt dem Extruder für die erfindungsgemäße Deckschicht zugeführt werden und die Mischung im Extruder, bzw. in den nachfolgenden schmelzeführenden Systemen durchgeführt wird.
Ein Blend im Sinne der vorliegenden Erfindung ist ein legierungsartiger Verbund der einzelnen Komponenten (I) und (II), der nicht mehr in seine ursprünglichen Bestandteile zerlegt werden kann. Ein Blend weist Eigenschaften wie ein homogener Stoff auf und kann entsprechend durch geeignete Parameter charakterisiert werden.
Das Verhältnis (Gewichtsverhältnis) der beiden Komponenten (I) und (II) der Mischung für die Deckschicht bzw. des Blends kann innerhalb weiter Grenzen variieren und richtet sich nach dem beabsichtigten Einsatzzweck der Mehrschichtfolie. Bevorzugt liegt das Verhältnis der Komponenten (I) und (II) in einem Bereich von (I) : (II) = 10 : 90 bis (I) : (II) = 95 : 5, vorzugsweise von (II) = 20 : 80 bis (I) : (II) = 95 : 5 und insbesondere von (I) : (II) = 30 : 70 bis (I) : (II) = 95 : 5.
Die matte Deckschicht A wird in einer bevorzugten Ausführungsform durch den folgenden Satz von Parametern gekennzeichnet
  • - Die Rauigkeit der matten Deckschicht A, ausgedrückt als Ra-Wert, liegt im Bereich von 200 bis 1000 nm, bevorzugt von 220 bis 950 nm und besonders bevorzugt von 250 bis 900 nm. Kleinere Werte als 200 nm haben negative Auswirkungen auf den Mattheitsgrad der Oberfläche, während größere Werte als 1000 nm die optischen Eigenschaften der Folie beeinträchtigen.
  • - Der Messwert der Gasströmung sollte im Bereich von 0 bis 50 s, vorzugsweise von 1 bis 45 s liegen. Bei Werten oberhalb von 50 s wird der Mattigkeitsgrad der Folie negativ beeinflusst.
Die Basisschicht B und die anderen Schichten können zusätzlich übliche Additive wie Stabilisatoren, Antiblockmittel und andere Füllstoffe enthalten. Die Additive werden zweckmäßig dem Polymer bzw. der Polymermischung bereits vor dem Aufschmelzen zugesetzt. Als Stabilisatoren werden beispielsweise Phosphorverbindungen, wie Phosphorsäure oder Phosphorsäureester, eingesetzt.
Zur Verbesserung des Weißgrades der Folie enthält die Basisschicht B erfindungsgemäß und/oder eine der anderen zusätzlichen Schichten ein Weißpigment und optional einen optischen Aufheller. Geeignete Weißpigmente sind vorzugsweise Titandioxid, Bariumsulfat, Kalziumkarbonat, Kaolin oder Siliziumdioxid, wobei Titandioxid und Bariumsulfat bevorzugt sind.
Die Titandioxidteilchen können aus Anatas oder Rutil bestehen, vorzugsweise überwiegend aus Rutil, welcher im Vergleich zu Anatas eine höhere Deckkraft zeigt. In bevorzugter Ausführungsform bestehen die Titandioxidteilchen zu mindestens 95 Gew.-% aus Rutil. Sie können nach einem üblichen Verfahren, z. B. nach dem Chlorid- oder dem Sulfat-Prozeß, hergestellt werden. Ihre Menge in der Basisschicht B liegt zweckmäßig im Bereich von 0,1 bis 25,0 Gew.-%, vorzugsweise von 0,2 bis 23,0 Gew.-%, insbesondere von 0,3 bis 22,0 Gew.-%, bezogen auf das Gesamtgewicht der Basisschicht. Die mittlere Teilchengröße geeigneter Weißpigmente ist relativ klein und liegt vorzugsweise im Bereich von 0,10 bis 0,30 µm, gemessen nach der Sedigraphmethode.
Die Titandioxidteilchen können einen Überzug aus anorganischen Oxiden besitzen, wie er üblicherweise als Überzug für TiO2-Weißpigment in Papieren oder Anstrichmitteln zur Verbesserung der Lichtechtheit eingesetzt wird. TiO2 ist bekanntlich fotoaktiv. Bei Einwirkung von UV-Strahlen bilden sich freie Radikale auf der Oberfläche der Partikel. Diese freien Radikale können in die Polymermatrix wandern, was zu Abbaureaktionen und Vergilbung führt. Um dies zu vermeiden, können die TiO2-Partikel oxydisch beschichtet werden. Zu den besonders geeigneten Oxiden für die Beschichtung gehören die Oxide von Aluminium, Silizium, Zink oder Magnesium oder Mischungen aus zwei oder mehreren dieser Verbindungen. TiO2-Partikel mit einem Überzug aus mehreren dieser Verbindungen werden z. B. in der EP-A-0 044 515 und EP-A-0 078 633 beschrieben. Weiterhin kann der Überzug organische Verbindungen mit polaren und unpolaren Gruppen enthalten. Die organischen Verbindungen müssen bei der Herstellung der Foüe durch Extrusion der Polymerschmelze ausreichend thermostabil sein. Polare Gruppen sind beispielsweise -OH; -OR; -COOX; (X = R, H oder Na, R = Alkyl mit 1 bis 34 C-Atomen). Bevorzugte organische Verbindungen sind Alkanole und Fettsäuren mit 8 bis 30 C-Atomen in der Alkylgruppe, insbesondere Fettsäuren und primäre n-Alkanole mit 12 bis 24 C-Atomen, sowie Polydiorganosiloxane und/oder Polyorganohydrogensiloxane wie z. B. Polydimethylsiloxan und Polymethylhydrogensiloxan.
Der Überzug für die Titandioxidteilchen besteht gewöhnlich aus 1 bis 12, insbesondere 2 bis 6 g anorganischer Oxide und/oder 0,5 bis 3, insbesondere 0,7 bis 1,5 g organischer Verbindung, bezogen auf 100 g Titandioxidteilchen. Der Überzug wird üblicherweise auf die Teilchen in wässriger Suspension aufgebracht. Die anorganischen Oxide können aus wasserlöslichen Verbindungen, z. B. Alkali-, insbesondere Natriumnitrat, Natriumsilikat (Wasserglas) oder Kieselsäure in der wässrigen Suspension ausgefällt werden.
Unter anorganischen Oxiden wie Al2O3 oder SiO2 sind auch die Hydroxide oder deren verschiedenen Entwässerungsstufen wie z. B. Oxidhydrat zu verstehen, ohne dass man deren genaue Zusammensetzung und Struktur kennt. Auf das TiO2-Pigment werden nach dem Glühen und Mahlen in wässriger Suspension die Oxidhydrate z. B. des Aluminiums und/oder Silicium gefällt, die Pigmente dann gewaschen und getrocknet. Diese Ausfällung kann somit direkt in einer Suspension geschehen, wie sie im Herstellprozeß nach der Glühung und der sich anschließenden Nassmahlung anfällt. Die Ausfällung der Oxide und/oder Oxidhydrate der jeweiligen Metalle erfolgt aus den wasserlöslichen Metallsalzen im bekannten pH-Bereich, für das Aluminium wird beispielsweise Aluminiumsulfat in wässriger Lösung (pH kleiner 4) eingesetzt und durch Zugabe von wässriger Ammoniaklösung oder Natronlauge im pH-Bereich zwischen 5 und 9, vorzugsweise zwischen 7 und 8,5, das Oxidhydrat gefällt. Geht man von einer Wasserglas- oder Alkalialuminatlösung aus, sollte der pH-Wert der vorgelegten TiO2- Suspension im stark alkalischen Bereich (pH größer 8) liegen. Die Ausfällung erfolgt dann durch Zugabe von Mineralsäure wie Schwefelsäure im pH-Bereich 5 bis 8. Nach der Ausfällung der Metalloxide wird die Suspension noch 15 min bis etwa 2 h gerührt, wobei die ausgefällten Schichten eine Alterung erfahren. Das beschichtete Produkt wird von der wässrigen Dispersion abgetrennt und nach dem Waschen bei erhöhter Temperatur, insbesondere bei 70 bis 100°C, getrocknet.
Die Folie enthält gegebenenfalls anstelle von Titandioxid Bariumsulfat als Pigment, wobei die Menge an Bariumsulfat vorzugsweise im Bereich von 0,1 bis 25 Gew.-%, besonders bevorzugt von 0,2 bis 23 Gew.-%, insbesondere von 0,3 bis 22 Gew.-%, bezogen auf das Gewicht der Basisschicht B, liegt. Vorzugsweise wird auch das Bariumsulfat über die sogenannte Masterbatch-Technologie dem Polyester direkt bei der Folienherstellung zudosiert.
In einer bevorzugten Ausführungsform werden gefällte Bariumsulfat-Typen eingesetzt. Gefälltes Bariumsulfat erhält man aus Bariumsalzen und Sulfaten oder Schwefelsäure als feinteiliges farbloses Pulver, dessen Korngröße durch die Fällungsbedingungen zu steuern ist. Gefällte Bariumsulfate können nach den üblichen Verfahren, die in Kunststoff-Journal 8, Nr. 10, 30-36 und Nr. 11, 36-31 (1974) beschrieben sind, hergestellt werden.
Die mittlere Teilchengröße ist relativ klein und liegt vorzugsweise im Bereich von 0,1 bis 5 µm, besonders bevorzugt im Bereich von 0,2 bis 3 µm, gemessen nach der Sedigraphmethode. Die Dichte des verwendeten Bariumsulfates liegt zwischen 4 und 5 g/cm3.
Die Folie enthält zusätzlich optional noch einen optischen Aufheller, wobei der optische Aufheller in Mengen von 0 bis 5 Gew.-%, insbesondere von 0,002 ppm bis 3 Gew.-%, besonders bevorzugt von 0,005 ppm bis 2,5 Gew.-%, bezogen auf das Gewicht der Basisschicht B, eingesetzt wird. Vorzugsweise wird auch der optische Aufheller über die sogenannte Masterbatch-Technologie direkt bei der Folienherstellung zudosiert.
Die erfindungsgemäß geeigneten optischen Aufheller sind in der Lage, UV-Strahlen im Bereich von 360 bis 380 nm zu absorbieren und als längerwelliges, sichtbares blauviolettes Licht wieder abzugeben. Geeignete optische Aufheller sind Bis- benzoxazole, Phenylcumarine und Bis-sterylbiphenyle, insbesondere Phenylcumarin, besonders bevorzugt sind Triazin-phenylcumarin ®Tinopal (Ciba-Geigy, Basel, Schweiz), ®Hostalux KS (Clariant, Deutschland) sowie ®Eastobrite OB-1 (Eastman). Die erfindungsgemäße Folie enthält vorzugsweise eine Menge im Bereich von 0,0010 bis 5 Gew.-% an optischem Aufheller, der in dem kristallisierbaren Thermoplasten löslich ist.
Sofern zweckmäßig können neben dem optischen Aufheller auch noch in Polyester lösliche blaue Farbstoffe zugesetzt werden. Als geeignete blaue Farbstoffe haben sich Kobaltblau, Ultramarinblau und Anthrachinonfarbstoffe, insbesondere ®Sudanblau 2 (BASF, Ludwigshafen, Bundesrepublik Deutschland) erwiesen.
Die blauen Farbstoffe werden in Mengen im Bereich von 10 ppm bis 10 000 ppm, insbesondere 20 ppm bis 5000 ppm, besonders bevorzugt 50 ppm bis 1000 ppm, bezogen auf das Gewicht des kristallisierbaren Polyesters eingesetzt.
Erfindungsgemäß können Titandioxid oder das Bariumsulfat, deroptische Aufheller und gegebenenfalls der blaue Farbstoff bereits beim Thermoplast-Rohstoffhersteller zudosiert werden oder bei der Folienherstellung über Masterbatch-Technologie in den Extruder dosiert werden.
Besonders bevorzugt ist die Zugabe des Titandioxids oder des Bariumsulfats, des optischen Aufhellers und gegebenenfalls des blauen Farbstoffes über die Masterbatch- Technologie. Die Additive werden in einem festen Trägermaterial voll dispergiert. Als Trägermaterialien kommen der Thermoplast selbst, wie z. B. das Polyethylenterephthalat, oder auch andere Polymere, die mit dem Thermoplasten ausreichend verträglich sind, in Frage.
Wichtig ist, dass die Korngröße und das Schüttgewicht des/der Masterbatches ähnlich der Korngröße und dem Schüttgewicht des Thermoplasten ist, so dass eine homogene Verteilung und damit eine homogener Weißgrad und somit eine homogene Opazität erreicht werden.
Die Gesamtdicke der Folie kann innerhalb weiter Grenzen variieren und richtet sich nach dem beabsichtigten Verwendungszweck. Die bevorzugten Ausführungsformen der erfindungsgemäßen Folie haben Gesamtdicken von 4 bis 400 µm, wobei 8 bis 300 µm, insbesondere 10 bis 300 µm, bevorzugt sind. Die Dicke der gegebenenfalls vorhandenen Zwischenschicht/en beträgt im allgemeinen jeweils unabhängig voneinander 0,5 bis 15 µm, wobei Zwischenschichtdicken von 1 bis 10 µm, insbesondere 1 bis 8 µm, bevorzugt sind. Die angegebenen Werte beziehen sich jeweils auf eine Zwischenschicht. Die Dicke der Deckschichten wird unabhängig von den anderen Schichten gewählt und liegt bevorzugt im Bereich von 0,1 bis 10 µm, insbesondere von 0,2 bis 5 µm, vorzugsweise von 0,3 bis 4 µm, wobei beidseitig aufgebrachte Deckschichten bezüglich Dicke und Zusammensetzung gleich oder verschieden sein können. Die Dicke der Basisschicht B ergibt sich entsprechend aus der Differenz von Gesamtdicke der Folie und der Dicke der aufgebrachten Deck- und Zwischenschicht/en und kann daher analog der Gesamtdicke innerhalb weiter Grenzen variieren.
Die Erfindung betrifft weiterhin ein Verfahren zur Herstellung der erfindungsgemäßen Polyesterfolie nach dem an sich bekannten Extrusions- oder Koextrusionsverfahren.
Im Rahmen dieses Verfahrens wird so vorgegangen, dass die den einzelnen Schichten der Folie entsprechenden Schmelzen durch eine Flachdüse koextrudiert werden, die so erhaltene Folie zur Verfestigung auf einer oder mehreren Walze/n abgezogen wird, die Folie anschließend biaxial gestreckt (orientiert), die biaxial gestreckte Folie thermofixiert und gegebenenfalls an der zur Behandlung vorgesehenen Oberflächenschicht corona- oder flammbehandelt wird.
Die biaxiale Streckung wird im allgemeinen sequentiell durchgeführt. Dabei wird vorzugsweise zuerst in Längsrichtung (d. h. in Maschinenrichtung, = MD-Richtung) und anschließend in Querrichtung (d. h. senkrecht zur Maschinenrichtung, = TD-Richtung) gestreckt. Dies führt zu einer Orientierung der Molekülketten des Polyesters. Das Strecken in Längsrichtung erfolgt bevorzugt mit Hilfe zweier entsprechend dem angestrebten Streckverhältnis mit unterschiedlichen Winkelgeschwindigkeiten rotierender Walzen. Zum Querstrecken benutzt man allgemein einen entsprechenden Kluppenrahmen.
Die Temperatur, bei der die Streckung durchgeführt wird, kann in einem relativ großen Bereich variieren und richtet sich nach den gewünschten Eigenschaften der Folie. Im allgemeinen wird die Längsstreckung bei 80 bis 130°C und die Querstreckung bei 90 bis 150°C durchgeführt. Das Längsstreckverhältnis liegt allgemein im Bereich von 2,5 : 1 bis 6 : 1, bevorzugt von 3 : 1 bis 5, 5 : 1. Das Querstreckverhältnis liegt allgemein im Bereich von 3,0 : 1 bis 5,0 : 1, bevorzugt von 3,5 : 1 bis 4,5 : 1.
Die Streckung kann auch in einem Simultanstreckrahmen (Simultanstreckung) erfolgen, wobei die Anzahl der Streckschritte und die Abfolge (längs/quer) nicht von entscheidender Bedeutung für das Eigenschaftsbild der Folie ist. Günstig sind jedoch hier Strecktemperaturen von ≦ 125°C und besonders günstig von ≦ 115°C. Die Streckverhältnisse entsprechen denen im herkömmlichen sequenziellen Prozess.
Bei der nachfolgenden Thermofixierung wird die Folie etwa 0,1 bis 10 s lang bei einer Temperatur von 150 bis 250°C gehalten. Anschließend wird die Folie abgekühlt und dann in üblicher Weise aufgewickelt. Zur Einstellung weiterer gewünschter Eigenschaften kann die Folie allerdings vor dem Aufwickeln noch chemisch behandelt werden oder auch corona- bzw. flammbehandelt sein. Die Behandlungsintensität wird so eingestellt, dass die Oberflächenspannung der behandelten Folie bei größer/gleich 45 mN/m liegt.
Ebenso kann die Folie zur Einstellung weiterer Eigenschaften beschichtet werden. Typische Beschichtungen sind haftvermittelnde, antistatisch, schlupfverbessernd oder dehäsiv wirkende Schichten. Es bietet sich an, diese zusätzlichen Schichten über in-line coating mittels wässriger Dispersionen nach der Längs- und vor der Querstreckung auf die Folie aufzubringen.
Der besondere Vorteil der erfindungsgemäßen Folie ist ihr hoher Weißgrad und ihre hohe Opazität. Der Weißgrad der Folie beträgt mehr als 80%, bevorzugt mehr als 85% und besonders bevorzugt mehr als 90%. Die Opazität der erfindungsgemäßen Folie beträgt mehr als 55%, bevorzugt mehr als 60% und besonders bevorzugt mehr als 65%. Der Glanz der matten Deckschicht A beträgt weniger als 80, bevorzugt weniger als 70 und besonders bevorzugt weniger als 60.
Ein weiterer besonders überraschender Vorteil der Erfindung liegt darin, dass bei der Herstellung der Folie immanent anfallendes Verschnittmaterial als Regenerat in einer Menge von 10 bis 70 Gew.-%, bezogen auf das Gesamtgewicht der Folie, wieder für den Herstellprozess verwendet werden kann, ohne dass dabei die physikalischen Eigenschaften der mit dem Regenerat hergestellten Folie nennenswert negativ beeinflusst werden. Insbesondere wird durch das Regenerat (im wesentlichen aus Polyesterrohstoff und COC bestehend) die Folie nicht undefiniert in der Farbe verändert, was bei den Folien nach dem Stand der Technik stets der Fall ist.
Darüber hinaus besteht ein Vorteil der Erfindung darin, dass die Herstellungskosten der erfindungsgemäßen Folie vergleichbar sind mit herkömmlichen opaken Folien nach dem Stand der Technik. Die sonstigen verarbeitungs- und gebrauchsrelevanten Eigenschaften der erfindungsgemäßen Folie bleiben im wesentlichen unverändert oder sind sogar verbessert.
Die Folie eignet sich hervorragend zur Verpackung von licht- und/oder luftempfindlichen Nahrungs- und Genussmitteln. Daneben ist sie auch hervorragend für den Einsatz im industrieellen Bereich, z. B. bei der Herstellung von Prägefolien oder als Etikettenfolie, geeignet. Daneben ist die Folie natürlich besonders geeignet für Bildaufzeichnungs­ papiere, Druckbögen, magnetische Aufzeichnungskarten, um nur einige mögliche Anwendungen zu nennen.
Das Verarbeitungs- und das Wickelverhalten der Folie, insbesondere auf schnelllaufenden Maschinen (Wickler, Metallisierer, Druck- und Kaschiermaschinen) ist ausgesprochen gut. Ein Maß für das Verarbeitungsverhalten ist der Reibungskoeffizient der Folie, der kleiner als 0,6 ist. Das Wickelverhalten wird neben einem guten Dickenprofil, einer hervorragender Planlage und niedriger Reibungskoeffizienten entscheidend durch die Rauigkeit der Folie beeinflusst. Es hat sich herausgestellt, dass die Wickelung der erfindungsgemäßen Folie insbesondere dann gut ist, wenn unter Einbehalt der anderen Eigenschaften die mittlere Rauigkeit in einem Bereich von 50 bis 1000 nm liegt. Die Rauigkeit läßt sich u. a. durch Variation der COC-Konzentration, der Mattigkeit der Deckschicht A und den Verfahrensparametern beim Herstellungsprozess im angegebenen Bereich variieren.
Die nachstehende Tabelle (Tabelle 1) fasst die wichtigsten erfindungsgemäßen Folieneigenschaften noch einmal besonders illustrativ zusammen.
Zur Charakterisierung der Rohstoffe und der Folien wurden die folgenden Messwerte benutzt:
SV-Wert (standard viscosity)
Die Standardviskosität SV (DCE) wird, angelehnt an DIN 53 726, in Dichloressigsäure gemessen.
Die intrinsische Viskosität (IV) berechnet sich wie folgt aus der Standardviskosität
IV (DCE) = 6,67.10-4 SV (DCE) + 0,118.
Reibung (COF)
Die Reibung wurde nach DIN 53 375 bestimmt. Die Gleitreibungszahl wurde 14 Tage nach der Produktion gemessen.
Oberflächenspannung
Die Oberflächenspannung wurde mittels der sogenannten Tintenmethode (DIN 53 364) bestimmt.
Rauigkeit
Die Rauigkeit Ra der Folie wurde nach DIN 4768 bei einem Cut-off von 0,25 mm bestimmt.
Weißgrad und Opazität
Die Bestimmung des Weißgrades und der Opazität erfolgt mit Hilfe des elektrischen Remissionsphotometers "ELREPHO" der Firma Zeiss, Oberkochem (DE), Normlichtart C, 2° Normalbeobachter. Die Opazität wird nach DIN 53 146 bestimmt. Der Weißgrad wird als WG = RY + 3RZ - 3RX definiert.
WG = Weißgrad, RY, RZ, RX = entsprechende Reflexionsfaktoren bei Einsatz des Y-, Z- und X-Farbmessfilters. Als Weißstandard wir ein Pressling aus Bariumsulfat (DIN 5033, Teil 9) verwendet. Eine ausführliche Beschreibung ist z. B. in Hansl Loos "Farbmessung", Verlag Beruf und Schule, Itzehoe (1989), beschrieben.
Lichtdurchlässigkeit
Die Lichtdurchlässigkeit wird in Anlehnung an ASTM-D 1033-77 gemessen.
Glanz
Der Glanz wurde nach DIN 67 530 bestimmt. Gemessen wurde der Reflektorwert als optische Kenngröße für die Oberfläche einer Folie. Angelehnt an die Normen ASTM-D 523-78 und ISO 2813 wurde der Einstrahlwinkel mit 60° eingestellt. Ein Lichtstrahl trifft unter dem eingestellten Einstrahlwinkel auf die ebene Prüffläche und wird von dieser reflektiert bzw. gestreut. Die auf den photoelektronischen Empfänger auffallenden Lichtstrahlen werden als proportionale elektrische Größe angezeigt. Der Messwert ist dimensionslos und muß zusammen mit dem Einstrahlwinkel angegeben werden.
Glasübergangstemperatur Tg
Die Glasübergangstemperatur Tg wurde anhand von Folienproben mit Hilfe der DSC (Differential Scanning Calorimetry) bestimmt (DIN 73 765). Verwendet wurde ein DSC 1090 der Firma DuPont. Die Aufheizgeschwindigkeit betrug 20 K/min und die Einwaage ca. 12 mg. Im ersten Aufheizvorgang wurde der Glasübergang ermittelt. Die Proben zeigten vielfach eine Enthalpierelaxation (ein Peak) zu Beginn des stufenförmigen Glasübergangs. Als Tg wurde die Temperatur genommen, bei der die stufenförmige Veränderung der Wärmekapazität - unabhängig von der peakförmigen Enthalpie­ relaxation - ihre halbe Höhe im ersten Aufheizvorgang erreichte. In allen Fällen wurde nur eine einzige Glasübergangsstufe im Thermogramm beim ersten Aufheizen beobachtet.
Beispiel 1 (erfindungsgemäß)
Chips aus Polyethylenterephthalat (hergestellt über das Umesterungsverfahren mit Mn als Umesterungskatalysator, Mn-Konzentration: 100 ppm) wurden bei 150°C auf eine Restfeuchte von unterhalb 100 ppm getrocknet und dem Extruder für die Basisschicht B zugeführt. Daneben wurden Chips aus COC der Fa. Ticona: ®Topas 6015 (COC bestehend aus 2-Norbornen und Ethylen, siehe auch W. Hatke: Folien aus COC, Kunststoffe 87 (1997) 1, S. 58-62) mit einer Glasübergangstemperatur Tg von etwa 160°C ebenfalls dem Extruder für die Basisschicht B zugeführt. Der mengenmäßige Anteil des Cycloolefincopolymeren (COC) an der Gesamtfolie betrug 10 Gew.-%.
Außerdem enthielt die Basisschicht B eine Menge von 5 Gew.-% Bariumsulfat (®Blanc fixe XR-HX, Sachtleben Chemie) und 200 ppm optischen Aufheller (®Tinopal, Ciba- Geigy, Basel). Die Additive Bariumsulfat und optischer Aufheller werden als Masterbatch zugegeben. Das Masterbatch setzt sich aus Klarrohstoff, 50 Gew.-% Bariumsulfat und 2000 ppm optischem Aufheller zusammen und wird mit 10 Gew.-% in die Basisschicht B dosiert.
Es wurde durch Koextrusion und anschließende stufenweise Orientierung in Längs- und Querrichtung eine weiße, einseitig matte, opake dreischichtige Folie mit ABC-Aufbau und einer Gesamtdicke von 23 µm hergestellt. Die Dicke der jeweiligen Deckschichten ist der Tabelle 2 zu entnehmen.
Matte Deckschicht A, Mischung aus:
55,0 Gew.-% Polyethylenterephthalat mit einem SV-Wert von 800 = Komponente (I)
15,0 Gew.-% Komponente (II)*
30,0 Gew.-% Masterbatch aus 95 Gew.-% Polyethylenterephthalat (SV-Wert von 800) und 5,0 Gew.-% ®Sylobloc 44 H (synthetisches SiO2 der Fa. Grace)
* Die Komponente (II) wurde, wie in Beispiel 1 der EP-A-0 144 878 näher beschrieben, hergestellt.
Basisschicht B, Mischung aus:
85,0 Gew.-% Polyethylenterephthalat-Homopolymer mit einem SV-Wert von 800
10,0 Gew.-% Cycloolefincopolymeren (COC) der Fa. Ticona, Topas 6015
5,0 Gew.-% Masterbatch mit Bariumsulfat und optischem Aufheller
Deckschicht C, Mischung aus:
97,0 Gew.-% Polyethylenterephthalat-Homopolymer mit einem SV-Wert von 800
3,0 Gew.-% Masterbatch aus 97,75 Gew.-% Polyester (SV-Wert von 800) und 1,0 Gew.-% ®Sylobloc 44 H (synthetisches SiO2 der Fa. Grace) und 1,25 Gew.-% ®Aerosil TT 600 (pyrogenes SiO2 der Fa. Degussa).
Die Herstellungsbedingungen in den einzelnen Verfahrensschritten waren:
Extrusion:
Temperaturen Basisschicht B: 280°C
Temperatur der Abzugswalze: 30°C
Längsstreckung:
Temperatur: 80 bis 125°C
Längsstreckverhältnis: 4,2
Querstreckung:
Temperatur: 80 bis 135°C
Querstreckverhältnis: 4,0
Fixierung:
Temperatur: 230°C
Dauer: 3 s
Die Folie hatte die geforderten guten Eigenschaften und zeigte das gewünschte Handling und das gewünschte Verarbeitungsverhalten. Die erzielten Eigenschaften derart hergestellter Folien sind in der Tabelle 2 dargestellt.
Beispiel 2 (erfindungsgemäß)
Im Vergleich zu Beispiel 1 wurde jetzt in die Basisschicht B 50 Gew.-% Regenerat dazugegeben. Die Menge an COC in der damit hergestellten Basisschicht B betrug wiederum 10 Gew.-% und die Mengen an Bariumsulfat und optischem Aufheller waren gegenüber Beispiel 1 nicht verändert. Die Verfahrensparameter wurden im Vergleich zu Beispiel 1 auch nicht geändert. Es wurde die Gelbverfärbung der Folie visuell beobachtet. An Hand der Tabelle 2 sieht man, dass kaum eine Gelbverfärbung der Folie sichtbar geworden ist.
Beispiel 3 (erfindungsgemäß)
Im Vergleich zu Beispiel 1 wurde jetzt eine Folie mit einer Dicke von 96 µm hergestellt. Die Menge an COC in der Basisschicht B betrug 8 Gew.-%. Bariumsulfat und optischer Aufheller wurden wieder in Form von Masterbatch zu der Basisschicht B zugegeben. Die Menge an Masterbatch betrug wieder 5 Gew.-%. Die Verfahrensparameter wurden im Vergleich zu Beispiel 1 nicht geändert. Es wurde die Gelbverfärbung der Folie visuell beobachtet. An Hand der Tabelle 2 sieht man, dass keine Gelbverfärbung der Folie sichtbar geworden ist.
Basisschicht B, Mischung aus:
87,0 Gew.-% Polyethylenterephthalat-Homopolymer mit einem SV-Wert von 800
8,0 Gew.-% Cycloolefincopolymeren (COC) der Fa. Ticona, Topas 6015
5,0 Gew.-% Masterbatch mit Bariumsulfat und optischem Aufheller
Beispiel 4 (erfindungsgemäß)
Im Vergleich zu Beispiel 3 wurde jetzt in die Basisschicht B eine Menge von 50 Gew.-% Regenerat dazugegeben. Die Menge an COC in der Basisschicht B betrug wiederum 8 Gew.-%. Die Menge an Bariumsulfat und optischem Aufheller waren gegenüber Beispiel 3 unverändert. Die Verfahrensparameter wurden im Vergleich zu Beispiel 1 nicht geändert. Es wurde die Gelbverfärbung der Folie visuell beobachtet. An Hand der Tabelle 2 sieht man, dass kaum eine Gelbverfärbung der Folie sichtbar geworden ist.
Vergleichsbeispiel 1
Es wurde Beispiel 1 aus der DE-A 23 53 347 nachgearbeitet. In Abänderung des Beispiels wurden zusätzlich 50 Gew.-% Regenerat mit verarbeitet. An Hand der Tabelle 2 sieht man, dass eine deutliche Gelbverfärbung der Folie sichtbar geworden ist.
Basisschicht B, Mischung aus:
47,5 Gew.-% Polyethylenterephthalat-Homopolymer mit einem SV-Wert von 800
50,0 Gew.-% Eigenregenerat (95 Gew.-% Polyester + 5 Gew.-% Polypropylen)
2,5 Gew.-% Polypropylen
Vergleichsbeispiel 2
Es wurde Beispiel 1 aus der EP-A 0 300 060 nachgearbeitet. In Abänderung des Beispiels wurden zusätzlich 50 Gew.-% Regenerat mit verarbeitet. An Hand der Tabelle 2 sieht man, dass eine deutliche Gelbverfärbung der Folie sichtbar geworden ist.
Basisschicht B, Mischung aus:
45,0 Gew.-% Polyethylenterephthalat-Homopolymer mit einem SV-Wert von 800
50,0 Gew.-% Eigenregenerat (95 Gew.-% Polyester + 5 Gew.-% Polypropylen)
5,0 Gew.-% Polypropylen
Vergleichsbeispiel 3
Es wurde Beispiel 1 aus der EP-A 0 360 201 nachgearbeitet. In Abänderung des Beispiels wurden zusätzlich 50 Gew.-% Regenerat mit verarbeitet. An Hand der Tabelle 2 sieht man, dass eine deutliche Gelbverfärbung der Folie sichtbar geworden ist.
Basisschicht B, Mischung aus:
40,0 Gew.-% Polyethylenterephthalat-Homopolymer mit einem SV-Wert von 800
50,0 Gew.-% Eigenregenerat (95 Gew.-% Polyester + 5 Gew.-% Polypropylen)
10,0 Gew.-% Polypropylen
Vergleichsbeispiel 4
Es wurde Beispiel 1 aus der DE-A 195 40 277 nachgearbeitet. In Abänderung des Beispiels wurden zusätzlich 50 Gew.-% Regenerat mit verarbeitet. An Hand der Tabelle 2 sieht man, dass eine deutliche Gelbverfärbung der Folie sichtbar geworden ist.
Basisschicht B, Mischung aus:
43,5 Gew.-% Polyethylenterephthalat-Homopolymer mit einem SV-Wert von 800
50,0 Gew.-% Eigenregenerat (95 Gew.-% Polyester + 5 Gew.-% Polystyrol)
6,5 Gew.-% Polystyrol

Claims (17)

1. Zumindest einseitig matte, hochweiße, biaxial orientierte und koextrudierte Polyesterfolie umfassend mindestens eine Basisschicht B und mindestens eine matte Deckschicht A, beide aus Polyesterrohstoff, dadurch gekennzeichnet, dass zumindest die Basisschicht B Cycloolefincopolymer (COC) in einer Menge von 2 bis 60 Gew.-%, bezogen auf das Gewicht dieser Schicht, enthält, wobei die Glasübergangstemperatur Tg des COCs im Bereich von 70 bis 270°C liegt, und dass die Basisschicht B zusätzlich ein Weißpigment und ggf. einen optischen Aufheller enthält.
2. Zumindest einseitig matte, hochweiße Polyesterfolie nach Anspruch 1, dadurch gekennzeichnet, dass das COC Polynorbornen, Polydimethyloctahydronaphthalin, Polycyclopenten oder Poly(5- methyl)norbornen enthält.
3. Zumindest einseitig matte, hochweiße Polyesterfolie nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das COC eine Glasübergangstemperatur Tg im Bereich von 90 bis 250°C aufweist und dass die Basisschicht B Weißpigment in einer Menge im Bereich von 0,1 bis 25 Gew.-%, bezogen auf das Gewicht der Basisschicht B, enthält und optischen Aufheller in einer Menge im Bereich von 0 bis 5 Gew.-%.
4. Zumindest einseitig matte, hochweiße Polyesterfolie nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass auf der COC-haltigen Basisschicht B eine matte Deckschicht A angeordnet ist, die zugesetzte Additive in Form von inerten anorganischen Antiblockmitteln und gegebenenfalls ein Blend oder eine Mischung aus zwei Komponenten (I) und (II) enthält, dass die Komponente (I) der Mischung oder des Blends ein Ethylenterephthalat- Homopolymer oder Ethylenterephthalat-Copolymer oder eine Mischung aus diesen ist, dass die Komponente (II) der Mischung oder des Blends ein Ethylenterephthalat-Copolymer ist, welches aus dem Kondensationsprodukt der folgenden Monomeren bzw. deren zur Bildung von Polyestern befähigten Derivaten besteht:
  • A) 65 bis 95 Mol-% Isophthalsäure;
  • B) 0 bis 30 Mol-% wenigstens einer aliphatische Dicarbonsäure mit der Formel HOOC(CH2)nCOOH, wobei n im Bereich von 1 bis 11 liegt;
  • C) 5 bis 15 Mol-% wenigstens eines Sulfomonomeren enthaltend eine Alkalimetallsulfonatgruppe an dem aromatischen Teil einer Dicarbonsäure;
  • D) die zur Bildung von 100 Mol-% Kondensat notwendige stöchiometrische Menge eines copolymerisierbaren aliphatischen oder cycloaliphatischen Glykols mit 2 bis 11 Kohlenstoffatomen;
wobei die Prozentangaben jeweils bezogen sind auf die Gesamtmenge der die Komponente (II) bildenden Monomeren, und dass das Gewichtsverhältnis der beiden Komponenten (I) und (II) der Mischung für die Deckschicht A bzw. des Blends in einem Bereich von (I) : (II) = 10 : 90 bis (I) : (II) = 95 : 5, vorzugsweise von (I) : (II) = 20 : 80 bis (I) : (II) = 95 : 5, insbesondere von (I) : (II) = 30 : 70 bis (I) : (II) = 95 : 5, liegt.
5. Zumindest einseitig matte, hochweiße Polyesterfolie nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die matte Deckschicht A eine Rauigkeit, ausgedrückt als Ra-Wert, im Bereich von 200 bis 1000 nm, bevorzugt von 220 bis 950 nm, besonders bevorzugt von 250 bis 900 nm, besitzt und dass der Messwert der Gasströmung im Bereich von 0 bis 50 s, vorzugsweise von 1 bis 45 s, liegt.
6. Zumindest einseitig matte, hochweiße Polyesterfolie nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass ihre Gesamtdicke im Bereich von 4 bis 400 µm, vorzugsweise von 8 bis 300 µm, insbesondere von 10 bis 300 µm, liegt und dass die Dicke der Deckschicht/en im Bereich von 0,1 bis 10 µm, insbesondere von 0,2 bis 5 µm, vorzugsweise von 0,3 bis 4 µm, liegt, wobei beidseitig aufgebrachte Deckschichten bezüglich Dicke und Zusammensetzung gleich oder verschieden sein können.
7. Zumindest einseitig matte, hochweiße Polyesterfolie nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Folie einen Weißgrad von mehr als 80% aufweist.
8. Zumindest einseitig matte, hochweiße Polyesterfolie nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Folie eine Opazität von mehr als 55% aufweist.
9. Zumindest einseitig matte, hochweiße Polyesterfolie nach einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Folie auf der Oberfläche der matten Deckschicht A einen Glanz von weniger als 80 aufweist, vorzugsweise von weniger als 70.
10. Zumindest einseitig matte, hochweiße Polyesterfolie nach einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Basisschicht B zusätzlich eine Menge von 0,5 bis 25 Gew.-% weiterer vakuoleniniziierender und/oder weißer Füllstoffe und/oder Pigmente enthält, jeweils bezogen auf das Gesamtgewicht der Basisschicht B.
11. Zumindest einseitig matte, hochweiße Polyesterfolie nach Anspruch 10, dadurch gekennzeichnet, dass zwischen der COC-haltigen Basisschicht B und der matten Deckschicht A eine Zwischenschicht angeordnet ist, die eine Dicke im Bereich von 0,5 bis 15 µm besitzt, vorzugsweise von 1 bis 10 µm, insbesondere von 1 bis 8 µm.
12. Verfahren zum Herstellen einer mindestens einseitig matten, hochweißen Polyesterfolie nach einem oder mehreren der Ansprüche 1 bis 11, bei dem die den einzelnen Schichten der Folie entsprechenden Schmelzen durch eine Flachdüse koextrudiert werden, die so erhaltene Folie zur Verfestigung auf einer oder mehreren Walze/n abgezogen wird, die Folie anschließend biaxial gestreckt (orientiert), die biaxial gestreckte Folie thermofixiert und gegebenenfalls an der zur Behandlung vorgesehenen Oberflächenschicht corona- oder flammbehandelt und dann aufgewickelt wird, dadurch gekennzeichnet, dass die biaxiale Streckung sequentiell durchgeführt wird, wobei zuerst in Längsrichtung und anschließend in Querrichtung gestreckt wird, dass die Längsstreckung bei einer Temperatur im Bereich von 80 bis 130°C und die Querstreckung bei einer Temperatur im Bereich von 90 bis 150°C durchgeführt wird und dass das Längsstreckverhältnis im Bereich von 2,5 : 1 bis 6 : 1, bevorzugt von 3 : 1 bis 5,5 : 1, und das Querstreckverhältnis im Bereich von 3,0 : 1 bis 5,0 : 1, bevorzugt von 3,5 : 1 bis 4,5 : 1, eingestellt wird.
13. Verfahren zum Herstellen einer mindestens einseitig matten, hochweißen Polyesterfolie nach einem oder mehreren der Ansprüche 1 bis 11, bei dem die den einzelnen Schichten der Folie entsprechenden Schmelzen durch eine Flachdüse koextrudiert werden, die so erhaltene Folie zur Verfestigung auf einer oder mehreren Walzen abgezogen wird, die Folie anschließend biaxial gestreckt (orientiert), die biaxial gestreckte Folie thermofixiert und gegebenenfalls an der zur Behandlung vorgesehenen Oberflächenschicht corona- oder flammbehandelt und dann aufgewickelt wird, dadurch gekennzeichnet, dass die Streckung in einem Simultanstreckrahmen erfolgt und dass die Strecktemperaturen auf einen Bereich von ≦ 125°C, vorzugsweise von ≦ 115°C, eingestellt werden.
14. Verfahren nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass die Folie nach dem Strecken zur Thermofixierung über eine Zeitdauer von 0,1 bis 10 s bei einer Temperatur im Bereich von 150 bis 250°C gehalten wird und dass danach die Folie abgekühlt und aufgewickelt wird.
15. Verfahren nach einem oder mehreren der Ansprüche 12 bis 14, dadurch gekennzeichnet, dass die Folie nach dem Thermofixieren und vor dem Aufwickeln zur Einstellung weiterer gewünschter Eigenschaften chemisch behandelt oder corona- bzw. flammbehandelt wird, wobei die Behandlungsintensität so eingestellt wird, dass die Oberflächenspannung der Folie nach der Behandlung in einem Bereich von größer/gleich 45 mN/m liegt.
16. Verfahren nach einem oder mehreren der Ansprüche 12 bis 15, dadurch gekennzeichnet, dass bei der Herstellung der Folie immanent anfallendes Verschnittmaterial als Regenerat in einer Menge im Bereich von 10 bis 70 Gew.-%, bezogen auf das Gesamtgewicht der Folie, wieder in den Herstellprozess zurückgeführt wird.
17. Verwendung einer mindestens einseitig matten, hochweißen Polyesterfolie nach einem oder mehreren der Ansprüche 1 bis 11 zur Verpackung von licht- und/oder luftempfindlichen Nahrungs- und Genussmitteln oder bei der Herstellung von Prägefolien oder als Etikettenfolie oder für Bildaufzeichnungs­ papiere, Druckbögen oder magnetische Aufzeichnungskarten, insbesondere auf schnelllaufenden Maschinen wie Wickel-, Metallisier-, Druck- oder Kaschiermaschinen.
DE10022947A 2000-05-11 2000-05-11 Zumindest einseitig matte, biaxial orientierte Polyesterfolie mit hohem Weissgrad, Verfahren zu ihrer Herstellung und ihre Verwendung Withdrawn DE10022947A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10043576 2000-05-11

Publications (1)

Publication Number Publication Date
DE10022947A1 true DE10022947A1 (de) 2001-11-15

Family

ID=7654957

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10022947A Withdrawn DE10022947A1 (de) 2000-05-11 2000-05-11 Zumindest einseitig matte, biaxial orientierte Polyesterfolie mit hohem Weissgrad, Verfahren zu ihrer Herstellung und ihre Verwendung

Country Status (1)

Country Link
DE (1) DE10022947A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102602104A (zh) * 2012-02-28 2012-07-25 湖北图新材料科技有限公司 一种用于制作标签的bopet哑白膜基材及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102602104A (zh) * 2012-02-28 2012-07-25 湖北图新材料科技有限公司 一种用于制作标签的bopet哑白膜基材及其制备方法

Similar Documents

Publication Publication Date Title
EP1068949B1 (de) Weisse, biaxial orientierte Polyesterfolie mit Cycloolefincopolymer (COC), Verfahren zu ihrer Herstellung und ihre Verwendung
DE10011652A1 (de) Biaxial orientierte Polyesterfolie mit hohem Weißgrad, Verfahren zu ihrer Herstellung und ihre Verwendung
EP1138716B1 (de) Biaxal orientierte Polyesterfolie enthaltend ein Cycloolefincopolymer, Verfahren zu ihrer Herstellung und ihre Verwendung
EP1132425B1 (de) Weisse, biaxial orientierte, schwer entflammbare Polyesterfolie mit Cycloolefincopolymer, Verfahren zu ihrer Herstellung und ihre Verwendung
EP1296831A2 (de) Weisse, siegelfähige, thermoformbare, biaxial orientierte und koextrudierte polyesterfolie mit cycloolefincopolymer, verfahren zu ihrer herstellung und ihre verwendung
EP1127912A1 (de) Weisse, biaxial orientierte und UV-stabilisierte Polyesterfolie mit Cycloolefincopolymer (COC), Verfahren zu ihrer Herstellung und ihre Verwendung
EP1529636A1 (de) Weisse, heisssiegelbare, peelfähige Polyesterfolie, Verfahren zu ihrer Herstellung und ihre Verwendung
EP1529797A1 (de) Peelfähige Polyesterfolie mit selbsttätiger Entlüftung, Verfahren zu ihrer Herstellung und ihre Verwendung
EP1289759B1 (de) Weisse, hochglänzende, polyesterfolie enthaltend cycloolefincopolymer (coc), verfahren zu ihrer herstellung und ihre verwendung
DE10022942A1 (de) Weisse, zumindest einseitig matte, biaxial orientierte Polyesterfolie mit Cycloolefincopolymer, Verfahren zu ihrer Herstellung und ihre Verwendung
EP1125967A1 (de) Weiss-opake Folie mit niedriger Transparenz aus einem kristallisierbaren Thermoplasten
DE10063590A1 (de) Einseitig matte, siegelfähige,biaxial orientierte Polyesterfolie
EP1299235B1 (de) Weisse, siegelfähige, biaxial orientierte, koextrudierte polyesterfolie mit cycloolefincopolymer (coc), verfahren zu ihrer herstellung und ihre verwendung
DE10022947A1 (de) Zumindest einseitig matte, biaxial orientierte Polyesterfolie mit hohem Weissgrad, Verfahren zu ihrer Herstellung und ihre Verwendung
DE10026166A1 (de) Weiße, pigmentierte, hochglänzende Polyesterfolie enthaltend Cycloolefincopolymer (COC), Verfahren zu ihrer Herstellung und ihre Verwendung
DE10042332A1 (de) Verbundfolie aus einer weißen, pigmentierten Polyesterfolie enthaltend Cycloolefincopolymer (COC), Verfahren zu ihrer Herstellung und ihre Verwendung
EP1245618B1 (de) Weisse, biaxial orientierte Folie aus einem kristallisierbaren Thermoplasten mit guter Schneidbarkeit
DE10022946A1 (de) Weisse, zumindest einseitig matte, biaxial orientierte, UV-stabilisierte und schwer entflammbare Polyesterfolie mit Cycloolefincopolymer (COC), Verfahren zu ihrer Herstellung und ihre Verwendung
DE102007051241A1 (de) Mehrschichtige, weiß-opake, einseitig matte, biaxial orientierte Polyesterfolie
DE10030243A1 (de) Weiße, pigmentierte, siegelfähige, biaxial orientierte, koextrudierte Polyesterfolie mit Cycloolefincopolymer (COC), Verfahren zu ihrer Herstellung und ihre Verwendung
DE10022943A1 (de) Weisse, zumindest einseitig matte, biaxial orientierte und thermoformbare Polyesterfolie mit Cycloolefincopolymer, Verfahren zu ihrer Herstellung und ihre Verwendung
DE10042334A1 (de) Verbundfolie aus einer weißen Polyesterfolie enthaltend Cycloolefincopolymer (COC), Verfahren zu ihrer Herstellung und ihre Verwendung
DE10035322A1 (de) Opake Polyesterfolie enthaltend Cycloolefincopolymer (COC) mit hohem Weißgrad, guter Oberflächenhaftung, Verfahren zu ihrer Herstellung und ihre Verwendung
DE10022944A1 (de) Weisse, zumindest einseitig matte, biaxial orientierte und UV-stabilisierte Polyesterfolie mit Cycloolefincopolymer (COC), Verfahren zu ihrer Herstellung und ihre Verwendung
DE10022941A1 (de) Weisse, zumindest einseitig matte, biaxial orientierte und schwer entflammbare Polyesterfolie mit Cycloolefincopolymer (COC) Verfahren zu ihrer Herstellung und ihre Verwendung

Legal Events

Date Code Title Description
AG Has addition no.

Ref country code: DE

Ref document number: 10043576

Format of ref document f/p: P

AG Has addition no.

Ref country code: DE

Ref document number: 10043576

Format of ref document f/p: P

8139 Disposal/non-payment of the annual fee