CS258702B1 - Process of producing hydrochloric acid] for microelectronics - Google Patents
Process of producing hydrochloric acid] for microelectronics Download PDFInfo
- Publication number
- CS258702B1 CS258702B1 CS85315A CS31585A CS258702B1 CS 258702 B1 CS258702 B1 CS 258702B1 CS 85315 A CS85315 A CS 85315A CS 31585 A CS31585 A CS 31585A CS 258702 B1 CS258702 B1 CS 258702B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- hydrochloric acid
- hydrogen chloride
- microelectronics
- weight
- less
- Prior art date
Links
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Silicon Compounds (AREA)
- Treatment Of Liquids With Adsorbents In General (AREA)
Abstract
Kyselina sírová sa postupné přidává k vodným roztokom chlorovodíka a/alebo chloridov. Uvolňujúci sa chlorovodík sa protiprúdne zbavuje vody v kyselině sírovej a kvapiek v odlučovači kvapiek. Vyčištěný chlorovodík sa adsorbuje vo vodě čistoty pre mikroelektroniku na vodný roztok kyseliny chlorovodíkové]. V čistenej kyselme chlorovodíkovej sa kovové kationy, predovšetkým železo adsorbujú s kremičitanmi s aktívnymi adsorbčnými miestami. Riešenie je možné použit v elektrotechnickou! priemysle.Sulfuric acid is gradually added to aqueous solutions of hydrogen chloride and/or chlorides. The released hydrogen chloride is countercurrently stripped of water in sulfuric acid and droplets in a droplet separator. The purified hydrogen chloride is adsorbed in microelectronics-grade water onto an aqueous solution of hydrochloric acid. In the purified hydrochloric acid, metal cations, especially iron, are adsorbed with silicates with active adsorption sites. The solution can be used in the electrical industry.
Description
Vynález sa týká výroby kyseliny chlorovodíkové] pre mikroelektroniku, ktorá je vhodná predovšetkým na planárnu technologiu výroby integrovaných obvodov.The invention relates to the production of hydrochloric acid for microelectronics, which is particularly suitable for planar integrated circuit technology.
Výroba kyseliny chlorovodíkové] je jedna z najstarších výrob chemického priemyslu. V súčasnosti sa najváčšie množstvo kyseliny chlorovodíkové]' vyrába syntézou vodíka a chlóru a absorpciou vzniklého chlorovodíka vo vodě. Rozvoj mikroelektroniky vzrástali požiadavky na čistotu chemikálií použitých pri ich výrobě, pretože nečistoty z chemikálií spósobujú výrobu nekvalitných mikroelektronických súčiastok. Čistěním kyseliny chlorovodíkovej destiláciou vodného roztoku chlorovodíka sa získá destilát o vysokej chemickej čistotě následné na mikroflltroch o velkosti ok 0,2 až 0,45 mikrometre sa filtruje na požadovanú fyzikálnu čisto- ·. tu.The production of hydrochloric acid] is one of the oldest production of the chemical industry. Currently, the largest amount of hydrochloric acid is produced by the synthesis of hydrogen and chlorine and the absorption of the resulting hydrogen chloride in water. The development of microelectronics has increased the purity requirements of the chemicals used in their manufacture, as impurities from the chemicals cause the production of poor quality microelectronic components. Purification of the hydrochloric acid by distillation of the aqueous hydrochloric solution yields a distillate of high chemical purity followed by microfilters having a mesh size of 0.2 to 0.45 microns and filtered to the desired physical purity. here.
Uvedené poznatky boli čerpané z nasledovných práč a materiálov: E. D. Stepun a kol. — Metody polučenija osobo čistých neorganičeskich vešěestv. Moskva 1969; Katalog fy Sartórius 1984; Katalog fy Millipore 1983; Katalog fy Ferck — Selectipur MOS 1983 a Katalog fy Carlo· Erba — Montedison 1983.These findings have been drawn from the following works and materials: E. D. Stepun et al. - Metody polučenija osobo pure neorganičeskich vešěestv. Moskva 1969; Catalog of Sartórius 1984; Millipore 1983; Catalog by Ferck - Selectipur MOS 1983 and Catalog by Carlo · Erba - Montedison 1983.
Běžné připravovaná kyselina chlorovodíková obsahuje rádovo 106 heteročastíc na jeden liter vačších ako· 0,5 mikrometra, preto je mikrofiltrácia kyseliny chlorovodíkovej nákladná.Commonly prepared hydrochloric acid contains on the order of 10 6 heteroparticles per liter greater than 0.5 microns, therefore microfiltration of hydrochloric acid is expensive.
Tak isto rektifikácia kyseliny chlorovodíkovej je energeticky náročný proces.Also, rectification of hydrochloric acid is an energy-intensive process.
V USA patente 3 855 400 (z roku 1974) od autora Paolieri R. a kol. je popísaný sposob čistenia kyseliny chlorovodíkovej získanej ako druhotný produkt z výroby organických zlúčenín, metodou stripovania a preplachom prúdom inertného plynu, čím sa čistočne odstránia rozpustné organické látky a volný chlór. Nerozpustné organické látky sa odstránia prietokom kyseliny cez póry koolercenčného prostredia, pričom sá zhlukujú a oddeíujú. Čistota takto pripravenej a čistenej kyseliny chlorovodíkovej nedosahuje kvalitu pre mikroelektroniku.In U.S. Patent 3,855,400 (1974) by Paolieri R. et al. describes the purification method of hydrochloric acid obtained as a secondary product from the production of organic compounds, by stripping method and by flushing with an inert gas stream, which purely removes soluble organic substances and free chlorine. The insoluble organic matter is removed by flowing the acid through the pores of the co-permissive medium, agglomerating and separating. The purity of the thus prepared and purified hydrochloric acid is of poor quality for microelectronics.
Vyššie uvedené nedostatky sú zmiernené spósobom výroby kyseliny chlorovodíkovej pre mikroelektroniku, podstata ktorého je v tom, že sa k vodným roztokom chloridov a/alebo kyseliny chlorovodíkovej přidává postupné koncentrovaná kyselina sírová, Reakčným a/alebo smiešovacím teplom je reakčná zmes udržiavaná vo vare, pričom sa uvolňuje plynný chlorovodík, ktorý sa vysušuje protiprúdne stekajúcou koncentrovanou kyselinou sírovou, ktorá sa přidává k vodným roztokom chloridov a/alebo chlorovodíka. Vysušený chlorovodík sa zbavuje strhnutých kvapiek kyseliny sírovej lapačom kvapiek. Vyčištěný chlorovodík sa absorbuje vo vysokočistej vodě čistoty pre mikroelektroniku na vodný roztok kyseliny chlorovodíkovej. Materiál na zhotovenie sa volí podía požadovaného stupňa získanej kyseliny chlorovodíkovej. Nečistoty, predovšetkým polárné látky sa adsorbujú s kremičitanmi s aktívnymi adsorbčnými miestami. Ide predovšetkým o kationy kovov najmá železa.The aforementioned drawbacks are alleviated by the method of producing hydrochloric acid for microelectronics, which comprises adding successively concentrated sulfuric acid to aqueous solutions of chloride and / or hydrochloric acid. releases hydrogen chloride gas, which is dried by countercurrent flowing concentrated sulfuric acid, which is added to aqueous chloride and / or hydrogen chloride solutions. The dried hydrogen chloride is stripped of the entrained drops of sulfuric acid by a drop trap. The purified hydrogen chloride is absorbed in high purity microelectronics grade water to an aqueous hydrochloric acid solution. The material to be made is selected according to the desired degree of hydrochloric acid obtained. Impurities, especially polar substances, are adsorbed with silicates with active adsorption sites. These are mainly metal cations, especially iron.
Vynález je možné využiť na výrobu kyseliny chlorovodíkovej pre mikroelektroniku, ktorá nájde využitie hlavně pri výrobě Integrovaných obvodov v elektronickom priemysle.The invention can be used for the production of hydrochloric acid for microelectronics, which is mainly used in the production of integrated circuits in the electronics industry.
Příklad 1Example 1
Do trojhrdlej banky sa dala 37 % hmot. kyselina chlorovodíková. Banka bola opatřená teplomerom, oddělovacím lievikom na pridávanie kyseliny chlorovodíkovej a kolonou s náplňou s Raschigovými krúžkami. Na hlavu kolony sa dávkovala 96· % hmot. kyselina sírová. Uvolněný plynný chlorovodík sa protiprúdne vysušuje v kyselině sírovej. Plynný chlorovodík po vysušení sa zbavil strhnutých kvapiek kyseliny sírovej, v odlučovači kvapiek. Vyčištěný plynný chlorovodík sa absorboval vo vysokočistej vodě čistoty pre mikroelektroniku s měrným odporom 18 megaohmov/cm, ktorá bola filtrovaná cez filter 0,2 mikrometra. Získaná kyselina chlorovodíková obsahovala 36,7 % hmot. chlorovodíka a mala nasledovnú analýzu:The three-necked flask was charged with 37 wt. Hydrochloric acid. The flask was equipped with a thermometer, a separatory funnel for the addition of hydrochloric acid, and a column packed with Raschig rings. 96% wt. sulfuric acid. The released hydrogen chloride gas is countercurrently dried in sulfuric acid. After drying, the hydrogen chloride gas was freed from entrained drops of sulfuric acid in a drop separator. The purified hydrogen chloride gas was absorbed in high purity microelectronics grade water with a resistivity of 18 megaohms / cm, which was filtered through a 0.2 micron filter. The hydrochloric acid obtained contained 36.7 wt. hydrogen chloride and had the following analysis:
i '?i '?
Odpař ok menej ako 10“3 °/o hmot., síranyEvaporator of less than 10 ° 3 % w / w, sulphates
4.10“5 % hmot., siričltany 2.10”5 % hmot., ťažké kovy menej ako 10“4 % hmot., železo 2.10“5 % hmot., arzén menej ako 10“6 % hmot., lítium menej ako 1O“0 % hmot., vodík 3.105 % hmot., draslík 10-5· hmot. hořčík, menej ako 10“5 pere. hmot.4.10 “ 5 % by weight, sulphates 2.10” 5 % by weight, heavy metals less than 10 “ 4 % by weight, iron 2.10” 5 % by weight, arsenic less than 10 “ 6 % by weight, lithium less than 1O“ 0 wt.%, hydrogen 3.10 5 wt.%, potassium 10 -5 · wt. magnesium, less than 10 “ 5 pens. wt.
Počet častíc v 1 1 volkostnom intervale: 1— 5 μτα — 8 946Number of particles in 1 1 voluntary interval: 1 - 5 μτα - 8 946
5—25 μτα — 835 nad 25 um — 585—25 μτα - 835 over 25 µm - 58
Příklad 2Example 2
Postupovalo sa podía příkladu 1 s tým rozdielom, že miesto kyseliny chlorovodíkovej do banky sa dal nasýtený roztok chloridu sodného.The procedure of Example 1 was followed except that a saturated sodium chloride solution was placed in the flask instead of hydrochloric acid.
Získaná kyselina chlorovodíková s obsahom 36,9 % hmot. chlorovodíka mala nasledovnú analýzu:The hydrochloric acid obtained was 36.9% by weight. hydrogen chloride had the following analysis:
Odpař ok menej ako 10 “3 hmot., sírany SOk evaporate less than 10 "3 wt., Sulphates S
10“5 % hmot., síričitany 3.105 % hmot., ťažké kovy menej ako 10“4 % hmot., železo 105 % hmot., arzén menej ako 10~6 pere. hmot., lítium menej ako 10“6 % hmot., vápník 3.10“5 % hmot., sodík 5 . .10-5 o/o hmot., draslík 2.10“5 % hmot., hořčík menej ako 10“5 hmot.10 " 5 % by weight, sulphates 3.10 5 % by weight, heavy metals less than 10" 4 % by weight, iron 10 5 % by weight, arsenic less than 10 ~ 6 pens. % by weight, lithium less than 10 " 6 % by weight, calcium 3.10 " 5 % by weight, sodium 5. .10-5 / v wt., Potassium 2/10 "5 wt.%, Magnesium less than 10" 5 wt.
Počet častíc vilo verkostnom intervale:Number of particles per loyalty interval:
5—25 /tm — 1 2105—25 / tm - 1,210
1—- 5 μΐη — 5 537 nad 25 μπι — 841—- 5 μΐη - 5 537 above 25 μπι - 84
Příklad 3Example 3
Postupovalo sa podl’a příkladu 1 s tým rozdielom, že sa ku vodnému roztoku kyseliny chlorovodíkovej přidalo 5 g silikagélu, pričom poklesol obsah železa z 2.10-5 °/o hmot. pod hranicu 10~5 % hmot.The procedure of Example 1 was followed except that 5 g of silica gel was added to the aqueous hydrochloric acid solution, the iron content being reduced from 2.10 -5 % by weight. below 10 ~ 5 wt.
Získaná kyselina chlorovodíková s obsahom 36,6 % hmot. chlorovodíka mala nasledovnú analýzu:The hydrochloric acid obtained is 36.6% by weight. hydrogen chloride had the following analysis:
Odparok menej ako 10~3 % hmot., sírany . 10~5 % hmot. síričitany menej ako 10δ pere. hmot. ťažké kovy menej ako 10~4 pere. hmot., železo menej ako 10~5 % hmot., arzén menej ako 10-6 hmot., lítium menej ako 10-6 % hmot., vodík 10~5 pere. hmot., draslík menej ako 10~5 % hmot., vápník 10~5 % hmot., hořčík menej ako líto5 % hmot.Evaporation of less than 10 ~ 3 % by weight, sulphates. 10 ~ 5 wt. sulphates of less than 10 δ per wash. wt. Heavy metals less than 10 ~ 4 pens. % by weight, iron less than 10 -5 % by weight, arsenic less than 10 -6 %, lithium less than 10 -6 % by weight, hydrogen 10 ~ 5 pere. % potassium, less than 10 ~ 5 wt.%, calcium 10 ~ 5 wt.%, magnesium less than 5 wt.%.
Počet častíc vilo vefkostnom intervale:Number of particles in a size interval:
1— 5 μπι 7 4581 - 5 mm 7 458
5—25 μπι 1 128 nad 25 μία 495—25 μπι 1 128 over 25 μία 49
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS85315A CS258702B1 (en) | 1985-01-17 | 1985-01-17 | Process of producing hydrochloric acid] for microelectronics |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS85315A CS258702B1 (en) | 1985-01-17 | 1985-01-17 | Process of producing hydrochloric acid] for microelectronics |
Publications (2)
Publication Number | Publication Date |
---|---|
CS31585A1 CS31585A1 (en) | 1988-01-15 |
CS258702B1 true CS258702B1 (en) | 1988-09-16 |
Family
ID=5335056
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CS85315A CS258702B1 (en) | 1985-01-17 | 1985-01-17 | Process of producing hydrochloric acid] for microelectronics |
Country Status (1)
Country | Link |
---|---|
CS (1) | CS258702B1 (en) |
-
1985
- 1985-01-17 CS CS85315A patent/CS258702B1/en unknown
Also Published As
Publication number | Publication date |
---|---|
CS31585A1 (en) | 1988-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20010022591A (en) | Method for Producing an Aqueous Solution of Free Hydroxylamine | |
US5456898A (en) | Method for enrichment and purification of aqueous hydrogen peroxide solution | |
US3972987A (en) | Process for regenerating sulfuric acid | |
US2375164A (en) | Recovery of betaine and betaine salts from sugar beet wastes | |
JPS6348568B2 (en) | ||
US4490343A (en) | Method for the separation of chlorosilanes from a gaseous mixture containing hydrogen chloride and hydrogen | |
US2756841A (en) | Process for the separation of hydrocyanic acid from ammonia in gas mixtures containing the same | |
US5679315A (en) | Method of production of high purity silica | |
US5324499A (en) | Fluoride removal from sulphuric acid | |
US4465655A (en) | Process for the purification of exhaust gases containing sulfuryl fluoride | |
JP3175942B2 (en) | Purification method of dimethyl sulfoxide (DMSO) | |
JP3171058B2 (en) | Hydrogen peroxide water purification method | |
CS258702B1 (en) | Process of producing hydrochloric acid] for microelectronics | |
JP2520260B2 (en) | Pure boric acid manufacturing method | |
JP4183286B2 (en) | Production of high-purity hydroxylamine aqueous solution | |
US3568409A (en) | Hydrochloric acid treatment for chlorine | |
JP3250591B2 (en) | Concentration and purification method of aqueous hydrogen peroxide solution | |
JPS5946884B2 (en) | Method for obtaining gaseous hydrogen chloride from dilute aqueous hydrochloric acid solution | |
US3047363A (en) | Manufacture of inorganic thiocyanates | |
JPS6354641B2 (en) | ||
US1708287A (en) | Method of recovering iodine | |
US3315441A (en) | Process for separating ammonia from methyl chloride | |
JPH09278416A (en) | Method for producing high-purity hydrogen peroxide solution | |
JP2608825B2 (en) | Purification method of aqueous hydrogen peroxide solution | |
JPH01191792A (en) | Method for producing nitrogen trifluoride |