JP3250591B2 - Concentration and purification method of aqueous hydrogen peroxide solution - Google Patents

Concentration and purification method of aqueous hydrogen peroxide solution

Info

Publication number
JP3250591B2
JP3250591B2 JP21365594A JP21365594A JP3250591B2 JP 3250591 B2 JP3250591 B2 JP 3250591B2 JP 21365594 A JP21365594 A JP 21365594A JP 21365594 A JP21365594 A JP 21365594A JP 3250591 B2 JP3250591 B2 JP 3250591B2
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
peroxide solution
evaporator
concentration
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21365594A
Other languages
Japanese (ja)
Other versions
JPH0840708A (en
Inventor
茂喜 下川
好次 南川
征志 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26519921&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3250591(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP21365594A priority Critical patent/JP3250591B2/en
Publication of JPH0840708A publication Critical patent/JPH0840708A/en
Application granted granted Critical
Publication of JP3250591B2 publication Critical patent/JP3250591B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はアントラキノン法によっ
て得られる粗過酸化水素水溶液を濃縮精製して、高純度
の過酸化水素水溶液を提供することにある。本発明によ
って得られる過酸化水素水溶液は高純度が要求される電
子工業用過酸化水素水溶液として、あるいは、さらに精
製して半導体製造における超高純度の過酸化水素水溶液
を得るための原料として、さらには広範な反応試剤とし
て、工業的に幅広く利用される。
The present invention is to provide a high-purity aqueous hydrogen peroxide solution by concentrating and purifying a crude aqueous hydrogen peroxide solution obtained by the anthraquinone method. The aqueous hydrogen peroxide solution obtained by the present invention may be used as a hydrogen peroxide aqueous solution for electronic industry where high purity is required, or as a raw material for further purifying and obtaining an ultra-high purity aqueous hydrogen peroxide solution in semiconductor production. Is widely used industrially as a wide range of reaction reagents.

【0002】[0002]

【従来の技術】現在、過酸化水素水溶液は、工業的には
アントラキノンの自動酸化により製造されている。以下
この方法を「アントラキノン法」という。アントラキノ
ン法は、一般に2−アルキルアントラキノンを水不溶性
の溶媒中で水素化触媒の存在下水素化して対応するアン
トラヒドロキノンとし、触媒をろ別した後、酸素または
空気により酸化することによって元のアントラキノンを
再生するとともに、過酸化水素を得、これを水で抽出す
ることによって過酸化水素含有水溶液を得る方法であ
る。この過酸化水素含有水溶液にはアントラキノン類や
溶媒およびそれらの劣化物からなる有機不純物が相当量
含まれているので、水不溶性の溶媒で有機不純物を抽出
し精製するのが普通である。かくして得られた過酸化水
素水溶液を以下「粗過酸化水素水溶液」という。
2. Description of the Related Art At present, an aqueous solution of hydrogen peroxide is industrially produced by autoxidation of anthraquinone. Hereinafter, this method is referred to as “anthraquinone method”. In the anthraquinone method, generally, a 2-alkylanthraquinone is hydrogenated in a water-insoluble solvent in the presence of a hydrogenation catalyst to form a corresponding anthrahydroquinone. In this method, hydrogen peroxide is obtained by regenerating the hydrogen peroxide and extracting it with water. Since the aqueous solution containing hydrogen peroxide contains a considerable amount of organic impurities consisting of anthraquinones, solvents and their degradation products, it is common to extract and purify the organic impurities with a water-insoluble solvent. The aqueous hydrogen peroxide solution thus obtained is hereinafter referred to as “crude hydrogen peroxide aqueous solution”.

【0003】粗過酸化水素水溶液は過酸化水素を15〜
40重量%含有しているが、不純物に関する問題とは別
に、工業的に使用される過酸化水素の通常濃度である3
0〜70重量%にするためにしばしばさらに濃縮され
る。粗過酸化水素水溶液の精留濃縮方法として、米国特
許3073755、英国特許1326282、特公昭3
7−8256、特公昭45−34926等が提案されて
いるが、原理的には図1のフローダイアグラムに示すフ
ローが一般的である。図1において粗過酸化水素水溶液
はライン1より蒸発器2へはいりライン3を通って気液
分離器4に導かれる。気液分離器4では揮発性不純物、
過酸化水素、水からなる蒸気と非揮発性不純物を含み蒸
気側組成と平衡にある過酸化水素水溶液に分離される。
[0003] A crude aqueous hydrogen peroxide solution contains 15 to
Although it contains 40% by weight, apart from the problem of impurities, it is the normal concentration of hydrogen peroxide used industrially.
Often it is further concentrated to 0-70% by weight. US Pat. No. 3,073,755, British Patent 1,326,282, Japanese Patent Publication No. Sho 3
7-8256 and Japanese Patent Publication No. 45-34926 have been proposed, but the flow shown in the flow diagram of FIG. 1 is generally used in principle. In FIG. 1, the crude aqueous hydrogen peroxide solution enters the evaporator 2 from the line 1 and passes through the line 3 to the gas-liquid separator 4. In the gas-liquid separator 4, volatile impurities,
It is separated into an aqueous solution of hydrogen peroxide which contains a vapor composed of hydrogen peroxide and water and a non-volatile impurity and is in equilibrium with the composition on the vapor side.

【0004】4で分離された蒸気はライン5を通って精
留塔6に入る。6において上昇蒸気は過酸化水素濃度を
減じ下降液は過酸化水素濃度を上げ塔底より濃縮された
過酸化水素水溶液がライン11より抜き出される。塔頂
の蒸気はライン7を通ってコンデンサー8に導かれ実質
的に過酸化水素を含まない凝縮水がライン10から排出
され、塔頂には還流水として前記凝縮水の一部がライン
9より供給される。気液分離器4で分離された過酸化水
素水溶液は蒸発器2に循環されるが一部は不純物の蓄積
を防ぐためライン12より抜き出される。これらの蒸
発、気液分離、及び精留は通常、減圧で行われる。ま
た、気液分離器4で分離された過酸化水素水溶液は蒸発
器2に循環することなくライン12より抜き出し、用途
に合った品質グレードとして生産されることも行われ
る。
The vapor separated in 4 enters a rectification column 6 through a line 5. At 6, the rising steam reduces the concentration of hydrogen peroxide, the descending solution increases the concentration of hydrogen peroxide, and a concentrated aqueous hydrogen peroxide solution is withdrawn from the line 11 from the bottom of the tower. The vapor at the top is led to a condenser 8 through a line 7 and condensed water substantially free of hydrogen peroxide is discharged from a line 10. Supplied. The aqueous hydrogen peroxide solution separated by the gas-liquid separator 4 is circulated to the evaporator 2, but a part of the aqueous solution is extracted from the line 12 to prevent accumulation of impurities. These evaporation, gas-liquid separation, and rectification are usually performed under reduced pressure. Further, the aqueous solution of hydrogen peroxide separated by the gas-liquid separator 4 is extracted from the line 12 without being circulated to the evaporator 2, and is produced as a quality grade suitable for the use.

【0005】過酸化水素水溶液は、反応試剤としてのみ
ならず漂白、化学研磨等の多くの分野で広く利用されて
いるが、近年、半導体やプリント配線板などの電子工業
分野に於ける利用が増大し、これに伴って、極めて高純
度の過酸化水素水溶液が要求されるようになり、粗過酸
化水素水溶液の精留濃縮によって得られる製品も不純物
の極めて少ない高純度の品質が要求されている。しか
し、これらの従来技術は有機不純物や無機不純物を減少
させて極めて高純度の過酸化水素水溶液を得るには十分
でない。
[0005] Aqueous hydrogen peroxide solution is widely used not only as a reaction reagent but also in many fields such as bleaching and chemical polishing, but in recent years, its use in the electronics industry such as semiconductors and printed wiring boards has increased. Accordingly, an extremely high-purity aqueous hydrogen peroxide solution is required, and a product obtained by rectifying and concentrating a crude hydrogen peroxide aqueous solution is also required to have high-purity quality with very few impurities. . However, these conventional techniques are not enough to reduce organic impurities and inorganic impurities to obtain an extremely high-purity aqueous hydrogen peroxide solution.

【0006】粗過酸化水素水溶液は不純物として、微量
ではあるが無視できない濃度の有機不純物、及び、反応
装置や配管などからの溶出に起因する無機不純物を含ん
でいる。又、場合によっては製造工程での過酸化水素の
分解抑制のために添加された安定剤を含んでいることも
ある。これらの多くは非揮発性であるが、蒸発工程の気
液分離器での気液の分離が不完全であると、粗過酸化水
素水溶液に含まれる無機不純物や非揮発性の有機不純物
を含むミストが精留塔に混入し塔底から得られる濃縮過
酸化水素水溶液を汚染してしまうことになる。気液分離
の方法としてデミスターなどが知られているが、過酸化
水素が材質との接触面で分解しやすい性質を持つために
その使用には限界があり、また、その気液分離作用効果
にも限界がある。
[0006] The crude hydrogen peroxide solution contains, as impurities, trace amounts of organic impurities having a small but not negligible concentration, and inorganic impurities resulting from elution from a reaction apparatus or piping. In some cases, it may contain a stabilizer added to suppress decomposition of hydrogen peroxide in the production process. Many of these are non-volatile, but if the gas-liquid separation in the vapor-liquid separator in the evaporation step is incomplete, inorganic impurities and non-volatile organic impurities contained in the crude hydrogen peroxide solution will be contained. The mist mixes into the rectification column and contaminates the concentrated aqueous hydrogen peroxide solution obtained from the bottom of the column. A demister is known as a gas-liquid separation method, but its use is limited due to the property that hydrogen peroxide is easily decomposed at the contact surface with the material, and its effect on gas-liquid separation is also limited. Also have limitations.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、粗過
酸化水素水溶液に含まれる有機物不純物や無機不純物を
効果的に除去し、高純度に精製された濃縮過酸化水素水
溶液を供給する方法を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for effectively removing organic and inorganic impurities contained in a crude aqueous hydrogen peroxide solution and supplying a highly purified concentrated aqueous hydrogen peroxide solution. Is to provide.

【0008】[0008]

【課題を解決するための手段】本発明者らは気液分離の
改善方法を見いだすべく鋭意研究を進め、同じタイプの
気液分離器を使用しても粗過酸化水素水溶液に含まれる
有機不純物の除去によって、驚くべきことにその気液分
離性能が飛躍的に向上する現象を発見した。即ち、粗過
酸化水素水溶液を予め多孔性合成吸着樹脂に接触せしめ
たとき極めて良好な気液分離が達成出来ることを見いだ
し、本発明を完成するに至った。
Means for Solving the Problems The present inventors have conducted intensive research to find a method for improving gas-liquid separation, and have found that organic impurities contained in a crude aqueous hydrogen peroxide solution can be obtained using the same type of gas-liquid separator. Surprisingly, it has been found that the gas-liquid separation performance is dramatically improved by the removal. That is, it has been found that when a crude aqueous hydrogen peroxide solution is brought into contact with a porous synthetic adsorption resin in advance, extremely good gas-liquid separation can be achieved, and the present invention has been completed.

【0009】即ち、本発明は、過酸化水素含有水溶液を
蒸発器で蒸発させ発生した蒸気及び随伴液を気液分離器
で分離し、蒸気を精留塔に供給し濃縮する減圧濃縮方法
において、原料過酸化水素含有水溶液を予め多孔性合成
吸着樹脂に空間速度1〜50hr-1で接触せしめて有機
不純物を有機炭素として50ppm以下迄低減した後、
蒸発器に供給することを特徴とする濃縮精製方法であ
る。本発明の特徴は、過酸化水素含有水溶液を蒸発器で
蒸発させる前に特定の前処理をする点にある。
That is, the present invention relates to a reduced pressure concentration method for separating a vapor and an accompanying liquid generated by evaporating an aqueous solution containing hydrogen peroxide by an evaporator with a gas-liquid separator, supplying the vapor to a rectification column and concentrating the vapor, After contacting the raw material hydrogen peroxide-containing aqueous solution with the porous synthetic adsorption resin in advance at a space velocity of 1 to 50 hr -1 to reduce organic impurities to 50 ppm or less as organic carbon,
This is a concentration and purification method characterized by being supplied to an evaporator. A feature of the present invention resides in that a specific pretreatment is performed before evaporating the aqueous solution containing hydrogen peroxide with an evaporator.

【0010】本発明においては、粗過酸化水素水溶液中
の有機物の除去は粗過酸化水素水溶液を多孔性合成吸着
樹脂に接触せしめることによって行われる。多孔性合成
吸着樹脂としては、スチレンとジビニルベンゼンを共重
合して得られる網状高分子の樹脂でイオン交換基を持た
ない樹脂および/またはハロゲン化したスチレン−ジビ
ニルベンゼン共重合体樹脂が使用され、該樹脂の1種以
上を充填した吸着カラムに通液する方法によって良好な
除去が可能である。
In the present invention, the removal of organic substances in the crude hydrogen peroxide aqueous solution is carried out by bringing the crude hydrogen peroxide aqueous solution into contact with a porous synthetic adsorption resin. As the porous synthetic adsorption resin, a resin of a network polymer obtained by copolymerizing styrene and divinylbenzene and having no ion exchange group and / or a halogenated styrene-divinylbenzene copolymer resin is used. Good removal is possible by passing the solution through an adsorption column filled with one or more of the resins.

【0011】具体的な樹脂としては、Rohm and Haas社
製アンバーライトXAD−1、アンバーライトXAD−
2、アンバーライトXAD−4、アンバーライトXAD
−16、三菱化成(株)製セパビーズSP207、セパ
ビーズSP825等が例示される。通液温度は0〜40
℃が実用的である。通液の空間速度(Space Velocity)
は1〜50hr-1好ましくは5〜30hr-1の範囲が好
適である。
Specific resins include Amberlite XAD-1 and Amberlite XAD-Rohm and Haas.
2, Amberlite XAD-4, Amberlite XAD
-16, Sepabeads SP207 and Sepabeads SP825 manufactured by Mitsubishi Chemical Corporation. Flowing temperature is 0-40
° C is practical. Space Velocity
Is in the range of 1 to 50 hr -1, preferably 5 to 30 hr -1 .

【0012】粗過酸化水素水溶液中には通常、有機不純
物を有機炭素(TOC)として100〜200ppm程度
含有するが、多孔性合成吸着樹脂に接触せしめることに
よりTOCを好ましくは50ppm以下、より好ましくは
40ppm以下に下げる。
[0012] The crude hydrogen peroxide aqueous solution generally contains about 100 to 200 ppm of organic impurities as organic carbon (TOC), but the TOC is preferably 50 ppm or less, and more preferably, 50 ppm or less by contact with a porous synthetic adsorption resin. Reduce to 40 ppm or less.

【0013】蒸発器での蒸発量は蒸発器に入る過酸化水
素(純分)を100部とした時、気液分離器で液として
分離される高濃度抜き出し過酸化水素水溶液中に過酸化
水素(純分)の40〜75部が含まれる程度が好適であ
る。蒸発器の圧力は50〜200Torr好ましくは60〜
150Torrである。蒸発器の出口すなわち、気液分離器
入口の温度は40〜90℃、好ましくは60〜80℃で
ある。還流水は精留塔塔底の濃縮精製過酸化水素水溶液
濃度が40〜70%になるように仕込流量などをコント
ロールする。
The amount of evaporation in the evaporator is defined as 100 parts of hydrogen peroxide (pure content) entering the evaporator. It is preferable that 40 to 75 parts of (pure amount) be included. The pressure of the evaporator is 50 to 200 Torr, preferably 60 to
150 Torr. The temperature at the outlet of the evaporator, that is, at the inlet of the gas-liquid separator, is 40 to 90C, preferably 60 to 80C. The flow rate of the reflux water is controlled so that the concentration of the concentrated and purified aqueous hydrogen peroxide solution at the bottom of the rectification column becomes 40 to 70%.

【0014】気液分離の形式に制限はないが、サイクロ
ンまたはミストセパレーターが好適である。本発明で使
用されるサイクロンの形式は単純接線入口形式でも全円
周渦巻入口形式でも使用できるが、図3に示すような単
純接線入口の標準サイクロンが好適に使用される。標準
サイクロンは化学工学便覧やPerry's Chemical Enginee
rs'Handbook Sixth Ed. p.20-84 Fig.20-106 に記載さ
れているいずれの寸法比であってもよい。図3において
サイクロン径Dcに対しB=1/5*Dc〜1/4*Dc、h=1/2*
Dc、l=1/2*Dc〜2/5*Dc、H1=Dc〜2*Dc、H2=2*Dc
が好適である。サイクロン径Dcはサイクロン入口気流
速度が前記した蒸発条件の温度、圧力に於いて10〜1
50m/sec好ましくは20〜100m/sec となるように
設計した時、良好な性能が得られる。サイクロンの材質
はアルミニウムやアルミニウム合金又はステンレスが使
用できるが、接触による過酸化水素の分解を少なく抑え
るためにはアルミニウム又はアルミニウム合金が好まし
い。
The type of gas-liquid separation is not limited, but a cyclone or mist separator is preferred. The type of cyclone used in the present invention can be either a simple tangent inlet type or a full-circle spiral inlet type, but a standard cyclone with a simple tangential inlet as shown in FIG. 3 is preferably used. The standard cyclone is a Chemical Engineering Handbook or Perry's Chemical Enginee
rs'Handbook Sixth Ed. p.20-84 Any dimension ratio described in Fig.20-106 may be used. In FIG. 3, B = 1/5 * Dc to 1/4 * Dc, h = 1/2 * with respect to the cyclone diameter Dc.
Dc, l = 1/2 * Dc to 2/5 * Dc, H1 = Dc to 2 * Dc, H2 = 2 * Dc
Is preferred. The cyclone diameter Dc is 10 to 1 at the temperature and pressure under the above-mentioned evaporation condition when the air flow velocity at the cyclone inlet is equal to the above.
Good performance is obtained when designed to be 50 m / sec, preferably 20-100 m / sec. Aluminum, an aluminum alloy or stainless steel can be used as the material of the cyclone, but aluminum or an aluminum alloy is preferable in order to reduce decomposition of hydrogen peroxide due to contact.

【0015】本発明で使用されるミストセパレーターは
図4に示すように網を多層に重ねた構造のものであって
空間率(多層に重ねた網のバルクの単位体積当たりの網
を構成する線状体の体積)が95〜99%、表面積(多
層に重ねた網のバルクの単位体積当たりの網を構成する
線状体の表面積)が150〜1000m2/m3のものが
好適である。図4においてミストセパレーターの厚さH
3は100〜1000mmの高さが好適である。ミストセ
パレーターの径Dmはミストセパレーター入り口の気流
速度が上記蒸発条件の温度、圧力に於いて1〜50m/se
c好ましくは5〜25m/sec となるように設計した時、
良好な性能が得られる。ミストセパレーターの網の材質
は、フッ化炭素樹脂またはアルミニウムが好ましい。他
の金属では気液が器壁や充填物に接触する面積が大きい
ため溶出等による汚染の問題があるほか過酸化水素の分
解の問題があり好ましくない。
The mist separator used in the present invention has a structure in which nets are stacked in multiple layers as shown in FIG. 4 and has a space ratio (a line constituting a net per unit volume of bulk of the multilayered nets). It is preferable that the volume of the linear body is 95 to 99% and the surface area (the surface area of the linear body constituting the net per unit volume of the bulk of the multi-layer net) is 150 to 1000 m 2 / m 3 . In FIG. 4, the thickness H of the mist separator is shown.
3 preferably has a height of 100 to 1000 mm. The diameter Dm of the mist separator is such that the airflow velocity at the inlet of the mist separator is 1 to 50 m / se at the temperature and pressure under the above evaporation conditions.
c When preferably designed to be 5 to 25 m / sec,
Good performance is obtained. The material of the net of the mist separator is preferably a fluorocarbon resin or aluminum. Other metals are not preferable because they have a large area where gas and liquid come into contact with the vessel wall and the packing, and thus have a problem of contamination due to elution and the like and a problem of decomposition of hydrogen peroxide.

【0016】サイクロンおよびミストセパレーターはそ
れぞれ複数使用してもよく、また、サイクロンとミスト
セパレーターとを併用しても良い。精留塔の構造及び操
作条件は通常のものでよい。精留塔塔頂に供給される還
流水は、塔底から抜き出される過酸化水素が40〜70
重量%に濃縮精製される量が供給される。
A plurality of cyclones and mist separators may be used, respectively, or a cyclone and a mist separator may be used in combination. The structure and operating conditions of the rectification column may be ordinary ones. The reflux water supplied to the top of the rectification column is such that hydrogen peroxide extracted from the bottom of the column is 40 to 70%.
The amount to be concentrated and purified to weight% is supplied.

【0017】本発明をフローダイアグラム(図2)で説
明する。粗過酸化水素水溶液は21のラインより吸着樹
脂塔22に入り有機不純物が除去されライン23を通っ
て蒸発器24に供給される。24を出た気液はライン2
5を通って気液分離器26に導かれる。26では揮発性
不純物、過酸化水素、水からなる蒸気と非揮発性不純物
を含み蒸気側組成と平衡にある過酸化水素水溶液に分離
される。気液分離器26で分離された過酸化水素水溶液
はライン41から抜き出される。26で分離された蒸気
はライン27を経て精留塔32に導かれる。
The present invention will be described with reference to a flow diagram (FIG. 2). The crude hydrogen peroxide aqueous solution enters the adsorption resin tower 22 through the line 21 to remove organic impurities, and is supplied to the evaporator 24 through the line 23. The gas and liquid which came out of line 24 is line 2.
5 to the gas-liquid separator 26. At 26, the mixture is separated into a hydrogen peroxide aqueous solution containing a vapor composed of volatile impurities, hydrogen peroxide and water and a non-volatile impurity, and being in equilibrium with the composition on the vapor side. The aqueous hydrogen peroxide solution separated by the gas-liquid separator 26 is extracted from the line 41. The vapor separated at 26 is led to a rectification column 32 via a line 27.

【0018】ライン27から精留塔32に供給された過
酸化水素を含む蒸気はライン35から塔頂に供給される
還流水と向流的に接触し、塔内を下降する液相と塔内を
上昇する気相の間に気液平衡が形成される。即ち、塔頂
から下降する液相は次第に過酸化水素濃度を増しつつ下
降し、塔底又は塔下部から供給された過酸化水素を含む
蒸気は過酸化水素濃度を減じながら上昇する。蒸気は精
留塔32のどの部分に供給してもよいが、好ましくは塔
底又は塔下部に供給される。この精留によって、濃縮・
精製された高純度過酸化水素水溶液がライン37より抜
き出される。
The vapor containing hydrogen peroxide supplied to the rectification column 32 from the line 27 comes into contact with the reflux water supplied to the top of the column from the line 35 in countercurrent, and the liquid phase descending in the column and the liquid phase in the column A vapor-liquid equilibrium is formed during the rising gas phase. That is, the liquid phase descending from the top of the tower gradually descends while increasing the concentration of hydrogen peroxide, and the vapor containing hydrogen peroxide supplied from the bottom or bottom of the tower rises while decreasing the concentration of hydrogen peroxide. The steam may be fed to any part of the rectification column 32, but is preferably fed to the bottom or bottom of the column. By this rectification,
A purified high-purity aqueous hydrogen peroxide solution is extracted from a line 37.

【0019】塔頂からは過酸化水素を殆ど含まない蒸気
がライン33を通ってコンデンサー34に導かれて凝縮
し、実質的に過酸化水素を含まない凝縮水がライン36
から排出される。精留塔塔頂に供給される還流水とし
て、前記凝縮水の一部又はイオン交換樹脂などにより処
理された精製水がライン35より供給される。これらの
蒸発、気液分離、及び精留は減圧で行われることが好ま
しい。ライン37より抜き出された高純度の濃縮された
過酸化水素水溶液はタンクに貯蔵され、輸送、出荷され
る。
From the top of the column, vapor containing substantially no hydrogen peroxide is led to a condenser 34 through a line 33 and condensed, and condensed water substantially free of hydrogen peroxide is supplied to a line 36.
Is discharged from As the reflux water supplied to the top of the rectification column, a part of the condensed water or purified water treated with an ion exchange resin or the like is supplied from a line 35. These evaporation, gas-liquid separation, and rectification are preferably performed under reduced pressure. The high-purity concentrated aqueous hydrogen peroxide solution extracted from the line 37 is stored in a tank, transported, and shipped.

【0020】過酸化水素水溶液に含まれる有機物不純物
の含有量によって、なぜ気液分離効率が大きく影響され
るのかについての機構は明らかでないが、有機不純物の
含有量によって気液分離器表面に付着した液の挙動が変
化するためと考えられる。即ち、粗過酸化水素水溶液に
比べて多孔性合成吸着樹脂に接触せしめて有機不純物を
低減した過酸化水素水溶液の方が粘性又は発泡性が低
く、激しく攪拌した時に泡が立ちにくい。これと同様の
現象が気液分離器表面で起きていると想像され、多孔性
合成吸着樹脂に接触せしめて有機不純物を低減した過酸
化水素水溶液においては気液分離器表面に付着した液が
ミストとして飛散することが防がれていると考えられ
る。
The mechanism as to why the gas-liquid separation efficiency is greatly affected by the content of the organic impurities contained in the aqueous hydrogen peroxide solution is not clear, but the amount of the organic impurities attached to the surface of the gas-liquid separator depends on the content of the organic impurities. It is considered that the behavior of the liquid changes. That is, compared with the crude hydrogen peroxide aqueous solution, the hydrogen peroxide aqueous solution which has been brought into contact with the porous synthetic adsorption resin to reduce the organic impurities has a lower viscosity or foaming property, and is less likely to foam when vigorously stirred. It is presumed that the same phenomenon occurs on the surface of the gas-liquid separator, and in the aqueous hydrogen peroxide solution in which organic impurities have been reduced by contacting the porous synthetic adsorption resin, the liquid adhering to the surface of the gas-liquid separator is mist. It is thought that scattering is prevented.

【0021】[0021]

【発明の効果】本発明によれば、粗過酸化水素水溶液に
含まれる有機物不純物や無機不純物を効果的に除去し、
高純度に精製された濃縮過酸化水素水溶液を供給する方
法が提供される。
According to the present invention, organic impurities and inorganic impurities contained in a crude hydrogen peroxide aqueous solution are effectively removed,
A method for supplying a concentrated aqueous hydrogen peroxide solution purified to high purity is provided.

【0022】[0022]

【実施例】次に、実施例によって本発明をより具体的に
説明する。なお、本発明は記載された図または実施例に
限定されるものではない。
Next, the present invention will be described more specifically with reference to examples. The invention is not limited to the figures or examples described.

【0023】実施例1 三菱化成(株)製セパビーズSP207を250l充填した
吸着樹脂塔(内径600mm、高さ1,000mm)、気液分離器とし
て内径Dcが1,240mm のPerry's Chemical Engineers' Ha
ndbook Sixth Ed. p.20-84 Fig.20-106 記載の標準サイ
クロン(図3参照、B=310 mm、h=620 mm、l=620
mm、H1=H2=2480mm)、塔径1,700mmであって磁製
充填剤を6,000mmの高さ充填した材質がAlからなる精留
塔を有する濃縮設備(概略を図2に示す)に、安定剤と
してピロリン酸ソーダ10水塩15ppm 及びアミノトリ(メ
チレンホスホン酸)20ppm の添加された、蒸発残分38pp
m、全有機体炭素(TOC)90ppm、ナトリウム3500ppb を含
む、過酸化水素濃度32wt%の粗過酸化水素水溶液を5,100
l/hrの流量で連続的に供給した。この流量は空塔速度
(SV)として20.4hr-1に相当する。
Example 1 An adsorption resin tower (inner diameter: 600 mm, height: 1,000 mm) packed with 250 l of Sepabeads SP207 manufactured by Mitsubishi Kasei Co., Ltd. A Perry's Chemical Engineers' Ha having an inner diameter Dc of 1,240 mm was used as a gas-liquid separator.
ndbook Sixth Ed. p.20-84 Standard cyclone described in Fig.20-106 (see Fig.3, B = 310 mm, h = 620 mm, l = 620
mm, H1 = H2 = 2480 mm), a column having a diameter of 1,700 mm, and a rectification column having a rectifying column made of Al and filled with a porcelain filler at a height of 6,000 mm (schematically shown in FIG. 2). 38 ppm of evaporation residue to which 15 ppm of sodium pyrophosphate decahydrate and 20 ppm of aminotri (methylenephosphonic acid) were added as stabilizers
m, 90 ppm total organic carbon (TOC), 3,500 ppb sodium, 5,100
It was continuously supplied at a flow rate of l / hr. This flow rate is the superficial velocity
(SV) is equivalent to 20.4 hr -1 .

【0024】蒸発器出口温度68〜70℃、圧力90〜100Tor
r、還流水量約1,500l/hrとして定常運転した。サイクロ
ン入り口ガス速度は物質収支より約60m/sと計算され
た。サイクロンの下のライン41より過酸化水素濃度が64
wt%の抜き出し液1,600kg/hrと精留塔塔底から過酸化水
素濃度54wt%の精製された濃縮過酸化水素水溶液1,400kg
/hrを得た。得られた濃縮過酸化水素水溶液中の金属不
純物を原子吸光により、蒸発残分をJIS-K1463法により
分析した。結果を表1に示す。なお、吸着樹脂塔出口の
液のTOCは28ppmであった。
Evaporator outlet temperature 68 to 70 ° C, pressure 90 to 100 Torr
r, steady operation was performed with a reflux water amount of about 1,500 l / hr. The cyclone inlet gas velocity was calculated to be about 60m / s from the mass balance. Hydrogen peroxide concentration is 64 from line 41 below the cyclone
1,600 kg / hr of a withdrawn liquid of 1,600 kg / hr and a purified concentrated aqueous hydrogen peroxide solution with a hydrogen peroxide concentration of 54 wt% from the bottom of the rectification tower
/ hr. Metal impurities in the obtained concentrated aqueous hydrogen peroxide solution were analyzed by atomic absorption, and the evaporation residue was analyzed by JIS-K1463 method. Table 1 shows the results. The TOC of the liquid at the outlet of the adsorption resin tower was 28 ppm.

【0025】実施例2 サイクロンとして、内径Dcが 960mmのPerry's Chemical
Engineers' HandbookSixth Ed. p.20-84 Fig.20-106
記載の標準サイクロンを使用した他は実施例1と同様の
濃縮設備を使用して、実施例1と同様の処理を行った。
サイクロン入り口ガス速度は物質収支より約100m/sと計
算された。濃縮過酸化水素水溶液の分析結果を表1に示
す。
Example 2 As a cyclone, Perry's Chemical having an inner diameter Dc of 960 mm was used.
Engineers' HandbookSixth Ed.p.20-84 Fig.20-106
The same treatment as in Example 1 was performed using the same concentration equipment as in Example 1 except that the standard cyclone described was used.
The gas velocity at the cyclone inlet was calculated to be about 100m / s from the mass balance. Table 1 shows the analysis results of the concentrated aqueous hydrogen peroxide solution.

【0026】比較例1 吸着樹脂塔を省略し、粗過酸化水素水溶液を直接蒸発器
に供給した他は実施例1と同様にして濃縮精製処理を行
った。濃縮過酸化水素水溶液の分析結果を表1に示す。
Comparative Example 1 Concentration and purification were carried out in the same manner as in Example 1 except that the adsorption resin tower was omitted and the crude hydrogen peroxide aqueous solution was directly supplied to the evaporator. Table 1 shows the analysis results of the concentrated aqueous hydrogen peroxide solution.

【0027】比較例2 吸着樹脂塔を省略し、粗過酸化水素水溶液を直接蒸発器
に供給した他は実施例2と同様にして濃縮精製処理を行
った。濃縮過酸化水素水溶液の分析結果を表1に示す。
Comparative Example 2 Concentration and purification were carried out in the same manner as in Example 2 except that the adsorption resin tower was omitted and the crude aqueous hydrogen peroxide solution was directly supplied to the evaporator. Table 1 shows the analysis results of the concentrated aqueous hydrogen peroxide solution.

【0028】[0028]

【表1】 ナトリウム濃度 蒸発残分 実施例1 12 ppb 4 ppm 実施例2 15 ppb 5 ppm 比較例1 75 ppb 11 ppm 比較例2 110 ppb 15 ppm [Table 1] Sodium concentration Evaporation residue Example 1 12 ppb 4 ppm Example 2 15 ppb 5 ppm Comparative example 1 75 ppb 11 ppm Comparative example 2 110 ppb 15 ppm

【0029】実施例3 (株)オルガノ製アンバーライトXAD−2を250l充填
した吸着樹脂塔(内径600mm、高さ1,000mm)を使用し、気
液分離器としてサイクロンの代わりに、フッ素樹脂(旭
硝子(株)製、商品名アフロン)製の網を多層に重ねた
構造のものであって空間率が98%、表面積が380 m2
/m3のものを高さ250mm に充填した内径1,500mm のミ
ストセパレーターを使用した他は実施例1と同様の濃縮
設備を使用して、実施例1と同様の処理を行い、ミスト
セパレーターの下のライン41より過酸化水素濃度が64wt
%の抜き出し液1,600kg/hrと精留塔塔底から過酸化水素
濃度54wt%の精製された濃縮過酸化水素水溶液1,400kg/h
rを得た。蒸発器出口温度68〜70℃、圧力90〜100Torr、
還流水量約1,500l/hrとして定常運転した。ミストセパ
レーター入り口ガス速度は物質収支より約7m/sと計算さ
れた。濃縮過酸化水素水溶液の分析結果を表2に示す。
なお、吸着樹脂塔出口の液のTOCは35ppmであった。
Example 3 An adsorption resin tower (inner diameter 600 mm, height 1,000 mm) packed with 250 liters of Amberlite XAD-2 manufactured by Organo Co., Ltd. was used, and instead of a cyclone, a fluororesin (Asahi Glass) was used as a gas-liquid separator. The product has a structure in which nets made by Aflon (trade name) are stacked in multiple layers, with a porosity of 98% and a surface area of 380 m 2.
/ M 3 and a mist separator with an inner diameter of 1,500 mm filled to a height of 250 mm, using the same concentrating equipment as in Example 1 and performing the same treatment as in Example 1. Hydrogen peroxide concentration from line 41 of 64wt
1,600 kg / h of purified hydrogen peroxide solution with a hydrogen peroxide concentration of 54 wt% from the bottom of the rectification tower
got r. Evaporator outlet temperature 68-70 ° C, pressure 90-100 Torr,
Steady-state operation was performed with a reflux water amount of about 1,500 l / hr. The gas velocity at the inlet of the mist separator was calculated to be about 7m / s from the material balance. Table 2 shows the analysis results of the concentrated aqueous hydrogen peroxide solution.
The TOC of the liquid at the outlet of the adsorption resin tower was 35 ppm.

【0030】比較例3 吸着樹脂塔を省略し、粗過酸化水素水溶液を直接蒸発器
に供給した他は実施例3と同様にして濃縮精製処理を行
った。濃縮過酸化水素水溶液の分析結果を表2に示す。
Comparative Example 3 A concentration and purification treatment was carried out in the same manner as in Example 3, except that the adsorption resin tower was omitted and the crude hydrogen peroxide aqueous solution was directly supplied to the evaporator. Table 2 shows the analysis results of the concentrated aqueous hydrogen peroxide solution.

【0031】比較例4 吸着樹脂塔を省略して粗過酸化水素水溶液を直接蒸発器
に供給し、かつ、フッ化炭素樹脂製の網を追加してミス
トセパレーターの厚みを500mmに増強した他は実施例
3と同様の濃縮設備を使用して、実施例2と同様の処理
を行った。濃縮過酸化水素水溶液の分析結果を表2に示
す。
COMPARATIVE EXAMPLE 4 A crude hydrogen peroxide aqueous solution was directly supplied to an evaporator by omitting the adsorption resin tower, and the thickness of the mist separator was increased to 500 mm by adding a net made of fluorocarbon resin. The same treatment as in Example 2 was performed using the same concentration equipment as in Example 3. Table 2 shows the analysis results of the concentrated aqueous hydrogen peroxide solution.

【0032】[0032]

【表2】 ナトリウム濃度 蒸発残分 実施例3 10 ppb以下 3 ppm 比較例3 95 ppb 14 ppm 比較例4 88 ppb 12 ppm [Table 2] Sodium concentration Evaporation residue Example 3 10 ppb or less 3 ppm Comparative example 3 95 ppb 14 ppm Comparative example 4 88 ppb 12 ppm

【0033】[0033]

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の過酸化水素水溶液の濃縮精製装置の概念
図 2:蒸発器 4:気液分離器 6:精留塔 8:コンデンサー
FIG. 1 is a conceptual diagram of a conventional apparatus for concentrating and purifying an aqueous hydrogen peroxide solution. 2: Evaporator 4: Gas-liquid separator 6: Rectification column 8: Condenser

【図2】本発明の過酸化水素水溶液の濃縮精製装置の概
念図 22:多孔性合成吸着樹脂充填塔 24:蒸発器 26:気液分離器 32:精留塔 34:コンデンサー
FIG. 2 is a conceptual diagram of an apparatus for concentrating and purifying an aqueous hydrogen peroxide solution of the present invention.

【図3】サイクロンの構造概念図 Dc:サイクロン径FIG. 3 is a conceptual diagram of the structure of a cyclone Dc: cyclone diameter

【図4】ミストセパレーターの概念図 Dm:ミストセパレーター径 H3:ミストセパレーターの厚さFIG. 4 is a conceptual diagram of a mist separator Dm: mist separator diameter H3: mist separator thickness

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−156004(JP,A) 特公 昭45−34926(JP,B1) 特公 昭46−26095(JP,B1) (58)調査した分野(Int.Cl.7,DB名) C01B 15/013 B01J 20/26 B01D 15/00 ──────────────────────────────────────────────────続 き Continued from the front page (56) References JP-A-63-156004 (JP, A) JP-B-45-34926 (JP, B1) JP-B-46-26095 (JP, B1) (58) Field (Int.Cl. 7 , DB name) C01B 15/013 B01J 20/26 B01D 15/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 過酸化水素含有水溶液を蒸発器で蒸発さ
せ発生した蒸気及び随伴液を気液分離器で分離し、蒸気
を精留塔に供給し濃縮する減圧濃縮方法において、原料
過酸化水素含有水溶液を予め多孔性合成吸着樹脂に空間
速度1〜50hr-1で接触せしめて有機不純物を有機炭
素として50ppm以下迄低減した後、蒸発器に供給す
ることを特徴とする濃縮精製方法。
1. A reduced-pressure enrichment method for evaporating an aqueous solution containing hydrogen peroxide by an evaporator, separating steam and accompanying liquid generated by an evaporator, supplying the steam to a rectification column, and concentrating the steam, comprising the steps of: A method for concentrating and purifying a solution comprising contacting an aqueous solution containing a porous synthetic adsorption resin in advance with a porous synthetic adsorption resin at a space velocity of 1 to 50 hr -1 to reduce organic impurities to 50 ppm or less as organic carbon, and then supplying the same to an evaporator.
【請求項2】 多孔性合成吸着樹脂が、スチレンとジビ
ニルベンゼンを共重合して得られる網状高分子の樹脂で
あることを特徴とする請求項1記載の濃縮精製方法。
2. The method according to claim 1, wherein the porous synthetic adsorption resin is a network polymer resin obtained by copolymerizing styrene and divinylbenzene.
【請求項3】 多孔性合成吸着樹脂が、ハロゲン化スチ
レン−ジビニルベンゼンの共重合体樹脂であることを特
徴とする請求項1記載の濃縮精製方法。
3. The method according to claim 1, wherein the porous synthetic adsorption resin is a halogenated styrene-divinylbenzene copolymer resin.
JP21365594A 1993-09-13 1994-09-07 Concentration and purification method of aqueous hydrogen peroxide solution Expired - Fee Related JP3250591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21365594A JP3250591B2 (en) 1993-09-13 1994-09-07 Concentration and purification method of aqueous hydrogen peroxide solution

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-227272 1993-09-13
JP22727293 1993-09-13
JP21365594A JP3250591B2 (en) 1993-09-13 1994-09-07 Concentration and purification method of aqueous hydrogen peroxide solution

Publications (2)

Publication Number Publication Date
JPH0840708A JPH0840708A (en) 1996-02-13
JP3250591B2 true JP3250591B2 (en) 2002-01-28

Family

ID=26519921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21365594A Expired - Fee Related JP3250591B2 (en) 1993-09-13 1994-09-07 Concentration and purification method of aqueous hydrogen peroxide solution

Country Status (1)

Country Link
JP (1) JP3250591B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3874036B2 (en) * 1996-10-09 2007-01-31 三菱瓦斯化学株式会社 Method for producing purified aqueous hydrogen peroxide solution
DE10026363A1 (en) * 2000-05-27 2001-11-29 Merck Patent Gmbh Process for the purification of hydrogen peroxide solutions
WO2018155465A1 (en) * 2017-02-22 2018-08-30 三菱瓦斯化学株式会社 Method and system for producing purified aqueous hydrogen peroxide solution
JP2019093335A (en) * 2017-11-22 2019-06-20 三菱瓦斯化学株式会社 Aqueous hydrogen peroxide solution for water purification
CN108939588A (en) * 2018-09-05 2018-12-07 江山市双氧水有限公司 The process system of flush distillation circulation fluid filtration device in a kind of hydrogen peroxide enrichment facility

Also Published As

Publication number Publication date
JPH0840708A (en) 1996-02-13

Similar Documents

Publication Publication Date Title
US5456898A (en) Method for enrichment and purification of aqueous hydrogen peroxide solution
US6740302B2 (en) Method for producing high-purity sulphuric acid
US6224845B1 (en) Process for manufacturing an aqueous hydrogen peroxide solution
EP1848701B1 (en) Ethylene oxide plant operation
JP3328854B2 (en) Concentration and purification method of hydrogen peroxide
US3597167A (en) Removal of chlorine and organic impurities from hydrochloric acid
JP3250591B2 (en) Concentration and purification method of aqueous hydrogen peroxide solution
US11912571B2 (en) Device and process for producing hydrogen peroxide by an anthraquinone process
JPH05201707A (en) Method of obtaining refined hydrogen peroxide solution
US11220430B2 (en) Method and system for producing purified aqueous hydrogen peroxide solution
AU763221B2 (en) Highly pure aqueous hydrogen peroxide solutions, method for producing same and their use
US3568409A (en) Hydrochloric acid treatment for chlorine
JP4120718B2 (en) Method for producing purified aqueous hydrogen peroxide solution
JPH08310803A (en) Production of refined hydrogen peroxide
US20030019360A1 (en) Process and apparatus for separating foreign hydrogen halides from a stream of hydrogen chloride by means of absorption
JP2000302419A (en) Production of purified hydrogen peroxide aqueous solution
JP3531185B2 (en) Stabilized aqueous solution of purified hydrogen peroxide
WEBB et al. Hydrogen Peroxide
JP2001294410A (en) Circulation of hydroxyl amine-containing stripper solution
MXPA00010219A (en) Highly pure aqueous hydrogen peroxide solutions, method for producing same and their use

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees