JP3328854B2 - Concentration and purification method of hydrogen peroxide - Google Patents

Concentration and purification method of hydrogen peroxide

Info

Publication number
JP3328854B2
JP3328854B2 JP22727393A JP22727393A JP3328854B2 JP 3328854 B2 JP3328854 B2 JP 3328854B2 JP 22727393 A JP22727393 A JP 22727393A JP 22727393 A JP22727393 A JP 22727393A JP 3328854 B2 JP3328854 B2 JP 3328854B2
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
cyclone
concentration
gas
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22727393A
Other languages
Japanese (ja)
Other versions
JPH0780227A (en
Inventor
茂喜 下川
好次 南川
征志 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP22727393A priority Critical patent/JP3328854B2/en
Priority to TW083108013A priority patent/TW299301B/zh
Priority to KR1019940022808A priority patent/KR0132528B1/en
Priority to FR9410868A priority patent/FR2710046B1/en
Priority to DE4432434A priority patent/DE4432434A1/en
Priority to CN94115257A priority patent/CN1036988C/en
Publication of JPH0780227A publication Critical patent/JPH0780227A/en
Application granted granted Critical
Publication of JP3328854B2 publication Critical patent/JP3328854B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/01Hydrogen peroxide
    • C01B15/013Separation; Purification; Concentration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/24Multiple arrangement thereof
    • B04C5/26Multiple arrangement thereof for series flow

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はアントラキノン法によっ
て得られる粗過酸化水素水溶液を濃縮精製して、高純度
の過酸化水素水溶液を提供する方法に関する。本発明の
方法によって得られる過酸化水素は高純度が要求される
電子工業用過酸化水素として、あるいは、さらに精製し
て半導体製造における超高純度の過酸化水素を得るため
の原料として、さらには広範な反応試剤として、工業的
に幅広く利用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for providing a high-purity aqueous hydrogen peroxide solution by concentrating and purifying a crude aqueous hydrogen peroxide solution obtained by an anthraquinone method. Hydrogen peroxide obtained by the method of the present invention is as hydrogen peroxide for electronics industry where high purity is required, or as a raw material for further purification to obtain ultra-high purity hydrogen peroxide in semiconductor production. It is widely used industrially as a wide range of reaction reagents.

【0002】[0002]

【従来の技術】現在、過酸化水素は、工業的にはアント
ラキノンの自動酸化により製造されている。以下この方
法を「アントラキノン法」という。アントラキノン法
は、一般に2−アルキルアントラキノンを水不溶性の溶
媒中で水素化触媒の存在下水素化して対応するアントラ
ヒドロキノンとし、触媒をろ別した後、酸素または空気
により酸化することによって元のアントラキノンを再生
するとともに、過酸化水素を得、これを水で抽出するこ
とによって過酸化水素含有水溶液を得る方法である。こ
の過酸化水素含有水溶液にはアントラキノン類や溶媒お
よびそれらの劣化物からなる有機不純物が相当量含まれ
ているので、水不溶性の溶媒で有機不純物を抽出し精製
するのが普通である。かくして得られた過酸化水素水溶
液を以下「粗過酸化水素水溶液」という。粗過酸化水素
水溶液は過酸化水素を15ないし40重量%含有してい
るが、通常工業的に使用される過酸化水素の濃度は30
ないし70重量%であるので粗過酸化水素はさらに濃縮
される。
2. Description of the Related Art At present, hydrogen peroxide is industrially produced by auto-oxidation of anthraquinone. Hereinafter, this method is referred to as “anthraquinone method”. In the anthraquinone method, generally, a 2-alkylanthraquinone is hydrogenated in a water-insoluble solvent in the presence of a hydrogenation catalyst to form a corresponding anthrahydroquinone. In this method, hydrogen peroxide is obtained by regenerating the hydrogen peroxide and extracting it with water. Since the aqueous solution containing hydrogen peroxide contains a considerable amount of organic impurities consisting of anthraquinones, solvents and their degradation products, it is common to extract and purify the organic impurities with a water-insoluble solvent. The aqueous hydrogen peroxide solution thus obtained is hereinafter referred to as “crude hydrogen peroxide aqueous solution”. The crude hydrogen peroxide aqueous solution contains 15 to 40% by weight of hydrogen peroxide, but the concentration of hydrogen peroxide usually used industrially is 30%.
The crude hydrogen peroxide is further concentrated because it is between 70 and 70% by weight.

【0003】粗過酸化水素の精留濃縮方法は米国特許3
073755、英国特許1326282、日本特許公告
37−8256、日本特許公告45−34926等種々
提案されており、原理的には第1図のフローダイアグラ
ムに示すフローが一般的である。第1図において粗過酸
化水素はライン1より蒸発器2へはいりライン3を通っ
て気液分離器4に導かれる。4では揮発性不純物、過酸
化水素、水からなる蒸気と非揮発性不純物を含み蒸気側
組成と平衡にある過酸化水素水溶液に分離される。4で
分離された蒸気はライン5を通って精留塔6に入る。6
において上昇蒸気は過酸化水素濃度を減じ下降液は過酸
化水素濃度を上げ塔底より濃縮された過酸化水素水溶液
がライン11より抜き出される。塔頂の蒸気はライン7
を通ってコンデンサー8に導かれ実質的に過酸化水素を
含まない凝縮水がライン10から排出され、塔頂には還
流水がライン9より供給される。気液分離器4で分離さ
れた過酸化水素水溶液は蒸発器2に循環されるが一部は
不純物の蓄積を防ぐためライン12より抜き出される。
これらの蒸発、気液分離、及び精留は通常、減圧で行わ
れる。
A method for rectifying and condensing crude hydrogen peroxide is disclosed in US Pat.
No. 073755, British Patent 1326282, Japanese Patent Publication No. 37-8256, Japanese Patent Publication No. 45-34926, and the like, and the flow shown in the flow diagram of FIG. 1 is general in principle. In FIG. 1, the crude hydrogen peroxide enters the evaporator 2 from the line 1 and passes through the line 3 to the gas-liquid separator 4. At 4, the mixture is separated into a hydrogen peroxide aqueous solution containing a vapor composed of volatile impurities, hydrogen peroxide, and water and a non-volatile impurity and being in equilibrium with the composition on the vapor side. The vapor separated in 4 enters the rectification column 6 via line 5. 6
In the above, the rising steam reduces the concentration of hydrogen peroxide, the descending solution increases the concentration of hydrogen peroxide, and a concentrated aqueous hydrogen peroxide solution is withdrawn from the line 11 from the bottom of the tower. The vapor at the top is line 7
The condensed water substantially free of hydrogen peroxide is discharged from a line 10 through a condenser 8 and reflux water is supplied from a line 9 to the top of the tower. The aqueous hydrogen peroxide solution separated by the gas-liquid separator 4 is circulated to the evaporator 2, but a part of the aqueous solution is extracted from the line 12 to prevent accumulation of impurities.
These evaporation, gas-liquid separation, and rectification are usually performed under reduced pressure.

【0004】過酸化水素水溶液は、反応試剤としてのみ
ならず漂白、化学研磨等の多くの分野で広く利用されて
いるが、近年、半導体やプリント配線板などの電子工業
分野に於ける利用が増大し、これに伴って、極めて高純
度の過酸化水素水溶液が要求されるようになり、粗過酸
化水素の精留濃縮によって得られる製品も不純物の極め
て少ない高純度の品質が要求されている。しかし、これ
らの従来技術で有機不純物や無機不純物を極力減少させ
ようとする時多くの問題がある。粗過酸化水素は不純物
として、微量ではあるが無視できない濃度の有機不純物
の他に、反応装置、配管などからの溶出に起因する無機
不純物を含んでいる。又、場合によっては製造工程での
過酸化水素の分解抑制のために添加された安定剤を含ん
でいる事もある。従って、蒸発工程の気液分離器での気
液の分離が不完全であると粗過酸化水素水溶液に含まれ
る無機不純物や非揮発性の有機不純物がミスト状で精留
塔に混入し濃縮過酸化水素水溶液を汚染してしまうこと
になる。
[0004] Hydrogen peroxide aqueous solution is widely used not only as a reaction reagent but also in many fields such as bleaching and chemical polishing, but in recent years, its use in the electronics industry such as semiconductors and printed wiring boards has increased. Accordingly, an extremely high-purity aqueous solution of hydrogen peroxide has been required, and products obtained by rectifying and condensing crude hydrogen peroxide have also been required to have high-purity quality with very few impurities. However, there are many problems when trying to reduce organic impurities and inorganic impurities as much as possible with these conventional techniques. Crude hydrogen peroxide contains, as impurities, inorganic impurities resulting from elution from a reactor, piping, etc., in addition to organic impurities having a small but not negligible concentration. In some cases, it may contain a stabilizer added to suppress the decomposition of hydrogen peroxide in the production process. Therefore, if the gas-liquid separation in the gas-liquid separator in the evaporation step is incomplete, the inorganic impurities and the non-volatile organic impurities contained in the crude hydrogen peroxide aqueous solution are mixed into the rectification column in the form of mist and concentrated. This will contaminate the hydrogen oxide aqueous solution.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、粗過
酸化水素水溶液を蒸発器で蒸発させ、発生蒸気を液と分
離して精留塔に供給し濃縮するに当たって、気液の分離
が不完全な為に粗過酸化水素水溶液の一部が精留塔に混
入し、粗過酸化水素に含まれる有機または無機の不純物
の為に濃縮精製液の純度が低下する問題を解決し、高純
度の過酸化水素を供給する事にある。本発明の目的は特
に、過酸化水素の物性に適した気液分離方法を提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to evaporate a crude aqueous hydrogen peroxide solution in an evaporator, separate the generated steam from the liquid, supply it to a rectification column, and concentrate it. Solves the problem that part of the crude hydrogen peroxide aqueous solution is mixed into the rectification column due to incompleteness, and the purity of the concentrated purified liquid is reduced due to organic or inorganic impurities contained in the crude hydrogen peroxide. To supply pure hydrogen peroxide. In particular, an object of the present invention is to provide a gas-liquid separation method suitable for the physical properties of hydrogen peroxide.

【0006】[0006]

【課題を解決するための手段】本発明を第2図に示した
フローダイアグラムにより説明する。粗過酸化水素水溶
液は21のラインより蒸発器24に入る。24を出た気
液はライン25を通ってサイクロン26に導かれる。2
6では揮発性不純物、過酸化水素、水からなる蒸気と非
揮発性不純物を含み蒸気側組成と平衡にある過酸化水素
水溶液に分離される。26で分離された蒸気はライン2
7を経て2段目サイクロン28に入る。サイクロン28
を出た蒸気はさらに3段目サイクロン30に導かれミス
トを完全に除去された蒸気はライン31を通って精留塔
32の好ましくは底部にみちびかれる。サイクロン2
6、28、30、で分離された過酸化水素水溶液はライ
ン38、39、40を通り41から抜き出される。精留
塔32において上昇蒸気は過酸化水素濃度を減じ下降液
は過酸化水素濃度を上げ塔底より濃縮された高純度過酸
化水素水溶液としてライン37より抜き出される。塔頂
の蒸気はライン33を通ってコンデンサー34に導かれ
実質的に過酸化水素を含まない凝縮水がライン36から
排出され、塔頂には還流水がライン35より供給され
る。これらの蒸発、気液分離、及び精留は減圧で行われ
る。ライン37より抜き出された過酸化水素はタンクに
採取、貯蔵され、輸送、出荷される。
The present invention will be described with reference to a flow diagram shown in FIG. The crude aqueous hydrogen peroxide solution enters the evaporator 24 through line 21. The gas-liquid that has exited 24 is led through a line 25 to a cyclone 26. 2
At 6, the mixture is separated into a hydrogen peroxide aqueous solution containing a vapor composed of volatile impurities, hydrogen peroxide and water and a non-volatile impurity and being in equilibrium with the composition on the vapor side. The steam separated in 26 is sent to line 2
After 7 enter the second stage cyclone 28. Cyclone 28
The steam having exited from the mist is further led to a third-stage cyclone 30, and the steam from which mist has been completely removed passes through a line 31 and is preferably discharged to a bottom of a rectification column 32. Cyclone 2
The aqueous hydrogen peroxide solution separated at 6, 28, 30 is withdrawn from line 41 via lines 38, 39, 40. In the rectification column 32, the ascending vapor reduces the hydrogen peroxide concentration and the descending liquid increases the hydrogen peroxide concentration, and is withdrawn from the line 37 as a high-purity aqueous hydrogen peroxide solution concentrated from the bottom of the column. The vapor at the top is led to a condenser 34 through a line 33, and condensed water substantially free of hydrogen peroxide is discharged from a line 36, and reflux water is supplied to the top from a line 35. These evaporation, gas-liquid separation, and rectification are performed under reduced pressure. The hydrogen peroxide extracted from the line 37 is collected in a tank, stored, transported, and shipped.

【0007】本発明に使用する粗過酸化水素水溶液は過
酸化水素を15ないし40重量%含有し、有機不純物を
全有機炭素として約10ppmないし200ppm、無機不純
物として装置材質に起因する鉄やアルミニウムイオンを
数10ないし数100ppb含むものである。又、必要に
よりピロリン酸塩等の安定剤単独あるいは混合したもの
でその合計濃度が200ppmまで含むものが用いられる。
The crude aqueous hydrogen peroxide solution used in the present invention contains 15 to 40% by weight of hydrogen peroxide, contains about 10 to 200 ppm of organic impurities as total organic carbon, and iron and aluminum ions derived from the material of the apparatus as inorganic impurities. From several tens to several hundreds of ppb. If necessary, a stabilizer such as a pyrophosphate salt alone or as a mixture containing a total concentration of up to 200 ppm is used.

【0008】本発明の濃縮精製方法は、気液分離器を直
列に多段のサイクロンを配置してなることに特徴があ
り、気液分離部は本発明の方法を構成する重要部であ
る。蒸発器を出た気体はミスト状の液体を含み、該液体
は不純物を高濃度に含むので、両者を分離する必要があ
る。気液分離の方法としては充填材カラムや衝突板方式
のミストセパレーターもあるが、これらは、気液が器壁
や充填物に接触する面積が大きいため過酸化水素の分解
や過酸化水素が接触する機器からの溶出等による汚染を
生じるという問題がある。われわれは構造的にもシンプ
ルなサイクロンで研究を重ね、サイクロンを多段に組み
合わせる事で良好な気液分離が可能である事を見いだし
た。すなわち本発明のミスト気液分離器部は直列に接続
された2段以上、好ましくは2ないし3段のサイクロン
からなる。4段以上はサイクロンにおける圧力損失が増
大して濃縮精製装置全体の運転が難しくなる割には効果
の増大は小さい。
[0008] The concentration and purification method of the present invention is characterized in that a gas-liquid separator is arranged in series with multiple stages of cyclones, and the gas-liquid separator is an important part constituting the method of the present invention. The gas leaving the evaporator contains a mist-like liquid, and since the liquid contains a high concentration of impurities, it is necessary to separate them. Gas-liquid separation methods include packing columns and mist separators of the collision plate type.However, these have a large area where gas-liquid comes into contact with the vessel wall and packing material, so that hydrogen peroxide decomposes and hydrogen peroxide comes into contact. There is a problem that contamination occurs due to elution from the equipment to be used. We repeated our research with a cyclone that was structurally simple, and found that good gas-liquid separation was possible by combining cyclones in multiple stages. That is, the mist gas-liquid separator section of the present invention comprises two or more stages, preferably two or three stages of cyclones connected in series. In four or more stages, the pressure loss in the cyclone increases and the operation of the entire concentration and purification apparatus becomes difficult, but the increase in effect is small.

【0009】各サイクロンの形式は単純接線入口形式で
も全円周渦巻入口形式でも使用できるが、第3図に示す
ような単純接線入口の標準サイクロンが特に好適に使用
される。サイクロンの設計は化学工学便覧やPerry's Ha
nd Bookに記載されているいずれの寸法比によってもよ
い。特に、第3図において、サイクロン径Dcに対しB
=1/4*Dcないし1/5*Dc、h=1/2*Dc、l=1/2*Dcないし
2/5*Dc、H1=Dcないし2*Dc、H2=2*Dcの設計条件が
好適である。サイクロン径Dcはサイクロン入口気流速
度が100Torrで10m/sec ないし150m/sec好まし
くは20m/secないし100m/sec となるように設計し
た時、特に顕著な効果が得られる。
The type of each cyclone can be either a simple tangent inlet type or a full-circle spiral inlet type, but a standard cyclone with a simple tangential inlet as shown in FIG. 3 is particularly preferably used. The cyclone design is based on the Chemical Engineering Handbook and Perry's Ha
Any dimensional ratio described in the nd Book may be used. In particular, in FIG.
= 1/4 * Dc to 1/5 * Dc, h = 1/2 * Dc, l = 1/2 * Dc or
Design conditions of 2/5 * Dc, H1 = Dc to 2 * Dc, and H2 = 2 * Dc are preferable. When the cyclone diameter Dc is designed to be 10 m / sec to 150 m / sec, preferably 20 m / sec to 100 m / sec at a cyclone inlet air velocity of 100 Torr, a particularly remarkable effect is obtained.

【0010】サイクロンの材質はアルミニウムやステン
レスが使用できるが過酸化水素の分解を少なく抑えるた
めにはアルミニウムないしアルミニウム合金が好まし
い。精留塔の材質も同様にアルミニウムやステンレスが
使用できるが過酸化水素の分解を少なく抑えるためには
アルミニウムないしアルミニウム合金が好ましい。
As the material of the cyclone, aluminum or stainless steel can be used, but aluminum or an aluminum alloy is preferable in order to suppress decomposition of hydrogen peroxide to a small extent. Aluminum and stainless steel can also be used for the material of the rectification column, but aluminum or an aluminum alloy is preferable in order to reduce decomposition of hydrogen peroxide.

【0011】蒸発器での蒸発量は、蒸発器に入る過酸化
水素(純分換算)を100重量部とした時、サイクロン
で高濃度抜き出し過酸化水素水溶液液として分離される
量が40ないし75重量部となる程度が好適である。還
流水流量は、精留塔塔底の濃縮過酸化水素水溶液濃度が
40重量%ないし70重量%になるようにコントロール
して運転する。蒸発器の出口すなわち一段目サイクロン
入口における温度は、40℃ないし90℃、好ましくは
60℃ないし80℃である。また、一段目サイクロン入
口における圧力は、50Torrないし200Torr、好まし
くは60Torrないし150Torrとなるようにコントロー
ルして運転する。
When the amount of hydrogen peroxide (equivalent to pure content) entering the evaporator is defined as 100 parts by weight, the amount of hydrogen peroxide extracted in a cyclone and separated as an aqueous solution of hydrogen peroxide is 40 to 75. It is preferable that the amount is by weight. The flow rate of the reflux water is controlled so that the concentration of the concentrated aqueous hydrogen peroxide solution at the bottom of the rectification column becomes 40% by weight to 70% by weight. The temperature at the outlet of the evaporator, i.e. at the inlet of the first stage cyclone, is between 40C and 90C, preferably between 60C and 80C. The operation is performed while controlling the pressure at the inlet of the first cyclone to 50 Torr to 200 Torr, preferably 60 Torr to 150 Torr.

【0012】[0012]

【発明の効果】本発明により、粗過酸化水素水溶液を蒸
発器で蒸発させ、発生蒸気を液と分離して精留塔に供給
し濃縮するに当たって、気液の分離が不完全な為に粗過
酸化水素水溶液の一部が精留塔に混入し、粗過酸化水素
に含まれる有機または無機の不純物の為に濃縮精製液の
純度が低下する問題が解決され、高純度の過酸化水素が
供給される。
According to the present invention, the crude hydrogen peroxide aqueous solution is evaporated by an evaporator, and the generated vapor is separated from the liquid, supplied to the rectification column and concentrated. Part of the aqueous hydrogen peroxide solution was mixed into the rectification column, and the problem of reduced purity of the concentrated purified solution due to organic or inorganic impurities contained in the crude hydrogen peroxide was solved. Supplied.

【0013】[0013]

【実施例】次に実施例によって本発明を具体的に説明す
る。なお、本発明は、記載された図あるいは実施例に限
定されるものではない。 実施例1 第2図の如く、Dc=1,240mmのPerry's Hand Book記載の
標準サイクロンを3段直列に接続した。精留塔(材質:A
l)は塔径1,700mmであって磁製充填剤を6,000mmの高さ
充填したものであり前述迄の精留塔と同じである。過酸
化水素32wt%、蒸発残分35ppm、安定剤としてピロリン酸
ソータ゛10水塩を10ppm及びアミノトリ(メチレンホスホ
ン酸)20ppmを含む粗過酸化水素水溶液を5,700kg/hrの流
量で蒸発器に供給して濃縮し、サイクロンの下のライン
より過酸化水素濃度が64wt%の分離液1,600kg/hrと精留
塔塔底から過酸化水素濃度54wt%の高純度濃縮液1,400kg
/hrを得た。主な運転条件を下記に示す。 蒸発器出口:68〜70℃、圧力は90〜100Torr 還流水:約1,500l/hr サイクロン入り口ガス速度は物質収支より1段目におい
て約60m/sと計算された。得られた高純度濃縮液の主な
不純物を下記に示す。 Na : 10ppb以下 (原子吸光により分析) 蒸発残分: 2ppm以下 (JISK1463により分析)
Next, the present invention will be described in detail with reference to examples. The invention is not limited to the figures or embodiments described. Example 1 As shown in FIG. 2, three stages of standard cyclones described in Perry's Hand Book with Dc = 1,240 mm were connected in series. Rectification tower (material: A
l) has a tower diameter of 1,700 mm and is filled with a porcelain filler at a height of 6,000 mm, which is the same as the rectification column described above. A crude aqueous hydrogen peroxide solution containing 32 wt% of hydrogen peroxide, 35 ppm of an evaporation residue, 10 ppm of sodium pyrophosphate decahydrate as a stabilizer and 20 ppm of aminotri (methylenephosphonic acid) was supplied to the evaporator at a flow rate of 5,700 kg / hr. 1600 kg / hr of hydrogen peroxide concentration of 64 wt% from the line below the cyclone and 1,400 kg of high-purity concentrated liquid with hydrogen peroxide concentration of 54 wt% from the bottom of the rectification tower
/ hr. The main operating conditions are shown below. Evaporator outlet: 68-70 ° C, pressure: 90-100 Torr Reflux water: about 1,500 l / hr Cyclone inlet gas velocity was calculated to be about 60 m / s at the first stage from the material balance. The main impurities of the obtained high-purity concentrate are shown below. Na: 10 ppb or less (analyzed by atomic absorption) Evaporation residue: 2 ppm or less (analyzed by JISK1463)

【0014】実施例2 Dc=960mmのPerry's Hand Book記載の標準サイクロンの
後ろにDc=1,240mmのサイクロンを設置し、2段のサイク
ロンとした。精留塔(材質:Al)は塔径1,700mmであって
磁製充填剤を6,000mmの高さ充填したものであり前述迄
の精留塔と同じである。過酸化水素32wt%、蒸発残分35p
pm、安定剤としてヒ゜ロリン酸ソータ゛10水塩を10ppm
及びアミノトリ(メチレンホスホン酸)20ppmを含む粗過
酸化水素水溶液を5,700kg/hrの流量で蒸発器に供給して
濃縮し、サイクロンの下のラインより過酸化水素濃度が
64wt%の分離液1,600kg/hrと精留塔塔底から過酸化水素
濃度54wt%の高純度濃縮液1,400kg/hrを得た。主な運転
条件を下記に示す。 蒸発器出口:68〜70℃、圧力は90〜100Torr 還流水:約1,500l/hr サイクロン入り口ガス速度は物質収支より1段目約100m/
s、2段目約60m/s と計算された。得られた高純度濃縮液
の主な不純物を下記に示す。 Na : 10ppb以下 (原子吸光により分析) 蒸発残分: 3ppm (JISK1463により分析)
Example 2 A cyclone of Dc = 1,240 mm was installed behind a standard cyclone described in Perry's Hand Book of Dc = 960 mm to form a two-stage cyclone. The rectification tower (material: Al) has a tower diameter of 1,700 mm and is filled with a porcelain filler at a height of 6,000 mm, and is the same as the rectification tower described above. Hydrogen peroxide 32wt%, evaporation residue 35p
pm, 10 ppm of sodium phosphate diacid decahydrate as a stabilizer
And a crude hydrogen peroxide aqueous solution containing 20 ppm of aminotri (methylenephosphonic acid) and fed to the evaporator at a flow rate of 5,700 kg / hr to concentrate, and the hydrogen peroxide concentration was reduced from the line below the cyclone.
A 1,600 kg / hr of a 64 wt% separated liquid and a 1,400 kg / hr of a high purity concentrated liquid having a hydrogen peroxide concentration of 54 wt% were obtained from the bottom of the rectification column. The main operating conditions are shown below. Evaporator outlet: 68 to 70 ° C, pressure is 90 to 100 Torr Reflux water: about 1,500 l / hr Cyclone inlet gas velocity is about 100 m / m at the first stage from material balance
s, the second stage was calculated to be about 60m / s. The main impurities of the obtained high-purity concentrate are shown below. Na: 10 ppb or less (analyzed by atomic absorption) Evaporation residue: 3 ppm (analyzed by JISK1463)

【0015】比較例1 実施例1において、Dc=1,240mmのPerry's Hand Book記
載の標準サイクロン1段のみからなり、精留塔(材質:A
l)が塔径1,700mmであって磁製充填剤を6,000mmの高さ
充填したものである濃縮設備において、過酸化水素32wt
%、蒸発残分35ppm、安定剤としてヒ゜ロリン酸ソータ゛
10水塩を10ppm及びアミノトリ(メチレンホスホン酸)20p
pmを含む粗過酸化水素水溶液を5,700kg/hrの流量で蒸発
器に供給して濃縮し、サイクロンの下のラインより過酸
化水素濃度が64wt%の分離液1,600kg/hrと精留塔塔底か
ら過酸化水素濃度54wt%の高純度濃縮液1,400kg/hrを得
た。主な運転条件を下記に示す。 蒸発器出口:68〜70℃、圧力は90〜100Torr 還流水:約1,500l/hr サイクロン入り口ガス速度は物質収支より約60m/sと計
算された。得られた高純度濃縮液の主な不純物を下記に
示す。 Na : 70ppb (原子吸光により分析) 蒸発残分: 11ppm (JISK1463により分析)
Comparative Example 1 In Example 1, a single-stage standard cyclone described in Perry's Hand Book with Dc = 1,240 mm was used.
l) is a column with a diameter of 1,700mm and a porcelain filler packed at a height of 6,000mm.
%, Evaporation residue 35ppm, as a stabilizer
10 ppm of decahydrate and aminotri (methylene phosphonic acid) 20p
The crude hydrogen peroxide solution containing pm is supplied to the evaporator at a flow rate of 5,700 kg / hr and concentrated, and from the line below the cyclone, the separated liquid with a hydrogen peroxide concentration of 64 wt% is 1,600 kg / hr and the rectification tower From the bottom, 1,400 kg / hr of a high-purity concentrated liquid having a hydrogen peroxide concentration of 54 wt% was obtained. The main operating conditions are shown below. Evaporator outlet: 68-70 ° C, pressure: 90-100 Torr Reflux water: about 1,500 l / hr The gas velocity at the cyclone inlet was calculated to be about 60 m / s from the material balance. The main impurities of the obtained high-purity concentrate are shown below. Na: 70ppb (analyzed by atomic absorption) Evaporation residue: 11ppm (analyzed by JISK1463)

【0016】比較例2 実施例1において、Dc=960mmのPerry's Hand Book記載
の標準サイクロン1段のみからなり、精留塔(材質:A
l)が塔径1,700mmであって磁製充填剤を6,000mmの高さ
充填したものである濃縮設備において、過酸化水素32wt
%、蒸発残分35ppm、安定剤としてヒ゜ロリン酸ソータ゛
10水塩を10ppm及びアミノトリ(メチレンホスホン酸)20p
pmを含む粗過酸化水素水溶液を5,700kg/hrの流量で蒸発
器に供給して濃縮し、サイクロンの下のラインより過酸
化水素濃度が64wt%の分離液1,600kg/hrと精留塔塔底か
ら過酸化水素濃度54wt%の高純度濃縮液1,400kg/hrを得
た。主な運転条件を下記に示す。 蒸発器出口:68〜70℃、圧力は90〜100Torr 還流水:約1,500l/hr サイクロン入り口ガス速度は物質
収支より約100m/s と計算された。 得られた高純度濃縮液の主な不純物を下記に示す。 Na : 110ppb (原子吸光により分析) 蒸発残分: 15ppm (JISK1463により分析)
Comparative Example 2 In Example 1, a rectification column (material: A) consisting of only one stage of a standard cyclone described in Perry's Hand Book with Dc = 960 mm
l) is a column with a diameter of 1,700mm and a porcelain filler packed at a height of 6,000mm.
%, Evaporation residue 35ppm, as a stabilizer
10 ppm of decahydrate and aminotri (methylene phosphonic acid) 20p
The crude hydrogen peroxide solution containing pm is supplied to the evaporator at a flow rate of 5,700 kg / hr and concentrated, and from the line below the cyclone, the separated liquid with a hydrogen peroxide concentration of 64 wt% is 1,600 kg / hr and the rectification tower From the bottom, 1,400 kg / hr of a high-purity concentrated liquid having a hydrogen peroxide concentration of 54 wt% was obtained. The main operating conditions are shown below. Evaporator outlet: 68-70 ° C, pressure: 90-100 Torr Reflux water: about 1,500 l / hr Cyclone inlet gas velocity was calculated to be about 100 m / s from the material balance. The main impurities of the obtained high-purity concentrate are shown below. Na: 110ppb (analyzed by atomic absorption) Evaporation residue: 15ppm (analyzed by JISK1463)

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の濃縮精製装置。FIG. 1 shows a conventional concentration and purification device.

【図2】本発明の過酸化水素の濃縮精製装置。FIG. 2 shows an apparatus for concentrating and purifying hydrogen peroxide according to the present invention.

【図3】サイクロンの構造。FIG. 3 shows the structure of a cyclone.

【符号の説明】[Explanation of symbols]

2:蒸発器 4:気液分離器 6:精留塔 8:コンデンサー 21:粗過酸化水素供給ライン 24:蒸発器 26、28、30:サイクロン 32:精留塔 34:コンデンサー 35:還流水 37:高純度過酸化水素抜き出しライン Dc:サイクロン径 2: Evaporator 4: Gas-liquid separator 6: Rectification tower 8: Condenser 21: Crude hydrogen peroxide supply line 24: Evaporator 26, 28, 30: Cyclone 32: Rectification tower 34: Condenser 35: Reflux water 37 : High-purity hydrogen peroxide extraction line Dc: Cyclone diameter

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−140044(JP,A) 特表 昭62−502821(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01D 45/12 C01B 15/013 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-5-140044 (JP, A) JP-T-62-502821 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B01D 45/12 C01B 15/013

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 過酸化水素含有水溶液を蒸発器で蒸発さ
せ発生した蒸気及びミストを気液分離器で分離し、蒸気
を精留塔に供給し濃縮精製する方法であって、気液分離
器がサイクロンを2段以上接続して構成された多段サイ
クロンであることを特徴とする過酸化水素の濃縮精製方
法。
1. A method in which a vapor and a mist generated by evaporating an aqueous solution containing hydrogen peroxide by an evaporator are separated by a gas-liquid separator, and the vapor is supplied to a rectification column for concentration and purification. Is a multi-stage cyclone configured by connecting two or more cyclones.
【請求項2】 サイクロンを2段または3段接続する請
求項1記載の方法。
2. The method according to claim 1, wherein the cyclones are connected in two or three stages.
【請求項3】 気液分離器入口における圧力が50〜2
00Torrである請求項1記載の方法。
3. The pressure at the gas-liquid separator inlet is 50-2.
2. The method of claim 1, wherein the pressure is 00 Torr.
【請求項4】 多段サイクロンの各サイクロンの入口気
流速度が10〜150m/secである請求項1記載の
方法。
4. The method according to claim 1, wherein the inlet airflow velocity of each cyclone of the multistage cyclone is 10 to 150 m / sec.
【請求項5】 気液分離器入口における温度が40〜9
0℃である請求項1記載の方法。
5. The temperature at the gas-liquid separator inlet is 40-9.
The method of claim 1, wherein the temperature is 0 ° C.
JP22727393A 1993-09-13 1993-09-13 Concentration and purification method of hydrogen peroxide Expired - Lifetime JP3328854B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP22727393A JP3328854B2 (en) 1993-09-13 1993-09-13 Concentration and purification method of hydrogen peroxide
TW083108013A TW299301B (en) 1993-09-13 1994-08-31
KR1019940022808A KR0132528B1 (en) 1993-09-13 1994-09-10 Method for enrichment and purification of aqueous hydrogen peroxide solution
FR9410868A FR2710046B1 (en) 1993-09-13 1994-09-12 Method and device for enriching and purifying an aqueous solution of hydrogen peroxide.
DE4432434A DE4432434A1 (en) 1993-09-13 1994-09-12 Process and apparatus for enriching and purifying aqueous hydrogen peroxide solutions
CN94115257A CN1036988C (en) 1993-09-13 1994-09-13 Apparatus system and method for enrichment and purification of aqueous hydrogen peroxide solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22727393A JP3328854B2 (en) 1993-09-13 1993-09-13 Concentration and purification method of hydrogen peroxide

Publications (2)

Publication Number Publication Date
JPH0780227A JPH0780227A (en) 1995-03-28
JP3328854B2 true JP3328854B2 (en) 2002-09-30

Family

ID=16858242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22727393A Expired - Lifetime JP3328854B2 (en) 1993-09-13 1993-09-13 Concentration and purification method of hydrogen peroxide

Country Status (6)

Country Link
JP (1) JP3328854B2 (en)
KR (1) KR0132528B1 (en)
CN (1) CN1036988C (en)
DE (1) DE4432434A1 (en)
FR (1) FR2710046B1 (en)
TW (1) TW299301B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100347078C (en) * 2004-09-27 2007-11-07 上海哈勃化学技术有限公司 Hydrogen peroxide concentration process
GB2426473B (en) * 2005-05-27 2008-11-05 Dyson Technology Ltd Cyclonic separating apparatus
DE102010039748A1 (en) * 2010-08-25 2012-03-01 Evonik Degussa Gmbh Process for concentrating aqueous hydrogen peroxide solution
KR101603785B1 (en) 2014-01-28 2016-03-15 주식회사 한솔케미칼 Hydrogen peroxide refined system using reverse osmosis and hydrogen peroxide produced thereof
CN109195639B (en) * 2016-04-27 2021-09-14 利乐拉瓦尔集团及财务有限公司 Hydrogen peroxide evaporation device and method for evaporating hydrogen peroxide
TWI758420B (en) 2017-02-22 2022-03-21 日商三菱瓦斯化學股份有限公司 Manufacturing method and manufacturing system of purified hydrogen peroxide aqueous solution
CN109260742B (en) * 2018-10-17 2021-06-04 杨松 Use method of circulating fluidized bed rectification device for preparing hydrogen fluoride
CN109260743B (en) * 2018-10-17 2021-06-04 杨松 Rectification device of circulating fluidized bed for preparing hydrogen fluoride
CN109126176B (en) * 2018-10-17 2020-12-18 嘉兴市晨阳箱包有限公司 Preparation electronic level hydrogen fluoride rectifier unit
CN113146482A (en) * 2021-05-17 2021-07-23 山东绿钢环保科技股份有限公司 Abrasive jet descaling system
CN114042355B (en) * 2021-09-27 2023-03-21 浙江中烟工业有限责任公司 Tobacco leaf raw fluidized bed dry distillation product filtering system and cyclone separation process thereof
CN114699888A (en) * 2022-04-01 2022-07-05 北京化工大学 Sulfur-containing tail gas desulfurization system and method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1079605B (en) * 1959-04-13 1960-04-14 Herbert Schmidt Dipl Phys Process for the production of highly concentrated hydrogen peroxide from low percentage by distillation
BE756015A (en) * 1969-09-10 1971-02-15 Degussa PROCESS FOR THE PREPARATION OF HYDROGEN PEROXIDE (E)
JPH01153509A (en) * 1987-12-11 1989-06-15 Tokai Denka Kogyo Kk Production of high-purity hydrogen peroxide
US5171407A (en) * 1989-09-22 1992-12-15 Sulzer Brothers Limited Distillation plant for producing hydrogen peroxide

Also Published As

Publication number Publication date
TW299301B (en) 1997-03-01
KR0132528B1 (en) 1998-04-09
CN1104994A (en) 1995-07-12
FR2710046B1 (en) 1997-01-03
DE4432434A1 (en) 1995-03-16
KR950008350A (en) 1995-04-17
CN1036988C (en) 1998-01-14
JPH0780227A (en) 1995-03-28
FR2710046A1 (en) 1995-03-24

Similar Documents

Publication Publication Date Title
JP2696705B2 (en) Method and apparatus for air separation by rectification
JP3328854B2 (en) Concentration and purification method of hydrogen peroxide
US5456898A (en) Method for enrichment and purification of aqueous hydrogen peroxide solution
US6224845B1 (en) Process for manufacturing an aqueous hydrogen peroxide solution
US5302367A (en) Process for obtaining aqueous hydrogen peroxide solutions
US7404834B2 (en) Ethylene oxide plant operation
US2819949A (en) Purification of hydrogen peroxide
US2520870A (en) Purification of hydrogen peroxide
US5296104A (en) Process for obtaining purified aqueous hydrogen peroxide solutions
US2990341A (en) Process for concentrating hydrogen peroxide
US11912571B2 (en) Device and process for producing hydrogen peroxide by an anthraquinone process
US11220430B2 (en) Method and system for producing purified aqueous hydrogen peroxide solution
JP3250591B2 (en) Concentration and purification method of aqueous hydrogen peroxide solution
JP2000302419A (en) Production of purified hydrogen peroxide aqueous solution
JP3531185B2 (en) Stabilized aqueous solution of purified hydrogen peroxide
JP4120718B2 (en) Method for producing purified aqueous hydrogen peroxide solution
US2684889A (en) Method of manufacturing highly purified hydrogen
JPH08310803A (en) Production of refined hydrogen peroxide
RU2778540C1 (en) Set and method for producing hydrogen peroxide through the anthraquinone process
CN109279586A (en) A method of rare gas is recycled for multitower oxygen unit

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070719

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130719

Year of fee payment: 11