CN217428088U - 基于椭圆低通滤波匹配网络的超宽高效逆f类功率放大器 - Google Patents

基于椭圆低通滤波匹配网络的超宽高效逆f类功率放大器 Download PDF

Info

Publication number
CN217428088U
CN217428088U CN202220725487.XU CN202220725487U CN217428088U CN 217428088 U CN217428088 U CN 217428088U CN 202220725487 U CN202220725487 U CN 202220725487U CN 217428088 U CN217428088 U CN 217428088U
Authority
CN
China
Prior art keywords
microstrip line
matching network
microstrip
network
pass filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202220725487.XU
Other languages
English (en)
Inventor
刘国华
林钇君
钟化棒
来泽杰
程知群
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou University Of Electronic Science And Technology Fuyang Institute Of Electronic Information Co ltd
Hangzhou Dianzi University
Original Assignee
Hangzhou University Of Electronic Science And Technology Fuyang Institute Of Electronic Information Co ltd
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou University Of Electronic Science And Technology Fuyang Institute Of Electronic Information Co ltd, Hangzhou Dianzi University filed Critical Hangzhou University Of Electronic Science And Technology Fuyang Institute Of Electronic Information Co ltd
Priority to CN202220725487.XU priority Critical patent/CN217428088U/zh
Application granted granted Critical
Publication of CN217428088U publication Critical patent/CN217428088U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Microwave Amplifiers (AREA)

Abstract

本实用新型公开了基于椭圆低通滤波匹配网络的超宽高效逆F类功率放大器,其中栅极直流偏置网络用于提供功率放大晶体管工作所需的栅极偏置电压;漏极直流偏置网络用于提供功率放大晶体管工作所需的漏极偏置电压;输入端阻抗匹配网络包括微带线、隔直电容以及RC并联电路;输出端阻抗匹配网络包括谐波控制网络和椭圆低通滤波匹配网络,其中,谐波控制网络选取通带外的两个频率点进行二次谐波控制;椭圆低通滤波匹配网络基于一个六阶切比雪夫低通滤波器改进得到,在工作频带外产生两个传输零点,实现基波阻抗到二次谐波阻抗的转换。本实用新型使得功率放大器在超五倍频的工作带宽内实现高效率和高增益。

Description

基于椭圆低通滤波匹配网络的超宽高效逆F类功率放大器
技术领域
本实用新型属于无线通信技术领域,特别涉及基于椭圆低通滤波匹配网络的超宽高效逆F类功率放大器。
背景技术
当今时代,随着移动通信快速发展,现已进入5G时代,各行各业都对通讯行业的技术发展提出高要求。功率放大器作为通信系统中核心的模块更是承担了技术发展的重任,再加上近些年对环保节能的倡导,使得功率放大器正朝着高效率、大带宽和高增益的方向发展。
但是人们在实践中发现大带宽常常伴随着效率的降低,因此大部分传统的功率放大器的工作带宽不会超过一个倍频程。虽然部分研究成果实现了大带宽的功率放大器,但是由于阻抗在基波频段高端和二次谐波频段低端之间的缓慢过渡也在一定程度上造成了效率的降低。
故针对目前技术中存在的不足之处,有必要进行进一步的研究,以实现一种在保持高效率和高增益的前提下同时使得工作带宽超过多个倍频程且覆盖5G商用频段的功率放大器。
实用新型内容
为了克服上述技术中存在的问题,本实用新型提供了一种基于椭圆低通滤波匹配网络的超宽高效逆F类功率放大器。同与目前已存在的同类型功率放大器相比,本实用新型通过将传统功率放大器设计过程中的最优基波阻抗点扩展为由一系列点组成的阻抗设计空间,使得基波阻抗和谐波阻抗的设计范围大大增加,从而增加了拓宽工作带宽的可能性。
为达到上述目的,本实用新型提供了基于椭圆低通滤波匹配网络的超宽高效逆F类功率放大器,包括栅极直流偏置网络、漏极直流偏置网络、输入端阻抗匹配网络、功率放大晶体管和输出端阻抗匹配网络,其中,
所述栅极直流偏置网络用于提供功率放大晶体管工作所需的栅极偏置电压;
所述漏极直流偏置网络用于提供功率放大晶体管工作所需的漏极偏置电压;
所述输入端阻抗匹配网络包括微带线、隔直电容以及RC并联电路;
所述输出端阻抗匹配网络包括谐波控制网络和椭圆低通滤波匹配网络,其中,谐波控制网络选取通带外的两个频率点进行二次谐波控制;椭圆低通滤波匹配网络基于一个六阶切比雪夫低通滤波器改进得到,在工作频带外产生两个传输零点,实现基波阻抗到二次谐波阻抗的转换。
优选地,所述栅极直流偏置网络包括微带线TL8和第一去耦电容,其中微带线TL8的一端与输入端阻抗匹配网络连接,微带线TL8的另一端与第一去耦电容的一端连接,第一去耦电容的另一端接地。
优选地,所述输入端阻抗匹配网络包括微带线T1、T2、T3、T4、T6、T7、T9、隔直电容C1和RC并联电路;其中,微带线TL1的一端作为信号的输入端口,微带线TL1的另一端与隔直电容C1的一端相连,隔直电容C1的另一端与微带线TL2的一端相连,微带线TL2的另一端与微带线TL3、TL4的一端相连,微带线TL3的另一端保持开路,微带线TL4的另一端与微带线TL5、TL6的一端相连,微带线TL5的另一端保持开路,微带线TL6的另一端与RC并联电路的一端相连,RC并联电路的另一端与微带线TL7、TL9的一端相连,微带线TL7的另一端保持开路,微带线TL9的另一端与功率放大晶体管的栅极相连,输入信号经过上述输入端阻抗匹配网络进入功率放大晶体管的栅极。
优选地,所述漏极直流偏置网络包括微带线T11、T12和第二去耦电容,其中微带线T11的一端与所述谐波控制网络连接,并联于谐波控制网络中,微带线T11的另一端与微带线T12的一端连接,微带线T12的另一端与第二去耦电容连接。
优选地,所述谐波控制网络包括微带线TL10、TL13、TL14和TL15,其中,微带线TL10的一端作为输出端阻抗匹配网络的输入端与功率放大晶体管的漏极相连,TL10的另一端与微带线TL13的一端相连,微带线TL13的另一端与微带线TL14、TL15的一端相连,微带线TL14、TL15的另一端保持开路。
优选地,所述椭圆低通滤波匹配网络包括微带线TL16、TL17、TL18、TL19、TL20、TL21、TL22、TL23、TL24和隔直电容C3,其中,微带线TL16的一端作为椭圆低通滤波匹配网络的输入端与谐波控制网络的输出端相连,微带线TL16的另一端与微带线TL17、TL19的一端相连,微带线TL17的另一端与微带线TL18的一端相连,微带线TL18的另一端保持开路,微带线TL19的另一端与微带线TL20、TL22的一端相连,微带线TL20的另一端与微带线TL21的一端相连,微带线TL21的另一端保持开路,微带线TL22的另一端与微带线TL23的一端相连,微带线TL23的另一端与隔直电容C3的一端相连,隔直电容C3的另一端与特征阻抗为50欧姆的微带线TL24相连,信号由此输出。
优选地,所述功率放大晶体管采用GaN HEMT CGH40010F晶体管。
本实用新型的有益效果至少包括:本实用新型通过将传统功率放大器设计过程中的最优基波阻抗点扩展为由一系列点组成的阻抗设计空间,使得基波阻抗和谐波阻抗的设计范围大大增加,从而增加了拓宽工作带宽的可能性。本实用新型的工作带宽为0.7-3.7GHz(136%),覆盖了3.3-3.6GHz的5G商用频段,漏极效率在60.7-73.4%之间,饱和输出功率大于41dBm,增益在11-12.7dB之间,展现出了优异的性能指标。
附图说明
为了使本实用新型的目的、技术方案和有益效果更加清楚,本实用新型提供如下附图进行说明:
图1是本实用新型实施例的基于椭圆低通滤波匹配网络的超宽高效逆F类功率放大器的结构示意图;
图2是本实用新型实施例的基于椭圆低通滤波匹配网络的超宽高效逆F类功率放大器中栅极直流偏置网络和输入端阻抗匹配网络拓扑结构图;
图3是本实用新型实施例的基于椭圆低通滤波匹配网络的超宽高效逆F类功率放大器中漏极直流偏置网络和输出端阻抗匹配网络拓扑结构图;
图4是本实用新型实施例的基于椭圆低通滤波匹配网络的超宽高效逆F类功率放大器中输出端阻抗匹配网络的模块化示意图;
图5是本实用新型实施例的基于椭圆低通滤波匹配网络的超宽高效逆F类功率放大器所涉及的六阶切比雪夫低通滤波器和在此基础改进的椭圆低通滤波器;
图6是本实用新型实施例的基于椭圆低通滤波匹配网络的超宽高效逆F类功率放大器的阻抗设计空间;
图7是本实用新型实施例的基于椭圆低通滤波匹配网络的超宽高效逆F类功率放大器输出端阻抗匹配网络的阻抗轨迹仿真结果示意图;
图8是本实用新型实施例的基于椭圆低通滤波匹配网络的超宽高效逆F类功率放大器的整体电路图;
图9是本实用新型实施例的基于椭圆低通滤波匹配网络的超宽高效逆F类功率放大器经过模拟和实物测量得到的输出功率、漏极效率和增益仿真结果图。
具体实施方式
下面将结合附图,对本实用新型的优选实施例进行详细的描述。
参见图1,所示为本实用新型实施例的基于椭圆低通滤波匹配网络的超宽高效逆F类功率放大器结构示意图,包括栅极直流偏置网络10、漏极直流偏置网络20、输入端阻抗匹配网络30、功率放大晶体管40和输出端阻抗匹配网络50,其中,栅极直流偏置网络10用于提供功率放大晶体管40工作所需的栅极偏置电压;漏极直流偏置网络20用于提供功率放大晶体管40工作所需的漏极偏置电压;输入端阻抗匹配网络30包括微带线、隔直电容以及RC并联电路;输出端阻抗匹配网络50包括谐波控制网络51和椭圆低通滤波匹配网络52,其中,谐波控制网络51选取通带外的两个频率点进行二次谐波控制;椭圆低通滤波匹配网络52基于一个六阶切比雪夫低通滤波器改进得到,在工作频带外产生两个传输零点,实现基波阻抗到二次谐波阻抗的转换。
参见图2,所示为本实用新型中栅极直流偏置网络10和输入端阻抗匹配网络30拓扑结构图,栅极直流偏置网络10包括微带线TL8和第一去耦电容Cbypass,其中微带线TL8的一端与输入端阻抗匹配网络30连接,微带线TL8的另一端与第一去耦电容Cbypass的一端连接,第一去耦电容的Cbypass另一端接地。
输入信号通过输入端阻抗匹配网络30进入功率放大晶体管40的栅极,而且50欧姆的输入阻抗通过输入端阻抗匹配网络30匹配到功率放大晶体管40栅极的最佳源阻抗进而提高整体电路工作时的效率。输入端阻抗匹配网络30由微带线TL1、TL2、TL3、TL4、TL5、TL6、TL7、TL9和隔直电容C1组成。微带线TL1的一端作为信号的输入端口,微带线TL1的另一端与隔直电容C1的一端相连,隔直电容C1的另一端与微带线TL2的一端相连,微带线TL2的另一端与微带线TL3、TL4的一端相连,微带线TL3的另一端保持开路,微带线TL4的另一端与微带线TL5、TL6的一端相连,微带线TL5的另一端保持开路,微带线TL6的另一端与RC并联电路的一端相连,RC并联电路的另一端与微带线TL7、TL9的一端相连,微带线TL7的另一端保持开路,微带线TL9的另一端与功率放大晶体管40的栅极相连。输入信号经过上述输入端阻抗匹配网络30进入功率放大晶体管40的栅极。另外,输入阻抗通过输入端阻抗匹配网络30匹配到功放管栅极的最佳源阻抗,进而提高整体电路工作时的性能。
参见图3,所示为本实用新型中漏极直流偏置网络20和输出端阻抗匹配网络50拓扑结构图,漏极直流偏置网络20包括微带线T11、T12和第二去耦电容Cbypass,其中微带线T11的一端与谐波控制网络51连接,并联于谐波控制网络51中,微带线T11的另一端与微带线T12的一端连接,微带线T12的另一端与第二去耦电容Cbypass连接。
谐波控制网络51包括微带线TL10、TL13、TL14和TL15,其中,微带线TL10的一端作为输出端阻抗匹配网络50的输入端与功率放大晶体管40的漏极相连,TL10的另一端与微带线TL13的一端相连,微带线TL13的另一端与微带线TL14、TL15的一端相连,微带线TL14、TL15的另一端保持开路。
椭圆低通滤波匹配网络52包括微带线TL16、TL17、TL18、TL19、TL20、TL21、TL22、TL23、TL24和隔直电容C3,其中,微带线TL16的一端作为椭圆低通滤波匹配网络52的输入端与谐波控制网络51的输出端相连,微带线TL16的另一端与微带线TL17、TL19的一端相连,微带线TL17的另一端与微带线TL18的一端相连,微带线TL18的另一端保持开路,微带线TL19的另一端与微带线TL20、TL22的一端相连,微带线TL20的另一端与微带线TL21的一端相连,微带线TL21的另一端保持开路,微带线TL22的另一端与微带线TL23的一端相连,微带线TL23的另一端与隔直电容C3的一端相连,隔直电容C3的另一端与特征阻抗为50欧姆的微带线TL24相连,信号由此输出。
参见图4,所示为本实用新型中输出端阻抗匹配网络50的模块化示意图,由谐波控制网络51和椭圆低通滤波匹配网络52组成。谐波控制网络51由微带线TL10、TL13、TL14和TL15组成,其中TL10的一端作为输出端阻抗匹配网络50的输入端与功率放大晶体管40的漏极相连,TL10的另一端与微带线TL13的一端相连,微带线TL13的另一端与微带线TL14、TL15的一端相连,微带线TL14、TL15的另一端保持开路。其中微带线TL14、TL15的电长度为λ/4,它们将在两个选定的二次谐波频点对信号进行抑制。该谐波控制网络51的输入阻抗ZOMN的计算公式为:
Figure BDA0003571149850000061
Figure BDA0003571149850000062
其中Z10、Z13、Z14和Z15分别为微带线TL10、TL13、TL14和TL15的特征阻抗,θ10、θ13、θ14和θ15分别为微带线TL10、TL13、TL14和TL15的电长度,而ZLPR为椭圆低通滤波匹配网络52的输入阻抗,其值等于最佳基波阻抗的实部。经过负载牵引可以确定最佳负载阻抗ZOMN的值为23+j*10.6欧姆。
另外,椭圆低通滤波匹配网络52的设计步骤如下:首先根据所需的阻抗转换比设计如图5所示的六阶切比雪夫低通滤波器,然后将电容C1和电容C2转化为电容和电感的串联电路从而在工作频带附近产生两个传输零点。而转化得到的电容C4、C5和电感L7、L8的计算公式如下所示:
Figure BDA0003571149850000071
Figure BDA0003571149850000072
Figure BDA0003571149850000073
Figure BDA0003571149850000074
其中fTZ1和fTZ2是选定的两个传输零点对应的频率点,fH为截止频率点。到此可以得到一个改进的椭圆低通滤波匹配网络52,该网络不仅可以提供阻抗在基频高端到二次谐波频段低端的快速转换,还起到了将50欧姆的负载阻抗变换到最佳基波阻抗的实部的功能。最后还要用微带线替代电容和电感,微带线的特征阻抗和电长度可以由下列公式计算得到:
Figure BDA0003571149850000075
Figure BDA0003571149850000076
其中lL和lC分别表示替换电感和电容的微带线长度,ZL和ZC分别表示替换电感和电容的微带线的特征阻抗,β和vp分别表示微带线的传播常数和相速度,L和C分别表示所以替换的电感值和电容值。
参见图6,所示为本实用新型在设计功率放大器时的阻抗的设计空间示意图。本实用新型通过在电压和电流波形表达式中引入更多的自由设计因子拓展了阻抗的设计空间,拓展后的电压和电流波形表达式如下所示:
Figure BDA0003571149850000081
Figure BDA0003571149850000082
其中vDC表示功率放大器的漏极偏置电压,iMAX表示晶体管的最大漏极电流,A、B、δ和γ是引入的自由设计因子。通过拓展后的电压和电流波形表达式可以得到基波、二次谐波和三次谐波导纳的表达式:
Figure BDA0003571149850000083
Y2=δ(A-B)+jγ(δ-A-B) (12)
Y3=∞ (13)
参见图7,所示为本实用新型输出端阻抗匹配网络50的阻抗轨迹仿真结果示意图。从图中可以看出仿真结果与图6展示的阻抗理论设计空间相符合,达到预期目标。
参见图8是本实用新型一种超宽带高效率逆F类功率放大器的整体电路图,与图2和图3中各微带线、电容和电阻位置和连接关系对应,不再赘述。
参见图9,所示为本实用新型一种基于椭圆低通滤波匹配网络52的超宽带高效率逆F类功率放大器经过模拟和测量得到漏极效率、输出功率和增益结果图。从结果可以看出,所设计的功率放大器的工作带宽为0.7-3.7GHz(136%),覆盖了3.3-3.6GHz的5G商用频段,漏极效率在60.7-73.4%之间,饱和输出功率大于41dBm,增益在11-12.7dB之间,展现出了优异的性能指标。
最后说明的是,以上优选实施例仅用以说明本实用新型的技术方案而非限制,尽管通过上述优选实施例已经对本实用新型进行了详细的描述,但本领域技术人员应当理解,可以在形式上和细节上对其做出各种各样的改变,而不偏离本实用新型权利要求书所限定的范围。

Claims (6)

1.一种基于椭圆低通滤波匹配网络的超宽高效逆F类功率放大器,其特征在于,包括栅极直流偏置网络、漏极直流偏置网络、输入端阻抗匹配网络、功率放大晶体管和输出端阻抗匹配网络,其中,
所述栅极直流偏置网络用于提供功率放大晶体管工作所需的栅极偏置电压;
所述漏极直流偏置网络用于提供功率放大晶体管工作所需的漏极偏置电压;
所述输入端阻抗匹配网络包括微带线、隔直电容以及RC并联电路;
所述输出端阻抗匹配网络包括谐波控制网络和椭圆低通滤波匹配网络,其中,谐波控制网络选取通带外的两个频率点进行二次谐波控制;椭圆低通滤波匹配网络基于一个六阶切比雪夫低通滤波器改进得到,在工作频带外产生两个传输零点,实现基波阻抗到二次谐波阻抗的转换;
所述椭圆低通滤波匹配网络包括微带线TL16、TL17、TL18、TL19、TL20、TL21、TL22、TL23、TL24和隔直电容C3,其中,微带线TL16的一端作为椭圆低通滤波匹配网络的输入端与谐波控制网络的输出端相连,微带线TL16的另一端与微带线TL17、TL19的一端相连,微带线TL17的另一端与微带线TL18的一端相连,微带线TL18的另一端保持开路,微带线TL19的另一端与微带线TL20、TL22的一端相连,微带线TL20的另一端与微带线TL21的一端相连,微带线TL21的另一端保持开路,微带线TL22的另一端与微带线TL23的一端相连,微带线TL23的另一端与隔直电容C3的一端相连,隔直电容C3的另一端与特征阻抗为50欧姆的微带线TL24相连,信号由此输出。
2.根据权利要求1所述的基于椭圆低通滤波匹配网络的超宽高效逆F类功率放大器,其特征在于,所述栅极直流偏置网络包括微带线TL8和第一去耦电容,其中微带线TL8的一端与输入端阻抗匹配网络连接,微带线TL8的另一端与第一去耦电容的一端连接,第一去耦电容的另一端接地。
3.根据权利要求2所述的基于椭圆低通滤波匹配网络的超宽高效逆F类功率放大器,其特征在于,所述输入端阻抗匹配网络包括微带线T1、T2、T3、T4、T6、T7、T9、隔直电容C1和RC并联电路;其中,微带线TL1的一端作为信号的输入端口,微带线TL1的另一端与隔直电容C1的一端相连,隔直电容C1的另一端与微带线TL2的一端相连,微带线TL2的另一端与微带线TL3、TL4的一端相连,微带线TL3的另一端保持开路,微带线TL4的另一端与微带线TL5、TL6的一端相连,微带线TL5的另一端保持开路,微带线TL6的另一端与RC并联电路的一端相连,RC并联电路的另一端与微带线TL7、TL9的一端相连,微带线TL7的另一端保持开路,微带线TL9的另一端与功率放大晶体管的栅极相连,输入信号经过上述输入端阻抗匹配网络进入功率放大晶体管的栅极。
4.根据权利要求3所述的基于椭圆低通滤波匹配网络的超宽高效逆F类功率放大器,其特征在于,所述漏极直流偏置网络包括微带线T11、T12和第二去耦电容,其中微带线T11的一端与所述谐波控制网络连接,并联于谐波控制网络中,微带线T11的另一端与微带线T12的一端连接,微带线T12的另一端与第二去耦电容连接。
5.根据权利要求4所述的基于椭圆低通滤波匹配网络的超宽高效逆F类功率放大器,其特征在于,所述谐波控制网络包括微带线TL10、TL13、TL14和TL15,其中,微带线TL10的一端作为输出端阻抗匹配网络的输入端与功率放大晶体管的漏极相连,TL10的另一端与微带线TL13的一端相连,微带线TL13的另一端与微带线TL14、TL15的一端相连,微带线TL14、TL15的另一端保持开路。
6.根据权利要求1所述的基于椭圆低通滤波匹配网络的超宽高效逆F类功率放大器,其特征在于,所述功率放大晶体管采用GaN HEMT CGH40010F晶体管。
CN202220725487.XU 2022-03-29 2022-03-29 基于椭圆低通滤波匹配网络的超宽高效逆f类功率放大器 Active CN217428088U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202220725487.XU CN217428088U (zh) 2022-03-29 2022-03-29 基于椭圆低通滤波匹配网络的超宽高效逆f类功率放大器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202220725487.XU CN217428088U (zh) 2022-03-29 2022-03-29 基于椭圆低通滤波匹配网络的超宽高效逆f类功率放大器

Publications (1)

Publication Number Publication Date
CN217428088U true CN217428088U (zh) 2022-09-13

Family

ID=83181481

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202220725487.XU Active CN217428088U (zh) 2022-03-29 2022-03-29 基于椭圆低通滤波匹配网络的超宽高效逆f类功率放大器

Country Status (1)

Country Link
CN (1) CN217428088U (zh)

Similar Documents

Publication Publication Date Title
CN104617896B (zh) 一种宽带高效率的连续逆f类功率放大器及其设计方法
CN109167582B (zh) 基于频率选择性耦合的宽带带通滤波功率放大器
CN108712154B (zh) 一种宽带f类功率放大器及设计方法
CN110324014B (zh) 一种基于谐波控制网络的超宽带高效率功率放大器
CN107483025A (zh) 一种基于新型谐波控制网络的f类功率放大器
CN214256246U (zh) 一种新型后匹配结构Doherty功率放大器
CN113162554A (zh) 一种基于谐波控制的混合高效功率放大器及其设计方法
CN110708701A (zh) 一种宽带射频功放设计方法及5g低频段射频功放
CN115412037A (zh) 基于十字结式微带匹配的并联负反馈超宽带低噪声放大器
CN113114132B (zh) 一种适用于5g基站的功率放大器及通信设备
CN112838831B (zh) 一种新型后匹配结构Doherty功率放大器
CN217428088U (zh) 基于椭圆低通滤波匹配网络的超宽高效逆f类功率放大器
CN109936338B (zh) 一种高效率五阶逆f类功率放大器
CN218387447U (zh) 基于十字结式微带匹配的并联负反馈超宽带低噪声放大器
CN114759887A (zh) 基于椭圆低通滤波匹配网络的超宽高效逆f类功率放大器
CN114123994A (zh) 一种基于开关e类模式功放的有源多电抗补偿输出拓扑结构
CN115001420A (zh) 一种基于统一设计理论的宽带异相射频功率放大器
CN213585710U (zh) 一种基于端接耦合线结构的宽带高效率功率放大器
CN217469896U (zh) 一种宽带连续型Doherty功率放大器
CN112838833A (zh) 基于发夹式微带带通滤波器的f类功率放大器及设计方法
CN114900133A (zh) 一种宽带连续型Doherty功率放大器的设计方法
CN117559924A (zh) 一种谐波控制功率放大器输入输出网络结构
CN214315212U (zh) 基于发夹式微带带通滤波器的f类功率放大器
CN214756255U (zh) 一种基于谐波控制的混合高效功率放大器
CN210899093U (zh) 一种基于电抗性谐波网络的超宽带功率放大器

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Assignee: Hangzhou Suzhao Technology Co.,Ltd.

Assignor: HANGZHOU DIANZI University

Contract record no.: X2022330000719

Denomination of utility model: Super Wide and Efficient Inverse Class F Power Amplifier Based on Elliptic Low Pass Filter Matching Network

Granted publication date: 20220913

License type: Common License

Record date: 20221204