CS201148B1 - Process for removing melt from semiconductive material at epitaxtal growth from liquid phase - Google Patents

Process for removing melt from semiconductive material at epitaxtal growth from liquid phase Download PDF

Info

Publication number
CS201148B1
CS201148B1 CS574577A CS574577A CS201148B1 CS 201148 B1 CS201148 B1 CS 201148B1 CS 574577 A CS574577 A CS 574577A CS 574577 A CS574577 A CS 574577A CS 201148 B1 CS201148 B1 CS 201148B1
Authority
CS
Czechoslovakia
Prior art keywords
melt
semiconductor material
liquid phase
epitaxtal
growth
Prior art date
Application number
CS574577A
Other languages
Czech (cs)
Slovak (sk)
Inventor
Miloslav Kral
Original Assignee
Miloslav Kral
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miloslav Kral filed Critical Miloslav Kral
Priority to CS574577A priority Critical patent/CS201148B1/en
Publication of CS201148B1 publication Critical patent/CS201148B1/en

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

Vynález sa týká spósobu odstraňovania taveniny z polovodičového materiálu pri epitaxii z kvapalnej fázy.The present invention relates to a method of removing melt from a semiconductor material in liquid phase epitaxy.

Odstraňovanie taveniny z povrchu polovodičového materiálu sa doteraz robilo týmito postupmi: 1. Vlastnou váhou taveniny pri vysávaní polovodičového materiálu. V tomto případe sa odstraňuje tavenina nedoatatočne, lebo okrem vlastnej váhy nepósobí na ňu žiadna iné sila.Removal of the melt from the surface of the semiconductor material has hitherto been accomplished by the following procedures: 1. Self weight of the melt when vacuuming the semiconductor material. In this case, the melt is removed inadequately, since no other force is exerted on it except for its own weight.

2. Mechanicky, keá tekutá tavenina sa odstraňuje grafitovou doátičkou, ktoré sa posúva po povrchu alebo tesne nad povrchom polovodičovej doštičky. Tento postup má nedostatok v tom, že při mechanickom odstraňovaní taveniny z povrchu polovodičového materiálu sa nedostává hrana doštičky odstraňujúcej taveninu do dostatočného styku s jej povrchom, lebo povrch polovodičového materiálu bývá niekedy nerovný, a preto na nej zanechává zbytky taveniny. Okrem toho dochádza pri ich tesnom styku k mechanickému poškodeniu polovodičového materiálu. 3. Odstředivou silou. Pri tomto postupe sa polovodičový materiál aj s taveninou uvedie do rotačného pohybu a vzniknutá odstředivá sila vytláča taveninu z povrchu polovodičového materiálu. Nedostatkom tohto postupu je, že zariadenie je konstrukčně komplikované, tavenina sa odstraňuje hlavně pri členitejšom povrchu polovodičového materiálu po čaatiach a malé kvapóčky taveniny sa odstraňujú ťažko.2. Mechanically, which liquid melt is removed by a graphite plate that slides over or just above the surface of the semiconductor wafer. This process has the drawback that, when mechanically removing the melt from the surface of the semiconductor material, the edge of the melt removal plate does not get in sufficient contact with its surface because the surface of the semiconductor material is sometimes uneven and therefore leaves melt residues on it. In addition, their close contact causes mechanical damage to the semiconductor material. 3. Centrifugal force. In this process, the semiconductor material and the melt are rotated and the resulting centrifugal force forces the melt from the surface of the semiconductor material. The disadvantage of this process is that the device is structurally complicated, the melt is removed mainly at the more rugged surface of the semiconductor material after the tumbling and the small droplets of the melt are difficult to remove.

Vyššie uvedené nedostatky sa odstraňujú spósobom podTa vynálezu.The above drawbacks are overcome by the method of the invention.

Podstata vynálezu spočívá v tom, že na vyaúvajúci sa polovodičový materiál z taveniny saIt is an object of the present invention to provide a melt protruding semiconductor material

201 148201 148

201 148 působí vibráciami o frekvenci! 10 až 150 000 Hz.201 148 causes frequency vibrations! 10 to 150,000 Hz.

Spůsobom podlá vynálezu sa dosahuje dokonalejšie oddelovanie taveniny z povrchu polovodičového materiálu ako u doteraz používaných postupov a súčasne je jednoduchší ako odstředivý spůsob.The process of the invention achieves a more complete separation of the melt from the surface of the semiconductor material than with the processes used hitherto, and at the same time is simpler than the centrifugal process.

Na pripojenom výkrese je znázorněné epitaxné zariadenie využívajúce spůsob podle vynálezu.The attached drawing shows an epitaxial device utilizing the method of the invention.

Zariadenie na prevédzanie tohto spůsobu sa skládá z kremennej ampule 1, z výhřevného vinutia 2, z grafitovej nádobky 3, z taveniny 4, z nosnej tyčky 5, z vibrátore 6, z vibrujúcej nosnej tyčky 7, z držiaka polovodičového materiálu 8 a z polovodičového materiálu v tvare okrúhlej doštičky 9,The device for conveying this method consists of a quartz ampoule 1, a heating coil 2, a graphite vessel 3, a melt 4, a support rod 5, a vibrator 6, a vibrating support rod 7, a semiconductor material holder 8 and a semiconductor material in Round plate shape 9,

Příklad 1Example 1

V ampule z křemenného skla 1, okolo ktoréj je navinutá výhřevná Spirála 2, je umieatnená grafitová nádoba 3 o priemere 60 mm, v ktorej je tavenina o obsahu 90 % véh. india a 10 % váh indium-antimonidu. Doteraz popísané časti sú nepohyblivé. Pomocou nosnej tyčky na ktorej je upevněný vibrátov 6, sa do taveniny vaúvajú a z nej vysúvajú vibrujúce časti: vibrujúca nosná tyčka 7, držiak polovodičovej doštičky 8 a polovodičové doštička 9. Pracovný priestor je preplachlovaný čistým vodíkom. Po vyhriatí taveniny na teplotu 270 °C sa pohyblivý siel, skladajúoi sa z nosnej tyčky 5, z vibrujúcej nosnej tyčky 7, z vibrátore 6, z držiaka polovodičového materiálu 8 a z polovodičového materiálu 9, vsunie do taveniny tak, aby aa polovodičový materiál o priemere 20 mm úplné ponořil do taveniny 4. Počas chladnutia taveniny 4 z 270 °C na 260 °C nařasté na polovodičovom materiáli 9 indium-antimonidová epitaxná vrstva o hrúbke asi 30 um. Po dosiahnutí teploty 260 °C sa zapne vibrátor 6, ktorý cez vibrujúcu noanú tyčku 7 a držiak polovodičového materiálu 8 uvedie do kmitavého pohybu polovodičový materiál 9. Pri vysávaní polovodičového materiálu 9 z taveniny, uvedený kmitavý pohyb spůsobuje lepšie oddelovania taveniny 4 od polovodičovej doštičky 9. Použitá vibračná frekvencia bola 450 Hz. Příkon privádzaný na elektromagnetický^vibrátor 6 bol 30 W,In a quartz glass vial 1, around which a heating coil 2 is wound, a 60 mm diameter graphite vessel 3 is placed in which the melt contains 90% of the weights. indium and 10% by weight indium antimonide. The parts described so far are immovable. By means of the support rod on which the vibrators 6 are fixed, vibrating parts are drawn into and out of the melt: the vibrating support rod 7, the semiconductor wafer holder 8 and the semiconductor wafer 9. The working space is purged with pure hydrogen. After the melt has been heated to 270 ° C, the moving silo, consisting of a support rod 5, a vibrating support rod 7, a vibrator 6, a semiconductor material holder 8 and a semiconductor material 9, is inserted into the melt so that aa semiconductor material of diameter 20 mm completely immersed in the melt 4. While cooling the melt 4 from 270 ° C to 260 ° C accrued on the semiconductor material 9 an indium-antimonide epitaxial layer of about 30 µm thickness. Upon reaching a temperature of 260 ° C, the vibrator 6 is switched on, which vibrates the semiconductor material 9 via the vibrating rod 7 and the semiconductor material holder 8 in the oscillating movement. The vibration frequency used was 450 Hz. The power supplied to the electromagnetic vibrator 6 was 30 W,

Příklad 2Example 2

Podobné ako v příklade 1 bolo použité to isté zariadenie na vytvorenie vrstiev gáliaarzénu pri použití taveniny o zložení 3,6 g gália a 0,13 g gélia-aržfcnu pri použitéj teplote 750 °C s ochladením na 740 °C a pri použití vibračných fřekvencií 8500 Hz a 90 000 Hz. ,Similar to Example 1, the same device was used to form gallium arsenic layers using a 3.6g gallium melt and 0.13g gel-arsenic at a temperature of 750 ° C with cooling to 740 ° C using a vibration frequency of 8500 Hz and 90,000 Hz. .

Spůsob podlá vynálezu je možno použiť vo všetkých prípadoch, v ktorých sa vyskytujú problémy s odstraňováním kvapalnej taveniny z povrchu polovodičového materiálu.The process according to the invention can be used in all cases where there are problems with removing the liquid melt from the surface of the semiconductor material.

Claims (1)

PREDMET VYNÁLEZUOBJECT OF THE INVENTION Spůsob odstraňovania taveniny z polovodičového materiálu pri epitaxil z kvapalnej fázy vyznačujúci sa tým, že na vysúvajúci sa polovodičový materiál z taveniny aa působí vibráciami o frekvenci! 10 až 150 000 Hz.A process for removing melt from a semiconductor material in an epitaxil from a liquid phase, characterized in that the protruding semiconductor material from the melt is subjected to a frequency vibration! 10 to 150,000 Hz.
CS574577A 1977-09-05 1977-09-05 Process for removing melt from semiconductive material at epitaxtal growth from liquid phase CS201148B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CS574577A CS201148B1 (en) 1977-09-05 1977-09-05 Process for removing melt from semiconductive material at epitaxtal growth from liquid phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS574577A CS201148B1 (en) 1977-09-05 1977-09-05 Process for removing melt from semiconductive material at epitaxtal growth from liquid phase

Publications (1)

Publication Number Publication Date
CS201148B1 true CS201148B1 (en) 1980-10-31

Family

ID=5402925

Family Applications (1)

Application Number Title Priority Date Filing Date
CS574577A CS201148B1 (en) 1977-09-05 1977-09-05 Process for removing melt from semiconductive material at epitaxtal growth from liquid phase

Country Status (1)

Country Link
CS (1) CS201148B1 (en)

Similar Documents

Publication Publication Date Title
GB829422A (en) Method and apparatus for producing semi-conductor materials of high purity
GB827466A (en) Improvements in or relating to methods of and apparatus for manufacturing single crystals
US4606037A (en) Apparatus for manufacturing semiconductor single crystal
CS201148B1 (en) Process for removing melt from semiconductive material at epitaxtal growth from liquid phase
JPS551114A (en) Method and device for washing wafer
US3533856A (en) Method for solution growth of gallium arsenide and gallium phosphide
US2950219A (en) Method of manufacturing semiconductor crystals
JP7782016B2 (en) Device and method for manufacturing single crystal silicon rods
US2835614A (en) Method of manufacturing crystalline material
Bhalla et al. Crystal growth of antimony sulphur iodide
JP4436363B2 (en) Single crystal growth method and fiber molded body
US4662982A (en) Method of producing crystals of materials for use in the electronic industry
JP2504550Y2 (en) Single crystal pulling device
BE880839A (en) DEVICE AND METHOD FOR GROWING VACUUM SILICON CRYSTALS FROM MOLTEN MATERIAL
CN110528078A (en) A kind of crystal withdrawing device
CS199892B1 (en) Method of epithax layer growth on semiconductor material at epithaxis from liquid phase
JPS56149399A (en) Liquid phase epitaxial growing method
US4465545A (en) Method of growing single crystal cadmium telluride
KR102680683B1 (en) Manufacturing method of silicon carbide single crystal
SU130185A1 (en) Device for measuring the level of the melt in the crucible
JPS5538039A (en) Device for liquid-phase growth of semiconductor
JP2751333B2 (en) Single crystal pulling device
SU146049A1 (en) Method for creating electron-hole transitions in dendrites of indium semiconductor antimonide
JPS55104998A (en) Production of silicon carbide crystal layer
JP2599306B2 (en) Crystal manufacturing method and manufacturing equipment