CS201437B1 - Unburnt metallurgical building materials - Google Patents
Unburnt metallurgical building materials Download PDFInfo
- Publication number
- CS201437B1 CS201437B1 CS43679A CS43679A CS201437B1 CS 201437 B1 CS201437 B1 CS 201437B1 CS 43679 A CS43679 A CS 43679A CS 43679 A CS43679 A CS 43679A CS 201437 B1 CS201437 B1 CS 201437B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- building materials
- weight
- unburnt
- quartz
- liquid metals
- Prior art date
Links
- 239000004566 building material Substances 0.000 title claims description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 12
- 229910001338 liquidmetal Inorganic materials 0.000 claims description 8
- LSNNMFCWUKXFEE-UHFFFAOYSA-L sulfite Chemical compound [O-]S([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-L 0.000 claims description 6
- 239000010453 quartz Substances 0.000 claims description 5
- 238000005299 abrasion Methods 0.000 claims description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 3
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052622 kaolinite Inorganic materials 0.000 claims description 2
- 239000006004 Quartz sand Substances 0.000 claims 1
- 239000002994 raw material Substances 0.000 description 7
- 238000010304 firing Methods 0.000 description 5
- 238000001035 drying Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000004035 construction material Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000011044 quartzite Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000003082 abrasive agent Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000027455 binding Effects 0.000 description 1
- 238000009739 binding Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical group [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 229910021653 sulphate ion Chemical group 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Description
Vynález sa týká nepálených hutných etaviv odolných proti abrazivnoeti tekutými kovmi a změnám teplfit pri ich technologicko» použiti.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to unburned dense abrasive materials resistant to abrasive fluids and to heat changes in their technological application.
Hutné stavivá doteraz používané na zhotovovenie vymuroviek tepelno-technických zariadeni aa vyrábajú prevažne zo surovin, ktoré sa musia vopred vysušit a následná pálit pri vysokých teplotách. Po vytvarovaní stavív z uvedených pálených surovin sa musia opátovne vysušit a vypálit, aby sa dosiahli požadované vlastnosti. Sušenie a dvojnásobný výpal vyžaduje značné množstvo tepelnej energie. Mimo toho v procese pálenia dochádza k zmrašteniu a deformácii staviv, čím sa zvyšuje ich nepodarkovosť.The dense construction materials hitherto used for the production of lining of thermal engineering equipment and are mainly made of raw materials, which must be dried beforehand and then fired at high temperatures. After the building materials have been formed from the above fired raw materials, they must be re-dried and baked to achieve the desired properties. Drying and double firing require a considerable amount of thermal energy. In addition, in the firing process, the building materials shrink and deform, thereby increasing their under-yield.
I čiastočne deformované stavivá vytvárajú počaa murovania rfizne Sirky medzier, čo znižuje pevnoeť vymurovky a jej odolnost proti tekutým kovom. Vypálené stavivá sú obvykla menej odolné proti změnám teploty. Zvýšenle hutnosti, odolnosti proti abrazivnosti tekutými kovmi a odolnosti proti změnám teploty aa dosahuje podstatné drahšími surovinami alebo špeciólnymi přísadami. Zváčšovanie tvarov pálených stavív je tiež obmedzené, pratože s velkosťou stavív rastie velkost ich deformácie a možnost praskania počas výpalu. To zvyšuje nepodarkovosť a část tvarových etaviv ja nepoužitelná do vymuroviek, ktoré prichádzajú do styku a tekutými kovmi.Even partially deformed building materials create gaps during the brickwork, which reduces the strength of the lining and its resistance to liquid metals. Fired building materials are usually less resistant to temperature changes. Increased densities, resistance to abrasion by liquid metals and resistance to changes in temperature and achieves substantial more expensive raw materials or special additives. Expansion of the shapes of burnt building materials is also limited, as the size of the building materials increases the amount of their deformation and the possibility of cracking during firing. This increases the underfloor and a portion of the molding agents is unusable in the linings that come into contact with the liquid metals.
Známe eú nepálené stavivá například e fosforečnými a síranovými vSzbami alebo režnými organickými vSzbami. Všetky tieto vSzby sú drahé. Lacnajšia vSzba z vodnéhoWe have known unburnt building materials, for example by phosphorous and sulphate bonds or by organic organic bonds. All these rates are expensive. Cheap cheaper water
201 437201 437
20143?20143?
skla znižuje teplotu použitia staviv. Tieto v8zby aa pridávajú v kvapalnon stave, čím sa zvyšuje celková pórovitoať a znižuje hutnost, a tým odolnost proti tekutým kovom.glass reduces the temperature of use of building materials. These bindings aa add in a liquid state, thereby increasing the overall porosity and reducing the density, and thus the resistance to liquid metals.
Uplatněním predmetu vynálezu je možná vyrobit nepálená hutná stavivá odolná proti abrazívnosti tekutými kovmi a změnám teploty. Na výrobu vyhovujú přírodně, vlhká, nasušené a nepálené suroviny, ktorých hlavnou zložkou je kysličník křemičitý a kysličník hlinitý, viazané práškovým aulfitovým výluhom. Cena týchto surovin Je 5 až 10 rázy nižšia, ako cena bežne používaných sušených a pálených surovin.By applying the object of the invention, it is possible to produce unburned dense building materials resistant to abrasion by liquid metals and temperature changes. Natural, moist, dried and unburnt raw materials, the main components of which are silica and alumina, bound by a powdered sulphite liquor, are suitable for production. The price of these raw materials is 5 to 10 times lower than the price of commonly used dried and fired raw materials.
Podstata nepálených hutných staviv odolných proti abrazívnosti tekutými kovmi a změnám teploty spočívá podlá vynálezu v tom, že obeahujú křemenec 80 zrnkami kaolinitu, kremeňa a sericitu v jemnom podieli, křemičitý pieaok a il e nižším obaahom kysličníka hlinitého a tým, že ako vázbu obsahuji! práškový eulfitový výluh.According to the invention, the essence of unburned dense building materials resistant to abrasion by liquid metals and temperature changes is that they encompass the quartzite with 80 grains of kaolinite, quartz and sericity in fines, silica pieaok, and a lower alumina content and by containing it as a bond! Eulfite leach powder.
Namiesto sericitíckého křemence sa móže použiť křemenec kryštalický alebo amorfný pričom sa jemná kaolinitická, kremeňová a sericitická zložka vnášajú do hmoty ako přísada.Instead of sericite quartz, crystalline or amorphous quartzite may be used, whereby the fine kaolinitic, quartz and sericite components are incorporated into the mass as an additive.
Hutné stavivá vyrobené podlá vynálezu pri použiti na vymurovanie nádob a tekuté kovy, sa musia vyhriať počas prvého zahriavania vymurovky na minimálnu teplotu 800 °C, aby nedochádzalo k peneniu kovu spósobeného uvolňujúcou sa chemicky viezanou vodou a vyhárajúcou vazbou.The dense building materials produced according to the invention for use in vessel liners and liquid metals must be heated to a minimum temperature of 800 ° C during the first heating of the liner to avoid foaming of the metal caused by the release of chemically bound water and the heating bond.
Nepálené hutné stavivá podlá vynálezu počas zahrievania zvačšujú svoj objem asi o l %, čo priaznivo pósobi na zhutnenie vymurovky na úkor vnútornej pórovitosti. Taktiež sa tým zmenšujú i tak úzké medzery medzi stavivami. Stavivá je možné použiť pri murovaní bez malty.The unburned dense building materials according to the invention increase their volume by about 1% during heating, which favorably compacts the lining at the expense of internal porosity. It also reduces even narrow gaps between the building materials. Construction materials can be used in masonry without mortar.
Stavivá podlá vynálezu sa vyznačujú dobrou prevádzkovou pevnosťou, dobrou hutnosťou už po vyformovaní a vysušení. Minimálna pórovitoať sa dosahuje použitím práškového sulfitového výluhu, ktorým sa do výrobnej hmoty nevnáša žiadna kvapalina,The building materials according to the invention are distinguished by good operational strength, good compactness even after they have been formed and dried. Minimum porosity is achieved by the use of a powdered sulphite liquor which does not carry any liquid into the production mass,
Minimálna množstvo práškového sulfitového výluhu umožňuje využiť prirodzenú vlhkosť uvedených surovin na ich splastifikovanie, zhutnenie lisováním a dosiahnutie nizkej pórovitosti o potrsbnej pevnosti.The minimum amount of sulphite leachate powder makes it possible to utilize the natural moisture content of the raw materials mentioned above for plasticizing, compacting by compression and achieving a low porosity of tensile strength.
PříkladExample
Zloženie pracovnej hmoty sericitický křemenec křemičitý piesok % hmotnostných 40 % hmotnostnýchComposition of the working mass sericite quartz silica sand 40% by weight
8.5 % hmotnoetných8.5% by weight
1.5 % hmotnoetných íl sulfitový výluh1.5% by weight clay sulphite liquor
Zložky sa dávkujú do kolesového mlýna a apoločne zomalú, aby maximálně zrno bolo 4 mm, Zmes sa mieáa 12 minút v koleeovom alebo inom vhodnom miešači s potřebným množstvom práškového sulfitového výluhu. Vlhkosť pracovnej hmoty před lisováním tvaroviek má byť 5 až 6 %. Tvarovky sa lisujú měrným lisovacím tlakom 30 až 40 MPa a vysušia pri teplote 100 až 110 °C.The ingredients are dosed into a wheel mill and slowed together to a maximum grain size of 4 mm. The mixture is stirred for 12 minutes in a roller or other suitable mixer with the necessary amount of sulphite leach powder. The moisture content of the working mass should be 5 to 6% before molding. The shaped pieces are pressed at a specific pressing pressure of 30 to 40 MPa and dried at a temperature of 100 to 110 ° C.
201 437201 437
Vlastnosti tvaroviek objemová hmotnost po vylisováni objemová hmotnost1 po vysušeni (110 °C) objemová hmotnost po vypáleni (800 °C) pevnost v tlaku po vysušení (110 °C)Volume density after pressing Volume weight 1 after drying (110 ° C) Volume weight after firing (800 ° C) Compressive strength after drying (110 ° C)
2,23 g.cm3 2,16 g.cm“3 2,13 g.cm3 2.23 g.cm 3 2.16 g.cm 3 2.13 g.cm 3
17,2 MPa skutočná pórovitosť po vypáleni (800 °C)17.2 MPa actual porosity after firing (800 ° C)
20.8 %20.8%
Tvarovky sa použili na vymurovanie lejacej pánve na 50 t ocele. Priemerná doba pobytu ocele v pánve bola 96 minút, pričom maximálna doba pobytu bola 180 minút. Počas skúšky bolo priemerná opotrebovanie nepálených hutných tvaroviek na jedno liatie 6 ntm a bežne používaných šamotových tvaroviek 13 mm.The fittings were used to cast a ladle of 50 tons of steel. The average residence time of the steel in the ladle was 96 minutes while the maximum residence time was 180 minutes. During the test, the average wear of unburned dense moldings per casting was 6 ntm and the commonly used fireclay elements were 13 mm.
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS43679A CS201437B1 (en) | 1979-01-19 | 1979-01-19 | Unburnt metallurgical building materials |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS43679A CS201437B1 (en) | 1979-01-19 | 1979-01-19 | Unburnt metallurgical building materials |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CS201437B1 true CS201437B1 (en) | 1980-11-28 |
Family
ID=5336423
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CS43679A CS201437B1 (en) | 1979-01-19 | 1979-01-19 | Unburnt metallurgical building materials |
Country Status (1)
| Country | Link |
|---|---|
| CS (1) | CS201437B1 (en) |
-
1979
- 1979-01-19 CS CS43679A patent/CS201437B1/en unknown
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3892584A (en) | Monolithic refractory materials | |
| US20040083926A1 (en) | Dry mixture of embedding material or moulding material for metal casting, embedded or moulding material produced therefrom and the use of the same | |
| US6284688B1 (en) | Refractory compositions | |
| US4432799A (en) | Refractory compositions and method | |
| EP0752397A1 (en) | Monolithic refractory composition and process for forming a furnace wall | |
| CZ308390B6 (en) | Composite with high heat accumulation | |
| CN101501231B (en) | Cement-free refractory, cement-free refractory product and manufacture method thereof | |
| RU2348595C2 (en) | Method of fabrication of products from refractory mass (versions) | |
| CS201437B1 (en) | Unburnt metallurgical building materials | |
| US3245813A (en) | Silica refractories | |
| US2416700A (en) | Refractory concrete | |
| JPS5828231B2 (en) | Fluid cast refractories | |
| SU1399294A1 (en) | Refractory composition | |
| US2160873A (en) | Refractory materials | |
| US2098839A (en) | Refractory material | |
| JPS59469B2 (en) | Method for manufacturing graphite-containing refractories | |
| SU505613A1 (en) | Concrete mix | |
| Khlystov et al. | Ways to improve physical and thermal performance of refractory lining materials | |
| US271437A (en) | Geoege uueyee | |
| RU1818320C (en) | Refractory packed mass | |
| JPS5919905B2 (en) | Fireproof insulation board | |
| JP3143731B2 (en) | Lightweight fireproof castable | |
| PL144204B1 (en) | Method of obtaining high-alumina refractories | |
| JP3117180B2 (en) | Amorphous refractory molded body and method of manufacturing the same | |
| PL128083B1 (en) | Method of manufacture of carbon containing refractories |