CN217086599U - 晶体管型光电探测器 - Google Patents

晶体管型光电探测器 Download PDF

Info

Publication number
CN217086599U
CN217086599U CN202220251308.3U CN202220251308U CN217086599U CN 217086599 U CN217086599 U CN 217086599U CN 202220251308 U CN202220251308 U CN 202220251308U CN 217086599 U CN217086599 U CN 217086599U
Authority
CN
China
Prior art keywords
layer
transistor
type photodetector
electrode
photosensitive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202220251308.3U
Other languages
English (en)
Inventor
周绍元
王颖
魏楠
张志勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Yuanxin Carbon Based Integrated Circuit Research Institute
Peking University
Beijing Jiaotong University
Original Assignee
Beijing Yuanxin Carbon Based Integrated Circuit Research Institute
Peking University
Beijing Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Yuanxin Carbon Based Integrated Circuit Research Institute, Peking University, Beijing Jiaotong University filed Critical Beijing Yuanxin Carbon Based Integrated Circuit Research Institute
Priority to CN202220251308.3U priority Critical patent/CN217086599U/zh
Application granted granted Critical
Publication of CN217086599U publication Critical patent/CN217086599U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Light Receiving Elements (AREA)

Abstract

本公开提供一种晶体管型光电探测器,包括:第一电极;第二电极,第二电极与第一电极间隔开;沟道层,沟道层至少设置在第一电极与第二电极之间;光敏层,光敏层设计为p‑i‑n异质结结构,光敏层的材料由需要探测的波段所决定;以及介质层,介质层设置沟道层与光敏层之间。

Description

晶体管型光电探测器
技术领域
本公开涉及一种晶体管型光电探测器。
背景技术
光电探测器是一种把光信号转换为电信号的功能器件。根据探测光的波长,可以分为紫外、可见光、红外、太赫兹探测器。特别是,红外探测器在军事(遥感、瞄准、夜视、隐身、制导)、航天、生物诊断、民用(自动驾驶、手机红外镜头、智能家居、无线感应、气体监测)等诸多领域具有重要的应用价值。
目前商用光电探测器基于硅、锗、铟镓砷、碲化铟、碲镉汞等半导体材料。但是硅的截止波长短(只有1100nm),只能用于可见、近红外探测。锗的截止波长达到1.7um,但是性能差(间接带隙、暗电流大、饱和电流低),目前大多已经被铟镓砷取代。而铟镓砷、碲镉汞需要在三五族、CdTe或ZnCdTe基底上进行外延生长,合成难度大、工艺复杂且成本高,并且与硅基读出电路不兼容,需要用铜柱或铟柱进行异质键合(bonding),且大多需要额外的制冷装置,这导致目前高性能的红外探测器和芯片价格昂贵。
为了提升外量子效率,目前设计了Photogating(光门控)型光电探测器,即采用高吸收系数的PbS、钙钛矿等量子点与碳纳米管形成Ⅱ类异质结,光生载流子在两者的界面分离而形成额外电场调制。这类器件往往能获得较高增益,但响应和恢复速度较慢。2017年,Frank Koppens等人报道了基于石墨烯/PbS量子点的Photogating型短波红外探测器及其288×388像素规模的焦平面图像传感器,器件的响应度高达107A/W、比探测率最高为7×1013Jones,但是存在速度慢(响应时间10ms,需要栅压脉冲强制恢复)、动态范围小、开关比低等问题。2021年,中国科学院金属研究所的孙东明等采用CsPbBr3与碳纳米管构建Photogating型光电探测器,对可见光405、516nm的响应度达到107A/W、D*达到1016Jones,但响应时间为数十ms-s,还需要加额外的栅压脉冲强制探测器恢复到基线。
此外,随着碳纳米管技术的发展,碳纳米管逐渐用于器件中。但是碳纳米管在诸如红外的光电探测领域至今未研究出实用的光电探测器,主要原因有以下几点:1、单根或薄膜碳纳米管的光吸收有限,外量子效率低;2、BFBD是较为理想的碳纳米管二极管架构,但内建电场仅在源漏接触附近约50nm的区域,受衍射极限的限制红外探测器的像元尺寸多大于1um,因此BFBD器件很难得获得较高的信噪比;3、Photogating结构是克服量子效率低、内建电场范围小的一个重要途径,但是在当前的Photogating型器件架构下,光电探测器的性能欠佳,且存在响应度/外量子效率和速度的矛盾。
因此,如何设计新的光电探测器结构来突破当前的困境是所需要解决的问题。
实用新型内容
为了解决上述技术问题之一,本公开提供了一种晶体管型光电探测器。根据本公开的技术方案,可以获得较快的相应速度、较高的响应度/外量子效率和较大的信噪比。
根据本公开的一个方面,一种晶体管型光电探测器,包括:
第一电极;
第二电极,所述第二电极与所述第一电极间隔开;
沟道层,所述沟道层至少设置在所述第一电极与所述第二电极之间;
光敏层,所述光敏层设计为p-i-n异质结结构,所述光敏层的材料由需要探测的波段所决定;以及
介质层,所述介质层设置所述沟道层与所述光敏层之间。
根据本公开的至少一个实施方式的晶体管型光电探测器,所述介质层用于将所述光敏层的内建电场的电场信号变化以电容耦合方式作用至所述沟道层。
根据本公开的至少一个实施方式的晶体管型光电探测器,所述介质层为高介电常数介质层。
根据本公开的至少一个实施方式的晶体管型光电探测器,还包括:栅极及栅绝缘层,所述栅绝缘层配置在所述沟道层与所述栅极之间。
根据本公开的至少一个实施方式的晶体管型光电探测器,所述晶体管型光电探测器配置为全局底栅结构,所述全局底栅结构中的基底为掺杂的基底并且作为所述栅极;或者
所述晶体管型光电探测器配置为局部底栅结构,其中所述局部底栅结构包括基底,所述栅极形成于该基底中。
根据本公开的至少一个实施方式的晶体管型光电探测器,所述晶体管型光电探测器配置为顶栅结构,在所述顶栅结构包括基底,所述基底为透明基底且设置在所述光敏层之下,所述栅绝缘层设置在所述沟道层之上。
根据本公开的至少一个实施方式的晶体管型光电探测器,所述光敏层的外侧设计有功能层,所述功能层为滤光层、减反膜和封装层中的至少一种。
根据本公开的至少一个实施方式的晶体管型光电探测器,所述光敏层的p-i-n异质结结构中的p-i结与i-n之间设计有功能层,所述功能层用于实现能带匹配、或提高机械和电学稳定性。
根据本公开的至少一个实施方式的晶体管型光电探测器,所述基底与所述光敏层之间设计有第一功能层,所述第一功能层为滤光层、减反膜和钝化层中的至少一种;和/或
所述光敏层与所述介质层之间设计有第二功能层,所述第二功能层用于调节所述晶体管型光电探测器的阈值电压。
根据本公开的至少一个实施方式的晶体管型光电探测器,所述介质层为由高介电常数材料制成的单层介质层或者由不同高介电常数材料制成的两层以上介质层。
根据本公开的另一方面,一种晶体管型光电探测器,包括:
第一电极;
第二电极,所述第二电极与所述第一电极间隔开;
碳纳米管沟道层,所述碳纳米管沟道层至少设置在所述第一电极与所述第二电极之间;
光敏层,所述光敏层设计为p-i-n异质结、p-n反型异质结、n-n同型异质结、p-p同型异质结、n-p-n双异质结、p-n-p双异质结和肖特基结中的一种,所述光敏层的材料由需要探测的波段所决定;以及
介质层,所述介质层设置所述碳纳米管沟道层与所述光敏层之间。
根据本公开的至少一个实施方式的晶体管型光电探测器,所述介质层用于将所述光敏层的内建电场的电场信号变化以电容耦合方式作用至所述碳纳米管沟道层。
根据本公开的至少一个实施方式的晶体管型光电探测器,所述介质层为高介电常数介质层。
根据本公开的至少一个实施方式的晶体管型光电探测器,还包括:栅极及栅绝缘层,所述栅绝缘层配置在所述碳纳米管沟道层与所述栅极之间。
根据本公开的至少一个实施方式的晶体管型光电探测器,所述晶体管型光电探测器配置为全局底栅结构,所述全局底栅结构中的基底为掺杂的基底并且作为所述栅极;或者
所述晶体管型光电探测器配置为局部底栅结构,其中所述局部底栅结构包括基底,所述栅极形成于该基底中。
根据本公开的至少一个实施方式的晶体管型光电探测器,所述晶体管型光电探测器配置为顶栅结构,在所述顶栅结构包括基底,所述基底为透明基底且设置在所述光敏层之下,所述栅绝缘层设置在所述碳纳米管沟道层之上。
根据本公开的至少一个实施方式的晶体管型光电探测器,所述光敏层的外侧设计有功能层,所述功能层为滤光层、减反膜和封装层中的至少一种。
根据本公开的至少一个实施方式的晶体管型光电探测器,所述光敏层的结结构之间设计有功能层,所述功能层用于实现能带匹配、或提高机械和电学稳定性。
根据本公开的至少一个实施方式的晶体管型光电探测器,所述基底与所述光敏层之间设计有第一功能层,所述第一功能层为滤光层、减反膜和钝化层中的至少一种;和/或
所述光敏层与所述介质层之间设计有第二功能层,所述第二功能层用于调节所述晶体管型光电探测器的阈值电压。
根据本公开的至少一个实施方式的晶体管型光电探测器,所述介质层为由高介电常数材料制成的单层介质层或者由不同高介电常数材料制成的两层以上介质层。
附图说明
附图示出了本公开的示例性实施方式,并与其说明一起用于解释本公开的原理,其中包括了这些附图以提供对本公开的进一步理解,并且附图包括在本说明书中并构成本说明书的一部分。
图1是根据本公开实施方式的光电探测器的结构示意图。
图2是根据本公开实施方式的光电探测器的结构示意图。
图3是根据本公开实施方式的光电探测器的结构示意图。
图4是根据本公开实施方式的光电探测器的结构示意图。
图5是根据本公开实施方式的光电探测器的结构示意图。
图6是根据本公开实施方式的光电探测器的结构示意图。
图7是根据本公开实施方式的制备方法的流程图。
图8是根据本公开实施方式的制备方法的流程图。
图9是根据本公开实施方式的制备方法的流程图。
图10是根据本公开实施方式的制备方法的流程图。
图11是根据本公开实施方式的光电探测器的结构示意图。
图12至图16是根据本公开实施方式的光电探测器的性能指标示意图。
具体实施方式
下面结合附图和实施方式对本公开作进一步的详细说明。可以理解的是,此处所描述的具体实施方式仅用于解释相关内容,而非对本公开的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本公开相关的部分。
需要说明的是,在不冲突的情况下,本公开中的实施方式及实施方式中的特征可以相互组合。下面将参考附图并结合实施方式来详细说明本公开的技术方案。
除非另有说明,否则示出的示例性实施方式/实施例将被理解为提供可以在实践中实施本公开的技术构思的一些方式的各种细节的示例性特征。因此,除非另有说明,否则在不脱离本公开的技术构思的情况下,各种实施方式/实施例的特征可以另外地组合、分离、互换和/或重新布置。
在附图中使用交叉影线和/或阴影通常用于使相邻部件之间的边界变得清晰。如此,除非说明,否则交叉影线或阴影的存在与否均不传达或表示对部件的具体材料、材料性质、尺寸、比例、示出的部件之间的共性和/或部件的任何其它特性、属性、性质等的任何偏好或者要求。此外,在附图中,为了清楚和/或描述性的目的,可以夸大部件的尺寸和相对尺寸。当可以不同地实施示例性实施例时,可以以不同于所描述的顺序来执行具体的工艺顺序。例如,可以基本同时执行或者以与所描述的顺序相反的顺序执行两个连续描述的工艺。此外,同样的附图标记表示同样的部件。
当一个部件被称作“在”另一部件“上”或“之上”、“连接到”或“结合到”另一部件时,该部件可以直接在所述另一部件上、直接连接到或直接结合到所述另一部件,或者可以存在中间部件。然而,当部件被称作“直接在”另一部件“上”、“直接连接到”或“直接结合到”另一部件时,不存在中间部件。为此,术语“连接”可以指物理连接、电气连接等,并且具有或不具有中间部件。
为方便起见,在以下描述中,根据本发明的实施例的各种器件几何形状在附图中示出的取向上关于器件进行描述。在描述中使用诸如“之上”、“上方”、“横向”、“垂直”等术语的情况下,不应将这些解释为意味着此类实施例限于在附图中示出的特定方向。应当容易理解,无论器件的物理方向或包括有该器件的装置的物理方向如何,本文描述的器件都将能够正确运行,因此应当相应地解释以下描述。另外,根据本发明的实施例的晶体管包括半导体区域,该半导体区域可包括半导体、半金属或简并掺杂的半导体、或其组合。因此,应相应地解释本文中对“半导体区域”的引用。
这里使用的术语是为了描述具体实施例的目的,而不意图是限制性的。如这里所使用的,除非上下文另外清楚地指出,否则单数形式“一个(种、者)”和“所述(该)”也意图包括复数形式。此外,当在本说明书中使用术语“包含”和/或“包括”以及它们的变型时,说明存在所陈述的特征、整体、步骤、操作、部件、组件和/或它们的组,但不排除存在或附加一个或更多个其它特征、整体、步骤、操作、部件、组件和/或它们的组。还要注意的是,如这里使用的,术语“基本上”、“大约”和其它类似的术语被用作近似术语而不用作程度术语,如此,它们被用来解释本领域普通技术人员将认识到的测量值、计算值和/或提供的值的固有偏差。
根据本公开的一个实施方式,提供了一种晶体管型光电探测器,其中该晶体管型光电探测器可以是红外探测器、可见光探测器、紫外探测器、太赫兹探测器等等。
图1示出了根据本公开的一个实施例的晶体管型光电探测器的示意图。
如图1所示,光电探测器10可以包括第一电极110和第二电极120。第一电极110和第二电极120可以彼此间隔开,其中第一电极110可以为源极或漏极,而第二电极120可以为漏极或源极。在第一电极110与第二电极120之间可以设置有沟道层130。
第一电极110和第二电极120可以由任何合适的材料或材料组合形成。可用于第一电极110和第二电极120的材料的示例包括但不限于:金属、导电或半导体金属氧化物、导电或半导体聚合物、掺杂半导体、石墨烯、以及二维(2D)半导体等。作为一个优选示例,第一电极110和第二电极120的材料可以为Ti(钛)、Pd(钯)或Au(金)等金属材料中的一种或多种。
光电探测器10可以包括沟道层130。沟道层130至少设置在第一电极110和第二电极120之间的区域。可用于沟道层130的材料的示例包括但不限于:晶体或非晶硅、半导体金属氧化物、过渡金属硫族化合物、石墨烯、碳纳米管、半导体纳米线、有机半导体等二维材料。
在本公开中,沟道层130的材料优选为碳纳米管。例如可以在晶圆上沉积网络状或者顺排的高纯度碳纳米管薄膜,此外,也可以根据实际的需要对碳纳米管的密度来进行控制。
此外在二维材料沉积完成后可以对沟道区域之外的二维材料进行刻蚀以避免器件间的电串扰。
光电探测器10可以包括介质层140。介质层140可以设置在沟道层130与下面描述的光敏层150之间。介质层140可以为绝缘介质。可用于介质层140的材料的示例包括但不限于:SiO2、HfO2、ZrO2、Ta2O5、Y2O3、Nb2O5、Al2O3、TiO2、CeO2、In2O3、RuO2、MgO、SrO、B2O3、SnO2、PbO、PbO2、Pb3O4、V2O3、La2O3、Pr2O3、Sb2O3、Sb2O5、CaO等中的任一种。在本公开中,介质层140可以为上述所列材料形成的单层结构。但是介质层140也可以是两层以上的结构,例如通过上述所列的不同材料所形成的多层结构。可以通过曝光、热氧化或ALD等工艺来制备介质层140。
在本公开中,介质层140优选为高介电常数介质层。通过该介质层140的设计可以实现将光敏层150的内建电场的电场信号变化以电容耦合方式放大并作用至沟道层130。根据本公开的独特器件结构,能够以电容耦合方式实现对光信号(光电压)的有效放大,从而可以获得较高的响应度/外量子效率。在本公开的结构中,光生激子不需要完全分离,只需要产生电偶极子电势,也就是产生电势分布即可。因此可以使得本公开的光电探测器具有极快的响应速度。因此,根据本公开的器件结构,可以解决传统的Photogating型光电探测器中所存在的高响应度与速度难以兼得的弊端,也能够很好地解决光敏层材料与沟道层材料接触,光敏层材料影响沟道层材料的输送特性以及传感机制变得复杂等问题。
光电探测器10可以包括光敏层150。光敏层150与介质层140相邻设置。光敏层150的材料由所需探测的波段所决定。光敏层150可以设计成p-i-n异质结、p-n反型异质结、n-n同型异质结、p-p同型异质结、n-p-n双异质结、p-n-p双异质结、肖特基结等结结构。在本公开中,优选地光敏层150可以设计成p-i-n异质结,在该p-i-n异质结的结结构中,p区和n区可以设置地较薄,并且i区可以设置地较厚,也就是说i区的设置厚度大于p区和n区的设置厚度。通过这种设置可以有效地抑制多数载流子的隧穿效应,且灵敏度高,结电容小且电路常数小,耗尽层宽,扩散和渡越时间短,响应速度快。
在本公开中,可以通过以下方式来形成光敏层150。作为一个示例,可以通过热蒸发、磁控溅射、电子束蒸镀、原子层沉积、化学气相沉积等方法制备的非晶或多晶薄膜,例如ZnO、TiO2、Si、PbS、PbSe等薄膜来形成光敏层150。作为另一示例,可以通过多晶或单晶的胶体量子点薄膜来形成光敏层150,例如包括Pb系、Hg系、Cd系、Si、氧化物、钙钛矿等量子点体系,如PbS、PbSe、HgTe、Si、CdTe、CdS、ZnO及其核壳结构的量子点。作为再一示例,可以通过单晶或多晶的纳米线、纳米片等组成的薄膜来形成光敏层150,如GaAs、Te等纳米线以及ZnO、HgTe等纳米片。
作为示例,当晶体管型光电探测器为中波红外探测器的情况下,光敏层150的p-i-n结可以为Ag2Te-HgTe-Bi2Se3。当晶体管型光电探测器为短波红外探测器的情况下,光敏层150的p-i-n结可以为p-i-nGeSn、p-Si/i-Ge/n-Ge、PbS-EDT量子点/i-卤素骨架的PbS量子点/n-ZnO或n-TiO2。当晶体管型光电探测器为近红外波探测器的情况下,光敏层150的p-i-n结可以为p-NiOx/i-卤素骨架的PbS量子点/n-ZnO,当晶体管型光电探测器为可见光探测器的情况下,光敏层150的p-i-n结可以为p-i-n硅异质结。当晶体管型光电探测器为紫外光探测器的情况下,光敏层150的p-i-n结可以为ZnO薄膜、p-Si/i-ZnO/n-ZnO的p-i-n异质结。
此外,对于p-i-n结结构,可以在p-i或i-n之间设计功能层,以便更好地实现能带匹配、或提高机械和/或电学稳定性等。例如,可以设计p-NiOx/i-PbS量子点/C60/n-ZnO结构作为光敏层,进行近红外探测,其中C60作为功能层;设计p-Si/SiOx/i-ZnO/n-ZnO作为光敏层,进行紫外光电探测,其中SiOx作为功能层。
在本公开的结构中,内建电场的作用范围可以形成在整个结结构的区域,因此可以很好地解决BFBD器件的内建电场作用范围有限的问题,在BFBD器件中,内建电场的作用范围仅在源漏接触附近约50nm的区域,因此BFBD器件很难获得较高的信噪比。
光电探测器10可以包括栅绝缘层160。栅绝缘层160可以为任意的绝缘介质,例如可以为SiO2。在图1中示出了全局底栅结构。在该全局底栅结构中,掺杂的基底170可以作为栅极,并且栅绝缘层160可以设置在基底170和沟道层130之间。
图2示出了根据本公开的另一实施例,该实施例与参照图1所描述的内容的区别在于,可以在光敏层150的外侧设置功能层180,其中该功能层180可以为一层结构也可以为多层结构,例如可以为滤光层、减反膜、封装层等的至少一种。对于与图1的相关描述相同的内容,在此不再赘述。
图3示出了根据本公开的另一实施例的晶体管型光电探测器20的示意图。在该实施例中,光电探测器20可以包括第一电极210、第二电极220、沟道层230、介质层240、光敏层250、栅绝缘层260、基底270和栅极280。
其中,第一电极210、第二电极220、沟道层230、介质层240、光敏层250和栅绝缘层260的具体描述可以参照第一电极110、第二电极120、沟道层130、介质层140、光敏层150和栅绝缘层160的详细描述。这里为了简洁起见,不再赘述。
图3的实施例与图1的实施例的主要区别在于,在图3中采用了局部底栅结构,而图1采用的是全局底栅结构。
在图3的实施例中,栅极280可以由Ti、Al、Sc、Ni、Pd、Au、Pt等金属材料制成,也可以为金属材料的叠层结构。在本公开中,可以为了实现调控晶体管的阈值来选择栅极金属。可以通过调控施加在底栅金属的电压,可以将晶体管偏置在最佳工作点,实现最佳信噪比。
在本公开中,基底材料可以为硅、玻璃、石英、ITO等;或者柔性的PI、PET等柔性基底。
在图3的实施例中,也可以在光敏层250上设置功能层(如图2的描述),其中该功能层可以为一层结构也可以为多层结构,例如可以为滤光层、减反膜、封装层等的至少一种。
图4示出了根据本公开的又一实施例的晶体管型光电探测器30的示意图。图4所示的晶体管型光电探测器30可以为顶栅结构的背入射的光电探测器。在该实施例的光电探测器中,可以包括第一电极310、第二电极320、沟道层330、介质层340、光敏层350、栅绝缘层360、基底370和栅极380。其中这些部分的具体描述可以引用上面描述的内容,在此不再赘述。
在本公开中,光敏层350可以设置在基底370之上。基底370可以设置成透明形式(例如由玻璃、石英、ITO等制成),这样光线可以从如图4所示的基底370的下部进入并且照射至光敏层350。在光敏层350之上可以设置介质层340。沟道层330形成在第一电极310和第二电极320之间,并且位于栅绝缘层360与沟道层330之间。
根据本公开的进一步实施例,如图5所示,晶体管型光电探测器30还可以包括第一功能层391,其中第一功能层391可以为滤光层、减反膜、钝化层等中的至少一种。其中该第一功能层391可以设置在光敏层350与透明的基底370之间。此外,晶体管型光电探测器30还可以包括第二功能层392。该第二功能层392可以设置在光敏层350和介质层340之间,该第二功能层392可以用于调整晶体管型光电探测器的阈值电压,例如该第二功能层392可以为金属层,此外可以为增反膜等。
根据本公开的器件结构,可以通过调节晶体管光电探测器的栅压来将其沟道层偏置到最佳工作点,实现最佳信噪比。例如可以采用如图6所示进行电路连接之后,可以调控施加栅压VGS,以使得沟道层偏置至最佳工作点,从而实现最佳信噪比。
根据本公开的技术方案,可以有效地解决BFBD器件的内建电场的作用范围有限很难得获得较高的信噪比的问题,也可以很好解决Photogating型器件所存在响应度/外量子效率和速度的矛盾问题。
尤其是对于沟道层为碳纳米管材料的情况下,本公开的技术方案可以同时获得较快的响应速度、较高的响应度/外量子效率和较大的信噪比。具体而言:在晶圆片上沉积网络状或阵列碳纳米管,实现高质量底栅晶体管的批量制作,由于碳纳米管具有优异的电荷输运性能,可以实现载流子的快速传输。采用ALD、热氧化等方式在碳纳米管上沉积高k介质作为介质层,这一介质层的设计能够实现将电场信号变化以电容耦合的方式放大并作用到碳纳米管;在介质层上采用旋涂、溅射等方式沉积量子薄膜等作为光敏层,具有高外量子效率,能够实现有效光吸收;在光敏层中设计p-i-n异质结、p-n反型异质结、n-n同型异质结、p-p同型异质结、n-p-n双异质结、p-n-p双异质结、肖特基结,实现光生载流子的有效快速分离,形成光电压;通过调控施加在碳纳米管底栅晶体管上的栅压,将碳纳米管偏置在最佳工作点,实现最佳信噪比。
根据本公开的再一实施例,提供了一种晶体管型光电探测器的制备方法。图7示出了根据本公开的一个实施例的制备方法M700的流程图,并且可以包括以下内容。
在步骤S702中,制备光敏层或者沟道层;在步骤S704中,制备介质层,在步骤S706中,制备沟道层或光敏层。如果在步骤S702中制备光敏层则在步骤S706中制备沟道层,如果在步骤S702中制备沟道层则在步骤S706中制备光敏层。其中光敏层为p-i-n异质结结构,并且光敏层的材料由需要探测的波段所决定。或者,沟道层为碳纳米管沟道层。
根据本公开的具体实施例,提供了下面的晶体管型光电探测器的制备方法,其中在下面的描述中,以碳纳米管作为沟道层来进行描述。
图8示出了一种具体制备方法M800的流程图。方法M800可以对应于如图1的实施例的全局底栅结构,该方法的具体内容可以参照关于图1的描述。
在步骤S802中,可以在晶圆上沉积栅绝缘层。栅绝缘层可以为任意的绝缘介质,该晶圆可以为掺杂的基底并且可以作为晶体管型光电探测器的栅极来使用。
在步骤S804中,在栅绝缘层上可以沉积沟道层,例如可以沉积网络状或顺排的高纯度碳纳米管薄膜。如上面说明的,也可以采用晶体或非晶硅、半导体金属氧化物、过渡金属硫族化合物、石墨烯、半导体纳米线、有机半导体等其他二维材料来进行沉积形成沟道层。在本公开中,可以对沉积的碳纳米管的密度进行相应的控制。此外,在碳纳米管沉积完成之后,可以进行高温退火,并且采用例如氧化钇清洗技术来去除碳纳米管表面的有机聚合物。
在步骤S806中,可以制备第一电极和第二电极。其中具体地,可以采用曝光、电子束镀膜等微加工工艺来沉积金属材料从而制备第一电极和第二电极。第一电极和第二电极的材料可以为Ti、Pd或Au等金属材料中的一种或多种。
在步骤S808中,可以诸如曝光、干法刻蚀等工艺对碳纳米管薄膜进行图形化,并且刻蚀沟道区域之外的碳纳米管,从而避免器件之间的电串扰。
在步骤S810中,可以在碳纳米管薄膜上形成介质层,其中介质层的材料可以如上所述。例如可以采用电子束蒸镀金属钇,然后进行热氧化,从而在碳纳米管薄膜上形成氧化钇来作为高介电常数介质层。此外,也可以形成多层结构的氧化物来形成高介电常数介质层。
在步骤S812中,可以在介质层之上制备光敏层。光敏层可以制备成二层至三层结构,光敏层的材料根据所需探测波段所确定。并且光敏层制备成可以促进光生载流子的有效分离。光敏层可以制备成p-i-n异质结、p-n反型异质结、n-n同型异质结、p-p同型异质结、n-p-n双异质结、p-n-p双异质结、肖特基结等结结构。
在本公开中,光敏层优选为p-i-n异质结。例如在进行中波红外探测的情况下,光敏层的p-i-n结可以为Ag2Te-HgTe-Bi2Se3。当晶体管型光电探测器为短波红外探测器的情况下,光敏层的p-i-n结可以为p-i-n GeSn、p-Si/i-Ge/n-Ge、p-PbS-EDT量子点/i-卤素骨架的PbS量子点/n-ZnO或n-TiO2。当晶体管型光电探测器为近红外波探测器的情况下,光敏层的p-i-n结可以为p-NiOx/i-卤素骨架的PbS量子点/n-ZnO,当晶体管型光电探测器为可见光探测器的情况下,光敏层的p-i-n结可以为p-i-n硅异质结。当晶体管型光电探测器为紫外光探测器的情况下,光敏层的p-i-n结可以为ZnO薄膜、p-Si/i-ZnO/n-ZnO的p-i-n异质结。
在该实施例中,还可以包括在光敏层上制备一层或多层功能层,例如可以为滤光层、减反膜、封装层等的至少一种。进一步地还可以包括进行如图6所示的电路连接,进行相应的光电性能测试,通过调控底栅工作电压获得最佳信噪比。
图9示出了一种具体制备方法M900的流程图。方法M900可以对应于如图3的实施例的局部底栅结构,该方法的具体内容可以参照关于图3的描述。
在步骤S902中,在晶圆上加工栅极结构,并且沉积栅极金属来制备栅极。
在步骤S904中,可以在晶圆及栅极结构之上沉积栅绝缘层。栅绝缘层可以为任意的绝缘介质。
在步骤S906中,在栅绝缘层上可以沉积沟道层,例如可以沉积网络状或顺排的高纯度碳纳米管薄膜。如上面说明的,也可以采用晶体或非晶硅、半导体金属氧化物、过渡金属硫族化合物、石墨烯、半导体纳米线、有机半导体等其他二维材料来进行沉积形成沟道层。在本公开中,可以对沉积的碳纳米管的密度进行相应的控制。此外,在碳纳米管沉积完成之后,可以进行高温退火,并且采用例如氧化钇清洗技术来去除碳纳米管表面的有机聚合物。
在步骤S908中,可以制备第一电极和第二电极。可以采用曝光、电子束镀膜等微加工工艺来沉积金属材料从而制备第一电极和第二电极。第一电极和第二电极的材料可以为Ti、Pd或Au等金属材料中的一种或多种。
在步骤S910中,可以诸如曝光、干法刻蚀等工艺对碳纳米管薄膜进行图形化,并且刻蚀沟道区域之外的碳纳米管,从而避免器件之间的电串扰。
在步骤S912中,可以在碳纳米管薄膜上形成介质层,其中介质层的材料可以如上所述。例如可以采用电子束蒸镀金属钇,然后进行热氧化,从而在碳纳米管薄膜上形成氧化钇来作为高介电常数介质层。此外,也可以形成多层结构的氧化物来形成高介电常数介质层。
在步骤S914中,可以在介质层之上制备光敏层。光敏层可以制备成二层至三层结构,光敏层的材料根据所需探测波段所确定。并且光敏层制备成可以促进光生载流子的有效分离。光敏层可以制备成p-i-n异质结、p-n反型异质结、n-n同型异质结、p-p同型异质结、n-p-n双异质结、p-n-p双异质结、肖特基结等结结构。
在本公开中,光敏层优选为p-i-n异质结。例如在进行中波红外探测的情况下,光敏层的p-i-n结可以为Ag2Te-HgTe-Bi2Se3。当晶体管型光电探测器为短波红外探测器的情况下,光敏层的p-i-n结可以为p-i-n GeSn、p-Si/i-Ge/n-Ge、p-PbS-EDT量子点/i-卤素骨架的PbS量子点/n-ZnO或n-TiO2。当晶体管型光电探测器为近红外波探测器的情况下,光敏层的p-i-n结可以为p-NiOx/i-卤素骨架的PbS量子点/n-ZnO,当晶体管型光电探测器为可见光探测器的情况下,光敏层的p-i-n结可以为p-i-n硅异质结。当晶体管型光电探测器为紫外光探测器的情况下,光敏层的p-i-n结可以为ZnO薄膜、p-Si/i-ZnO/n-ZnO的p-i-n异质结。
在该实施例中,还可以包括在光敏层上制备一层或多层功能层,例如可以为滤光层、减反膜、封装层等的至少一种。进一步地还可以包括进行如图6所示的电路连接,进行相应的光电性能测试,通过调控底栅工作电压获得最佳信噪比。
图10示出了一种具体制备方法M1000的流程图。方法M1000可以对应于如图4的实施例的全局底栅结构,该方法的具体内容可以参照关于图4的描述。
在步骤S1002中,可以在晶圆上制备光敏层。光敏层可以制备成二层至三层结构,光敏层的材料根据所需探测波段所确定。并且光敏层制备成可以促进光生载流子的有效分离。光敏层可以制备成p-i-n异质结、p-n反型异质结、n-n同型异质结、p-p同型异质结、n-p-n双异质结、p-n-p双异质结、肖特基结等结结构。在本公开中,光敏层优选为p-i-n异质结。例如在进行中波红外探测的情况下,光敏层的p-i-n结可以为Ag2Te-HgTe-Bi2Se3。当晶体管型光电探测器为短波红外探测器的情况下,光敏层的p-i-n结可以为p-i-n GeSn、p-Si/i-Ge/n-Ge、p-PbS-EDT量子点/i-卤素骨架的PbS量子点/n-ZnO或n-TiO2。当晶体管型光电探测器为近红外波探测器的情况下,光敏层的p-i-n结可以为p-NiOx/i-卤素骨架的PbS量子点/n-ZnO,当晶体管型光电探测器为可见光探测器的情况下,光敏层的p-i-n结可以为p-i-n硅异质结。当晶体管型光电探测器为紫外光探测器的情况下,光敏层的p-i-n结可以为ZnO薄膜、p-Si/i-ZnO/n-ZnO的p-i-n异质结。
在步骤S1004中,可以在光敏层上制备介质层,其中介质层的材料可以如上所述。例如可以采用电子束蒸镀金属钇,然后进行热氧化,从而在碳纳米管薄膜上形成氧化钇来作为高介电常数介质层。此外,也可以形成多层结构的氧化物来形成高介电常数介质层。
在步骤S1006中,在介质层上可以沉积沟道层,例如可以沉积网络状或顺排的高纯度碳纳米管薄膜。如上面说明的,也可以采用晶体或非晶硅、半导体金属氧化物、过渡金属硫族化合物、石墨烯、半导体纳米线、有机半导体等其他二维材料来进行沉积形成沟道层。在本公开中,可以对沉积的碳纳米管的密度进行相应的控制。此外,在碳纳米管沉积完成之后,可以进行高温退火,并且采用例如氧化钇清洗技术来去除碳纳米管表面的有机聚合物。
在步骤S1008中,可以制备第一电极和第二电极。其中具体地,可以采用曝光、电子束镀膜等微加工工艺来沉积金属材料从而制备第一电极和第二电极。第一电极和第二电极的材料可以为Ti、Pd或Au等金属材料中的一种或多种。
在步骤S1010中,可以诸如曝光、干法刻蚀等工艺对碳纳米管薄膜进行图形化,并且刻蚀沟道区域之外的碳纳米管,从而避免器件之间的电串扰。
在步骤S1012中,可以在沟道层上沉积栅绝缘层。栅绝缘层可以为任意的绝缘介质。
在步骤S1014中,可以在栅绝缘层上制备栅极,采用曝光、电子束镀膜等微加工工艺来沉积金属材料来形成栅极。
还可以包括进行如图6所示的电路连接,进行相应的光电性能测试,通过调控底栅工作电压获得最佳信噪比等。此外,如上面所描述的,也可以包括制备第一功能层和/或第二功能层的步骤。第一功能层可以为滤光层、减反膜、钝化层等中的至少一种,可以设置在光敏层与透明的基底之间。第二功能层可以设置在光敏层和介质层之间,该第二功能层可以用于调整晶体管的阈值电压,例如该第二功能层可以为金属层,此外可以为增反膜等。
图11示出了根据本公开所描述的全局底栅结构的器件示意图。其中介质层140为高介电常数介质层。通过该介质层140的设计可以实现将光敏层150的内建电场的电场信号变化以电容耦合方式作用至沟道层130。根据本公开的独特的器件结构,能够以电容耦合方式实现对光信号(光电压)的有效放大,从而可以获得较高的响应度/外量子效率。而且在这种结构中,光生激子不需要完全分离,只需要产生电偶极子电势,也就是产生电势分布即可,因此可以使得本公开的光电探测器具有极快的响应速度。因此,根据本公开的器件结构,可以解决传统的Photogating型光电探测器中所存在的高响应度与速度难以兼得的弊端,也能够很好地解决光敏层材料与沟道层材料接触,使得光敏层材料影响沟道层材料的输送特性以及传感机制变得复杂等问题。
在本公开中,光敏层150设计为通过内建电场实现光生载流子的分离来形成光电压信号,介质层10设计为将光电压信号通过电容耦合方式放大并作用至沟道层130。
在本公开的结构中,内建电场154(图中虚线示出)的作用范围可以形成在整个结的区域,因此可以很好地解决BFBD器件的内建电场作用范围有限的问题,因为在BFBD器件中内建电场的作用范围仅在源漏接触附近约50nm的区域,因此BFBD器件很难获得较高的信噪比。
在此以短波红外探测器为例进行说明,光敏层150可以为光敏层为由PbS量子点和ZnO组成的两层或三层的结结构。例如优选地可以为EDT配体的PbS量子点层和ZnO层构成的p-n结,其中,在介质层140上组装ZnO层,然后在ZnO层上旋涂EDT配体的PbS量子点薄膜。更优选地光敏层150可以为p-i-n结的结结构。可以在介质层140上组装ZnO层,在ZnO层上形成卤素骨架的PbS量子点薄膜,以及再形成EDT配体的PbS量子点薄膜,来形成光敏层。
图12至图16示出了沟道层采用网络状碳纳米管,介质层采用氧化钇、光敏层采用p-PbS-EDT量子点/i-卤素骨架的PbS量子点/n-ZnO的p-i-n结的所制成的短波红外探测器件的性能指标的示意图。
图12示出了器件在1300nm光照条件下,不同光功率下实时的光电响应(其中VGS=0V,VDS=-0.1V),根据测试结果可以清楚地看出,根据本公开的技术方案所制成的器件能够实现光功率密度低于130nW/cm2的极弱光的探测。
图13示出了器件在1300nm光照条件下,提取的响应度和光电流,根据测试结构可以清楚地看出,对1300nm弱光的响应度高达104A/W
图14示出了器件在1300nm光照条件下的响应速度(左)和恢复速度(右)(VGS=0V,VDS=-0.1V),可以清楚地看出,响应速度及恢复速度可以达到亚ms水平。
图15示出了器件在1300nm光照条件下的噪声谱和比探测率,其中可以清楚地看出对弱光的比探测率D*,在1Hz情况下可以高达6×1013;在400Hz情况下,可以高达3×1014;并且在1000Hz的情况下可以高达6×1014
在图16中示出了根据本公开的技术方案制备的器件与现有的器件之间的性能比较示意图。从比较结果可以看出,根据本公开的器件无论在响应速度还是比探测率方面均明显由于现有的器件。
在本说明书的描述中,参考术语“一个实施例/方式”、“一些实施例/方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例/方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例/方式或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例/方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例/方式或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例/方式或示例以及不同实施例/方式或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
本领域的技术人员应当理解,上述实施方式仅仅是为了清楚地说明本公开,而并非是对本公开的范围进行限定。对于所属领域的技术人员而言,在上述公开的基础上还可以做出其它变化或变型,并且这些变化或变型仍处于本公开的范围内。

Claims (20)

1.一种晶体管型光电探测器,其特征在于,包括:
第一电极;
第二电极,所述第二电极与所述第一电极间隔开;
沟道层,所述沟道层至少设置在所述第一电极与所述第二电极之间;
光敏层,所述光敏层设计为p-i-n异质结结构,所述光敏层的材料由需要探测的波段所决定;以及
介质层,所述介质层设置所述沟道层与所述光敏层之间。
2.如权利要求1所述的晶体管型光电探测器,其特征在于,所述介质层用于将所述光敏层的内建电场的电场信号变化以电容耦合方式作用至所述沟道层。
3.如权利要求1所述的晶体管型光电探测器,其特征在于,所述介质层为高介电常数介质层。
4.如权利要求1至3中任一项所述的晶体管型光电探测器,其特征在于,还包括:栅极及栅绝缘层,所述栅绝缘层配置在所述沟道层与所述栅极之间。
5.如权利要求4所述的晶体管型光电探测器,其特征在于,
所述晶体管型光电探测器配置为全局底栅结构,所述全局底栅结构中的基底为掺杂的基底并且作为所述栅极;或者
所述晶体管型光电探测器配置为局部底栅结构,其中所述局部底栅结构包括基底,所述栅极形成于该基底中。
6.如权利要求4所述的晶体管型光电探测器,其特征在于,
所述晶体管型光电探测器配置为顶栅结构,在所述顶栅结构包括基底,所述基底为透明基底且设置在所述光敏层之下,所述栅绝缘层设置在所述沟道层之上。
7.如权利要求1至3中任一项所述的晶体管型光电探测器,其特征在于,所述光敏层的外侧设计有功能层,所述功能层为滤光层、减反膜和封装层中的至少一种。
8.如权利要求1至3中任一项所述的晶体管型光电探测器,其特征在于,所述光敏层的p-i-n异质结结构中的p-i结与i-n之间设计有功能层,所述功能层用于实现能带匹配、或提高机械和电学稳定性。
9.如权利要求6所述的晶体管型光电探测器,其特征在于,
所述基底与所述光敏层之间设计有第一功能层,所述第一功能层为滤光层、减反膜和钝化层中的至少一种;和/或
所述光敏层与所述介质层之间设计有第二功能层,所述第二功能层用于调节所述晶体管型光电探测器的阈值电压。
10.如权利要求1至3中任一项所述的晶体管型光电探测器,其特征在于,所述介质层为由高介电常数材料制成的单层介质层或者由不同高介电常数材料制成的两层以上介质层。
11.一种晶体管型光电探测器,其特征在于,包括:
第一电极;
第二电极,所述第二电极与所述第一电极间隔开;
碳纳米管沟道层,所述碳纳米管沟道层至少设置在所述第一电极与所述第二电极之间;
光敏层,所述光敏层设计为p-i-n异质结、p-n反型异质结、n-n同型异质结、p-p同型异质结、n-p-n双异质结、p-n-p双异质结和肖特基结中的一种,所述光敏层的材料由需要探测的波段所决定;以及
介质层,所述介质层设置所述碳纳米管沟道层与所述光敏层之间。
12.如权利要求11所述的晶体管型光电探测器,其特征在于,所述介质层用于将所述光敏层的内建电场的电场信号变化以电容耦合方式作用至所述碳纳米管沟道层。
13.如权利要求11所述的晶体管型光电探测器,其特征在于,所述介质层为高介电常数介质层。
14.如权利要求11至13中任一项所述的晶体管型光电探测器,其特征在于,还包括:栅极及栅绝缘层,所述栅绝缘层配置在所述碳纳米管沟道层与所述栅极之间。
15.如权利要求14所述的晶体管型光电探测器,其特征在于,
所述晶体管型光电探测器配置为全局底栅结构,所述全局底栅结构中的基底为掺杂的基底并且作为所述栅极;或者
所述晶体管型光电探测器配置为局部底栅结构,其中所述局部底栅结构包括基底,所述栅极形成于该基底中。
16.如权利要求14所述的晶体管型光电探测器,其特征在于,
所述晶体管型光电探测器配置为顶栅结构,在所述顶栅结构包括基底,所述基底为透明基底且设置在所述光敏层之下,所述栅绝缘层设置在所述碳纳米管沟道层之上。
17.如权利要求11至13中任一项所述的晶体管型光电探测器,其特征在于,所述光敏层的外侧设计有功能层,所述功能层为滤光层、减反膜和封装层中的至少一种。
18.如权利要求11至13中任一项所述的晶体管型光电探测器,其特征在于,所述光敏层的结结构之间设计有功能层,所述功能层用于实现能带匹配、或提高机械和电学稳定性。
19.如权利要求16所述的晶体管型光电探测器,其特征在于,
所述基底与所述光敏层之间设计有第一功能层,所述第一功能层为滤光层、减反膜和钝化层中的至少一种;和/或
所述光敏层与所述介质层之间设计有第二功能层,所述第二功能层用于调节所述晶体管型光电探测器的阈值电压。
20.如权利要求11至13中任一项所述的晶体管型光电探测器,其特征在于,所述介质层为由高介电常数材料制成的单层介质层或者由不同高介电常数材料制成的两层以上介质层。
CN202220251308.3U 2022-01-30 2022-01-30 晶体管型光电探测器 Active CN217086599U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202220251308.3U CN217086599U (zh) 2022-01-30 2022-01-30 晶体管型光电探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202220251308.3U CN217086599U (zh) 2022-01-30 2022-01-30 晶体管型光电探测器

Publications (1)

Publication Number Publication Date
CN217086599U true CN217086599U (zh) 2022-07-29

Family

ID=82544723

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202220251308.3U Active CN217086599U (zh) 2022-01-30 2022-01-30 晶体管型光电探测器

Country Status (1)

Country Link
CN (1) CN217086599U (zh)

Similar Documents

Publication Publication Date Title
CN108281454B (zh) 一种基于二维材料薄膜/绝缘层/半导体结构的电荷耦合器件
CN110212053B (zh) 一种硅基叉指型光电探测器
CN108281455B (zh) 一种带有雪崩增益的电荷耦合器件
CN108231817A (zh) 一种基于二维材料/绝缘层/半导体结构的低功耗电荷耦合器件
EP2932534B1 (en) Pixelated imager with motft and process
TWI672544B (zh) 紅外光偵測薄膜、紅外光偵測器件、紅外光偵測顯示裝置及紅外光偵測薄膜的製備方法
Yan et al. A spiro-MeOTAD/Ga2O3/Si pin junction featuring enhanced self-powered solar-blind sensing via balancing absorption of photons and separation of photogenerated carriers
CN114702960B (zh) 红外量子点层及其制备方法、红外探测器及其制备方法
CN111640817B (zh) 一种悬空横向双异质结光探测器及其制作方法
CN111341875A (zh) 一种石墨烯/二硒化钯/硅异质结自驱动光电探测器
WO2022100053A1 (zh) 含有金属硅化物红外吸收层的石墨烯场效应电荷耦合器件
CN111599830B (zh) 一种基于单层石墨烯/绝缘层/硅/多层石墨烯结构的电荷注入器件
CN217086599U (zh) 晶体管型光电探测器
CN114613873A (zh) 晶体管型光电探测器及其制备方法
JP3606886B2 (ja) 太陽電池及びその製造方法
CN115332376A (zh) 红外光电探测器及制备方法
CN108281483A (zh) 一种基于二维半导体薄膜/绝缘层/半导体结构的电荷耦合器件
Pandey et al. Enhanced sub-band gap photosensitivity by an asymmetric source–drain electrode low operating voltage oxide transistor
CN114695590A (zh) 晶体管型光电探测器及其制备方法
CN110896115B (zh) 光电晶体管、红外探测器和光电晶体管的制作方法
JP2022173791A (ja) 電磁波検出器および電磁波検出器集合体
Alhalaili et al. Nanowires for photodetection
CN218160377U (zh) 基于tft背板的胶体量子点大面阵双波段探测器件
CN217361602U (zh) 一种基于新型三元材料的异质结光电探测器
Li et al. Ultrahigh Sensitive Phototransistor Based on MoSe $ _ {\text {2}} $/Ge Mixed-Dimensional Heterojunction for Visible to Short-Wave Infrared Broadband Photodetection

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant